sequenzo 0.1.18__cp311-cp311-macosx_10_9_universal2.whl → 0.1.20__cp311-cp311-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (360) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-311-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +108 -6
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  8. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  10. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-311-darwin.so +0 -0
  11. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  12. sequenzo/dissimilarity_measures/utils/seqconc.cpython-311-darwin.so +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  14. sequenzo/dissimilarity_measures/utils/seqdss.cpython-311-darwin.so +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  16. sequenzo/dissimilarity_measures/utils/seqdur.cpython-311-darwin.so +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  18. sequenzo/dissimilarity_measures/utils/seqlength.cpython-311-darwin.so +0 -0
  19. sequenzo/multidomain/cat.py +0 -53
  20. sequenzo/multidomain/dat.py +11 -3
  21. sequenzo/multidomain/idcd.py +0 -3
  22. sequenzo/multidomain/linked_polyad.py +0 -1
  23. sequenzo/openmp_setup.py +233 -0
  24. sequenzo/visualization/plot_transition_matrix.py +21 -22
  25. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  26. sequenzo-0.1.20.dist-info/RECORD +215 -0
  27. sequenzo/dissimilarity_measures/setup.py +0 -35
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  170. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  171. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  172. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  173. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  174. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  175. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  176. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  177. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  182. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  183. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  184. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  185. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  186. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  187. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  188. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  357. sequenzo-0.1.18.dist-info/RECORD +0 -544
  358. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  359. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  360. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,998 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5
- // Copyright (C) 2016 Mehdi Goli, Codeplay Software Ltd <eigen@codeplay.com>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
- #ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
12
- #define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
13
-
14
- // clang is incompatible with the CUDA syntax wrt making a kernel a class friend,
15
- // so we'll use a macro to make clang happy.
16
- #ifndef KERNEL_FRIEND
17
- #if defined(__clang__) && (defined(__CUDA__) || defined(__HIP__))
18
- #define KERNEL_FRIEND friend __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024
19
- #else
20
- #define KERNEL_FRIEND friend
21
- #endif
22
- #endif
23
-
24
-
25
- namespace Eigen {
26
-
27
-
28
- /** \class TensorReduction
29
- * \ingroup CXX11_Tensor_Module
30
- *
31
- * \brief Tensor reduction class.
32
- *
33
- */
34
-
35
- namespace internal {
36
- template<typename Op, typename Dims, typename XprType,template <class> class MakePointer_ >
37
- struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> >
38
- : traits<XprType>
39
- {
40
- typedef traits<XprType> XprTraits;
41
- typedef typename XprTraits::Scalar Scalar;
42
- typedef typename XprTraits::StorageKind StorageKind;
43
- typedef typename XprTraits::Index Index;
44
- typedef typename XprType::Nested Nested;
45
- static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
46
- static const int Layout = XprTraits::Layout;
47
- typedef typename XprTraits::PointerType PointerType;
48
-
49
- template <class T> struct MakePointer {
50
- // Intermediate typedef to workaround MSVC issue.
51
- typedef MakePointer_<T> MakePointerT;
52
- typedef typename MakePointerT::Type Type;
53
- };
54
- };
55
-
56
- template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
57
- struct eval<TensorReductionOp<Op, Dims, XprType, MakePointer_>, Eigen::Dense>
58
- {
59
- typedef const TensorReductionOp<Op, Dims, XprType, MakePointer_>& type;
60
- };
61
-
62
- template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
63
- struct nested<TensorReductionOp<Op, Dims, XprType, MakePointer_>, 1, typename eval<TensorReductionOp<Op, Dims, XprType, MakePointer_> >::type>
64
- {
65
- typedef TensorReductionOp<Op, Dims, XprType, MakePointer_> type;
66
- };
67
-
68
-
69
- template <typename OutputDims> struct DimInitializer {
70
- template <typename InputDims, typename ReducedDims> EIGEN_DEVICE_FUNC
71
- static void run(const InputDims& input_dims,
72
- const array<bool, internal::array_size<InputDims>::value>& reduced,
73
- OutputDims* output_dims, ReducedDims* reduced_dims) {
74
- const int NumInputDims = internal::array_size<InputDims>::value;
75
- int outputIndex = 0;
76
- int reduceIndex = 0;
77
- for (int i = 0; i < NumInputDims; ++i) {
78
- if (reduced[i]) {
79
- (*reduced_dims)[reduceIndex] = input_dims[i];
80
- ++reduceIndex;
81
- } else {
82
- (*output_dims)[outputIndex] = input_dims[i];
83
- ++outputIndex;
84
- }
85
- }
86
- }
87
- };
88
-
89
- template <> struct DimInitializer<Sizes<> > {
90
- template <typename InputDims, typename Index, size_t Rank> EIGEN_DEVICE_FUNC
91
- static void run(const InputDims& input_dims, const array<bool, Rank>&,
92
- Sizes<>*, array<Index, Rank>* reduced_dims) {
93
- const int NumInputDims = internal::array_size<InputDims>::value;
94
- for (int i = 0; i < NumInputDims; ++i) {
