sequenzo 0.1.18__cp310-cp310-macosx_10_9_universal2.whl → 0.1.20__cp310-cp310-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (360) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-310-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +108 -6
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  8. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  10. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-310-darwin.so +0 -0
  11. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  12. sequenzo/dissimilarity_measures/utils/seqconc.cpython-310-darwin.so +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  14. sequenzo/dissimilarity_measures/utils/seqdss.cpython-310-darwin.so +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  16. sequenzo/dissimilarity_measures/utils/seqdur.cpython-310-darwin.so +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  18. sequenzo/dissimilarity_measures/utils/seqlength.cpython-310-darwin.so +0 -0
  19. sequenzo/multidomain/cat.py +0 -53
  20. sequenzo/multidomain/dat.py +11 -3
  21. sequenzo/multidomain/idcd.py +0 -3
  22. sequenzo/multidomain/linked_polyad.py +0 -1
  23. sequenzo/openmp_setup.py +233 -0
  24. sequenzo/visualization/plot_transition_matrix.py +21 -22
  25. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  26. sequenzo-0.1.20.dist-info/RECORD +215 -0
  27. sequenzo/dissimilarity_measures/setup.py +0 -35
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  170. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  171. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  172. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  173. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  174. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  175. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  176. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  177. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  182. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  183. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  184. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  185. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  186. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  187. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  188. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  357. sequenzo-0.1.18.dist-info/RECORD +0 -544
  358. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  359. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  360. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,790 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2012 David Harmon <dharmon@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
11
- #define EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
12
-
13
- #include "../../../../Eigen/Dense"
14
-
15
- namespace Eigen {
16
-
17
- namespace internal {
18
- template<typename Scalar, typename RealScalar> struct arpack_wrapper;
19
- template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> struct OP;
20
- }
21
-
22
-
23
-
24
- template<typename MatrixType, typename MatrixSolver=SimplicialLLT<MatrixType>, bool BisSPD=false>
25
- class ArpackGeneralizedSelfAdjointEigenSolver
26
- {
27
- public:
28
- //typedef typename MatrixSolver::MatrixType MatrixType;
29
-
30
- /** \brief Scalar type for matrices of type \p MatrixType. */
31
- typedef typename MatrixType::Scalar Scalar;
32
- typedef typename MatrixType::Index Index;
33
-
34
- /** \brief Real scalar type for \p MatrixType.
35
- *
36
- * This is just \c Scalar if #Scalar is real (e.g., \c float or
37
- * \c Scalar), and the type of the real part of \c Scalar if #Scalar is
38
- * complex.
39
- */
40
- typedef typename NumTraits<Scalar>::Real RealScalar;
41
-
42
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
43
- *
44
- * This is a column vector with entries of type #RealScalar.
45
- * The length of the vector is the size of \p nbrEigenvalues.
46
- */
47
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
48
-
49
- /** \brief Default constructor.
50
- *
51
- * The default constructor is for cases in which the user intends to
52
- * perform decompositions via compute().
53
- *
54
- */
55
- ArpackGeneralizedSelfAdjointEigenSolver()
56
- : m_eivec(),
57
- m_eivalues(),
58
- m_isInitialized(false),
59
- m_eigenvectorsOk(false),
60
- m_nbrConverged(0),
61
- m_nbrIterations(0)
62
- { }
63
-
64
- /** \brief Constructor; computes generalized eigenvalues of given matrix with respect to another matrix.
65
- *
66
- * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
67
- * computed. By default, the upper triangular part is used, but can be changed
68
- * through the template parameter.
69
- * \param[in] B Self-adjoint matrix for the generalized eigenvalue problem.
70
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
71
- * Must be less than the size of the input matrix, or an error is returned.
72
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
73
- * respective meanings to find the largest magnitude , smallest magnitude,
74
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
75
- * value can contain floating point value in string form, in which case the
76
- * eigenvalues closest to this value will be found.
77
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
78
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
79
- * means machine precision.
80
- *
81
- * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar)
82
- * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if
83
- * \p options equals #ComputeEigenvectors.
