sequenzo 0.1.18__cp312-cp312-win_amd64.whl → 0.1.20__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (399) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +154 -154
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cp312-win_amd64.pyd +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/clustering_c_code.cp312-win_amd64.pyd +0 -0
  6. sequenzo/clustering/hierarchical_clustering.py +108 -6
  7. sequenzo/define_sequence_data.py +10 -1
  8. sequenzo/dissimilarity_measures/c_code.cp312-win_amd64.pyd +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  10. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  11. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +154 -154
  12. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp312-win_amd64.pyd +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqconc.c +154 -154
  14. sequenzo/dissimilarity_measures/utils/seqconc.cp312-win_amd64.pyd +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdss.c +154 -154
  16. sequenzo/dissimilarity_measures/utils/seqdss.cp312-win_amd64.pyd +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqdur.c +154 -154
  18. sequenzo/dissimilarity_measures/utils/seqdur.cp312-win_amd64.pyd +0 -0
  19. sequenzo/dissimilarity_measures/utils/seqlength.c +154 -154
  20. sequenzo/dissimilarity_measures/utils/seqlength.cp312-win_amd64.pyd +0 -0
  21. sequenzo/multidomain/cat.py +0 -53
  22. sequenzo/multidomain/dat.py +11 -3
  23. sequenzo/multidomain/idcd.py +0 -3
  24. sequenzo/multidomain/linked_polyad.py +0 -1
  25. sequenzo/openmp_setup.py +233 -0
  26. sequenzo/visualization/plot_transition_matrix.py +21 -22
  27. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  28. sequenzo-0.1.20.dist-info/RECORD +272 -0
  29. sequenzo/dissimilarity_measures/setup.py +0 -35
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  170. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  171. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  172. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  173. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  174. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  175. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  176. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  177. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  178. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  179. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  180. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  181. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  182. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  183. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  184. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  185. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  186. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  187. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  188. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  189. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  190. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  191. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  192. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  193. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  194. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  195. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  196. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  197. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  198. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  199. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  200. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  201. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  202. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  203. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  204. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  205. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  206. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  207. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  208. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  209. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  210. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  211. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  212. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  213. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  214. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  215. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  216. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  217. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  218. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  219. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  220. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  221. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  222. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  223. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  224. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  225. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  226. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  393. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  394. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  395. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  396. sequenzo-0.1.18.dist-info/RECORD +0 -638
  397. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  398. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  399. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,1132 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
11
- #define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
12
-
13
- namespace Eigen {
14
-
15
- /** \class TensorConvolution
16
- * \ingroup CXX11_Tensor_Module
17
- *
18
- * \brief Tensor convolution class.
19
- *
20
- *
21
- */
22
- namespace internal {
23
-
24
- template <typename Index, typename InputDims, int NumKernelDims, int Layout>
25
- class IndexMapper {
26
- public:
27
- IndexMapper(const InputDims& input_dims, const array<Index, NumKernelDims>& kernel_dims,
28
- const array<Index, NumKernelDims>& indices) {
29
-
30
- array<Index, NumDims> dimensions = input_dims;
31
- for (int i = 0; i < NumKernelDims; ++i) {
32
- const Index index = indices[i];
33
- const Index input_dim = input_dims[index];
34
- const Index kernel_dim = kernel_dims[i];
35
