sequenzo 0.1.18__cp311-cp311-macosx_10_9_universal2.whl → 0.1.20__cp311-cp311-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (360) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-311-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +108 -6
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  8. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  10. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-311-darwin.so +0 -0
  11. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  12. sequenzo/dissimilarity_measures/utils/seqconc.cpython-311-darwin.so +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  14. sequenzo/dissimilarity_measures/utils/seqdss.cpython-311-darwin.so +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  16. sequenzo/dissimilarity_measures/utils/seqdur.cpython-311-darwin.so +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  18. sequenzo/dissimilarity_measures/utils/seqlength.cpython-311-darwin.so +0 -0
  19. sequenzo/multidomain/cat.py +0 -53
  20. sequenzo/multidomain/dat.py +11 -3
  21. sequenzo/multidomain/idcd.py +0 -3
  22. sequenzo/multidomain/linked_polyad.py +0 -1
  23. sequenzo/openmp_setup.py +233 -0
  24. sequenzo/visualization/plot_transition_matrix.py +21 -22
  25. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  26. sequenzo-0.1.20.dist-info/RECORD +215 -0
  27. sequenzo/dissimilarity_measures/setup.py +0 -35
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  170. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  171. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  172. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  173. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  174. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  175. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  176. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  177. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  182. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  183. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  184. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  185. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  186. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  187. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  188. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  357. sequenzo-0.1.18.dist-info/RECORD +0 -544
  358. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  359. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  360. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,1093 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
11
- #define EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
12
-
13
- namespace Eigen {
14
-
15
- /** \class TensorBroadcasting
16
- * \ingroup CXX11_Tensor_Module
17
- *
18
- * \brief Tensor broadcasting class.
19
- *
20
- *
21
- */
22
- namespace internal {
23
- template<typename Broadcast, typename XprType>
24
- struct traits<TensorBroadcastingOp<Broadcast, XprType> > : public traits<XprType>
25
- {
26
- typedef typename XprType::Scalar Scalar;
27
- typedef traits<XprType> XprTraits;
28
- typedef typename XprTraits::StorageKind StorageKind;
29
- typedef typename XprTraits::Index Index;
30
- typedef typename XprType::Nested Nested;
31
- typedef typename remove_reference<Nested>::type _Nested;
32
- static const int NumDimensions = XprTraits::NumDimensions;
33
- static const int Layout = XprTraits::Layout;
34
- typedef typename XprTraits::PointerType PointerType;
35
- };
36
-
37
- template<typename Broadcast, typename XprType>
38
- struct eval<TensorBroadcastingOp<Broadcast, XprType>, Eigen::Dense>
39
- {
40
- typedef const TensorBroadcastingOp<Broadcast, XprType> EIGEN_DEVICE_REF type;
41
- };
42
-
43
- template<typename Broadcast, typename XprType>
44
- struct nested<TensorBroadcastingOp<Broadcast, XprType>, 1, typename eval<TensorBroadcastingOp<Broadcast, XprType> >::type>
45
- {
46
- typedef TensorBroadcastingOp<Broadcast, XprType> type;
47
- };
48
-
49
- template <typename Dims>
50
- struct is_input_scalar {
51
- static const bool value = false;
52
- };
53
- template <>
54
- struct is_input_scalar<Sizes<> > {
55
- static const bool value = true;
56
- };
57
- #ifndef EIGEN_EMULATE_CXX11_META_H
58
- template <typename std::ptrdiff_t... Indices>
59
- struct is_input_scalar<Sizes<Indices...> > {
60
- static const bool value = (Sizes<Indices...>::total_size == 1);
61
- };
62
- #endif
63
-
64
- } // end namespace internal
65
-
66
-
67
-
68
- template<typename Broadcast, typename XprType>
69
- class TensorBroadcastingOp : public TensorBase<TensorBroadcastingOp<Broadcast, XprType>, ReadOnlyAccessors>
70
- {
71
- public:
72
- typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Scalar Scalar;
73
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
74
- typedef typename XprType::CoeffReturnType CoeffReturnType;
75
- typedef typename Eigen::internal::nested<TensorBroadcastingOp>::type Nested;
76
- typedef typename Eigen::internal::traits<TensorBroadcastingOp>::StorageKind StorageKind;
77
- typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Index Index;
78
-
79
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBroadcastingOp(const XprType& expr, const Broadcast& broadcast)
80
- : m_xpr(expr), m_broadcast(broadcast) {}
81
-
82
- EIGEN_DEVICE_FUNC
83
- const Broadcast& broadcast() const { return m_broadcast; }
84
-
85
- EIGEN_DEVICE_FUNC
86
- const typename internal::remove_all<typename XprType::Nested>::type&
87
- expression() const { return m_xpr; }
88
-
89
- protected:
90
- typename XprType::Nested m_xpr;
91
- const Broadcast m_broadcast;
92
- };
93
-
94
-
95
- // Eval as rvalue
96
- template<typename Broadcast, typename ArgType, typename Device>
97
- struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
98
- {
99
- typedef TensorBroadcastingOp<Broadcast, ArgType> XprType;
100
- typedef typename XprType::Index Index;
101
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
102
- typedef DSizes<Index, NumDims> Dimensions;
103
- typedef typename XprType::Scalar Scalar;
104
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
105
- typedef typename XprType::CoeffReturnType CoeffReturnType;
106
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
107
- static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
108
- protected: // all the non-static fields must have the same access control, otherwise the TensorEvaluator wont be standard layout;
109
- bool isCopy, nByOne, oneByN;
110
- public:
111
- typedef StorageMemory<CoeffReturnType, Device> Storage;
112
- typedef typename Storage::Type EvaluatorPointerType;
113
-
114
- enum {
115
- IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
116
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
117
- BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess,
118
- PreferBlockAccess = true,
119
- Layout = TensorEvaluator<ArgType, Device>::Layout,
120
- RawAccess = false
121
- };
122
-
123
- typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
124
-
125
- // We do block based broadcasting using a trick with 2x tensor rank and 0
126
- // strides. See block method implementation for details.