84
- *
85
- */
86
- ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, const MatrixType& B,
87
- Index nbrEigenvalues, std::string eigs_sigma="LM",
88
- int options=ComputeEigenvectors, RealScalar tol=0.0)
89
- : m_eivec(),
90
- m_eivalues(),
91
- m_isInitialized(false),
92
- m_eigenvectorsOk(false),
93
- m_nbrConverged(0),
94
- m_nbrIterations(0)
95
- {
96
- compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
97
- }
98
-
99
- /** \brief Constructor; computes eigenvalues of given matrix.
100
- *
101
- * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
102
- * computed. By default, the upper triangular part is used, but can be changed
103
- * through the template parameter.
104
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
105
- * Must be less than the size of the input matrix, or an error is returned.
106
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
107
- * respective meanings to find the largest magnitude , smallest magnitude,
108
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
109
- * value can contain floating point value in string form, in which case the
110
- * eigenvalues closest to this value will be found.
111
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
112
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
113
- * means machine precision.
114
- *
115
- * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar)
116
- * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if
117
- * \p options equals #ComputeEigenvectors.
118
- *
119
- */
120
-
121
- ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A,
122
- Index nbrEigenvalues, std::string eigs_sigma="LM",
123
- int options=ComputeEigenvectors, RealScalar tol=0.0)
124
- : m_eivec(),
125
- m_eivalues(),
126
- m_isInitialized(false),
127
- m_eigenvectorsOk(false),
128
- m_nbrConverged(0),
129
- m_nbrIterations(0)
130
- {
131
- compute(A, nbrEigenvalues, eigs_sigma, options, tol);
132
- }
133
-
134
-
135
- /** \brief Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library.
136
- *
137
- * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
138
- * \param[in] B Selfadjoint matrix for generalized eigenvalues.
139
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
140
- * Must be less than the size of the input matrix, or an error is returned.
141
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
142
- * respective meanings to find the largest magnitude , smallest magnitude,
143
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
144
- * value can contain floating point value in string form, in which case the
145
- * eigenvalues closest to this value will be found.
146
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
147
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
148
- * means machine precision.
149
- *
150
- * \returns Reference to \c *this
151
- *
152
- * This function computes the generalized eigenvalues of \p A with respect to \p B using ARPACK. The eigenvalues()
153
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
154
- * then the eigenvectors are also computed and can be retrieved by
155
- * calling eigenvectors().
156
- *
157
- */
158
- ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, const MatrixType& B,
159
- Index nbrEigenvalues, std::string eigs_sigma="LM",
160
- int options=ComputeEigenvectors, RealScalar tol=0.0);
161
-
162
- /** \brief Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library.
163
- *
164
- * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
165
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
166
- * Must be less than the size of the input matrix, or an error is returned.
167
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
168
- * respective meanings to find the largest magnitude , smallest magnitude,
169
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
170
- * value can contain floating point value in string form, in which case the
171
- * eigenvalues closest to this value will be found.
172
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
173
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
174
- * means machine precision.
175
- *
176
- * \returns Reference to \c *this
177
- *
178
- * This function computes the eigenvalues of \p A using ARPACK. The eigenvalues()
179
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
180
- * then the eigenvectors are also computed and can be retrieved by
181
- * calling eigenvectors().
182
- *
183
- */
184
- ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A,
185
- Index nbrEigenvalues, std::string eigs_sigma="LM",
186
- int options=ComputeEigenvectors, RealScalar tol=0.0);
187
-
188
-
189
- /** \brief Returns the eigenvectors of given matrix.
190
- *
191
- * \returns A const reference to the matrix whose columns are the eigenvectors.
192
- *
193
- * \pre The eigenvectors have been computed before.
194
- *
195
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
196
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
197
- * eigenvectors are normalized to have (Euclidean) norm equal to one. If
198
- * this object was used to solve the eigenproblem for the selfadjoint
199
- * matrix \f$ A \f$, then the matrix returned by this function is the
200
- * matrix \f$ V \f$ in the eigendecomposition \f$ A V = D V \f$.
