sequenzo 0.1.18__cp310-cp310-macosx_10_9_universal2.whl → 0.1.20__cp310-cp310-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (360) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-310-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +108 -6
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  8. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  10. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-310-darwin.so +0 -0
  11. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  12. sequenzo/dissimilarity_measures/utils/seqconc.cpython-310-darwin.so +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  14. sequenzo/dissimilarity_measures/utils/seqdss.cpython-310-darwin.so +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  16. sequenzo/dissimilarity_measures/utils/seqdur.cpython-310-darwin.so +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  18. sequenzo/dissimilarity_measures/utils/seqlength.cpython-310-darwin.so +0 -0
  19. sequenzo/multidomain/cat.py +0 -53
  20. sequenzo/multidomain/dat.py +11 -3
  21. sequenzo/multidomain/idcd.py +0 -3
  22. sequenzo/multidomain/linked_polyad.py +0 -1
  23. sequenzo/openmp_setup.py +233 -0
  24. sequenzo/visualization/plot_transition_matrix.py +21 -22
  25. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  26. sequenzo-0.1.20.dist-info/RECORD +215 -0
  27. sequenzo/dissimilarity_measures/setup.py +0 -35
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  170. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  171. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  172. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  173. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  174. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  175. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  176. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  177. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  182. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  183. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  184. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  185. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  186. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  187. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  188. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  357. sequenzo-0.1.18.dist-info/RECORD +0 -544
  358. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  359. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  360. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,877 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_LU_H
11
- #define EIGEN_LU_H
12
-
13
- namespace Eigen {
14
-
15
- namespace internal {
16
- template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
17
- : traits<_MatrixType>
18
- {
19
- typedef MatrixXpr XprKind;
20
- typedef SolverStorage StorageKind;
21
- typedef int StorageIndex;
22
- enum { Flags = 0 };
23
- };
24
-
25
- } // end namespace internal
26
-
27
- /** \ingroup LU_Module
28
- *
29
- * \class FullPivLU
30
- *
31
- * \brief LU decomposition of a matrix with complete pivoting, and related features
32
- *
33
- * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
34
- *
35
- * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
36
- * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
37
- * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
38
- * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
39
- * zeros are at the end.
40
- *
41
- * This decomposition provides the generic approach to solving systems of linear equations, computing
42
- * the rank, invertibility, inverse, kernel, and determinant.
43
- *
44
- * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
45
- * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
46
- * working with the SVD allows to select the smallest singular values of the matrix, something that
47
- * the LU decomposition doesn't see.
48
- *
49
- * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
50
- * permutationP(), permutationQ().
51
- *
52
- * As an example, here is how the original matrix can be retrieved:
53
- * \include class_FullPivLU.cpp
54
- * Output: \verbinclude class_FullPivLU.out
55
- *
56
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
57
- *
58
- * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
59
- */
60
- template<typename _MatrixType> class FullPivLU
61
- : public SolverBase<FullPivLU<_MatrixType> >
62
- {
63
- public:
64
- typedef _MatrixType MatrixType;
65
- typedef SolverBase<FullPivLU> Base;
66
- friend class SolverBase<FullPivLU>;
67
-
68
- EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU)
69
- enum {
70
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
71
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
72
- };
73
- typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType;
74
- typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType;
75
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
76
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
77
- typedef typename MatrixType::PlainObject PlainObject;
78
-
79
- /**
80
- * \brief Default Constructor.
81
- *
82
- * The default constructor is useful in cases in which the user intends to
83
- * perform decompositions via LU::compute(const MatrixType&).
84
- */
85
- FullPivLU();
86
-
87
- /** \brief Default Constructor with memory preallocation
88
- *
89
- * Like the default constructor but with preallocation of the internal data
90
- * according to the specified problem \a size.
91
- * \sa FullPivLU()
92
- */
93
- FullPivLU(Index rows, Index cols);
94
-
95
- /** Constructor.
96
- *
97
- * \param matrix the matrix of which to compute the LU decomposition.
98
- * It is required to be nonzero.