127
- typedef DSizes<Index, 2 * NumDims> BroadcastDimensions;
128
-
129
- //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
130
- typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
131
- typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
132
-
133
- typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock
134
- ArgTensorBlock;
135
-
136
- typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims,
137
- Layout, Index>
138
- TensorBlock;
139
- //===--------------------------------------------------------------------===//
140
-
141
- EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
142
- : isCopy(false), nByOne(false), oneByN(false),
143
- m_device(device), m_broadcast(op.broadcast()), m_impl(op.expression(), device)
144
- {
145
-
146
- // The broadcasting op doesn't change the rank of the tensor. One can't broadcast a scalar
147
- // and store the result in a scalar. Instead one should reshape the scalar into a a N-D
148
- // tensor with N >= 1 of 1 element first and then broadcast.
149
- EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
150
- const InputDimensions& input_dims = m_impl.dimensions();
151
- isCopy = true;
152
- for (int i = 0; i < NumDims; ++i) {
153
- eigen_assert(input_dims[i] > 0);
154
- m_dimensions[i] = input_dims[i] * m_broadcast[i];
155
- if (m_broadcast[i] != 1) {
156
- isCopy = false;
157
- }
158
- }
159
-
160
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
161
- m_inputStrides[0] = 1;
162
- m_outputStrides[0] = 1;
163
- for (int i = 1; i < NumDims; ++i) {
164
- m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
165
- m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
166
- }
167
- } else {
168
- m_inputStrides[NumDims-1] = 1;
169
- m_outputStrides[NumDims-1] = 1;
170
- for (int i = NumDims-2; i >= 0; --i) {
171
- m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
172
- m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
173
- }
174
- }
175
-
176
- if (input_dims[0] == 1) {
177
- oneByN = true;
178
- for (int i = 1; i < NumDims; ++i) {
179
- if (m_broadcast[i] != 1) {
180
- oneByN = false;
181
- break;
182
- }
183
- }
184
- } else if (input_dims[NumDims-1] == 1) {
185
- nByOne = true;
186
- for (int i = 0; i < NumDims-1; ++i) {
187
- if (m_broadcast[i] != 1) {
188
- nByOne = false;
189
- break;
190
- }
191
- }
192
- }
193
-
194
- // Handle special format like NCHW, its input shape is '[1, N..., 1]' and
195
- // broadcast shape is '[N, 1..., N]'
196
- if (!oneByN && !nByOne) {
197
- if (input_dims[0] == 1 && input_dims[NumDims-1] == 1 && NumDims > 2) {
198
- nByOne = true;
199
- oneByN = true;
200
- for (int i = 1; i < NumDims-1; ++i) {
201
- if (m_broadcast[i] != 1) {
202
- nByOne = false;
203
- oneByN = false;
204
- break;
205
- }
206
- }
207
- }
208
- }
209
- }
210
-
211
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
212
-
213
- EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
214
- m_impl.evalSubExprsIfNeeded(NULL);
215
- return true;
216
- }
217
-
218
- #ifdef EIGEN_USE_THREADS
219
- template <typename EvalSubExprsCallback>
220
- EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
221
- EvaluatorPointerType, EvalSubExprsCallback done) {
222
- m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
223
- }
224
- #endif // EIGEN_USE_THREADS
225
-
226
- EIGEN_STRONG_INLINE void cleanup() {
227
- m_impl.cleanup();
228
- }
229
-
230
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const
231
- {
232
- if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) {
233
- return m_impl.coeff(0);
234
- }
235
-
236
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
237
- if (isCopy) {
238
- return m_impl.coeff(index);
239
- } else {
240
- return coeffColMajor(index);
241
- }
242
- } else {
243
- if (isCopy) {
244
- return m_impl.coeff(index);
245
- } else {
246
- return coeffRowMajor(index);
247
- }
248
- }
249
- }
250
-
251
- // TODO: attempt to speed this up. The integer divisions and modulo are slow
252
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index indexColMajor(Index index) const {
253
- Index inputIndex = 0;
254
- EIGEN_UNROLL_LOOP
255
- for (int i = NumDims - 1; i > 0; --i) {
256
- const Index idx = index / m_outputStrides[i];
257
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
258
- eigen_assert(idx < m_impl.dimensions()[i]);
259
- inputIndex += idx * m_inputStrides[i];
260
- } else {
261
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
262
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
263
- } else {
264
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
265
- }
266
- }
267
- index -= idx * m_outputStrides[i];
268
- }
269
- if (internal::index_statically_eq<Broadcast>(0, 1)) {
270
- eigen_assert(index < m_impl.dimensions()[0]);
271
- inputIndex += index;
272
- } else {
273
- if (internal::index_statically_eq<InputDimensions>(0, 1)) {
274
- eigen_assert(index % m_impl.dimensions()[0] == 0);
275
- } else {
276
- inputIndex += (index % m_impl.dimensions()[0]);
277
- }
278
- }
279
- return inputIndex;
280
- }
281
-
282
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffColMajor(Index index) const
283
- {
284
- return m_impl.coeff(indexColMajor(index));
285
- }
286
-
287
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index indexRowMajor(Index index) const {
288
- Index inputIndex = 0;
289
- EIGEN_UNROLL_LOOP
290
- for (int i = 0; i < NumDims - 1; ++i) {
291
- const Index idx = index / m_outputStrides[i];
292
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
293
- eigen_assert(idx < m_impl.dimensions()[i]);
294
- inputIndex += idx * m_inputStrides[i];
295
- } else {
296
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
297
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
298
- } else {
299
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
300
- }
301
- }
302
- index -= idx * m_outputStrides[i];
303
- }
304
- if (internal::index_statically_eq<Broadcast>(NumDims - 1, 1)) {
305
- eigen_assert(index < m_impl.dimensions()[NumDims - 1]);
306
- inputIndex += index;
307
- } else {
308
- if (internal::index_statically_eq<InputDimensions>(NumDims - 1, 1)) {
309
- eigen_assert(index % m_impl.dimensions()[NumDims - 1] == 0);
310
- } else {
311
- inputIndex += (index % m_impl.dimensions()[NumDims - 1]);
312
- }
313
- }
314
- return inputIndex;
315
- }
316
-
317
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffRowMajor(Index index) const
318
- {
319
- return m_impl.coeff(indexRowMajor(index));
320
- }
321
-
322
- template<int LoadMode>
323
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index) const
324
- {
325
- if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) {
326
- return internal::pset1<PacketReturnType>(m_impl.coeff(0));
327
- }
328
-
329
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
330
- if (isCopy) {
331
- #ifdef EIGEN_GPU_COMPILE_PHASE
332
- // See PR 437: on NVIDIA P100 and K20m we observed a x3-4 speed up by enforcing
333
- // unaligned loads here. The reason is unclear though.