201
- * For the generalized eigenproblem, the matrix returned is the solution \f$ A V = D B V \f$
202
- *
203
- * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
204
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
205
- *
206
- * \sa eigenvalues()
207
- */
208
- const Matrix<Scalar, Dynamic, Dynamic>& eigenvectors() const
209
- {
210
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
211
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
212
- return m_eivec;
213
- }
214
-
215
- /** \brief Returns the eigenvalues of given matrix.
216
- *
217
- * \returns A const reference to the column vector containing the eigenvalues.
218
- *
219
- * \pre The eigenvalues have been computed before.
220
- *
221
- * The eigenvalues are repeated according to their algebraic multiplicity,
222
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
223
- * are sorted in increasing order.
224
- *
225
- * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
226
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
227
- *
228
- * \sa eigenvectors(), MatrixBase::eigenvalues()
229
- */
230
- const Matrix<Scalar, Dynamic, 1>& eigenvalues() const
231
- {
232
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
233
- return m_eivalues;
234
- }
235
-
236
- /** \brief Computes the positive-definite square root of the matrix.
237
- *
238
- * \returns the positive-definite square root of the matrix
239
- *
240
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
241
- * have been computed before.
242
- *
243
- * The square root of a positive-definite matrix \f$ A \f$ is the
244
- * positive-definite matrix whose square equals \f$ A \f$. This function
245
- * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
246
- * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
247
- *
248
- * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
249
- * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
250
- *
251
- * \sa operatorInverseSqrt(),
252
- * \ref MatrixFunctions_Module "MatrixFunctions Module"
253
- */
254
- Matrix<Scalar, Dynamic, Dynamic> operatorSqrt() const
255
- {
256
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
257
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
258
- return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
259
- }
260
-
261
- /** \brief Computes the inverse square root of the matrix.
262
- *
263
- * \returns the inverse positive-definite square root of the matrix
264
- *
265
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
266
- * have been computed before.
267
- *
268
- * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
269
- * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
270
- * cheaper than first computing the square root with operatorSqrt() and
271
- * then its inverse with MatrixBase::inverse().
272
- *
273
- * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
274
- * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
275
- *
276
- * \sa operatorSqrt(), MatrixBase::inverse(),
277
- * \ref MatrixFunctions_Module "MatrixFunctions Module"
278
- */
279
- Matrix<Scalar, Dynamic, Dynamic> operatorInverseSqrt() const
280
- {
281
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
282
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
283
- return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
284
- }
285
-
286
- /** \brief Reports whether previous computation was successful.
287
- *
288
- * \returns \c Success if computation was successful, \c NoConvergence otherwise.
289
- */
290
- ComputationInfo info() const
291
- {
292
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
293
- return m_info;
294
- }
295
-
296
- size_t getNbrConvergedEigenValues() const
297
- { return m_nbrConverged; }
298
-
299
- size_t getNbrIterations() const
300
- { return m_nbrIterations; }
301
-
302
- protected:
303
- Matrix<Scalar, Dynamic, Dynamic> m_eivec;
304
- Matrix<Scalar, Dynamic, 1> m_eivalues;
305
- ComputationInfo m_info;
306
- bool m_isInitialized;
307
- bool m_eigenvectorsOk;
308
-
309