- const Index result_dim = input_dim - kernel_dim + 1;
36
- dimensions[index] = result_dim;
37
- }
38
-
39
- array<Index, NumDims> inputStrides;
40
- array<Index, NumDims> outputStrides;
41
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
42
- inputStrides[0] = 1;
43
- outputStrides[0] = 1;
44
- for (int i = 1; i < NumDims; ++i) {
45
- inputStrides[i] = inputStrides[i-1] * input_dims[i-1];
46
- outputStrides[i] = outputStrides[i-1] * dimensions[i-1];
47
- }
48
- } else {
49
- inputStrides[NumDims - 1] = 1;
50
- outputStrides[NumDims - 1] = 1;
51
- for (int i = static_cast<int>(NumDims) - 2; i >= 0; --i) {
52
- inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1];
53
- outputStrides[i] = outputStrides[i + 1] * dimensions[i + 1];
54
- }
55
- }
56
-
57
- array<Index, NumDims> gpuInputDimensions;
58
- array<Index, NumDims> gpuOutputDimensions;
59
- array<Index, NumDims> tmp = dimensions;
60
- array<Index, NumDims> ordering;
61
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
62
- ? 0
63
- : NumDims - NumKernelDims;
64
- for (int i = 0; i < NumKernelDims; ++i) {
65
- const Index index = i + offset;
66
- ordering[index] = indices[i];
67
- tmp[indices[i]] = -1;
68
- gpuInputDimensions[index] = input_dims[indices[i]];
69
- gpuOutputDimensions[index] = dimensions[indices[i]];
70
- }
71
-
72
- int written = static_cast<int>(Layout) == static_cast<int>(ColMajor)
73
- ? NumKernelDims
74
- : 0;
75
- for (int i = 0; i < NumDims; ++i) {
76
- if (tmp[i] >= 0) {
77
- ordering[written] = i;
78
- gpuInputDimensions[written] = input_dims[i];
79
- gpuOutputDimensions[written] = dimensions[i];
80
- ++written;
81
- }
82
- }
83
-
84
- for (int i = 0; i < NumDims; ++i) {
85
- m_inputStrides[i] = inputStrides[ordering[i]];
86
- m_outputStrides[i] = outputStrides[ordering[i]];
87
- }
88
-
89
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
90
- for (int i = 0; i < NumDims; ++i) {
91
- if (i > NumKernelDims) {
92
- m_gpuInputStrides[i] =
93
- m_gpuInputStrides[i - 1] * gpuInputDimensions[i - 1];
94
- m_gpuOutputStrides[i] =
95
- m_gpuOutputStrides[i - 1] * gpuOutputDimensions[i - 1];
96
- } else {
97
- m_gpuInputStrides[i] = 1;
98
- m_gpuOutputStrides[i] = 1;
99
- }
100
- }
101
- } else {
102
- for (int i = NumDims - 1; i >= 0; --i) {
103
- if (static_cast<size_t>(i + 1) < offset) {
104
- m_gpuInputStrides[i] =
105
- m_gpuInputStrides[i + 1] * gpuInputDimensions[i + 1];
106
- m_gpuOutputStrides[i] =
107
- m_gpuOutputStrides[i + 1] * gpuOutputDimensions[i + 1];
108
- } else {
109
- m_gpuInputStrides[i] = 1;
110
- m_gpuOutputStrides[i] = 1;
111
- }
112
- }
113
- }
114
- }
115
-
116
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputPlaneToTensorInputOffset(Index p) const {
117
- Index inputIndex = 0;
118
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
119
- for (int d = NumDims - 1; d > NumKernelDims; --d) {
120
- const Index idx = p / m_gpuInputStrides[d];
121
- inputIndex += idx * m_inputStrides[d];
122
- p -= idx * m_gpuInputStrides[d];
123
- }
124
- inputIndex += p * m_inputStrides[NumKernelDims];
125
- } else {
126
- std::ptrdiff_t limit = 0;
127
- if (NumKernelDims < NumDims) {
128
- limit = NumDims - NumKernelDims - 1;
129
- }
130
- for (int d = 0; d < limit; ++d) {
131
- const Index idx = p / m_gpuInputStrides[d];
132
- inputIndex += idx * m_inputStrides[d];
133
- p -= idx * m_gpuInputStrides[d];
134
- }
135
- inputIndex += p * m_inputStrides[limit];
136
- }
137
- return inputIndex;
138
- }
139
-
140
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputPlaneToTensorOutputOffset(Index p) const {
141
- Index outputIndex = 0;
142
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
143
- for (int d = NumDims - 1; d > NumKernelDims; --d) {
144
- const Index idx = p / m_gpuOutputStrides[d];
145
- outputIndex += idx * m_outputStrides[d];
146
- p -= idx * m_gpuOutputStrides[d];
147
- }
148
- outputIndex += p * m_outputStrides[NumKernelDims];
149
- } else {
150
- std::ptrdiff_t limit = 0;
151
- if (NumKernelDims < NumDims) {
152
- limit = NumDims - NumKernelDims - 1;
153
- }
154
- for (int d = 0; d < limit; ++d) {
155
- const Index idx = p / m_gpuOutputStrides[d];
156
- outputIndex += idx * m_outputStrides[d];
157
- p -= idx * m_gpuOutputStrides[d];
158
- }
159
- outputIndex += p * m_outputStrides[limit];
160
- }
161
- return outputIndex;
162
- }
163
-
164
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i) const {
165
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
166
- ? 0
167
- : NumDims - NumKernelDims;
168
- return i * m_inputStrides[offset];
169
- }
170
-
171
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i) const {
172
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
173
- ? 0
174
- : NumDims - NumKernelDims;
175
- return i * m_outputStrides[offset];
176
- }
177
-
178
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i, Index j) const {
179
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
180
- ? 0
181
- : NumDims - NumKernelDims;
182
- return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1];
183
- }
184
-
185
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i, Index j) const {
186
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
187
- ? 0
188
- : NumDims - NumKernelDims;
189
- return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1];
190
- }
191
-
192
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i, Index j, Index k) const {
193
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
194
- ? 0
195
- : NumDims - NumKernelDims;
196
- return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1] +
197
- k * m_inputStrides[offset + 2];
198
- }
199
-
200
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i, Index j, Index k) const {
201
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
202
- ? 0
203
- : NumDims - NumKernelDims;
204
- return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1] +
205
- k * m_outputStrides[offset + 2];
206
- }
207
-
208
- private:
209
- static const int NumDims = internal::array_size<InputDims>::value;
210
- array<Index, NumDims> m_inputStrides;
211
- array<Index, NumDims> m_outputStrides;
212
- array<Index, NumDims> m_gpuInputStrides;
213
- array<Index, NumDims> m_gpuOutputStrides;
214
- };
215
-
216
-
217
-
218
- template<typename Dimensions, typename InputXprType, typename KernelXprType>
219
- struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >
220
- {
221
- // Type promotion to handle the case where the types of the lhs and the rhs are different.