99
- */
100
- template<typename InputType>
101
- explicit FullPivLU(const EigenBase<InputType>& matrix);
102
-
103
- /** \brief Constructs a LU factorization from a given matrix
104
- *
105
- * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
106
- *
107
- * \sa FullPivLU(const EigenBase&)
108
- */
109
- template<typename InputType>
110
- explicit FullPivLU(EigenBase<InputType>& matrix);
111
-
112
- /** Computes the LU decomposition of the given matrix.
113
- *
114
- * \param matrix the matrix of which to compute the LU decomposition.
115
- * It is required to be nonzero.
116
- *
117
- * \returns a reference to *this
118
- */
119
- template<typename InputType>
120
- FullPivLU& compute(const EigenBase<InputType>& matrix) {
121
- m_lu = matrix.derived();
122
- computeInPlace();
123
- return *this;
124
- }
125
-
126
- /** \returns the LU decomposition matrix: the upper-triangular part is U, the
127
- * unit-lower-triangular part is L (at least for square matrices; in the non-square
128
- * case, special care is needed, see the documentation of class FullPivLU).
129
- *
130
- * \sa matrixL(), matrixU()
131
- */
132
- inline const MatrixType& matrixLU() const
133
- {
134
- eigen_assert(m_isInitialized && "LU is not initialized.");
135
- return m_lu;
136
- }
137
-
138
- /** \returns the number of nonzero pivots in the LU decomposition.
139
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
140
- * So that notion isn't really intrinsically interesting, but it is
141
- * still useful when implementing algorithms.
142
- *
143
- * \sa rank()
144
- */
145
- inline Index nonzeroPivots() const
146
- {
147
- eigen_assert(m_isInitialized && "LU is not initialized.");
148
- return m_nonzero_pivots;
149
- }
150
-
151
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
152
- * diagonal coefficient of U.
153
- */
154
- RealScalar maxPivot() const { return m_maxpivot; }
155
-
156
- /** \returns the permutation matrix P
157
- *
158
- * \sa permutationQ()
159
- */
160
- EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const
161
- {
162
- eigen_assert(m_isInitialized && "LU is not initialized.");
163
- return m_p;
164
- }
165
-
166
- /** \returns the permutation matrix Q
167
- *
168
- * \sa permutationP()
169
- */
170
- inline const PermutationQType& permutationQ() const
171
- {
172
- eigen_assert(m_isInitialized && "LU is not initialized.");
173
- return m_q;
174
- }
175
-
176
- /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
177
- * will form a basis of the kernel.
178
- *
179
- * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
180
- *
181
- * \note This method has to determine which pivots should be considered nonzero.
182
- * For that, it uses the threshold value that you can control by calling
183
- * setThreshold(const RealScalar&).
184
- *
185
- * Example: \include FullPivLU_kernel.cpp
186
- * Output: \verbinclude FullPivLU_kernel.out
187
- *
188
- * \sa image()
189
- */
190
- inline const internal::kernel_retval<FullPivLU> kernel() const
191
- {
192
- eigen_assert(m_isInitialized && "LU is not initialized.");
193
- return internal::kernel_retval<FullPivLU>(*this);
194
- }
195
-
196
- /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
197
- * will form a basis of the image (column-space).
198
- *
199
- * \param originalMatrix the original matrix, of which *this is the LU decomposition.
200
- * The reason why it is needed to pass it here, is that this allows
201
- * a large optimization, as otherwise this method would need to reconstruct it
202
- * from the LU decomposition.
203
- *
204
- * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
205
- *
206
- * \note This method has to determine which pivots should be considered nonzero.
207
- * For that, it uses the threshold value that you can control by calling
208
- * setThreshold(const RealScalar&).
209
- *
210
- * Example: \include FullPivLU_image.cpp
211
- * Output: \verbinclude FullPivLU_image.out
212
- *
213
- * \sa kernel()
214
- */
215
- inline const internal::image_retval<FullPivLU>
216
- image(const MatrixType& originalMatrix) const
217
- {
218
- eigen_assert(m_isInitialized && "LU is not initialized.");
219
- return internal::image_retval<FullPivLU>(*this, originalMatrix);
220
- }
221
-
222
- #ifdef EIGEN_PARSED_BY_DOXYGEN
223
- /** \return a solution x to the equation Ax=b, where A is the matrix of which
224
- * *this is the LU decomposition.
225
- *
226
- * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
227
- * the only requirement in order for the equation to make sense is that
228
- * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
229
- *
230
- * \returns a solution.