- size_t m_nbrConverged;
310
- size_t m_nbrIterations;
311
- };
312
-
313
-
314
-
315
-
316
-
317
- template<typename MatrixType, typename MatrixSolver, bool BisSPD>
318
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
319
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
320
- ::compute(const MatrixType& A, Index nbrEigenvalues,
321
- std::string eigs_sigma, int options, RealScalar tol)
322
- {
323
- MatrixType B(0,0);
324
- compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
325
-
326
- return *this;
327
- }
328
-
329
-
330
- template<typename MatrixType, typename MatrixSolver, bool BisSPD>
331
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
332
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
333
- ::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues,
334
- std::string eigs_sigma, int options, RealScalar tol)
335
- {
336
- eigen_assert(A.cols() == A.rows());
337
- eigen_assert(B.cols() == B.rows());
338
- eigen_assert(B.rows() == 0 || A.cols() == B.rows());
339
- eigen_assert((options &~ (EigVecMask | GenEigMask)) == 0
340
- && (options & EigVecMask) != EigVecMask
341
- && "invalid option parameter");
342
-
343
- bool isBempty = (B.rows() == 0) || (B.cols() == 0);
344
-
345
- // For clarity, all parameters match their ARPACK name
346
- //
347
- // Always 0 on the first call
348
- //
349
- int ido = 0;
350
-
351
- int n = (int)A.cols();
352
-
353
- // User options: "LA", "SA", "SM", "LM", "BE"
354
- //
355
- char whch[3] = "LM";
356
-
357
- // Specifies the shift if iparam[6] = { 3, 4, 5 }, not used if iparam[6] = { 1, 2 }
358
- //
359
- RealScalar sigma = 0.0;
360
-
361
- if (eigs_sigma.length() >= 2 && isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1]))
362
- {
363
- eigs_sigma[0] = toupper(eigs_sigma[0]);
364
- eigs_sigma[1] = toupper(eigs_sigma[1]);
365
-
366
- // In the following special case we're going to invert the problem, since solving
367
- // for larger magnitude is much much faster
368
- // i.e., if 'SM' is specified, we're going to really use 'LM', the default
369
- //
370
- if (eigs_sigma.substr(0,2) != "SM")
371
- {
372
- whch[0] = eigs_sigma[0];
373
- whch[1] = eigs_sigma[1];
374
- }
375
- }
376
- else
377
- {
378
- eigen_assert(false && "Specifying clustered eigenvalues is not yet supported!");
379
-
380
- // If it's not scalar values, then the user may be explicitly
381
- // specifying the sigma value to cluster the evs around
382
- //
383
- sigma = atof(eigs_sigma.c_str());
384
-
385
- // If atof fails, it returns 0.0, which is a fine default
386
- //
387
- }
388
-
389
- // "I" means normal eigenvalue problem, "G" means generalized
390
- //
391
- char bmat[2] = "I";
392
- if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) || (!isBempty && !BisSPD))
393
- bmat[0] = 'G';
394
-
395
- // Now we determine the mode to use
396
- //
397
- int mode = (bmat[0] == 'G') + 1;
398
- if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])))
399
- {
400
- // We're going to use shift-and-invert mode, and basically find
401
- // the largest eigenvalues of the inverse operator
402
- //
403
- mode = 3;
404
- }
405
-
406
- // The user-specified number of eigenvalues/vectors to compute
407
- //
408
- int nev = (int)nbrEigenvalues;
409
-
410
- // Allocate space for ARPACK to store the residual
411
- //
412
- Scalar *resid = new Scalar[n];
413
-
414
- // Number of Lanczos vectors, must satisfy nev < ncv <= n
415
- // Note that this indicates that nev != n, and we cannot compute
416
- // all eigenvalues of a mtrix
417
- //
418
- int ncv = std::min(std::max(2*nev, 20), n);
419
-
420
- // The working n x ncv matrix, also store the final eigenvectors (if computed)
421
- //
422
- Scalar *v = new Scalar[n*ncv];
423
- int ldv = n;
424
-
425
- // Working space
426
- //
427
- Scalar *workd = new Scalar[3*n];
428
- int lworkl = ncv*ncv+8*ncv; // Must be at least this length
429
- Scalar *workl = new Scalar[lworkl];
430
-
431
- int *iparam= new int[11];
432
- iparam[0] = 1; // 1 means we let ARPACK perform the shifts, 0 means we'd have to do it