334
- return m_impl.template packet<Unaligned>(index);
335
- #else
336
- return m_impl.template packet<LoadMode>(index);
337
- #endif
338
- } else if (oneByN && !nByOne) {
339
- return packetNByOne<LoadMode>(index);
340
- } else if (!oneByN && nByOne) {
341
- return packetOneByN<LoadMode>(index);
342
- } else if (oneByN && nByOne) {
343
- return packetOneByNByOne<LoadMode>(index);
344
- } else {
345
- return packetColMajor<LoadMode>(index);
346
- }
347
- } else {
348
- if (isCopy) {
349
- #ifdef EIGEN_GPU_COMPILE_PHASE
350
- // See above.
351
- return m_impl.template packet<Unaligned>(index);
352
- #else
353
- return m_impl.template packet<LoadMode>(index);
354
- #endif
355
- } else if (oneByN && !nByOne) {
356
- return packetOneByN<LoadMode>(index);
357
- } else if (!oneByN && nByOne) {
358
- return packetNByOne<LoadMode>(index);
359
- } else if (oneByN && nByOne) {
360
- return packetOneByNByOne<LoadMode>(index);
361
- } else {
362
- return packetRowMajor<LoadMode>(index);
363
- }
364
- }
365
- }
366
-
367
- template<int LoadMode>
368
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetOneByNByOne
369
- (Index index) const
370
- {
371
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
372
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
373
-
374
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
375
- Index startDim, endDim;
376
- Index inputIndex, outputOffset, batchedIndex;
377
-
378
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
379
- startDim = NumDims - 1;
380
- endDim = 1;
381
- } else {
382
- startDim = 0;
383
- endDim = NumDims - 2;
384
- }
385
-
386
- batchedIndex = index % m_outputStrides[startDim];
387
- inputIndex = batchedIndex / m_outputStrides[endDim];
388
- outputOffset = batchedIndex % m_outputStrides[endDim];
389
-
390
- if (outputOffset + PacketSize <= m_outputStrides[endDim]) {
391
- values[0] = m_impl.coeff(inputIndex);
392
- return internal::pload1<PacketReturnType>(values);
393
- } else {
394
- EIGEN_UNROLL_LOOP
395
- for (int i = 0, cur = 0; i < PacketSize; ++i, ++cur) {
396
- if (outputOffset + cur < m_outputStrides[endDim]) {
397
- values[i] = m_impl.coeff(inputIndex);
398
- } else {
399
- ++inputIndex;
400
- inputIndex = (inputIndex == m_inputStrides[startDim] ? 0 : inputIndex);
401
- values[i] = m_impl.coeff(inputIndex);
402
- outputOffset = 0;
403
- cur = 0;
404
- }
405
- }
406
- return internal::pload<PacketReturnType>(values);
407
- }
408
- }
409
-
410
- template<int LoadMode>
411
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetOneByN(Index index) const
412
- {
413
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
414
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
415
-
416
- Index dim, inputIndex;
417
-
418
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
419
- dim = NumDims - 1;
420
- } else {
421
- dim = 0;
422
- }
423
-
424
- inputIndex = index % m_inputStrides[dim];
425
- if (inputIndex + PacketSize <= m_inputStrides[dim]) {
426
- return m_impl.template packet<Unaligned>(inputIndex);
427
- } else {
428
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
429
- EIGEN_UNROLL_LOOP
430
- for (int i = 0; i < PacketSize; ++i) {
431
- if (inputIndex > m_inputStrides[dim]-1) {
432
- inputIndex = 0;
433
- }
434
- values[i] = m_impl.coeff(inputIndex++);
435
- }
436
- return internal::pload<PacketReturnType>(values);
437
- }
438
- }
439
-
440
- template<int LoadMode>
441
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetNByOne(Index index) const
442
- {
443
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
444
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
445
-
446
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
447
- Index dim, inputIndex, outputOffset;
448
-
449
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
450
- dim = 1;
451
- } else {
452
- dim = NumDims - 2;
453
- }
454
-
455
- inputIndex = index / m_outputStrides[dim];
456
- outputOffset = index % m_outputStrides[dim];
457
- if (outputOffset + PacketSize <= m_outputStrides[dim]) {
458
- values[0] = m_impl.coeff(inputIndex);
459
- return internal::pload1<PacketReturnType>(values);
460
- } else {
461
- EIGEN_UNROLL_LOOP
462
- for (int i = 0, cur = 0; i < PacketSize; ++i, ++cur) {
463
- if (outputOffset + cur < m_outputStrides[dim]) {
464
- values[i] = m_impl.coeff(inputIndex);
465
- } else {
466
- values[i] = m_impl.coeff(++inputIndex);
467
- outputOffset = 0;
468
- cur = 0;
469
- }
470
- }
471
- return internal::pload<PacketReturnType>(values);
472
- }
473
- }
474
-
475
- // Ignore the LoadMode and always use unaligned loads since we can't guarantee
476
- // the alignment at compile time.