222
- typedef typename promote_storage_type<typename InputXprType::Scalar,
223
- typename KernelXprType::Scalar>::ret Scalar;
224
- typedef typename promote_storage_type<typename traits<InputXprType>::StorageKind,
225
- typename traits<KernelXprType>::StorageKind>::ret StorageKind;
226
- typedef typename promote_index_type<typename traits<InputXprType>::Index,
227
- typename traits<KernelXprType>::Index>::type Index;
228
- typedef typename InputXprType::Nested LhsNested;
229
- typedef typename KernelXprType::Nested RhsNested;
230
- typedef typename remove_reference<LhsNested>::type _LhsNested;
231
- typedef typename remove_reference<RhsNested>::type _RhsNested;
232
- static const int NumDimensions = traits<InputXprType>::NumDimensions;
233
- static const int Layout = traits<InputXprType>::Layout;
234
- typedef typename conditional<Pointer_type_promotion<typename InputXprType::Scalar, Scalar>::val,
235
- typename traits<InputXprType>::PointerType, typename traits<KernelXprType>::PointerType>::type PointerType;
236
-
237
- enum {
238
- Flags = 0
239
- };
240
- };
241
-
242
- template<typename Dimensions, typename InputXprType, typename KernelXprType>
243
- struct eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, Eigen::Dense>
244
- {
245
- typedef const TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>& type;
246
- };
247
-
248
- template<typename Dimensions, typename InputXprType, typename KernelXprType>
249
- struct nested<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, 1, typename eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >::type>
250
- {
251
- typedef TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> type;
252
- };
253
-
254
- } // end namespace internal
255
-
256
-
257
-
258
- template<typename Indices, typename InputXprType, typename KernelXprType>
259
- class TensorConvolutionOp : public TensorBase<TensorConvolutionOp<Indices, InputXprType, KernelXprType>, ReadOnlyAccessors>
260
- {
261
- public:
262
- typedef typename Eigen::internal::traits<TensorConvolutionOp>::Scalar Scalar;
263
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
264
- typedef typename internal::promote_storage_type<typename InputXprType::CoeffReturnType,
265
- typename KernelXprType::CoeffReturnType>::ret CoeffReturnType;
266
- typedef typename Eigen::internal::nested<TensorConvolutionOp>::type Nested;
267
- typedef typename Eigen::internal::traits<TensorConvolutionOp>::StorageKind StorageKind;
268
- typedef typename Eigen::internal::traits<TensorConvolutionOp>::Index Index;
269
-
270
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConvolutionOp(const InputXprType& input, const KernelXprType& kernel, const Indices& dims)
271
- : m_input_xpr(input), m_kernel_xpr(kernel), m_indices(dims) {}
272
-
273
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
274
- const Indices& indices() const { return m_indices; }
275
-
276
- /** \returns the nested expressions */
277
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
278
- const typename internal::remove_all<typename InputXprType::Nested>::type&
279
- inputExpression() const { return m_input_xpr; }
280
-
281
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
282
- const typename internal::remove_all<typename KernelXprType::Nested>::type&
283
- kernelExpression() const { return m_kernel_xpr; }
284
-
285
- protected:
286
- typename InputXprType::Nested m_input_xpr;
287
- typename KernelXprType::Nested m_kernel_xpr;
288
- const Indices m_indices;
289
- };
290
-
291
-
292
- template<typename Indices, typename InputArgType, typename KernelArgType, typename Device>
293
- struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, Device>
294
- {
295
- typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
296
-
297
- static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, Device>::Dimensions>::value;
298
- static const int NumKernelDims = internal::array_size<Indices>::value;
299
- typedef typename XprType::Index Index;
300
- typedef DSizes<Index, NumDims> Dimensions;
301
-
302
- typedef typename XprType::Scalar Scalar;
303
- typedef typename XprType::CoeffReturnType CoeffReturnType;
304
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
305
- static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
306
- typedef StorageMemory<Scalar, Device> Storage;
307
- typedef typename Storage::Type EvaluatorPointerType;
308
-
309
- enum {
310
- IsAligned = int(TensorEvaluator<InputArgType, Device>::IsAligned) & int(TensorEvaluator<KernelArgType, Device>::IsAligned),
311
- PacketAccess = int(TensorEvaluator<InputArgType, Device>::PacketAccess) & int(TensorEvaluator<KernelArgType, Device>::PacketAccess),
312
- BlockAccess = false,
313
- PreferBlockAccess = false,
314
- Layout = TensorEvaluator<InputArgType, Device>::Layout,
315
- CoordAccess = false, // to be implemented
316
- RawAccess = false
317
- };
318
-
319
- //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
320
- typedef internal::TensorBlockNotImplemented TensorBlock;
321
- //===--------------------------------------------------------------------===//
322
-
323
- EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
324
- : m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_kernel(NULL), m_local_kernel(false), m_device(device)
325
- {
326
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
327
-
328
- const typename TensorEvaluator<InputArgType, Device>::Dimensions& input_dims = m_inputImpl.dimensions();
329
- const typename TensorEvaluator<KernelArgType, Device>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
330
-
331
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
332
- m_inputStride[0] = 1;
333
- for (int i = 1; i < NumDims; ++i) {
334
- m_inputStride[i] = m_inputStride[i - 1] * input_dims[i - 1];
335
- }
336
- } else {
337
- m_inputStride[NumDims - 1] = 1;
338
- for (int i = NumDims - 2; i >= 0; --i) {
339
- m_inputStride[i] = m_inputStride[i + 1] * input_dims[i + 1];
340
- }
341
- }
342
-
343
- m_dimensions = m_inputImpl.dimensions();
344
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
345
- for (int i = 0; i < NumKernelDims; ++i) {
346
- const Index index = op.indices()[i];
347
- const Index input_dim = input_dims[index];
348
- const Index kernel_dim = kernel_dims[i];
349
- const Index result_dim = input_dim - kernel_dim + 1;
350
- m_dimensions[index] = result_dim;
351
- if (i > 0) {
352
- m_kernelStride[i] = m_kernelStride[i - 1] * kernel_dims[i - 1];
353
- } else {
354
- m_kernelStride[0] = 1;
355
- }
356
- m_indexStride[i] = m_inputStride[index];
357
- }
358
-
359
- m_outputStride[0] = 1;
360
- for (int i = 1; i < NumDims; ++i) {
361
- m_outputStride[i] = m_outputStride[i - 1] * m_dimensions[i - 1];
362
- }
363
- } else {
364
- for (int i = NumKernelDims - 1; i >= 0; --i) {
365
- const Index index = op.indices()[i];
366
- const Index input_dim = input_dims[index];
367
- const Index kernel_dim = kernel_dims[i];
368
- const Index result_dim = input_dim - kernel_dim + 1;
369
- m_dimensions[index] = result_dim;
370
- if (i < NumKernelDims - 1) {