231
- *
232
- * \note_about_checking_solutions
233
- *
234
- * \note_about_arbitrary_choice_of_solution
235
- * \note_about_using_kernel_to_study_multiple_solutions
236
- *
237
- * Example: \include FullPivLU_solve.cpp
238
- * Output: \verbinclude FullPivLU_solve.out
239
- *
240
- * \sa TriangularView::solve(), kernel(), inverse()
241
- */
242
- template<typename Rhs>
243
- inline const Solve<FullPivLU, Rhs>
244
- solve(const MatrixBase<Rhs>& b) const;
245
- #endif
246
-
247
- /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
248
- the LU decomposition.
249
- */
250
- inline RealScalar rcond() const
251
- {
252
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
253
- return internal::rcond_estimate_helper(m_l1_norm, *this);
254
- }
255
-
256
- /** \returns the determinant of the matrix of which
257
- * *this is the LU decomposition. It has only linear complexity
258
- * (that is, O(n) where n is the dimension of the square matrix)
259
- * as the LU decomposition has already been computed.
260
- *
261
- * \note This is only for square matrices.
262
- *
263
- * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
264
- * optimized paths.
265
- *
266
- * \warning a determinant can be very big or small, so for matrices
267
- * of large enough dimension, there is a risk of overflow/underflow.
268
- *
269
- * \sa MatrixBase::determinant()
270
- */
271
- typename internal::traits<MatrixType>::Scalar determinant() const;
272
-
273
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
274
- * who need to determine when pivots are to be considered nonzero. This is not used for the
275
- * LU decomposition itself.
276
- *
277
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
278
- * uses a formula to automatically determine a reasonable threshold.
279
- * Once you have called the present method setThreshold(const RealScalar&),
280
- * your value is used instead.
281
- *
282
- * \param threshold The new value to use as the threshold.
283
- *
284
- * A pivot will be considered nonzero if its absolute value is strictly greater than
285
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
286
- * where maxpivot is the biggest pivot.
287
- *
288
- * If you want to come back to the default behavior, call setThreshold(Default_t)
289
- */
290
- FullPivLU& setThreshold(const RealScalar& threshold)
291
- {
292
- m_usePrescribedThreshold = true;
293
- m_prescribedThreshold = threshold;
294
- return *this;
295
- }
296
-
297
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
298
- * determining the threshold.
299
- *
300
- * You should pass the special object Eigen::Default as parameter here.
301
- * \code lu.setThreshold(Eigen::Default); \endcode
302
- *
303
- * See the documentation of setThreshold(const RealScalar&).
304
- */
305
- FullPivLU& setThreshold(Default_t)
306
- {
307
- m_usePrescribedThreshold = false;
308
- return *this;
309
- }
310
-
311
- /** Returns the threshold that will be used by certain methods such as rank().
312
- *
313
- * See the documentation of setThreshold(const RealScalar&).
314
- */
315
- RealScalar threshold() const
316
- {
317
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
318
- return m_usePrescribedThreshold ? m_prescribedThreshold
319
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
320
- // and turns out to be identical to Higham's formula used already in LDLt.
321
- : NumTraits<Scalar>::epsilon() * RealScalar(m_lu.diagonalSize());
322
- }
323
-
324
- /** \returns the rank of the matrix of which *this is the LU decomposition.
325
- *
326
- * \note This method has to determine which pivots should be considered nonzero.
327
- * For that, it uses the threshold value that you can control by calling
328
- * setThreshold(const RealScalar&).
329
- */
330
- inline Index rank() const
331
- {
332
- using std::abs;
333
- eigen_assert(m_isInitialized && "LU is not initialized.");
334
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
335
- Index result = 0;
336
- for(Index i = 0; i < m_nonzero_pivots; ++i)
337
- result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
338
- return result;
339
- }
340
-
341
- /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
342
- *
343
- * \note This method has to determine which pivots should be considered nonzero.
344
- * For that, it uses the threshold value that you can control by calling
345
- * setThreshold(const RealScalar&).
346
- */
347
- inline Index dimensionOfKernel() const
348
- {
349
- eigen_assert(m_isInitialized && "LU is not initialized.");
350
- return cols() - rank();
351
- }
352
-
353
- /** \returns true if the matrix of which *this is the LU decomposition represents an injective
354
- * linear map, i.e. has trivial kernel; false otherwise.