433
- iparam[2] = std::max(300, (int)std::ceil(2*n/std::max(ncv,1)));
434
- iparam[6] = mode; // The mode, 1 is standard ev problem, 2 for generalized ev, 3 for shift-and-invert
435
-
436
- // Used during reverse communicate to notify where arrays start
437
- //
438
- int *ipntr = new int[11];
439
-
440
- // Error codes are returned in here, initial value of 0 indicates a random initial
441
- // residual vector is used, any other values means resid contains the initial residual
442
- // vector, possibly from a previous run
443
- //
444
- int info = 0;
445
-
446
- Scalar scale = 1.0;
447
- //if (!isBempty)
448
- //{
449
- //Scalar scale = B.norm() / std::sqrt(n);
450
- //scale = std::pow(2, std::floor(std::log(scale+1)));
451
- ////M /= scale;
452
- //for (size_t i=0; i<(size_t)B.outerSize(); i++)
453
- // for (typename MatrixType::InnerIterator it(B, i); it; ++it)
454
- // it.valueRef() /= scale;
455
- //}
456
-
457
- MatrixSolver OP;
458
- if (mode == 1 || mode == 2)
459
- {
460
- if (!isBempty)
461
- OP.compute(B);
462
- }
463
- else if (mode == 3)
464
- {
465
- if (sigma == 0.0)
466
- {
467
- OP.compute(A);
468
- }
469
- else
470
- {
471
- // Note: We will never enter here because sigma must be 0.0
472
- //
473
- if (isBempty)
474
- {
475
- MatrixType AminusSigmaB(A);
476
- for (Index i=0; i<A.rows(); ++i)
477
- AminusSigmaB.coeffRef(i,i) -= sigma;
478
-
479
- OP.compute(AminusSigmaB);
480
- }
481
- else
482
- {
483
- MatrixType AminusSigmaB = A - sigma * B;
484
- OP.compute(AminusSigmaB);
485
- }
486
- }
487
- }
488
-
489
- if (!(mode == 1 && isBempty) && !(mode == 2 && isBempty) && OP.info() != Success)
490
- std::cout << "Error factoring matrix" << std::endl;
491
-
492
- do
493
- {
494
- internal::arpack_wrapper<Scalar, RealScalar>::saupd(&ido, bmat, &n, whch, &nev, &tol, resid,
495
- &ncv, v, &ldv, iparam, ipntr, workd, workl,
496
- &lworkl, &info);
497
-
498
- if (ido == -1 || ido == 1)
499
- {
500
- Scalar *in = workd + ipntr[0] - 1;
501
- Scalar *out = workd + ipntr[1] - 1;
502
-
503
- if (ido == 1 && mode != 2)
504
- {
505
- Scalar *out2 = workd + ipntr[2] - 1;
506
- if (isBempty || mode == 1)
507
- Matrix<Scalar, Dynamic, 1>::Map(out2, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
508
- else
509
- Matrix<Scalar, Dynamic, 1>::Map(out2, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
510
-
511
- in = workd + ipntr[2] - 1;
512
- }
513
-
514
- if (mode == 1)
515
- {
516
- if (isBempty)
517
- {
518
- // OP = A
519
- //
520
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
521
- }
522
- else
523
- {
524
- // OP = L^{-1}AL^{-T}
525
- //
526
- internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::applyOP(OP, A, n, in, out);
527
- }
528
- }
529
- else if (mode == 2)
530
- {
531
- if (ido == 1)
532
- Matrix<Scalar, Dynamic, 1>::Map(in, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
533
-
534
- // OP = B^{-1} A
535
- //
536
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
537
- }
538
- else if (mode == 3)
539
- {
540
- // OP = (A-\sigmaB)B (\sigma could be 0, and B could be I)
541
- // The B * in is already computed and stored at in if ido == 1
542
- //
543
- if (ido == 1 || isBempty)
544
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
545
- else
546
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(B * Matrix<Scalar, Dynamic, 1>::Map(in, n));
547
- }
548
- }
549
- else if (ido == 2)
550
- {
551
- Scalar *in = workd + ipntr[0] - 1;
552
- Scalar *out = workd + ipntr[1] - 1;
553
-
554
- if (isBempty || mode == 1)
555
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
556
- else
557
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
558
- }
559
- } while (ido != 99);
560
-
561
- if (info == 1)
562
- m_info = NoConvergence;
563
- else if (info == 3)
564
- m_info = NumericalIssue;
565
- else if (info < 0)
566
- m_info = InvalidInput;
567
- else if (info != 0)
568
- eigen_assert(false && "Unknown ARPACK return value!");
569
- else
570
- {
571
- // Do we compute eigenvectors or not?