95
- (*reduced_dims)[i] = input_dims[i];
96
- }
97
- }
98
- };
99
-
100
-
101
- template <typename ReducedDims, int NumTensorDims, int Layout>
102
- struct are_inner_most_dims {
103
- static const bool value = false;
104
- };
105
- template <typename ReducedDims, int NumTensorDims, int Layout>
106
- struct preserve_inner_most_dims {
107
- static const bool value = false;
108
- };
109
-
110
- #if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES
111
- template <typename ReducedDims, int NumTensorDims>
112
- struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
113
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
114
- static const bool tmp2 = index_statically_eq<ReducedDims>(0, 0);
115
- static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1);
116
- static const bool value = tmp1 & tmp2 & tmp3;
117
- };
118
- template <typename ReducedDims, int NumTensorDims>
119
- struct are_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
120
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
121
- static const bool tmp2 = index_statically_eq<ReducedDims>(0, NumTensorDims - array_size<ReducedDims>::value);
122
- static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
123
- static const bool value = tmp1 & tmp2 & tmp3;
124
-
125
- };
126
- template <typename ReducedDims, int NumTensorDims>
127
- struct preserve_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
128
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
129
- static const bool tmp2 = index_statically_gt<ReducedDims>(0, 0);
130
- static const bool value = tmp1 & tmp2;
131
-
132
- };
133
- template <typename ReducedDims, int NumTensorDims>
134
- struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
135
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
136
- static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
137
- static const bool value = tmp1 & tmp2;
138
- };
139
- #endif
140
-
141
-
142
- template <int DimIndex, typename Self, typename Op>
143
- struct GenericDimReducer {
144
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
145
- EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
146
- for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
147
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
148
- GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
149
- }
150
- }
151
- };
152
- template <typename Self, typename Op>
153
- struct GenericDimReducer<0, Self, Op> {
154
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
155
- for (int j = 0; j < self.m_reducedDims[0]; ++j) {
156
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
157
- reducer.reduce(self.m_impl.coeff(input), accum);
158
- }
159
- }
160
- };
161
- template <typename Self, typename Op>
162
- struct GenericDimReducer<-1, Self, Op> {
163
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index index, Op& reducer, typename Self::CoeffReturnType* accum) {
164
- reducer.reduce(self.m_impl.coeff(index), accum);
165
- }
166
- };
167
-
168
- template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess),
169
- bool UseTreeReduction = (!Self::ReducerTraits::IsStateful &&
170
- !Self::ReducerTraits::IsExactlyAssociative)>
171
- struct InnerMostDimReducer {
172
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
173
- typename Self::CoeffReturnType accum = reducer.initialize();
174
- for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
175
- reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
176
- }
177
- return reducer.finalize(accum);
178
- }
179
- };
180
-
181
- template <typename Self, typename Op>
182
- struct InnerMostDimReducer<Self, Op, true, false> {
183
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
184
- const typename Self::Index packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size;
185
- const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize;
186
- typename Self::PacketReturnType paccum = reducer.template initializePacket<typename Self::PacketReturnType>();
187
- for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) {
188
- reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum);
189
- }
190
- typename Self::CoeffReturnType accum = reducer.initialize();
191
- for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) {
192
- reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
193
- }
194
- return reducer.finalizeBoth(accum, paccum);
195
- }
196
- };
197
-
198
- #if !defined(EIGEN_HIPCC)
199
- static const int kLeafSize = 1024;
200
-
201
- template <typename Self, typename Op>
202
- struct InnerMostDimReducer<Self, Op, false, true> {
203
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType
204
- reduce(const Self& self, typename Self::Index firstIndex,
205
- typename Self::Index numValuesToReduce, Op& reducer) {
206
- typename Self::CoeffReturnType accum = reducer.initialize();
207
- if (numValuesToReduce > kLeafSize) {
208
- const typename Self::Index half = numValuesToReduce / 2;
209
- reducer.reduce(reduce(self, firstIndex, half, reducer), &accum);
210
- reducer.reduce(
211
- reduce(self, firstIndex + half, numValuesToReduce - half, reducer),
212
- &accum);
213
- } else {
214
- for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
215
- reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
216
- }
217
- }
218
- return reducer.finalize(accum);
219
- }
220
- };
221
-
222
- template <typename Self, typename Op>
223
- struct InnerMostDimReducer<Self, Op, true, true> {
224
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType
225
- reduce(const Self& self, typename Self::Index firstIndex,
226
- typename Self::Index numValuesToReduce, Op& reducer) {
227
- const typename Self::Index packetSize =
228
- internal::unpacket_traits<typename Self::PacketReturnType>::size;
229
- typename Self::CoeffReturnType accum = reducer.initialize();
230
- if (numValuesToReduce > packetSize * kLeafSize) {
231
- // Make sure the split point is aligned on a packet boundary.