477
- template<int LoadMode>
478
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
479
- {
480
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
481
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
482
-
483
- const Index originalIndex = index;
484
-
485
- Index inputIndex = 0;
486
- EIGEN_UNROLL_LOOP
487
- for (int i = NumDims - 1; i > 0; --i) {
488
- const Index idx = index / m_outputStrides[i];
489
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
490
- eigen_assert(idx < m_impl.dimensions()[i]);
491
- inputIndex += idx * m_inputStrides[i];
492
- } else {
493
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
494
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
495
- } else {
496
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
497
- }
498
- }
499
- index -= idx * m_outputStrides[i];
500
- }
501
- Index innermostLoc;
502
- if (internal::index_statically_eq<Broadcast>(0, 1)) {
503
- eigen_assert(index < m_impl.dimensions()[0]);
504
- innermostLoc = index;
505
- } else {
506
- if (internal::index_statically_eq<InputDimensions>(0, 1)) {
507
- eigen_assert(index % m_impl.dimensions()[0] == 0);
508
- innermostLoc = 0;
509
- } else {
510
- innermostLoc = index % m_impl.dimensions()[0];
511
- }
512
- }
513
- inputIndex += innermostLoc;
514
-
515
- // Todo: this could be extended to the second dimension if we're not
516
- // broadcasting alongside the first dimension, and so on.
517
- if (innermostLoc + PacketSize <= m_impl.dimensions()[0]) {
518
- return m_impl.template packet<Unaligned>(inputIndex);
519
- } else {
520
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
521
- values[0] = m_impl.coeff(inputIndex);
522
- EIGEN_UNROLL_LOOP
523
- for (int i = 1; i < PacketSize; ++i) {
524
- if (innermostLoc + i < m_impl.dimensions()[0]) {
525
- values[i] = m_impl.coeff(inputIndex+i);
526
- } else {
527
- values[i] = coeffColMajor(originalIndex+i);
528
- }
529
- }
530
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
531
- return rslt;
532
- }
533
- }
534
-
535
- template<int LoadMode>
536
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
537
- {
538
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
539
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
540
-
541
- const Index originalIndex = index;
542
-
543
- Index inputIndex = 0;
544
- EIGEN_UNROLL_LOOP
545
- for (int i = 0; i < NumDims - 1; ++i) {
546
- const Index idx = index / m_outputStrides[i];
547
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
548
- eigen_assert(idx < m_impl.dimensions()[i]);
549
- inputIndex += idx * m_inputStrides[i];
550
- } else {
551
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
552
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
553
- } else {
554
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
555
- }
556
- }
557
- index -= idx * m_outputStrides[i];
558
- }
559
- Index innermostLoc;
560
- if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) {
561
- eigen_assert(index < m_impl.dimensions()[NumDims-1]);
562
- innermostLoc = index;
563
- } else {
564
- if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) {
565
- eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0);
566
- innermostLoc = 0;
567
- } else {
568
- innermostLoc = index % m_impl.dimensions()[NumDims-1];
569
- }
570
- }
571
- inputIndex += innermostLoc;
572
-
573
- // Todo: this could be extended to the second dimension if we're not
574
- // broadcasting alongside the first dimension, and so on.
575
- if (innermostLoc + PacketSize <= m_impl.dimensions()[NumDims-1]) {
576
- return m_impl.template packet<Unaligned>(inputIndex);
577
- } else {
578
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
579
- values[0] = m_impl.coeff(inputIndex);
580
- EIGEN_UNROLL_LOOP
581
- for (int i = 1; i < PacketSize; ++i) {
582
- if (innermostLoc + i < m_impl.dimensions()[NumDims-1]) {
583
- values[i] = m_impl.coeff(inputIndex+i);
584
- } else {
585
- values[i] = coeffRowMajor(originalIndex+i);
586
- }
587
- }
588
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
589
- return rslt;
590
- }
591
- }
592
-
593
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
594
- costPerCoeff(bool vectorized) const {
595
- double compute_cost = TensorOpCost::AddCost<Index>();
596
- if (!isCopy && NumDims > 0) {
597
- EIGEN_UNROLL_LOOP
598
- for (int i = NumDims - 1; i > 0; --i) {
599
- compute_cost += TensorOpCost::DivCost<Index>();
600
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
601
- compute_cost +=
602
- TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
603
- } else {
604
- if (!internal::index_statically_eq<InputDimensions>(i, 1)) {
605
- compute_cost += TensorOpCost::MulCost<Index>() +
606
- TensorOpCost::ModCost<Index>() +
607
- TensorOpCost::AddCost<Index>();
608
- }
609
- }
610
- compute_cost +=
611
- TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
612
- }
613
- }
614
- return m_impl.costPerCoeff(vectorized) +
615
- TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
616
- }
617
-
618
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
619
- internal::TensorBlockResourceRequirements getResourceRequirements() const {
620
- // TODO(wuke): Targeting L1 size is 30% faster than targeting L{-1} on large
621
- // tensors. But this might need further tuning.