572
- //
573
- int rvec = (options & ComputeEigenvectors) == ComputeEigenvectors;
574
-
575
- // "A" means "All", use "S" to choose specific eigenvalues (not yet supported in ARPACK))
576
- //
577
- char howmny[2] = "A";
578
-
579
- // if howmny == "S", specifies the eigenvalues to compute (not implemented in ARPACK)
580
- //
581
- int *select = new int[ncv];
582
-
583
- // Final eigenvalues
584
- //
585
- m_eivalues.resize(nev, 1);
586
-
587
- internal::arpack_wrapper<Scalar, RealScalar>::seupd(&rvec, howmny, select, m_eivalues.data(), v, &ldv,
588
- &sigma, bmat, &n, whch, &nev, &tol, resid, &ncv,
589
- v, &ldv, iparam, ipntr, workd, workl, &lworkl, &info);
590
-
591
- if (info == -14)
592
- m_info = NoConvergence;
593
- else if (info != 0)
594
- m_info = InvalidInput;
595
- else
596
- {
597
- if (rvec)
598
- {
599
- m_eivec.resize(A.rows(), nev);
600
- for (int i=0; i<nev; i++)
601
- for (int j=0; j<n; j++)
602
- m_eivec(j,i) = v[i*n+j] / scale;
603
-
604
- if (mode == 1 && !isBempty && BisSPD)
605
- internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::project(OP, n, nev, m_eivec.data());
606
-
607
- m_eigenvectorsOk = true;
608
- }
609
-
610
- m_nbrIterations = iparam[2];
611
- m_nbrConverged = iparam[4];
612
-
613
- m_info = Success;
614
- }
615
-
616
- delete[] select;
617
- }
618
-
619
- delete[] v;
620
- delete[] iparam;
621
- delete[] ipntr;
622
- delete[] workd;
623
- delete[] workl;
624
- delete[] resid;
625
-
626
- m_isInitialized = true;
627
-
628
- return *this;
629
- }
630
-
631
-
632
- // Single precision
633
- //
634
- extern "C" void ssaupd_(int *ido, char *bmat, int *n, char *which,
635
- int *nev, float *tol, float *resid, int *ncv,
636
- float *v, int *ldv, int *iparam, int *ipntr,
637
- float *workd, float *workl, int *lworkl,
638
- int *info);
639
-
640
- extern "C" void sseupd_(int *rvec, char *All, int *select, float *d,
641
- float *z, int *ldz, float *sigma,
642
- char *bmat, int *n, char *which, int *nev,
643
- float *tol, float *resid, int *ncv, float *v,
644
- int *ldv, int *iparam, int *ipntr, float *workd,
645
- float *workl, int *lworkl, int *ierr);
646
-
647
- // Double precision
648
- //
649
- extern "C" void dsaupd_(int *ido, char *bmat, int *n, char *which,
650
- int *nev, double *tol, double *resid, int *ncv,
651
- double *v, int *ldv, int *iparam, int *ipntr,
652
- double *workd, double *workl, int *lworkl,
653
- int *info);
654
-
655
- extern "C" void dseupd_(int *rvec, char *All, int *select, double *d,
656
- double *z, int *ldz, double *sigma,
657
- char *bmat, int *n, char *which, int *nev,
658
- double *tol, double *resid, int *ncv, double *v,
659
- int *ldv, int *iparam, int *ipntr, double *workd,
660
- double *workl, int *lworkl, int *ierr);
661
-
662
-
663
- namespace internal {
664
-
665
- template<typename Scalar, typename RealScalar> struct arpack_wrapper
666
- {
667
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
668
- int *nev, RealScalar *tol, Scalar *resid, int *ncv,
669
- Scalar *v, int *ldv, int *iparam, int *ipntr,
670
- Scalar *workd, Scalar *workl, int *lworkl, int *info)
671
- {
672
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
673
- }
674
-
675
- static inline void seupd(int *rvec, char *All, int *select, Scalar *d,
676
- Scalar *z, int *ldz, RealScalar *sigma,
677
- char *bmat, int *n, char *which, int *nev,
678
- RealScalar *tol, Scalar *resid, int *ncv, Scalar *v,
679
- int *ldv, int *iparam, int *ipntr, Scalar *workd,
680
- Scalar *workl, int *lworkl, int *ierr)
681
- {
682
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
683
- }
684
- };
685
-
686
- template <> struct arpack_wrapper<float, float>
687
- {
688
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
689