232
- const typename Self::Index split =
233
- packetSize *
234
- divup(firstIndex + divup(numValuesToReduce, typename Self::Index(2)),
235
- packetSize);
236
- const typename Self::Index num_left =
237
- numext::mini(split - firstIndex, numValuesToReduce);
238
- reducer.reduce(reduce(self, firstIndex, num_left, reducer), &accum);
239
- if (num_left < numValuesToReduce) {
240
- reducer.reduce(
241
- reduce(self, split, numValuesToReduce - num_left, reducer), &accum);
242
- }
243
- return reducer.finalize(accum);
244
- } else {
245
- const typename Self::Index UnrollSize =
246
- (numValuesToReduce / (2*packetSize)) * 2*packetSize;
247
- const typename Self::Index VectorizedSize =
248
- (numValuesToReduce / packetSize) * packetSize;
249
- typename Self::PacketReturnType paccum =
250
- reducer.template initializePacket<typename Self::PacketReturnType>();
251
- typename Self::PacketReturnType paccum2 =
252
- reducer.template initializePacket<typename Self::PacketReturnType>();
253
- for (typename Self::Index j = 0; j < UnrollSize; j += packetSize * 2) {
254
- reducer.reducePacket(
255
- self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum);
256
- reducer.reducePacket(
257
- self.m_impl.template packet<Unaligned>(firstIndex + j + packetSize),
258
- &paccum2);
259
- }
260
- for (typename Self::Index j = UnrollSize; j < VectorizedSize; j+= packetSize) {
261
- reducer.reducePacket(self.m_impl.template packet<Unaligned>(
262
- firstIndex + j), &paccum);
263
- }
264
- reducer.reducePacket(paccum2, &paccum);
265
- for (typename Self::Index j = VectorizedSize; j < numValuesToReduce;
266
- ++j) {
267
- reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
268
- }
269
- return reducer.finalizeBoth(accum, paccum);
270
- }
271
- }
272
- };
273
- #endif
274
-
275
- template <int DimIndex, typename Self, typename Op, bool vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
276
- struct InnerMostDimPreserver {
277
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
278
- eigen_assert(false && "should never be called");
279
- }
280
- };
281
-
282
- template <int DimIndex, typename Self, typename Op>
283
- struct InnerMostDimPreserver<DimIndex, Self, Op, true> {
284
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
285
- EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
286
- for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
287
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
288
- InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
289
- }
290
- }
291
- };
292
-
293
- template <typename Self, typename Op>
294
- struct InnerMostDimPreserver<0, Self, Op, true> {
295
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
296
- for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) {
297
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
298
- reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum);
299
- }
300
- }
301
- };
302
- template <typename Self, typename Op>
303
- struct InnerMostDimPreserver<-1, Self, Op, true> {
304
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
305
- eigen_assert(false && "should never be called");
306
- }
307
- };
308
-
309
- // Default full reducer
310
- template <typename Self, typename Op, typename Device, bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
311
- struct FullReducer {
312
- static const bool HasOptimizedImplementation = false;
313
-
314
- static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::EvaluatorPointerType output) {
315
- const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
316
- *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
317
- }
318
- };
319
-
320
-
321
- #ifdef EIGEN_USE_THREADS
322
- // Multithreaded full reducers
323
- template <typename Self, typename Op,
324
- bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
325
- struct FullReducerShard {
326
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex,
327
- typename Self::Index numValuesToReduce, Op& reducer,
328
- typename Self::CoeffReturnType* output) {
329
- *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
330
- self, firstIndex, numValuesToReduce, reducer);
331
- }
332
- };
333
-
334
- // Multithreaded full reducer
335
- template <typename Self, typename Op, bool Vectorizable>
336
- struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
337
- static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful;
338
- static const Index PacketSize =
339
- unpacket_traits<typename Self::PacketReturnType>::size;
340
-
341
- // launch one reducer per thread and accumulate the result.