622
- const size_t target_size = m_device.firstLevelCacheSize();
623
- return internal::TensorBlockResourceRequirements::merge(
624
- m_impl.getResourceRequirements(),
625
- internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size));
626
- }
627
-
628
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
629
- block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
630
- bool /*root_of_expr_ast*/ = false) const {
631
- BlockBroadcastingParams params = blockBroadcastingParams(desc);
632
-
633
- if (params.inner_dim_size == 0 || params.bcast_dim_size == 0) {
634
- return emptyBlock();
635
- }
636
-
637
- // Prepare storage for the materialized broadcasting result.
638
- const typename TensorBlock::Storage block_storage =
639
- TensorBlock::prepareStorage(desc, scratch);
640
- ScalarNoConst* materialized_output = block_storage.data();
641
-
642
- // We potentially will need to materialize input blocks.
643
- size_t materialized_input_size = 0;
644
- ScalarNoConst* materialized_input = NULL;
645
-
646
- // Initialize block broadcating iterator state for outer dimensions (outer
647
- // with regard to bcast dimension). Dimension in this array are always in
648
- // inner_most -> outer_most order (col major layout).
649
- array<BlockBroadcastingIteratorState, NumDims> it;
650
- int idx = 0;
651
-
652
- for (int i = params.inner_dim_count + 1; i < NumDims; ++i) {
653
- const Index dim = IsColMajor ? i : NumDims - 1 - i;
654
- it[idx].size = params.output_dims[dim];
655
- it[idx].count = 0;
656
- it[idx].output_stride = m_outputStrides[dim];
657
- it[idx].output_span = it[idx].output_stride * (it[idx].size - 1);
658
- idx++;
659
- }
660
-
661
- // Write output into the beginning of `materialized_output`.
662
- Index output_offset = 0;
663
-
664
- // We will fill output block by broadcasting along the bcast dim, and
665
- // iterating over outer dimension.
666
- const Index output_size = NumDims == 0 ? 1 : params.output_dims.TotalSize();
667
-
668
- for (Index num_output_coeffs = 0; num_output_coeffs < output_size;) {
669
- ScalarNoConst* bcast_output = materialized_output + num_output_coeffs;
670
- Index bcast_offset = desc.offset() + output_offset;
671
-
672
- // Broadcast along the bcast dimension.
673
- num_output_coeffs += BroadcastBlockAlongBcastDim(
674
- params, bcast_offset, scratch, bcast_output, &materialized_input,
675
- &materialized_input_size);
676
-
677
- // Switch to the next outer dimension.
678
- for (int j = 0; j < idx; ++j) {
679
- if (++it[j].count < it[j].size) {
680
- output_offset += it[j].output_stride;
681
- break;
682
- }
683
- it[j].count = 0;
684
- output_offset -= it[j].output_span;
685
- }
686
- }
687
-
688
- return block_storage.AsTensorMaterializedBlock();
689
- }
690
-
691
- EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
692
-
693
- const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
694
-
695
- Broadcast functor() const { return m_broadcast; }
696
- #ifdef EIGEN_USE_SYCL
697
- // binding placeholder accessors to a command group handler for SYCL
698
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(
699
- cl::sycl::handler& cgh) const {
700
- m_impl.bind(cgh);
701
- }
702
- #endif
703
- private:
704
- static const bool IsColMajor =
705
- static_cast<int>(Layout) == static_cast<int>(ColMajor);
706
-
707
- // We will build a general case block broadcasting on top of broadcasting
708
- // primitive that will do broadcasting only for the inner dimension(s) along
709
- // the first dimension smaller than the input size (it's called `bcast_dim`).
710
- //
711
- // Example:
712
- // dim: 0 1 2 (ColMajor)
713
- // input size: [9, 3, 6]
714
- // block size: [9, 2, 6]
715
- //
716
- // We will compute broadcasted block by iterating over the outer dimensions
717
- // before `bcast_dim` (only dimension `2` in this example) and computing
718
- // broadcasts along the `bcast_dim` (dimension `1` in this example).
719
-
720
- // BlockBroadcastingParams holds precomputed parameters for broadcasting a
721
- // single block along the broadcasting dimension. Sizes and strides along the
722
- // `bcast_dim` might be invalid, they will be adjusted later in
723
- // `BroadcastBlockAlongBcastDim`.
724
- struct BlockBroadcastingParams {
725
- Dimensions input_dims; // input expression dimensions
726
- Dimensions output_dims; // output block sizes
727
- Dimensions output_strides; // output block strides
728
-
729
- int inner_dim_count; // count inner dimensions matching in size
730
- int bcast_dim; // broadcasting dimension index
731
- Index bcast_dim_size; // broadcasting dimension size
732
- Index inner_dim_size; // inner dimensions size
733
-
734
- // Block sizes and strides for the input block where all dimensions before
735
- // `bcast_dim` are equal to `1`.
736
- Dimensions input_block_sizes;
737
- Dimensions input_block_strides;
738
-
739
- // Block sizes and strides for blocks with extra dimensions and strides `0`.