371
- m_kernelStride[i] = m_kernelStride[i + 1] * kernel_dims[i + 1];
372
- } else {
373
- m_kernelStride[NumKernelDims - 1] = 1;
374
- }
375
- m_indexStride[i] = m_inputStride[index];
376
- }
377
-
378
- m_outputStride[NumDims - 1] = 1;
379
- for (int i = NumDims - 2; i >= 0; --i) {
380
- m_outputStride[i] = m_outputStride[i + 1] * m_dimensions[i + 1];
381
- }
382
- }
383
- }
384
-
385
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
386
-
387
- EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
388
- m_inputImpl.evalSubExprsIfNeeded(NULL);
389
- preloadKernel();
390
- return true;
391
- }
392
- EIGEN_STRONG_INLINE void cleanup() {
393
- m_inputImpl.cleanup();
394
- if (m_local_kernel) {
395
- m_device.deallocate((void*)m_kernel);
396
- m_local_kernel = false;
397
- }
398
- m_kernel = NULL;
399
- }
400
-
401
- void evalTo(typename XprType::Scalar* buffer) {
402
- evalSubExprsIfNeeded(NULL);
403
- for (int i = 0; i < dimensions().TotalSize(); ++i) {
404
- buffer[i] += coeff(i);
405
- }
406
- cleanup();
407
- }
408
-
409
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
410
- {
411
- CoeffReturnType result = CoeffReturnType(0);
412
- convolve(firstInput(index), 0, NumKernelDims-1, result);
413
- return result;
414
- }
415
-
416
- template<int LoadMode>
417
- EIGEN_DEVICE_FUNC PacketReturnType packet(const Index index) const
418
- {
419
- Index indices[2] = {index, index+PacketSize-1};
420
- Index startInputs[2] = {0, 0};
421
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
422
- for (int i = NumDims - 1; i > 0; --i) {
423
- const Index idx0 = indices[0] / m_outputStride[i];
424
- const Index idx1 = indices[1] / m_outputStride[i];
425
- startInputs[0] += idx0 * m_inputStride[i];
426
- startInputs[1] += idx1 * m_inputStride[i];
427
- indices[0] -= idx0 * m_outputStride[i];
428
- indices[1] -= idx1 * m_outputStride[i];
429
- }
430
- } else {
431
- for (int i = 0; i < NumDims - 1; ++i) {
432
- const Index idx0 = indices[0] / m_outputStride[i];
433
- const Index idx1 = indices[1] / m_outputStride[i];
434
- startInputs[0] += idx0 * m_inputStride[i];
435
- startInputs[1] += idx1 * m_inputStride[i];
436
- indices[0] -= idx0 * m_outputStride[i];
437
- indices[1] -= idx1 * m_outputStride[i];
438
- }
439
- }
440
- startInputs[0] += indices[0];
441
- startInputs[1] += indices[1];
442
-
443
- if (startInputs[1]-startInputs[0] == PacketSize-1) {
444
- PacketReturnType result = internal::pset1<PacketReturnType>(0);
445
- convolvePacket(startInputs[0], 0, NumKernelDims-1, result);
446
- return result;
447
- } else {
448
- EIGEN_ALIGN_MAX Scalar data[PacketSize];
449
- data[0] = Scalar(0);
450
- convolve(startInputs[0], 0, NumKernelDims-1, data[0]);
451
- for (int i = 1; i < PacketSize-1; ++i) {
452
- data[i] = Scalar(0);
453
- convolve(firstInput(index+i), 0, NumKernelDims-1, data[i]);
454
- }
455
- data[PacketSize-1] = Scalar(0);
456
- convolve(startInputs[1], 0, NumKernelDims-1, data[PacketSize-1]);
457
- return internal::pload<PacketReturnType>(data);
458
- }
459
- }
460
-
461
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
462
- costPerCoeff(bool vectorized) const {
463
- const double kernel_size = m_kernelImpl.dimensions().TotalSize();
464
- // We ignore the use of fused multiply-add.
465
- const double convolve_compute_cost =
466
- TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
467
- const double firstIndex_compute_cost =
468
- NumDims *
469
- (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
470
- TensorOpCost::DivCost<Index>());
471
- return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
472
- kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
473
- m_kernelImpl.costPerCoeff(vectorized) +
474
- TensorOpCost(0, 0, convolve_compute_cost, vectorized,
475
- PacketSize));
476
- }
477
-
478
- EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
479
-
480
- private:
481
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
482
- Index startInput = 0;
483
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
484
- for (int i = NumDims - 1; i > 0; --i) {
485
- const Index idx = index / m_outputStride[i];
486
- startInput += idx * m_inputStride[i];
487
- index -= idx * m_outputStride[i];
488
- }
489
- } else {
490
- for (int i = 0; i < NumDims - 1; ++i) {
491
- const Index idx = index / m_outputStride[i];
492
- startInput += idx * m_inputStride[i];
493
- index -= idx * m_outputStride[i];
494
- }
495
- }
496
- startInput += index;
497
- return startInput;
498
- }
499
-
500
- EIGEN_DEVICE_FUNC void convolve(Index firstIndex, Index firstKernel, int DimIndex, CoeffReturnType& accum) const {
501
- for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
502
- const Index input = firstIndex + j * m_indexStride[DimIndex];
503
- const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
504
- if (DimIndex > 0) {
505
- convolve(input, kernel, DimIndex-1, accum);
506
- } else {
507
- accum += m_inputImpl.coeff(input) * m_kernel[kernel];
508
- }
509
- }
510
- }
511
-
512
- template <typename Packet>
513
- EIGEN_DEVICE_FUNC void convolvePacket(Index firstIndex, Index firstKernel, int DimIndex, Packet& accum) const {
514
- for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
515
- const Index input = firstIndex + j * m_indexStride[DimIndex];
516
- const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
517
- if (DimIndex > 0) {
518
- convolvePacket(input, kernel, DimIndex-1, accum);
519
- } else {
520
- accum = internal::pmadd<Packet>(m_inputImpl.template packet<Unaligned>(input), internal::pset1<Packet>(m_kernel[kernel]), accum);
521
- }
522
- }
523
- }
524
-
525
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() {
526
- // Don't make a local copy of the kernel unless we have to (i.e. it's an
527
- // expression that needs to be evaluated)
528
- const Scalar* in_place = m_kernelImpl.data();
529
- if (in_place) {
530
- m_kernel = in_place;
531
- m_local_kernel = false;
532
- } else {
533
- size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
534
- Scalar* local = (Scalar*)m_device.allocate_temp(kernel_sz);
535
- typedef TensorEvalToOp<const KernelArgType> EvalTo;
536
- EvalTo evalToTmp(local, m_kernelArg);
537
- const bool Vectorize = internal::IsVectorizable<Device, KernelArgType>::value;
538
- internal::TensorExecutor<const EvalTo, Device, Vectorize>::run(evalToTmp, m_device);
539
-
540
- m_kernel = local;
541
- m_local_kernel = true;
542
- }
543
- }
544
-
545
- array<Index, NumDims> m_inputStride;
546
- array<Index, NumDims> m_outputStride;
547
-
548
- array<Index, NumKernelDims> m_indexStride;
549
- array<Index, NumKernelDims> m_kernelStride;
550
- TensorEvaluator<InputArgType, Device> m_inputImpl;
551
- TensorEvaluator<KernelArgType, Device> m_kernelImpl;
552
- Dimensions m_dimensions;
553
-
554
- KernelArgType m_kernelArg;
555
- const Scalar* m_kernel;
556
- bool m_local_kernel;
557
- const Device EIGEN_DEVICE_REF m_device;
558
- };
559
-
560
-
561
-
562
-
563
- // Use an optimized implementation of the evaluation code for GPUs whenever possible.