342
- static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device,
343
- typename Self::CoeffReturnType* output) {
344
- typedef typename Self::Index Index;
345
- const Index num_coeffs = array_prod(self.m_impl.dimensions());
346
- if (num_coeffs == 0) {
347
- *output = reducer.finalize(reducer.initialize());
348
- return;
349
- }
350
- const TensorOpCost cost =
351
- self.m_impl.costPerCoeff(Vectorizable) +
352
- TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
353
- PacketSize);
354
- const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
355
- num_coeffs, cost, device.numThreads());
356
- if (num_threads == 1) {
357
- *output =
358
- InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
359
- return;
360
- }
361
- const Index blocksize =
362
- std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
363
- const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
364
- eigen_assert(num_coeffs >= numblocks * blocksize);
365
-
366
- Barrier barrier(internal::convert_index<unsigned int>(numblocks));
367
- MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
368
- for (Index i = 0; i < numblocks; ++i) {
369
- device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run,
370
- self, i * blocksize, blocksize, reducer,
371
- &shards[i]);
372
- }
373
- typename Self::CoeffReturnType finalShard;
374
- if (numblocks * blocksize < num_coeffs) {
375
- finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
376
- self, numblocks * blocksize, num_coeffs - numblocks * blocksize,
377
- reducer);
378
- } else {
379
- finalShard = reducer.initialize();
380
- }
381
- barrier.Wait();
382
-
383
- for (Index i = 0; i < numblocks; ++i) {
384
- reducer.reduce(shards[i], &finalShard);
385
- }
386
- *output = reducer.finalize(finalShard);
387
- }
388
- };
389
-
390
- #endif
391
-
392
-
393
- // Default inner reducer
394
- template <typename Self, typename Op, typename Device>
395
- struct InnerReducer {
396
- static const bool HasOptimizedImplementation = false;
397
-
398
- EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
399
- eigen_assert(false && "Not implemented");
400
- return true;
401
- }
402
- };
403
-
404
- // Default outer reducer
405
- template <typename Self, typename Op, typename Device>
406
- struct OuterReducer {
407
- static const bool HasOptimizedImplementation = false;
408
-
409
- EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
410
- eigen_assert(false && "Not implemented");
411
- return true;
412
- }
413
- };
414
-
415
- #ifdef EIGEN_USE_SYCL
416
- // Default Generic reducer
417
- template <typename Self, typename Op, typename Device>
418
- struct GenericReducer {
419
- static const bool HasOptimizedImplementation = false;
420
-
421
- EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
422
- eigen_assert(false && "Not implemented");
423
- return true;
424
- }
425
- };
426
- #endif
427
-
428
- #if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
429
- template <int B, int N, typename S, typename R, typename I_>
430
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernel(R, const S, I_, typename S::CoeffReturnType*, unsigned int*);
431
-
432
-
433
- #if defined(EIGEN_HAS_GPU_FP16)
434
- template <typename S, typename R, typename I_>
435
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitFullReduxKernelHalfFloat(R, const S, I_, internal::packet_traits<half>::type*);
436
- template <int B, int N, typename S, typename R, typename I_>
437
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernelHalfFloat(R, const S, I_, half*, internal::packet_traits<half>::type*);
438
- template <int NPT, typename S, typename R, typename I_>
439
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernelHalfFloat(R, const S, I_, I_, half*);
440
-
441
- #endif
442
-
443
- template <int NPT, typename S, typename R, typename I_>
444
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
445
-
446
- template <int NPT, typename S, typename R, typename I_>
447
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void OuterReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
448
- #endif
449
-
450
- /**
451
- * For SYCL, the return type of the reduction is deduced from the initialize method of the given Op.
452
- * This allows the reduction to have a different type for the accumulator than the input data type.
453
- * If this is the case, the functor needs to have two reduce method: one for reducing an element of the input
454
- * with the accumulator and the other for reducing two accumulators.
455
- * Such a reducer can be useful for instance when the accumulator is a boolean or a bitset that checks for
456
- * some properties of the input.