740
- BroadcastDimensions bcast_block_sizes;
741
- BroadcastDimensions bcast_block_strides;
742
- BroadcastDimensions bcast_input_strides;
743
- };
744
-
745
- struct BlockBroadcastingIteratorState {
746
- Index size;
747
- Index count;
748
- Index output_stride;
749
- Index output_span;
750
- };
751
-
752
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlockBroadcastingParams
753
- blockBroadcastingParams(TensorBlockDesc& desc) const {
754
- BlockBroadcastingParams params;
755
-
756
- params.input_dims = Dimensions(m_impl.dimensions());
757
-
758
- // Output block sizes and strides.
759
- params.output_dims = desc.dimensions();
760
- params.output_strides = internal::strides<Layout>(params.output_dims);
761
-
762
- // Find the broadcasting dimension (first dimension with output size smaller
763
- // that the input size).
764
- params.bcast_dim = 0;
765
- params.bcast_dim_size = 1;
766
- params.inner_dim_size = 1;
767
-
768
- // Count the number of inner dimensions that have the same size in the block
769
- // and in the broadcast expression.
770
- params.inner_dim_count = 0;
771
-
772
- for (int i = 0; i < NumDims; ++i) {
773
- const int dim = IsColMajor ? i : NumDims - i - 1;
774
-
775
- if (params.output_dims[dim] == m_dimensions[dim]) {
776
- params.inner_dim_size *= params.output_dims[dim];
777
- ++params.inner_dim_count;
778
- continue;
779
- }
780
-
781
- // First non-matching dimension is the broadcasting dimension.
782
- eigen_assert(params.output_dims[dim] < m_dimensions[dim]);
783
- params.bcast_dim = dim;
784
- params.bcast_dim_size = params.output_dims[dim];
785
- break;
786
- }
787
-
788
- // Calculate the input block size for looking into the input.
789
- for (int i = 0; i < params.inner_dim_count; ++i) {
790
- const int dim = IsColMajor ? i : NumDims - i - 1;
791
- params.input_block_sizes[dim] = params.input_dims[dim];
792
- }
793
- for (int i = params.inner_dim_count; i < NumDims; ++i) {
794
- const int dim = IsColMajor ? i : NumDims - i - 1;
795
- params.input_block_sizes[dim] = 1;
796
- }
797
- params.input_block_strides =
798
- internal::strides<Layout>(params.input_block_sizes);
799
-
800
- // Broadcast with the 0-stride trick: Create 1 extra dim for each
801
- // broadcast, set the input stride to 0.
802
- //
803
- // When ColMajor:
804
- //
805
- // - bcast_block_sizes:
806
- // [d_0, b_0, d_1, b_1, ...]
807
- //
808
- // - bcast_block_strides:
809
- // [output_block_strides[0], output_block_strides[0] * d_0,
810
- // output_block_strides[1], output_block_strides[1] * d_1,
811
- // ...]
812
- //
813
- // - bcast_input_strides:
814
- // [input_block_strides[0], 0,
815
- // input_block_strides[1], 0,
816
- // ...].
817
- //
818
- for (int i = 0; i < params.inner_dim_count; ++i) {
819
- const int dim = IsColMajor ? i : NumDims - i - 1;
820
-
821
- const int copy_dim = IsColMajor ? 2 * i : 2 * NumDims - 2 * i - 1;
822
- const int broadcast_dim = IsColMajor ? copy_dim + 1 : copy_dim - 1;
823
-
824
- params.bcast_block_sizes[copy_dim] = params.input_dims[dim];
825
- params.bcast_block_sizes[broadcast_dim] = m_broadcast[dim];
826
- params.bcast_block_strides[copy_dim] = params.output_strides[dim];
827
- params.bcast_block_strides[broadcast_dim] =
828
- params.output_strides[dim] * params.input_dims[dim];
829
- params.bcast_input_strides[copy_dim] = params.input_block_strides[dim];
830
- params.bcast_input_strides[broadcast_dim] = 0;
831
- }
832
-
833
- for (int i = 2 * params.inner_dim_count; i < 2 * NumDims; ++i) {
834
- const int dim = IsColMajor ? i : 2 * NumDims - i - 1;
835
- params.bcast_block_sizes[dim] = 1;
836
- params.bcast_block_strides[dim] = 0;
837
- params.bcast_input_strides[dim] = 0;
838
- }
839
-
840
- return params;
841
- }
842
-
843
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock emptyBlock() const {
844
- DSizes<Index, NumDims> dimensions;
845
- for (int i = 0; i < NumDims; ++i) dimensions[i] = 0;
846
- return TensorBlock(internal::TensorBlockKind::kView, NULL, dimensions);
847
- }
848
-
849
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index BroadcastBlockAlongBcastDim(
850
- BlockBroadcastingParams params, Index bcast_offset,
851
- TensorBlockScratch& scratch, ScalarNoConst* materialized_output,
852
- ScalarNoConst** materialized_input,
853
- size_t* materialized_input_size) const {
854
- if (params.bcast_dim_size == 1) {
855
- // We just need one block read using the ready-set values above.
856
- return BroadcastBlock(
857
- params.input_block_sizes, params.input_block_strides,
858
- params.bcast_block_sizes, params.bcast_block_strides,
859
- params.bcast_input_strides, bcast_offset, 0, scratch,
860
- materialized_output, materialized_input, materialized_input_size);
861
-
862
- } else if (params.input_dims[params.bcast_dim] == 1) {
863
- // Broadcast bcast dimension (< NumDims) by bcast_dim_size.