564
- #if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC)
565
-
566
- template <int StaticKernelSize>
567
- struct GetKernelSize {
568
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int /*kernelSize*/) const {
569
- return StaticKernelSize;
570
- }
571
- };
572
- template <>
573
- struct GetKernelSize<Dynamic> {
574
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int kernelSize) const {
575
- return kernelSize;
576
- }
577
- };
578
-
579
- template <typename InputEvaluator, typename Index, typename InputDims,
580
- int StaticKernelSize>
581
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel1D(
582
- InputEvaluator eval,
583
- const internal::IndexMapper<Index, InputDims, 1, InputEvaluator::Layout>
584
- indexMapper,
585
- const float* __restrict kernel, const int numPlanes, const int numX,
586
- const int maxX, const int kernelSize, float* buffer) {
587
- #if defined(EIGEN_HIPCC)
588
- HIP_DYNAMIC_SHARED(float, s)
589
- #else
590
- extern __shared__ float s[];
591
- #endif
592
-
593
- const int first_x = blockIdx.x * maxX;
594
- const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
595
- const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSize>()(kernelSize);
596
- const int num_x_output = last_x - first_x + 1;
597
-
598
- const int first_plane = blockIdx.y * blockDim.y;
599
- const int plane_stride = blockDim.y * gridDim.y;
600
-
601
- for (int p = first_plane + threadIdx.y; p < numPlanes; p += plane_stride) {
602
- // Load inputs to shared memory
603
- const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
604
- const int plane_kernel_offset = threadIdx.y * num_x_input;
605
- #pragma unroll
606
- for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
607
- const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x);
608
- s[i + plane_kernel_offset] = eval.coeff(tensor_index);
609
- }
610
-
611
- __syncthreads();
612
-
613
- // Compute the convolution
614
- const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
615
-
616
- #pragma unroll
617
- for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
618
- const int kernel_offset = plane_kernel_offset + i;
619
- float result = 0.0f;
620
- #pragma unroll
621
- for (int k = 0; k < GetKernelSize<StaticKernelSize>()(kernelSize); ++k) {
622
- result += s[k + kernel_offset] * kernel[k];
623
- }
624
- const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x);
625
- buffer[tensor_index] = result;
626
- }
627
- __syncthreads();
628
- }
629
- };
630
-
631
- template <typename InputEvaluator, typename Index, typename InputDims,
632
- int StaticKernelSizeX, int StaticKernelSizeY>
633
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel2D(
634
- InputEvaluator eval,
635
- const internal::IndexMapper<Index, InputDims, 2, InputEvaluator::Layout>
636
- indexMapper,
637
- const float* __restrict kernel, const int numPlanes, const int numX,
638
- const int maxX, const int numY, const int maxY, const int kernelSizeX,
639
- const int kernelSizeY, float* buffer) {
640
- #if defined(EIGEN_HIPCC)
641
- HIP_DYNAMIC_SHARED(float, s)
642
- #else
643
- extern __shared__ float s[];
644
- #endif
645
-
646
- const int first_x = blockIdx.x * maxX;
647
- const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
648
- const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSizeX>()(kernelSizeX);
649
- const int num_x_output = last_x - first_x + 1;
650
-
651
- const int first_y = blockIdx.y * maxY;
652
- const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
653
- const int num_y_input = last_y - first_y + GetKernelSize<StaticKernelSizeY>()(kernelSizeY);
654
- const int num_y_output = last_y - first_y + 1;
655
-
656
- const int first_plane = blockIdx.z * blockDim.z;
657
- const int plane_stride = blockDim.z * gridDim.z;
658
-
659
- for (int p = first_plane + threadIdx.z; p < numPlanes; p += plane_stride) {
660
-
661
- const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
662
- const int plane_kernel_offset = threadIdx.z * num_y_input;
663
-
664
- // Load inputs to shared memory
665
- #pragma unroll
666
- for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
667
- const int input_offset = num_x_input * (j + plane_kernel_offset);
668
- #pragma unroll
669
- for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
670
- const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x, j+first_y);
671
- s[i + input_offset] = eval.coeff(tensor_index);
672
- }
673
- }
674
-
675
- __syncthreads();
676
-
677
- // Convolution
678
- const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
679
-
680
- #pragma unroll
681
- for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
682
- #pragma unroll
683
- for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
684
- float result = 0.0f;
685
- #pragma unroll
686
- for (int l = 0; l < GetKernelSize<StaticKernelSizeY>()(kernelSizeY); ++l) {
687
- const int kernel_offset = kernelSizeX * l;
688
- const int input_offset = i + num_x_input * (j + l + plane_kernel_offset);
689
- #pragma unroll
690
- for (int k = 0; k < GetKernelSize<StaticKernelSizeX>()(kernelSizeX); ++k) {
691
- result += s[k + input_offset] * kernel[k + kernel_offset];
692
- }
693
- }
694
- const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x, j+first_y);
695
- buffer[tensor_index] = result;
696
- }
697
- }
698
-
699
- __syncthreads();
700
- }
701
- };
702
-
703
- template <typename InputEvaluator, typename Index, typename InputDims>
704
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel3D(
705
- InputEvaluator eval,
706
- const internal::IndexMapper<Index, InputDims, 3, InputEvaluator::Layout>
707
- indexMapper,
708
- const float* __restrict kernel, const size_t numPlanes, const size_t numX,
709