457
- */
458
- template <typename Op, typename CoeffReturnType>
459
- struct ReductionReturnType {
460
- #if defined(EIGEN_USE_SYCL)
461
- typedef typename remove_const<decltype(std::declval<Op>().initialize())>::type type;
462
- #else
463
- typedef typename remove_const<CoeffReturnType>::type type;
464
- #endif
465
- };
466
-
467
- } // end namespace internal
468
-
469
-
470
- template <typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
471
- class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> {
472
- public:
473
- typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar;
474
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
475
- typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
476
- typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested;
477
- typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind;
478
- typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index;
479
-
480
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
481
- TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims)
482
- { }
483
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
484
- TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer)
485
- { }
486
-
487
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
488
- const XprType& expression() const { return m_expr; }
489
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
490
- const Dims& dims() const { return m_dims; }
491
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
492
- const Op& reducer() const { return m_reducer; }
493
-
494
- protected:
495
- typename XprType::Nested m_expr;
496
- const Dims m_dims;
497
- const Op m_reducer;
498
- };
499
-
500
- template<typename ArgType, typename Device>
501
- struct TensorReductionEvaluatorBase;
502
-
503
- // Eval as rvalue
504
- template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
505
- struct TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
506
- {
507
- typedef internal::reducer_traits<Op, Device> ReducerTraits;
508
- typedef Dims ReducedDims;
509
- typedef TensorReductionOp<Op, Dims, ArgType, MakePointer_> XprType;
510
- typedef typename XprType::Index Index;
511
- typedef ArgType ChildType;
512
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
513
- static const int NumInputDims = internal::array_size<InputDimensions>::value;
514
- static const int NumReducedDims = internal::array_size<Dims>::value;
515
- static const int NumOutputDims = NumInputDims - NumReducedDims;
516
- typedef typename internal::conditional<NumOutputDims==0, Sizes<>, DSizes<Index, NumOutputDims> >::type Dimensions;
517
- typedef typename XprType::Scalar Scalar;
518
- typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Self;
519
- static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess;
520
- typedef typename internal::ReductionReturnType<Op, typename XprType::CoeffReturnType>::type CoeffReturnType;
521
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
522
- static const Index PacketSize = PacketType<CoeffReturnType, Device>::size;
523
-
524
- typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType;
525
- typedef StorageMemory<CoeffReturnType, Device> Storage;
526
- typedef typename Storage::Type EvaluatorPointerType;
527
-
528
- // Subset of strides of the input tensor for the non-reduced dimensions.
529
- // Indexed by output dimensions.
530
- static const int NumPreservedStrides = max_n_1<NumOutputDims>::size;
531
-
532
- enum {
533
- IsAligned = false,
534
- PacketAccess = Self::InputPacketAccess && ReducerTraits::PacketAccess,
535
- BlockAccess = false,
536
- PreferBlockAccess = true,
537
- Layout = TensorEvaluator<ArgType, Device>::Layout,
538
- CoordAccess = false, // to be implemented
539
- RawAccess = false
540
- };
541
-
542
- typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
543
-
544
- //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
545
- typedef internal::TensorBlockNotImplemented TensorBlock;
546
- //===--------------------------------------------------------------------===//
547
-
548
- static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value;
549
- static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value;
550
- static const bool RunningFullReduction = (NumOutputDims==0);
551
-
552
- EIGEN_STRONG_INLINE TensorReductionEvaluatorBase(const XprType& op, const Device& device)
553
- : m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device)
554
- {
555
- EIGEN_STATIC_ASSERT((NumInputDims >= NumReducedDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
556
- EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)),
557
- YOU_MADE_A_PROGRAMMING_MISTAKE);
558
-
559
- // Build the bitmap indicating if an input dimension is reduced or not.
560
- for (int i = 0; i < NumInputDims; ++i) {
561
- m_reduced[i] = false;
562
- }
563
- for (int i = 0; i < NumReducedDims; ++i) {
564
- eigen_assert(op.dims()[i] >= 0);
565
- eigen_assert(op.dims()[i] < NumInputDims);
566
- m_reduced[op.dims()[i]] = true;
567
- }
568
-
569
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
570
- internal::DimInitializer<Dimensions>::run(input_dims, m_reduced, &m_dimensions, &m_reducedDims);
571
-
572
- // Precompute output strides.
573
- if (NumOutputDims > 0) {
574
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
575
- m_outputStrides[0] = 1;
576
- for (int i = 1; i < NumOutputDims; ++i) {
577
- m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
578
- m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
579
- }
580
- } else {
581
- m_outputStrides[NumOutputDims - 1] = 1;
582
- for (int i = NumOutputDims - 2; i >= 0; --i) {
583
- m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
584
- m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
585
- }
586
- }
587
- }
588
-
589
- // Precompute input strides.
590
- if (NumInputDims > 0) {
591
- array<Index, NumInputDims> input_strides;
592
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
593
- input_strides[0] = 1;
594
- for (int i = 1; i < NumInputDims; ++i) {
595
- input_strides[i] = input_strides[i-1] * input_dims[i-1];
596
- }
597
- } else {
598
- input_strides.back() = 1;
599
- for (int i = NumInputDims - 2; i >= 0; --i) {
600
- input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
601
- }
602
- }
603
-
604
- int outputIndex = 0;
605
- int reduceIndex = 0;
606
- for (int i = 0; i < NumInputDims; ++i) {
607
- if (m_reduced[i]) {
608
- m_reducedStrides[reduceIndex] = input_strides[i];
609
- ++reduceIndex;
610
- } else {
611
- m_preservedStrides[outputIndex] = input_strides[i];
612
- m_output_to_input_dim_map[outputIndex] = i;
613
- ++outputIndex;
614
- }
615
- }
616
- }
617
-
618
- // Special case for full reductions
619
- if (NumOutputDims == 0) {
620
- m_preservedStrides[0] = internal::array_prod(input_dims);
621
- }
622
-
623
- m_numValuesToReduce =
624
- NumOutputDims == 0
625
- ? internal::array_prod(input_dims)
626
- : (static_cast<int>(Layout) == static_cast<int>(ColMajor))
627
- ? m_preservedStrides[0]
628
- : m_preservedStrides[NumOutputDims - 1];
629
- }
630
-
631
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
632
-
633
- EIGEN_STRONG_INLINE
634
- bool evalSubExprsIfNeededCommon(EvaluatorPointerType data) {
635
- // Use the FullReducer if possible.