864
- const int broadcast_bcast_dim =
865
- IsColMajor ? 2 * params.inner_dim_count + 1
866
- : 2 * NumDims - 2 * params.inner_dim_count - 2;
867
-
868
- params.bcast_block_sizes[broadcast_bcast_dim] = params.bcast_dim_size;
869
- params.bcast_input_strides[broadcast_bcast_dim] = 0;
870
- params.bcast_block_strides[broadcast_bcast_dim] =
871
- params.output_strides[params.bcast_dim];
872
-
873
- return BroadcastBlock(
874
- params.input_block_sizes, params.input_block_strides,
875
- params.bcast_block_sizes, params.bcast_block_strides,
876
- params.bcast_input_strides, bcast_offset, 0, scratch,
877
- materialized_output, materialized_input, materialized_input_size);
878
-
879
- } else {
880
- // Keep track of the total number of the coefficients written to the
881
- // output block.
882
- Index num_output_coeffs = 0;
883
-
884
- // The general case. Let's denote the output block as
885
- //
886
- // x[..., a:a+bcast_dim_size, :, ..., :]
887
- //
888
- // where a:a+bcast_dim_size is a slice on the bcast_dim dimension
889
- // (< NumDims). We need to split the a:a+bcast_dim_size into possibly 3
890
- // sub-blocks:
891
- //
892
- // (1) a:b, where b is the smallest multiple of
893
- // input_dims[bcast_dim_start] in [a, a+bcast_dim_size].
894
- //
895
- // (2) b:c, where c is the largest multiple of input_dims[bcast_dim_start]
896
- // in [a, a+bcast_dim_size].
897
- //
898
- // (3) c:a+bcast_dim_size .
899
- //
900
- // Or, when b and c do not exist, we just need to process the whole block
901
- // together.
902
-
903
- // Find a.
904
- const Index bcast_dim_left_index =
905
- bcast_offset / m_outputStrides[params.bcast_dim];
906
-
907
- // Find b and c.
908
- const Index input_bcast_dim_size = params.input_dims[params.bcast_dim];
909
-
910
- // First multiple after a. This is b when <= bcast_dim_left_index +
911
- // bcast_dim_size.
912
- const Index first_multiple =
913
- divup<Index>(bcast_dim_left_index, input_bcast_dim_size) *
914
- input_bcast_dim_size;
915
-
916
- if (first_multiple <= bcast_dim_left_index + params.bcast_dim_size) {
917
- // b exists, so does c. Find it.
918
- const Index last_multiple =
919
- (bcast_dim_left_index + params.bcast_dim_size) /
920
- input_bcast_dim_size * input_bcast_dim_size;
921
- const int copy_bcast_dim =
922
- IsColMajor ? 2 * params.inner_dim_count
923
- : 2 * NumDims - 2 * params.inner_dim_count - 1;
924
- const int broadcast_bcast_dim =
925
- IsColMajor ? 2 * params.inner_dim_count + 1
926
- : 2 * NumDims - 2 * params.inner_dim_count - 2;
927
-
928
- if (first_multiple > bcast_dim_left_index) {
929
- const Index head_size = first_multiple - bcast_dim_left_index;
930
- params.input_block_sizes[params.bcast_dim] = head_size;
931
- params.bcast_block_sizes[copy_bcast_dim] = head_size;
932
- params.bcast_input_strides[copy_bcast_dim] =
933
- params.input_block_strides[params.bcast_dim];
934
- params.bcast_block_strides[copy_bcast_dim] =
935
- params.output_strides[params.bcast_dim];
936
- params.bcast_block_sizes[broadcast_bcast_dim] = 1;
937
- params.bcast_input_strides[broadcast_bcast_dim] = 0;
938
- params.bcast_block_strides[broadcast_bcast_dim] =
939
- params.output_strides[params.bcast_dim] *
940
- params.input_dims[params.bcast_dim];
941
-
942
- num_output_coeffs += BroadcastBlock(
943
- params.input_block_sizes, params.input_block_strides,
944
- params.bcast_block_sizes, params.bcast_block_strides,
945
- params.bcast_input_strides, bcast_offset, 0, scratch,
946
- materialized_output, materialized_input, materialized_input_size);
947
- }
948
- if (first_multiple < last_multiple) {
949
- params.input_block_sizes[params.bcast_dim] = input_bcast_dim_size;
950
- params.bcast_block_sizes[copy_bcast_dim] = input_bcast_dim_size;
951
- params.bcast_input_strides[copy_bcast_dim] =
952
- params.input_block_strides[params.bcast_dim];
953
- params.bcast_block_strides[copy_bcast_dim] =
954
- params.output_strides[params.bcast_dim];
955
- params.bcast_block_sizes[broadcast_bcast_dim] =
956
- (last_multiple - first_multiple) / input_bcast_dim_size;
957
- params.bcast_input_strides[broadcast_bcast_dim] = 0;
958
- params.bcast_block_strides[broadcast_bcast_dim] =
959
- params.output_strides[params.bcast_dim] *
960
- params.input_dims[params.bcast_dim];
961
- const Index offset = (first_multiple - bcast_dim_left_index) *
962
- m_outputStrides[params.bcast_dim];
963
-
964
- num_output_coeffs += BroadcastBlock(
965
- params.input_block_sizes, params.input_block_strides,
966
- params.bcast_block_sizes, params.bcast_block_strides,
967
- params.bcast_input_strides, bcast_offset, offset, scratch,
968
- materialized_output, materialized_input, materialized_input_size);
969
- }
970
- if (last_multiple < bcast_dim_left_index + params.bcast_dim_size) {
971
- const Index tail_size =
972
- bcast_dim_left_index + params.bcast_dim_size - last_multiple;
973
- params.input_block_sizes[params.bcast_dim] = tail_size;
974
- params.bcast_block_sizes[copy_bcast_dim] = tail_size;
975
- params.bcast_input_strides[copy_bcast_dim] =
976
- params.input_block_strides[params.bcast_dim];
977
- params.bcast_block_strides[copy_bcast_dim] =
978
- params.output_strides[params.bcast_dim];
979
- params.bcast_block_sizes[broadcast_bcast_dim] = 1;
980
- params.bcast_input_strides[broadcast_bcast_dim] = 0;
981
- params.bcast_block_strides[broadcast_bcast_dim] =
982
- params.output_strides[params.bcast_dim] *
983
- params.input_dims[params.bcast_dim];
984
- const Index offset = (last_multiple - bcast_dim_left_index) *
985
- m_outputStrides[params.bcast_dim];
986
-
987
- num_output_coeffs += BroadcastBlock(
988
- params.input_block_sizes, params.input_block_strides,
989
- params.bcast_block_sizes, params.bcast_block_strides,
990
- params.bcast_input_strides, bcast_offset, offset, scratch,
991
- materialized_output, materialized_input, materialized_input_size);
992
- }
993
- } else {
994
- // b and c do not exist.