- const size_t maxX, const size_t numY, const size_t maxY, const size_t numZ,
710
- const size_t maxZ, const size_t kernelSizeX, const size_t kernelSizeY,
711
- const size_t kernelSizeZ, float* buffer) {
712
- #if defined(EIGEN_HIPCC)
713
- HIP_DYNAMIC_SHARED(float, s)
714
- #else
715
- extern __shared__ float s[];
716
- #endif
717
-
718
- // Load inputs to shared memory
719
- const int first_x = blockIdx.x * maxX;
720
- const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
721
- const int num_x_input = last_x - first_x + kernelSizeX;
722
-
723
- const int first_y = blockIdx.y * maxY;
724
- const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
725
- const int num_y_input = last_y - first_y + kernelSizeY;
726
-
727
- const int first_z = blockIdx.z * maxZ;
728
- const int last_z = (first_z + maxZ < numZ ? first_z + maxZ : numZ) - 1;
729
- const int num_z_input = last_z - first_z + kernelSizeZ;
730
-
731
- for (int p = 0; p < numPlanes; ++p) {
732
-
733
- const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
734
- const int plane_kernel_offset = 0;
735
-
736
- for (int k = threadIdx.z; k < num_z_input; k += blockDim.z) {
737
- for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
738
- for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
739
- const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x, j+first_y, k+first_z);
740
- s[i + num_x_input * (j + num_y_input * (k + plane_kernel_offset))] = eval.coeff(tensor_index);
741
- }
742
- }
743
- }
744
-
745
- __syncthreads();
746
-
747
- // Convolution
748
- const int num_z_output = last_z - first_z + 1;
749
- const int num_y_output = last_y - first_y + 1;
750
- const int num_x_output = last_x - first_x + 1;
751
- const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
752
-
753
- for (int k = threadIdx.z; k < num_z_output; k += blockDim.z) {
754
- for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
755
- for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
756
- float result = 0.0f;
757
- for (int n = 0; n < kernelSizeZ; ++n) {
758
- for (int m = 0; m < kernelSizeY; ++m) {
759
- for (int l = 0; l < kernelSizeX; ++l) {
760
- result += s[i + l + num_x_input * (j + m + num_y_input * (k + n + plane_kernel_offset))] * kernel[l + kernelSizeX * (m + kernelSizeY * n)];
761
- }
762
- }
763
- }
764
- const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x, j+first_y, k+first_z);
765
- buffer[tensor_index] = result;
766
- }
767
- }
768
- }
769
- __syncthreads();
770
- }
771
- };
772
-
773
-
774
-
775
- template<typename Indices, typename InputArgType, typename KernelArgType>
776
- struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, GpuDevice>
777
- {
778
- typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
779
-
780
- static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions>::value;
781
- static const int NumKernelDims = internal::array_size<Indices>::value;
782
- typedef typename XprType::Index Index;
783
- typedef DSizes<Index, NumDims> Dimensions;
784
- typedef typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions KernelDimensions;
785
-
786
- enum {
787
- IsAligned = TensorEvaluator<InputArgType, GpuDevice>::IsAligned & TensorEvaluator<KernelArgType, GpuDevice>::IsAligned,
788
- PacketAccess = false,
789
- BlockAccess = false,
790
- PreferBlockAccess = false,
791
- Layout = TensorEvaluator<InputArgType, GpuDevice>::Layout,
792
- CoordAccess = false, // to be implemented
793
- RawAccess = false
794
- };
795
-
796
- //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
797
- typedef internal::TensorBlockNotImplemented TensorBlock;
798
- //===--------------------------------------------------------------------===//
799
-
800
- TensorEvaluator(const XprType& op, const GpuDevice& device)
801
- : m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device)
802
- {
803
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, GpuDevice>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, GpuDevice>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
804
-
805
- const typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions& input_dims = m_inputImpl.dimensions();
806
- const typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
807
-
808
- m_dimensions = m_inputImpl.dimensions();
809
- for (int i = 0; i < NumKernelDims; ++i) {
810
- const Index index = op.indices()[i];
811
- const Index input_dim = input_dims[index];
812
- const Index kernel_dim = kernel_dims[i];
813
- const Index result_dim = input_dim - kernel_dim + 1;
814
- m_dimensions[index] = result_dim;
815
- }
816
- }
817
-
818
- typedef typename XprType::CoeffReturnType CoeffReturnType;
819
- typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType;
820
- typedef typename InputArgType::Scalar Scalar;
821
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
822
-
823
- EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_dimensions; }
824
-
825
- EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
826
- preloadKernel();
827
- m_inputImpl.evalSubExprsIfNeeded(NULL);
828
- if (data) {
829
- executeEval(data);
830
- return false;
831
- } else {
832
- m_buf = (Scalar*)m_device.allocate(dimensions().TotalSize() * sizeof(Scalar));
833
- executeEval(m_buf);
834
- return true;
835
- }
836
- }
837
-
838
- EIGEN_STRONG_INLINE void cleanup() {
839
- m_inputImpl.cleanup();
840
- if (m_buf) {
841
- m_device.deallocate(m_buf);
842
- m_buf = NULL;
843
- }
844
- if (m_local_kernel) {
845
- m_device.deallocate((void*)m_kernel);
846
- m_local_kernel = false;
847
- }
848
- m_kernel = NULL;
849
- }
850
-
851
- EIGEN_STRONG_INLINE void preloadKernel() {
852
- // Don't make a local copy of the kernel unless we have to (i.e. it's an
853