355
- *
356
- * \note This method has to determine which pivots should be considered nonzero.
357
- * For that, it uses the threshold value that you can control by calling
358
- * setThreshold(const RealScalar&).
359
- */
360
- inline bool isInjective() const
361
- {
362
- eigen_assert(m_isInitialized && "LU is not initialized.");
363
- return rank() == cols();
364
- }
365
-
366
- /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
367
- * linear map; false otherwise.
368
- *
369
- * \note This method has to determine which pivots should be considered nonzero.
370
- * For that, it uses the threshold value that you can control by calling
371
- * setThreshold(const RealScalar&).
372
- */
373
- inline bool isSurjective() const
374
- {
375
- eigen_assert(m_isInitialized && "LU is not initialized.");
376
- return rank() == rows();
377
- }
378
-
379
- /** \returns true if the matrix of which *this is the LU decomposition is invertible.
380
- *
381
- * \note This method has to determine which pivots should be considered nonzero.
382
- * For that, it uses the threshold value that you can control by calling
383
- * setThreshold(const RealScalar&).
384
- */
385
- inline bool isInvertible() const
386
- {
387
- eigen_assert(m_isInitialized && "LU is not initialized.");
388
- return isInjective() && (m_lu.rows() == m_lu.cols());
389
- }
390
-
391
- /** \returns the inverse of the matrix of which *this is the LU decomposition.
392
- *
393
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
394
- * Use isInvertible() to first determine whether this matrix is invertible.
395
- *
396
- * \sa MatrixBase::inverse()
397
- */
398
- inline const Inverse<FullPivLU> inverse() const
399
- {
400
- eigen_assert(m_isInitialized && "LU is not initialized.");
401
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
402
- return Inverse<FullPivLU>(*this);
403
- }
404
-
405
- MatrixType reconstructedMatrix() const;
406
-
407
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
408
- inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
409
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
410
- inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
411
-
412
- #ifndef EIGEN_PARSED_BY_DOXYGEN
413
- template<typename RhsType, typename DstType>
414
- void _solve_impl(const RhsType &rhs, DstType &dst) const;
415
-
416
- template<bool Conjugate, typename RhsType, typename DstType>
417
- void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
418
- #endif
419
-
420
- protected:
421
-
422
- static void check_template_parameters()
423
- {
424
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
425
- }
426
-
427
- void computeInPlace();
428
-
429
- MatrixType m_lu;
430
- PermutationPType m_p;
431
- PermutationQType m_q;
432
- IntColVectorType m_rowsTranspositions;
433
- IntRowVectorType m_colsTranspositions;
434
- Index m_nonzero_pivots;
435
- RealScalar m_l1_norm;
436
- RealScalar m_maxpivot, m_prescribedThreshold;
437
- signed char m_det_pq;
438
- bool m_isInitialized, m_usePrescribedThreshold;
439
- };
440
-
441
- template<typename MatrixType>
442
- FullPivLU<MatrixType>::FullPivLU()
443
- : m_isInitialized(false), m_usePrescribedThreshold(false)
444
- {
445
- }
446
-
447
- template<typename MatrixType>
448
- FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
449
- : m_lu(rows, cols),
450
- m_p(rows),
451
- m_q(cols),
452
- m_rowsTranspositions(rows),
453
- m_colsTranspositions(cols),
454
- m_isInitialized(false),
455
- m_usePrescribedThreshold(false)
456
- {
457
- }
458
-
459
- template<typename MatrixType>
460
- template<typename InputType>
461
- FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix)
462
- : m_lu(matrix.rows(), matrix.cols()),
463
- m_p(matrix.rows()),
464
- m_q(matrix.cols()),
465
- m_rowsTranspositions(matrix.rows()),
466
- m_colsTranspositions(matrix.cols()),
467
- m_isInitialized(false),
468
- m_usePrescribedThreshold(false)
469
- {
470
- compute(matrix.derived());
471
- }
472
-
473
- template<typename MatrixType>
474
- template<typename InputType>
475
- FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix)
476
- : m_lu(matrix.derived()),
477
- m_p(matrix.rows()),
478
- m_q(matrix.cols()),
479
- m_rowsTranspositions(matrix.rows()),
480
- m_colsTranspositions(matrix.cols()),
481
- m_isInitialized(false),
482
- m_usePrescribedThreshold(false)
483
- {
484
- computeInPlace();
485
- }
486
-
487
- template<typename MatrixType>
488
- void FullPivLU<MatrixType>::computeInPlace()
489
- {
490
- check_template_parameters();
491
-
492
- // the permutations are stored as int indices, so just to be sure:
493
- eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest());
494
-
495
- m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
496
-
497
- const Index size = m_lu.diagonalSize();
498
- const Index rows = m_lu.rows();
499
- const Index cols = m_lu.cols();
500
-
501
- // will store the transpositions, before we accumulate them at the end.