636
- if ((RunningFullReduction && RunningOnSycl) ||(RunningFullReduction &&
637
- internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
638
- ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
639
- !RunningOnGPU))) {
640
- bool need_assign = false;
641
- if (!data) {
642
- m_result = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType))));
643
- data = m_result;
644
- need_assign = true;
645
- }
646
- Op reducer(m_reducer);
647
- internal::FullReducer<Self, Op, Device>::run(*this, reducer, m_device, data);
648
- return need_assign;
649
- }
650
-
651
- // Attempt to use an optimized reduction.
652
- else if ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) || (RunningOnSycl)) {
653
- bool reducing_inner_dims = true;
654
- for (int i = 0; i < NumReducedDims; ++i) {
655
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
656
- reducing_inner_dims &= m_reduced[i];
657
- } else {
658
- reducing_inner_dims &= m_reduced[NumInputDims - 1 - i];
659
- }
660
- }
661
- if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation &&
662
- (reducing_inner_dims || ReducingInnerMostDims)) {
663
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
664
- const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
665
- if (!data) {
666
- if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 128) || (RunningOnSycl)) {
667
- data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
668
- m_result = data;
669
- }
670
- else {
671
- return true;
672
- }
673
- }
674
- Op reducer(m_reducer);
675
- // For SYCL this if always return false
676
- if (internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
677
- if (m_result) {
678
- m_device.deallocate_temp(m_result);
679
- m_result = NULL;
680
- }
681
- return true;
682
- } else {
683
- return (m_result != NULL);
684
- }
685
- }
686
-
687
- bool preserving_inner_dims = true;
688
- for (int i = 0; i < NumReducedDims; ++i) {
689
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
690
- preserving_inner_dims &= m_reduced[NumInputDims - 1 - i];
691
- } else {
692
- preserving_inner_dims &= m_reduced[i];
693
- }
694
- }
695
- if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation &&
696
- preserving_inner_dims) {
697
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
698
- const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
699
- if (!data) {
700
- if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 32) || (RunningOnSycl)) {
701
- data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
702
- m_result = data;
703
- }
704
- else {
705
- return true;
706
- }
707
- }
708
- Op reducer(m_reducer);
709
- // For SYCL this if always return false
710
- if (internal::OuterReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
711
- if (m_result) {
712
- m_device.deallocate_temp(m_result);
713
- m_result = NULL;
714
- }
715
- return true;
716
- } else {
717
- return (m_result != NULL);
718
- }
719
- }
720
- #if defined(EIGEN_USE_SYCL)
721
- // If there is no Optimised version for SYCL, the reduction expression
722
- // must break into two subexpression and use the SYCL generic Reducer on the device.
723
- if(RunningOnSycl) {
724
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
725
- const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
726
- if (!data) {
727
- data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
728
- m_result = data;
729
- }
730
- Op reducer(m_reducer);
731
- internal::GenericReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
732
- return (m_result != NULL);
733
- }
734
- #endif
735
- }
736
- return true;
737
- }
738
-
739
- #ifdef EIGEN_USE_THREADS
740
- template <typename EvalSubExprsCallback>
741
- EIGEN_STRONG_INLINE
742
- void
743
- evalSubExprsIfNeededAsync(EvaluatorPointerType data,
744
- EvalSubExprsCallback done) {
745
- m_impl.evalSubExprsIfNeededAsync(NULL, [this, data, done](bool) {
746
- done(evalSubExprsIfNeededCommon(data));
747
- });
748
- }
749
- #endif
750
-
751
- EIGEN_STRONG_INLINE
752
- bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
753
- m_impl.evalSubExprsIfNeeded(NULL);
754
- return evalSubExprsIfNeededCommon(data);
755
- }
756
-
757
- EIGEN_STRONG_INLINE void cleanup() {
758
- m_impl.cleanup();
759
- if (m_result) {
760
- m_device.deallocate_temp(m_result);
761
- m_result = NULL;
762
- }
763
- }
764
-
765
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
766
- {
767
- if (( RunningFullReduction || RunningOnGPU) && m_result ) {
768
- return *(m_result + index);
769
- }
770
- Op reducer(m_reducer);
771
- if (ReducingInnerMostDims || RunningFullReduction) {
772
- const Index num_values_to_reduce =
773
- (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
774
- return internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstInput(index),
775
- num_values_to_reduce, reducer);
776
- } else {
777
- typename Self::CoeffReturnType accum = reducer.initialize();
778
- internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*this, firstInput(index), reducer, &accum);
779
- return reducer.finalize(accum);
780
- }
781
- }
782
-
783
- // TODO(bsteiner): provide a more efficient implementation.