- // expression that needs to be evaluated)
854
- const Scalar* in_place = m_kernelImpl.data();
855
- if (in_place) {
856
- m_kernel = in_place;
857
- m_local_kernel = false;
858
- } else {
859
- size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
860
- Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
861
- typedef TensorEvalToOp<const KernelArgType> EvalTo;
862
- EvalTo evalToTmp(local, m_kernelArg);
863
- const bool PacketAccess = internal::IsVectorizable<GpuDevice, KernelArgType>::value;
864
- internal::TensorExecutor<const EvalTo, GpuDevice, PacketAccess>::run(evalToTmp, m_device);
865
-
866
- m_kernel = local;
867
- m_local_kernel = true;
868
- }
869
- }
870
-
871
- static unsigned int ceil(unsigned int num, unsigned int denom) {
872
- const unsigned int rounded_toward_zero = num / denom;
873
- if (num > rounded_toward_zero * denom) {
874
- return rounded_toward_zero + 1;
875
- }
876
- return rounded_toward_zero;
877
- }
878
-
879
- void executeEval(Scalar* data) const {
880
- typedef typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions InputDims;
881
-
882
- const int maxSharedMem = m_device.sharedMemPerBlock();
883
- const int maxThreadsPerBlock = m_device.maxGpuThreadsPerBlock();
884
- const int maxBlocksPerProcessor = m_device.maxGpuThreadsPerMultiProcessor() / maxThreadsPerBlock;
885
- const int numMultiProcessors = m_device.getNumGpuMultiProcessors();
886
- const int warpSize = 32;
887
-
888
- switch (NumKernelDims) {
889
- case 1: {
890
- const int kernel_size = m_kernelImpl.dimensions().TotalSize();
891
-
892
- const int numX = dimensions()[m_indices[0]];
893
- const int numP = dimensions().TotalSize() / numX;
894
- int maxX;
895
- dim3 block_size;
896
-
897
- const int single_stride_dim =
898
- static_cast<int>(Layout) == static_cast<int>(ColMajor)
899
- ? 0
900
- : m_inputImpl.dimensions().rank() - 1;
901
- if (m_indices[0] == single_stride_dim) {
902
- // Maximum the reuse
903
- const int inner_dim = ((maxSharedMem / (sizeof(Scalar)) - kernel_size + 1 + 31) / 32) * 32;
904
- maxX = numext::mini<int>(inner_dim, numX);
905
- const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size - 1 + maxX) * sizeof(Scalar)), numP);
906
- block_size.x = numext::mini(maxThreadsPerBlock, maxX);
907
- block_size.y = numext::mini<int>(maxThreadsPerBlock / block_size.x, maxP);
908
- }
909
- else {
910
- // Read as much as possible alongside the inner most dimension, that is the plane
911
- const int inner_dim = maxSharedMem / ((warpSize + kernel_size) * sizeof(Scalar));
912
- const int maxP = numext::mini<int>(inner_dim, numP);
913
- maxX = numext::mini<int>(maxSharedMem / (inner_dim * sizeof(Scalar)) - kernel_size + 1, numX);
914
-
915
- block_size.x = numext::mini(warpSize, maxX);
916
- block_size.y = numext::mini<int>(maxThreadsPerBlock/block_size.x, maxP);
917
- }
918
-
919
- const int shared_mem = block_size.y * (maxX + kernel_size - 1) * sizeof(Scalar);
920
- gpu_assert(shared_mem <= maxSharedMem);
921
-
922
- const int num_x_blocks = ceil(numX, maxX);
923
- const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem);
924
- const int num_y_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks);
925
-
926
- dim3 num_blocks(num_x_blocks, numext::mini<int>(num_y_blocks, ceil(numP, block_size.y)));
927
-
928
-
929
- //cout << "launching 1D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " maxX: " << maxX << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
930
-
931
- const array<Index, 1> indices(m_indices[0]);
932
- const array<Index, 1> kernel_dims(m_kernelImpl.dimensions()[0]);
933
- internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper(
934
- m_inputImpl.dimensions(), kernel_dims, indices);
935
- switch(kernel_size) {
936
- case 4: {
937
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data);
938
- break;
939
- }
940
- case 7: {
941
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data);
942
- break;
943
- }
944
- default: {
945
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data);
946
- }
947
- }
948
- break;
949
- }
950
-
951
- case 2: {
952
- const int idxX =
953
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1;
954
- const int idxY =
955
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0;
956
- const int kernel_size_x = m_kernelImpl.dimensions()[idxX];
957
- const int kernel_size_y = m_kernelImpl.dimensions()[idxY];
958
-
959
- const int numX = dimensions()[m_indices[idxX]];
960
- const int numY = dimensions()[m_indices[idxY]];
961
- const int numP = dimensions().TotalSize() / (numX*numY);
962
-
963
- const float scaling_factor = sqrtf(static_cast<float>(maxSharedMem) / (sizeof(Scalar) * kernel_size_y * kernel_size_x));
964
-
965
- // Snap maxX to warp size
966
- int inner_dim = ((static_cast<int>(scaling_factor * kernel_size_x) - kernel_size_x + 1 + 32) / 32) * 32;
967
- const int maxX = numext::mini<int>(inner_dim, numX);
968
- const int maxY = numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1)) - kernel_size_y + 1, numY);
969
- const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size_x - 1 + maxX) * (kernel_size_y - 1 + maxY) * sizeof(Scalar)), numP);
970
-
971
- dim3 block_size;
972
- block_size.x = numext::mini(1024, maxX);
973
- block_size.y = numext::mini<int>(1024/block_size.x, maxY);
974
- block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxP);
975
-
976
- const int shared_mem = block_size.z * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * sizeof(Scalar);
977
- gpu_assert(shared_mem <= maxSharedMem);
978
-
979
- const int num_x_blocks = ceil(numX, maxX);
980
- const int num_y_blocks = ceil(numY, maxY);
981
- const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem);
982