502
- // can't accumulate on-the-fly because that will be done in reverse order for the rows.
503
- m_rowsTranspositions.resize(m_lu.rows());
504
- m_colsTranspositions.resize(m_lu.cols());
505
- Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
506
-
507
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
508
- m_maxpivot = RealScalar(0);
509
-
510
- for(Index k = 0; k < size; ++k)
511
- {
512
- // First, we need to find the pivot.
513
-
514
- // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
515
- Index row_of_biggest_in_corner, col_of_biggest_in_corner;
516
- typedef internal::scalar_score_coeff_op<Scalar> Scoring;
517
- typedef typename Scoring::result_type Score;
518
- Score biggest_in_corner;
519
- biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
520
- .unaryExpr(Scoring())
521
- .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
522
- row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
523
- col_of_biggest_in_corner += k; // need to add k to them.
524
-
525
- if(biggest_in_corner==Score(0))
526
- {
527
- // before exiting, make sure to initialize the still uninitialized transpositions
528
- // in a sane state without destroying what we already have.
529
- m_nonzero_pivots = k;
530
- for(Index i = k; i < size; ++i)
531
- {
532
- m_rowsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
533
- m_colsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
534
- }
535
- break;
536
- }
537
-
538
- RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner);
539
- if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot;
540
-
541
- // Now that we've found the pivot, we need to apply the row/col swaps to
542
- // bring it to the location (k,k).
543
-
544
- m_rowsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner);
545
- m_colsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner);
546
- if(k != row_of_biggest_in_corner) {
547
- m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
548
- ++number_of_transpositions;
549
- }
550
- if(k != col_of_biggest_in_corner) {
551
- m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
552
- ++number_of_transpositions;
553
- }
554
-
555
- // Now that the pivot is at the right location, we update the remaining
556
- // bottom-right corner by Gaussian elimination.
557
-
558
- if(k<rows-1)
559
- m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
560
- if(k<size-1)
561
- m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
562
- }
563
-
564
- // the main loop is over, we still have to accumulate the transpositions to find the
565
- // permutations P and Q
566
-
567
- m_p.setIdentity(rows);
568
- for(Index k = size-1; k >= 0; --k)
569
- m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
570
-
571
- m_q.setIdentity(cols);
572
- for(Index k = 0; k < size; ++k)
573
- m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
574
-
575
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
576
-
577
- m_isInitialized = true;
578
- }
579
-
580
- template<typename MatrixType>
581
- typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
582
- {
583
- eigen_assert(m_isInitialized && "LU is not initialized.");
584
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
585
- return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
586
- }
587
-
588
- /** \returns the matrix represented by the decomposition,
589
- * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
590
- * This function is provided for debug purposes. */
591
- template<typename MatrixType>
592
- MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
593
- {
594
- eigen_assert(m_isInitialized && "LU is not initialized.");
595
- const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
596
- // LU
597
- MatrixType res(m_lu.rows(),m_lu.cols());
598
- // FIXME the .toDenseMatrix() should not be needed...