784
- template<int LoadMode>
785
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
786
- {
787
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
788
- eigen_assert(index + PacketSize - 1 < Index(internal::array_prod(dimensions())));
789
-
790
- if (RunningOnGPU && m_result) {
791
- return internal::pload<PacketReturnType>(m_result + index);
792
- }
793
-
794
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
795
- if (ReducingInnerMostDims) {
796
- const Index num_values_to_reduce =
797
- (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
798
- const Index firstIndex = firstInput(index);
799
- for (Index i = 0; i < PacketSize; ++i) {
800
- Op reducer(m_reducer);
801
- values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstIndex + i * num_values_to_reduce,
802
- num_values_to_reduce, reducer);
803
- }
804
- } else if (PreservingInnerMostDims) {
805
- const Index firstIndex = firstInput(index);
806
- const int innermost_dim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : NumOutputDims - 1;
807
- // TBD: extend this the the n innermost dimensions that we preserve.
808
- if (((firstIndex % m_dimensions[innermost_dim]) + PacketSize - 1) < m_dimensions[innermost_dim]) {
809
- Op reducer(m_reducer);
810
- typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>();
811
- internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*this, firstIndex, reducer, &accum);
812
- return reducer.finalizePacket(accum);
813
- } else {
814
- for (int i = 0; i < PacketSize; ++i) {
815
- values[i] = coeff(index + i);
816
- }
817
- }
818
- } else {
819
- for (int i = 0; i < PacketSize; ++i) {
820
- values[i] = coeff(index + i);
821
- }
822
- }
823
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
824
- return rslt;
825
- }
826
-
827
- // Must be called after evalSubExprsIfNeeded().
828
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
829
- if (RunningFullReduction && m_result) {
830
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
831
- } else {
832
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
833
- const double compute_cost = num_values_to_reduce * internal::functor_traits<Op>::Cost;
834
- return m_impl.costPerCoeff(vectorized) * num_values_to_reduce +
835
- TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
836
- }
837
- }
838
-
839
- EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_result; }
840
- EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
841
- EIGEN_DEVICE_FUNC const Device& device() const { return m_device; }
842
- #ifdef EIGEN_USE_SYCL
843
- // binding placeholder accessors to a command group handler for SYCL
844
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
845
- m_impl.bind(cgh);
846
- m_result.bind(cgh);
847
- }
848
- #endif
849
-
850
- private:
851
- template <int, typename, typename> friend struct internal::GenericDimReducer;
852
- template <typename, typename, bool, bool> friend struct internal::InnerMostDimReducer;
853
- template <int, typename, typename, bool> friend struct internal::InnerMostDimPreserver;
854
- template <typename S, typename O, typename D, bool V> friend struct internal::FullReducer;
855
- #ifdef EIGEN_USE_THREADS
856
- template <typename S, typename O, bool V> friend struct internal::FullReducerShard;
857
- #endif
858
- #if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
859
- template <int B, int N, typename S, typename R, typename I_> KERNEL_FRIEND void internal::FullReductionKernel(R, const S, I_, typename S::CoeffReturnType*, unsigned int*);
860
- #if defined(EIGEN_HAS_GPU_FP16)
861
- template <typename S, typename R, typename I_> KERNEL_FRIEND void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I_, internal::packet_traits<Eigen::half>::type*);
862
- template <int B, int N, typename S, typename R, typename I_> KERNEL_FRIEND void internal::FullReductionKernelHalfFloat(R, const S, I_, half*, internal::packet_traits<Eigen::half>::type*);
863
- template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::InnerReductionKernelHalfFloat(R, const S, I_, I_, half*);
864
- #endif
865
- template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::InnerReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
866
-
867
- template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::OuterReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
868
- #endif
869
-
870
- #if defined(EIGEN_USE_SYCL)
871
- template < typename Evaluator_, typename Op__> friend class TensorSycl::internal::GenericNondeterministicReducer;
872
- // SYCL need the Generic reducer for the case the recution algorithm is neither inner, outer, and full reducer
873
- template <typename, typename, typename> friend struct internal::GenericReducer;
874
- #endif
875
-
876
-
877
- template <typename S, typename O, typename D> friend struct internal::InnerReducer;
878
-
879
- struct BlockIteratorState {
880
- Index input_dim;
881
- Index output_size;
882
- Index output_count;
883
- };
884
-
885
- // Returns the Index in the input tensor of the first value that needs to be
886
- // used to compute the reduction at output index "index".