- int *nev, float *tol, float *resid, int *ncv,
690
- float *v, int *ldv, int *iparam, int *ipntr,
691
- float *workd, float *workl, int *lworkl, int *info)
692
- {
693
- ssaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
694
- }
695
-
696
- static inline void seupd(int *rvec, char *All, int *select, float *d,
697
- float *z, int *ldz, float *sigma,
698
- char *bmat, int *n, char *which, int *nev,
699
- float *tol, float *resid, int *ncv, float *v,
700
- int *ldv, int *iparam, int *ipntr, float *workd,
701
- float *workl, int *lworkl, int *ierr)
702
- {
703
- sseupd_(rvec, All, select, d, z, ldz, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
704
- workd, workl, lworkl, ierr);
705
- }
706
- };
707
-
708
- template <> struct arpack_wrapper<double, double>
709
- {
710
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
711
- int *nev, double *tol, double *resid, int *ncv,
712
- double *v, int *ldv, int *iparam, int *ipntr,
713
- double *workd, double *workl, int *lworkl, int *info)
714
- {
715
- dsaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
716
- }
717
-
718
- static inline void seupd(int *rvec, char *All, int *select, double *d,
719
- double *z, int *ldz, double *sigma,
720
- char *bmat, int *n, char *which, int *nev,
721
- double *tol, double *resid, int *ncv, double *v,
722
- int *ldv, int *iparam, int *ipntr, double *workd,
723
- double *workl, int *lworkl, int *ierr)
724
- {
725
- dseupd_(rvec, All, select, d, v, ldv, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
726
- workd, workl, lworkl, ierr);
727
- }
728
- };
729
-
730
-
731
- template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD>
732
- struct OP
733
- {
734
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out);
735
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs);
736
- };
737
-
738
- template<typename MatrixSolver, typename MatrixType, typename Scalar>
739
- struct OP<MatrixSolver, MatrixType, Scalar, true>
740
- {
741
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
742
- {
743
- // OP = L^{-1} A L^{-T} (B = LL^T)
744
- //
745
- // First solve L^T out = in
746
- //
747
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixU().solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
748
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationPinv() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
749
-
750
- // Then compute out = A out
751
- //
752
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(out, n);
753
-
754
- // Then solve L out = out
755
- //
756
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationP() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
757
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixL().solve(Matrix<Scalar, Dynamic, 1>::Map(out, n));
758
- }
759
-
760
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
761
- {
762
- // Solve L^T out = in
763
- //
764
- Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.matrixU().solve(Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k));
765
- Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.permutationPinv() * Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k);
766
- }
767
-
768
- };
769
-
770
- template<typename MatrixSolver, typename MatrixType, typename Scalar>
771
- struct OP<MatrixSolver, MatrixType, Scalar, false>
772
- {
773
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
774
- {
775
- eigen_assert(false && "Should never be in here...");
776
- }
777
-
778
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
779
- {
780
- eigen_assert(false && "Should never be in here...");
781
- }
782
-
783
- };
784
-
785
- } // end namespace internal
786
-
787
- } // end namespace Eigen
788
-
789
- #endif // EIGEN_ARPACKSELFADJOINTEIGENSOLVER_H
790
-