995
- const int copy_bcast_dim =
996
- IsColMajor ? 2 * params.inner_dim_count
997
- : 2 * NumDims - 2 * params.inner_dim_count - 1;
998
- params.input_block_sizes[params.bcast_dim] = params.bcast_dim_size;
999
- params.bcast_block_sizes[copy_bcast_dim] = params.bcast_dim_size;
1000
- params.bcast_input_strides[copy_bcast_dim] =
1001
- params.input_block_strides[params.bcast_dim];
1002
- params.bcast_block_strides[copy_bcast_dim] =
1003
- params.output_strides[params.bcast_dim];
1004
-
1005
- num_output_coeffs += BroadcastBlock(
1006
- params.input_block_sizes, params.input_block_strides,
1007
- params.bcast_block_sizes, params.bcast_block_strides,
1008
- params.bcast_input_strides, bcast_offset, 0, scratch,
1009
- materialized_output, materialized_input, materialized_input_size);
1010
- }
1011
-
1012
- return num_output_coeffs;
1013
- }
1014
- }
1015
-
1016
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index BroadcastBlock(
1017
- const Dimensions& input_block_sizes,
1018
- const Dimensions& input_block_strides,
1019
- const BroadcastDimensions& bcast_block_sizes,
1020
- const BroadcastDimensions& bcast_block_strides,
1021
- const BroadcastDimensions& bcast_input_strides, Index bcast_offset,
1022
- Index offset, TensorBlockScratch& scratch,
1023
- ScalarNoConst* materialized_output, ScalarNoConst** materialized_input,
1024
- size_t* materialized_input_size) const {
1025
- // ---------------------------------------------------------------------- //
1026
- // Tensor block descriptor for reading block from the input.
1027
- const Index input_offset = bcast_offset + offset;
1028
- TensorBlockDesc input_desc(
1029
- IsColMajor ? indexColMajor(input_offset) : indexRowMajor(input_offset),
1030
- input_block_sizes);
1031
-
1032
- ArgTensorBlock input_block = m_impl.block(input_desc, scratch);
1033
-
1034
- // ---------------------------------------------------------------------- //
1035
- // Materialize input block into a temporary memory buffer only if it's not
1036
- // already available in the arg block.
1037
- const ScalarNoConst* input_buffer = NULL;
1038
-
1039
- if (input_block.data() != NULL) {
1040
- // Input block already has raw data, there is no need to materialize it.
1041
- input_buffer = input_block.data();
1042
-
1043
- } else {
1044
- // Otherwise we have to do block assignment into a temporary buffer.
1045
-
1046
- // Maybe reuse previously allocated buffer, or allocate a new one with a
1047
- // scratch allocator.
1048
- const size_t input_total_size = input_block_sizes.TotalSize();
1049
- if (*materialized_input == NULL ||
1050
- *materialized_input_size < input_total_size) {
1051
- *materialized_input_size = input_total_size;
1052
- void* mem = scratch.allocate(*materialized_input_size * sizeof(Scalar));
1053
- *materialized_input = static_cast<ScalarNoConst*>(mem);
1054
- }
1055
-
1056
- typedef internal::TensorBlockAssignment<
1057
- ScalarNoConst, NumDims, typename ArgTensorBlock::XprType, Index>
1058
- TensorBlockAssignment;
1059
-
1060
- TensorBlockAssignment::Run(
1061
- TensorBlockAssignment::target(input_block_sizes, input_block_strides,
1062
- *materialized_input),
1063
- input_block.expr());
1064
-
1065
- input_buffer = *materialized_input;
1066
- }
1067
-
1068
- // ---------------------------------------------------------------------- //
1069
- // Copy data from materialized input block to the materialized output, using
1070
- // given broadcast strides (strides with zeroes).
1071
- typedef internal::TensorBlockIO<ScalarNoConst, Index, 2 * NumDims, Layout>
1072
- TensorBlockIO;
1073
-
1074
- typename TensorBlockIO::Src src(bcast_input_strides, input_buffer);
1075
- typename TensorBlockIO::Dst dst(bcast_block_sizes, bcast_block_strides,
1076
- materialized_output + offset);
1077
-
1078
- return TensorBlockIO::Copy(dst, src);
1079
- }
1080
-
1081
- protected:
1082
- const Device EIGEN_DEVICE_REF m_device;
1083
- const typename internal::remove_reference<Broadcast>::type m_broadcast;
1084
- Dimensions m_dimensions;
1085
- array<Index, NumDims> m_outputStrides;
1086
- array<Index, NumDims> m_inputStrides;
1087
- TensorEvaluator<ArgType, Device> m_impl;
1088
- };
1089
-
1090
-
1091
- } // end namespace Eigen
1092
-
1093
- #endif // EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H