887
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
888
- if (ReducingInnerMostDims) {
889
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
890
- return index * m_preservedStrides[0];
891
- } else {
892
- return index * m_preservedStrides[NumPreservedStrides - 1];
893
- }
894
- }
895
- // TBD: optimize the case where we preserve the innermost dimensions.
896
- Index startInput = 0;
897
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
898
- for (int i = NumOutputDims - 1; i > 0; --i) {
899
- // This is index_i in the output tensor.
900
- const Index idx = index / m_outputStrides[i];
901
- startInput += idx * m_preservedStrides[i];
902
- index -= idx * m_outputStrides[i];
903
- }
904
- if (PreservingInnerMostDims) {
905
- eigen_assert(m_preservedStrides[0] == 1);
906
- startInput += index;
907
- } else {
908
- startInput += index * m_preservedStrides[0];
909
- }
910
- } else {
911
- for (int i = 0; i < NumOutputDims - 1; ++i) {
912
- // This is index_i in the output tensor.
913
- const Index idx = index / m_outputStrides[i];
914
- startInput += idx * m_preservedStrides[i];
915
- index -= idx * m_outputStrides[i];
916
- }
917
- if (PreservingInnerMostDims) {
918
- eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1);
919
- startInput += index;
920
- } else {
921
- startInput += index * m_preservedStrides[NumPreservedStrides - 1];
922
- }
923
- }
924
- return startInput;
925
- }
926
-
927
- // Bitmap indicating if an input dimension is reduced or not.
928
- array<bool, NumInputDims> m_reduced;
929
- // Dimensions of the output of the operation.
930
- Dimensions m_dimensions;
931
- // Precomputed strides for the output tensor.
932
- array<Index, NumOutputDims> m_outputStrides;
933
- array<internal::TensorIntDivisor<Index>, NumOutputDims> m_fastOutputStrides;
934
- array<Index, NumPreservedStrides> m_preservedStrides;
935
- // Map from output to input dimension index.
936
- array<Index, NumOutputDims> m_output_to_input_dim_map;
937
- // How many values go into each reduction
938
- Index m_numValuesToReduce;
939
-
940
- // Subset of strides of the input tensor for the reduced dimensions.
941
- // Indexed by reduced dimensions.
942
- array<Index, NumReducedDims> m_reducedStrides;
943
- // Size of the input dimensions that are reduced.
944
- // Indexed by reduced dimensions.
945
- array<Index, NumReducedDims> m_reducedDims;
946
-
947
- // Evaluator for the input expression.
948
- TensorEvaluator<ArgType, Device> m_impl;
949
-
950
- // Operation to apply for computing the reduction.
951
- Op m_reducer;
952
-
953
- // For full reductions
954
- #if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
955
- static const bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value;
956
- static const bool RunningOnSycl = false;
957
- #elif defined(EIGEN_USE_SYCL)
958
- static const bool RunningOnSycl = internal::is_same<typename internal::remove_all<Device>::type, Eigen::SyclDevice>::value;
959
- static const bool RunningOnGPU = false;
960
- #else
961
- static const bool RunningOnGPU = false;
962
- static const bool RunningOnSycl = false;
963
- #endif
964
- EvaluatorPointerType m_result;
965
-
966
- const Device EIGEN_DEVICE_REF m_device;
967
- };
968
-
969
- template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
970
- struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
971
- : public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> {
972
- typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Base;
973
- EIGEN_STRONG_INLINE TensorEvaluator(const typename Base::XprType& op, const Device& device) : Base(op, device){}
974
- };
975
-
976
-
977
- template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_>
978
- struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice>
979
- : public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> {
980
-
981
- typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> Base;
982
- EIGEN_STRONG_INLINE TensorEvaluator(const typename Base::XprType& op, const Eigen::SyclDevice& device) : Base(op, device){}
983
- // The coeff function in the base the recursive method which is not an standard layout and cannot be used in the SYCL kernel
984
- //Therefore the coeff function should be overridden by for SYCL kernel
985
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Base::CoeffReturnType coeff(typename Base::Index index) const {
986
- return *(this->data() + index);
987
- }
988
- // The packet function in the base the recursive method which is not an standard layout and cannot be used in the SYCL kernel
989
- //Therefore the packet function should be overridden by for SYCL kernel
990
- template<int LoadMode>
991
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Base::PacketReturnType packet(typename Base::Index index) const {
992
- return internal::pload<typename Base::PacketReturnType>(this->data() + index);
993
- }
994
- };
995
-
996
- } // end namespace Eigen
997
-
998
- #endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H