599
- res = m_lu.leftCols(smalldim)
600
- .template triangularView<UnitLower>().toDenseMatrix()
601
- * m_lu.topRows(smalldim)
602
- .template triangularView<Upper>().toDenseMatrix();
603
-
604
- // P^{-1}(LU)
605
- res = m_p.inverse() * res;
606
-
607
- // (P^{-1}LU)Q^{-1}
608
- res = res * m_q.inverse();
609
-
610
- return res;
611
- }
612
-
613
- /********* Implementation of kernel() **************************************************/
614
-
615
- namespace internal {
616
- template<typename _MatrixType>
617
- struct kernel_retval<FullPivLU<_MatrixType> >
618
- : kernel_retval_base<FullPivLU<_MatrixType> >
619
- {
620
- EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
621
-
622
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
623
- MatrixType::MaxColsAtCompileTime,
624
- MatrixType::MaxRowsAtCompileTime)
625
- };
626
-
627
- template<typename Dest> void evalTo(Dest& dst) const
628
- {
629
- using std::abs;
630
- const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
631
- if(dimker == 0)
632
- {
633
- // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
634
- // avoid crashing/asserting as that depends on floating point calculations. Let's
635
- // just return a single column vector filled with zeros.
636
- dst.setZero();
637
- return;
638
- }
639
-
640
- /* Let us use the following lemma:
641
- *
642
- * Lemma: If the matrix A has the LU decomposition PAQ = LU,
643
- * then Ker A = Q(Ker U).
644
- *
645
- * Proof: trivial: just keep in mind that P, Q, L are invertible.
646
- */
647
-
648
- /* Thus, all we need to do is to compute Ker U, and then apply Q.
649
- *
650
- * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
651
- * Thus, the diagonal of U ends with exactly
652
- * dimKer zero's. Let us use that to construct dimKer linearly
653
- * independent vectors in Ker U.
654
- */
655
-
656
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
657
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
658
- Index p = 0;
659
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
660
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
661
- pivots.coeffRef(p++) = i;
662
- eigen_internal_assert(p == rank());
663
-
664
- // we construct a temporaty trapezoid matrix m, by taking the U matrix and
665
- // permuting the rows and cols to bring the nonnegligible pivots to the top of
666
- // the main diagonal. We need that to be able to apply our triangular solvers.
667
- // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
668
- Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
669
- MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
670
- m(dec().matrixLU().block(0, 0, rank(), cols));
671
- for(Index i = 0; i < rank(); ++i)
672
- {
673
- if(i) m.row(i).head(i).setZero();
674
- m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
675
- }
676
- m.block(0, 0, rank(), rank());
677
- m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
678
- for(Index i = 0; i < rank(); ++i)
679
- m.col(i).swap(m.col(pivots.coeff(i)));
680
-
681
- // ok, we have our trapezoid matrix, we can apply the triangular solver.
682
- // notice that the math behind this suggests that we should apply this to the
683
- // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
684
- m.topLeftCorner(rank(), rank())
685
- .template triangularView<Upper>().solveInPlace(
686
- m.topRightCorner(rank(), dimker)
687
- );
688
-
689
- // now we must undo the column permutation that we had applied!
690
- for(Index i = rank()-1; i >= 0; --i)
691
- m.col(i).swap(m.col(pivots.coeff(i)));
692
-
693
- // see the negative sign in the next line, that's what we were talking about above.
694
- for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
695
- for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
696
- for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
697
- }
698
- };
699
-
700
- /***** Implementation of image() *****************************************************/
701
-
702
- template<typename _MatrixType>
703
- struct image_retval<FullPivLU<_MatrixType> >
704
- : image_retval_base<FullPivLU<_MatrixType> >
705
- {
706
- EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
707
-
708
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
709
- MatrixType::MaxColsAtCompileTime,
710
- MatrixType::MaxRowsAtCompileTime)
711
- };
712
-
713
- template<typename Dest> void evalTo(Dest& dst) const
714
- {
715
- using std::abs;
716
- if(rank() == 0)
717
- {
718
- // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
719
- // avoid crashing/asserting as that depends on floating point calculations. Let's
720
- // just return a single column vector filled with zeros.
721
- dst.setZero();
722
- return;
723
- }
724
-
725
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
726
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
727
- Index p = 0;
728
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
729
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
730
- pivots.coeffRef(p++) = i;
731
- eigen_internal_assert(p == rank());
732
-
733
- for(Index i = 0; i < rank(); ++i)
734
- dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
735
- }
736
- };
737
-
738
- /***** Implementation of solve() *****************************************************/
739
-
740
- } // end namespace internal
741
-
742
- #ifndef EIGEN_PARSED_BY_DOXYGEN
743
- template<typename _MatrixType>
744
- template<typename RhsType, typename DstType>
745
- void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
746
- {
747
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
748
- * So we proceed as follows:
749
- * Step 1: compute c = P * rhs.