- const int num_z_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks * num_y_blocks);
983
-
984
- dim3 num_blocks(num_x_blocks, num_y_blocks, numext::mini<int>(num_z_blocks, ceil(numP, block_size.z)));
985
-
986
-
987
- //cout << "launching 2D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " maxX: " << maxX << " maxY: " << maxY << " maxP: " << maxP << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
988
-
989
- const array<Index, 2> indices(m_indices[idxX], m_indices[idxY]);
990
- const array<Index, 2> kernel_dims(m_kernelImpl.dimensions()[idxX],
991
- m_kernelImpl.dimensions()[idxY]);
992
- internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper(
993
- m_inputImpl.dimensions(), kernel_dims, indices);
994
- switch (kernel_size_x) {
995
- case 4: {
996
- switch (kernel_size_y) {
997
- case 7: {
998
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data);
999
- break;
1000
- }
1001
- default: {
1002
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data);
1003
- break;
1004
- }
1005
- }
1006
- break;
1007
- }
1008
- case 7: {
1009
- switch (kernel_size_y) {
1010
- case 4: {
1011
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data);
1012
- break;
1013
- }
1014
- default: {
1015
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data);
1016
- break;
1017
- }
1018
- }
1019
- break;
1020
- }
1021
- default: {
1022
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data);
1023
- break;
1024
- }
1025
- }
1026
- break;
1027
- }
1028
-
1029
- case 3: {
1030
- const int idxX =
1031
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2;
1032
- const int idxY =
1033
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1;
1034
- const int idxZ =
1035
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0;
1036
-
1037
- const int kernel_size_x = m_kernelImpl.dimensions()[idxX];
1038
- const int kernel_size_y = m_kernelImpl.dimensions()[idxY];
1039
- const int kernel_size_z = m_kernelImpl.dimensions()[idxZ];
1040
-
1041
- const int numX = dimensions()[m_indices[idxX]];
1042
- const int numY = dimensions()[m_indices[idxY]];
1043
- const int numZ = dimensions()[m_indices[idxZ]];
1044
- const int numP = dimensions().TotalSize() / (numX*numY*numZ);
1045
-
1046
- const int maxX = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * kernel_size_y * kernel_size_z) - kernel_size_x + 1, numX));
1047
- const int maxY = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * kernel_size_z) - kernel_size_y + 1, numY));
1048
- const int maxZ = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1)) - kernel_size_z + 1, numZ));
1049
-
1050
- dim3 block_size;
1051
- block_size.x = numext::mini(32, maxX);
1052
- block_size.y = numext::mini(32, maxY);
1053
- block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxZ);
1054
- dim3 num_blocks(ceil(numX, maxX), ceil(numY, maxY), ceil(numZ, maxZ));
1055
-
1056
- const int shared_mem = (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * (maxZ + kernel_size_z - 1) * sizeof(Scalar);
1057
- gpu_assert(shared_mem <= maxSharedMem);
1058
-
1059
- //cout << "launching 3D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
1060
- const array<Index, 3> indices(m_indices[idxX], m_indices[idxY],
1061
- m_indices[idxZ]);
1062
- const array<Index, 3> kernel_dims(m_kernelImpl.dimensions()[idxX],
1063
- m_kernelImpl.dimensions()[idxY],
1064
- m_kernelImpl.dimensions()[idxZ]);
1065
- internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper(
1066
- m_inputImpl.dimensions(), kernel_dims, indices);
1067
-
1068
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data);
1069
- break;
1070
- }
1071
-
1072
- default: {
1073
- EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3), THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE);
1074
- }
1075
- }
1076
- }
1077
-
1078
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
1079
- {
1080
- eigen_assert(m_buf);
1081
- eigen_assert(index < m_dimensions.TotalSize());
1082
- return m_buf[index];
1083
- }
1084
-
1085
- template<int LoadMode>
1086
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const
1087
- {
1088
- eigen_assert(m_buf);
1089
- eigen_assert(index < m_dimensions.TotalSize());
1090
- return internal::ploadt<PacketReturnType, LoadMode>(m_buf+index);
1091
- }
1092
-
1093
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
1094
- costPerCoeff(bool vectorized) const {
1095
- // TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost
1096
- // model.
1097
- const double kernel_size = m_kernelImpl.dimensions().TotalSize();
1098
- // We ignore the use of fused multiply-add.
1099
- const double convolve_compute_cost =
1100
- TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
1101
- const double firstIndex_compute_cost =
1102
- NumDims *
1103
- (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
1104
- TensorOpCost::DivCost<Index>());
1105
- return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
1106
- kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
1107
- m_kernelImpl.costPerCoeff(vectorized) +
1108
- TensorOpCost(0, 0, convolve_compute_cost, vectorized,
1109
- PacketSize));
1110
- }
1111
-
1112
- private:
1113
- // No assignment (copies are needed by the kernels)
1114
- TensorEvaluator& operator = (const TensorEvaluator&);
1115
-
1116
- TensorEvaluator<InputArgType, GpuDevice> m_inputImpl;
1117
- TensorEvaluator<KernelArgType, GpuDevice> m_kernelImpl;
1118
- KernelArgType m_kernelArg;
1119
- Indices m_indices;
1120
- Dimensions m_dimensions;
1121
- Scalar* m_buf;
1122
- const Scalar* m_kernel;
1123
- bool m_local_kernel;
1124
-
1125
- const GpuDevice& m_device;
1126
- };
1127
- #endif
1128
-
1129
-
1130
- } // end namespace Eigen
1131
-
1132
- #endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H