750
- * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
751
- * Step 3: replace c by the solution x to Ux = c. May or may not exist.
752
- * Step 4: result = Q * c;
753
- */
754
-
755
- const Index rows = this->rows(),
756
- cols = this->cols(),
757
- nonzero_pivots = this->rank();
758
- const Index smalldim = (std::min)(rows, cols);
759
-
760
- if(nonzero_pivots == 0)
761
- {
762
- dst.setZero();
763
- return;
764
- }
765
-
766
- typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
767
-
768
- // Step 1
769
- c = permutationP() * rhs;
770
-
771
- // Step 2
772
- m_lu.topLeftCorner(smalldim,smalldim)
773
- .template triangularView<UnitLower>()
774
- .solveInPlace(c.topRows(smalldim));
775
- if(rows>cols)
776
- c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);
777
-
778
- // Step 3
779
- m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
780
- .template triangularView<Upper>()
781
- .solveInPlace(c.topRows(nonzero_pivots));
782
-
783
- // Step 4
784
- for(Index i = 0; i < nonzero_pivots; ++i)
785
- dst.row(permutationQ().indices().coeff(i)) = c.row(i);
786
- for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
787
- dst.row(permutationQ().indices().coeff(i)).setZero();
788
- }
789
-
790
- template<typename _MatrixType>
791
- template<bool Conjugate, typename RhsType, typename DstType>
792
- void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
793
- {
794
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1},
795
- * and since permutations are real and unitary, we can write this
796
- * as A^T = Q U^T L^T P,
797
- * So we proceed as follows:
798
- * Step 1: compute c = Q^T rhs.
799
- * Step 2: replace c by the solution x to U^T x = c. May or may not exist.
800
- * Step 3: replace c by the solution x to L^T x = c.
801
- * Step 4: result = P^T c.
802
- * If Conjugate is true, replace "^T" by "^*" above.
803
- */
804
-
805
- const Index rows = this->rows(), cols = this->cols(),
806
- nonzero_pivots = this->rank();
807
- const Index smalldim = (std::min)(rows, cols);
808
-
809
- if(nonzero_pivots == 0)
810
- {
811
- dst.setZero();
812
- return;
813
- }
814
-
815
- typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
816
-
817
- // Step 1
818
- c = permutationQ().inverse() * rhs;
819
-
820
- // Step 2
821
- m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
822
- .template triangularView<Upper>()
823
- .transpose()
824
- .template conjugateIf<Conjugate>()
825
- .solveInPlace(c.topRows(nonzero_pivots));
826
-
827
- // Step 3
828
- m_lu.topLeftCorner(smalldim, smalldim)
829
- .template triangularView<UnitLower>()
830
- .transpose()
831
- .template conjugateIf<Conjugate>()
832
- .solveInPlace(c.topRows(smalldim));
833
-
834
- // Step 4
835
- PermutationPType invp = permutationP().inverse().eval();
836
- for(Index i = 0; i < smalldim; ++i)
837
- dst.row(invp.indices().coeff(i)) = c.row(i);
838
- for(Index i = smalldim; i < rows; ++i)
839
- dst.row(invp.indices().coeff(i)).setZero();
840
- }
841
-
842
- #endif
843
-
844
- namespace internal {
845
-
846
-
847
- /***** Implementation of inverse() *****************************************************/
848
- template<typename DstXprType, typename MatrixType>
849
- struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense>
850
- {
851
- typedef FullPivLU<MatrixType> LuType;
852
- typedef Inverse<LuType> SrcXprType;
853
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &)
854
- {
855
- dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
856
- }
857
- };
858
- } // end namespace internal
859
-
860
- /******* MatrixBase methods *****************************************************************/
861
-
862
- /** \lu_module
863
- *
864
- * \return the full-pivoting LU decomposition of \c *this.
865
- *
866
- * \sa class FullPivLU
867
- */
868
- template<typename Derived>
869
- inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
870
- MatrixBase<Derived>::fullPivLu() const
871
- {
872
- return FullPivLU<PlainObject>(eval());
873
- }
874
-
875
- } // end namespace Eigen
876
-
877
- #endif // EIGEN_LU_H