sequenzo 0.1.18__cp310-cp310-macosx_10_9_universal2.whl → 0.1.20__cp310-cp310-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (360) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-310-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +108 -6
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  8. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  10. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-310-darwin.so +0 -0
  11. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  12. sequenzo/dissimilarity_measures/utils/seqconc.cpython-310-darwin.so +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  14. sequenzo/dissimilarity_measures/utils/seqdss.cpython-310-darwin.so +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  16. sequenzo/dissimilarity_measures/utils/seqdur.cpython-310-darwin.so +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  18. sequenzo/dissimilarity_measures/utils/seqlength.cpython-310-darwin.so +0 -0
  19. sequenzo/multidomain/cat.py +0 -53
  20. sequenzo/multidomain/dat.py +11 -3
  21. sequenzo/multidomain/idcd.py +0 -3
  22. sequenzo/multidomain/linked_polyad.py +0 -1
  23. sequenzo/openmp_setup.py +233 -0
  24. sequenzo/visualization/plot_transition_matrix.py +21 -22
  25. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  26. sequenzo-0.1.20.dist-info/RECORD +215 -0
  27. sequenzo/dissimilarity_measures/setup.py +0 -35
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  170. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  171. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  172. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  173. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  174. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  175. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  176. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  177. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  182. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  183. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  184. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  185. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  186. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  187. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  188. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  357. sequenzo-0.1.18.dist-info/RECORD +0 -544
  358. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  359. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  360. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,904 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5
- // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
- #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
12
- #define EIGEN_SELFADJOINTEIGENSOLVER_H
13
-
14
- #include "./Tridiagonalization.h"
15
-
16
- namespace Eigen {
17
-
18
- template<typename _MatrixType>
19
- class GeneralizedSelfAdjointEigenSolver;
20
-
21
- namespace internal {
22
- template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
23
-
24
- template<typename MatrixType, typename DiagType, typename SubDiagType>
25
- EIGEN_DEVICE_FUNC
26
- ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
27
- }
28
-
29
- /** \eigenvalues_module \ingroup Eigenvalues_Module
30
- *
31
- *
32
- * \class SelfAdjointEigenSolver
33
- *
34
- * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
35
- *
36
- * \tparam _MatrixType the type of the matrix of which we are computing the
37
- * eigendecomposition; this is expected to be an instantiation of the Matrix
38
- * class template.
39
- *
40
- * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
41
- * matrices, this means that the matrix is symmetric: it equals its
42
- * transpose. This class computes the eigenvalues and eigenvectors of a
43
- * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
44
- * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
45
- * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
46
- * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
47
- * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the
48
- * eigendecomposition.
49
- *
50
- * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
51
- * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
52
- * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
53
- * equal to its transpose, \f$ V^{-1} = V^T \f$.
54
- *
55
- * The algorithm exploits the fact that the matrix is selfadjoint, making it
56
- * faster and more accurate than the general purpose eigenvalue algorithms
57
- * implemented in EigenSolver and ComplexEigenSolver.
58
- *
59
- * Only the \b lower \b triangular \b part of the input matrix is referenced.
60
- *
61
- * Call the function compute() to compute the eigenvalues and eigenvectors of
62
- * a given matrix. Alternatively, you can use the
63
- * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
64
- * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
65
- * and eigenvectors are computed, they can be retrieved with the eigenvalues()
66
- * and eigenvectors() functions.
67
- *
68
- * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
69
- * contains an example of the typical use of this class.
70
- *
71
- * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
72
- * the likes, see the class GeneralizedSelfAdjointEigenSolver.
73
- *
74
- * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
75
- */
76
- template<typename _MatrixType> class SelfAdjointEigenSolver
77
- {
78
- public:
79
-
80
- typedef _MatrixType MatrixType;
81
- enum {
82
- Size = MatrixType::RowsAtCompileTime,
83
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
84
- Options = MatrixType::Options,
85
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
86
- };
87
-
88
- /** \brief Scalar type for matrices of type \p _MatrixType. */
89
- typedef typename MatrixType::Scalar Scalar;
90
- typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
91
-
92
- typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
93
-
94
- /** \brief Real scalar type for \p _MatrixType.
95
- *
96
- * This is just \c Scalar if #Scalar is real (e.g., \c float or
97
- * \c double), and the type of the real part of \c Scalar if #Scalar is
98
- * complex.
99
- */
100
- typedef typename NumTraits<Scalar>::Real RealScalar;
101
-
102
- friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
103
-
104
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
105
- *
106
- * This is a column vector with entries of type #RealScalar.
107
- * The length of the vector is the size of \p _MatrixType.
108
- */
109
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
110
- typedef Tridiagonalization<MatrixType> TridiagonalizationType;
111
- typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType;
112
-
113
- /** \brief Default constructor for fixed-size matrices.
114
- *
115
- * The default constructor is useful in cases in which the user intends to
116
- * perform decompositions via compute(). This constructor
117
- * can only be used if \p _MatrixType is a fixed-size matrix; use
118
- * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
119
- *
120
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
121
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
122
- */
123
- EIGEN_DEVICE_FUNC
124
- SelfAdjointEigenSolver()
125
- : m_eivec(),
126
- m_eivalues(),
127
- m_subdiag(),
128
- m_hcoeffs(),
129
- m_info(InvalidInput),
130
- m_isInitialized(false),
131
- m_eigenvectorsOk(false)
132
- { }
133
-
134
- /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
135
- *
136
- * \param [in] size Positive integer, size of the matrix whose
137
- * eigenvalues and eigenvectors will be computed.
138
- *
139
- * This constructor is useful for dynamic-size matrices, when the user
140
- * intends to perform decompositions via compute(). The \p size
141
- * parameter is only used as a hint. It is not an error to give a wrong
142
- * \p size, but it may impair performance.
143
- *
144
- * \sa compute() for an example
145
- */
146
- EIGEN_DEVICE_FUNC
147
- explicit SelfAdjointEigenSolver(Index size)
148
- : m_eivec(size, size),
149
- m_eivalues(size),
150
- m_subdiag(size > 1 ? size - 1 : 1),
151
- m_hcoeffs(size > 1 ? size - 1 : 1),
152
- m_isInitialized(false),
153
- m_eigenvectorsOk(false)
154
- {}
155
-
156
- /** \brief Constructor; computes eigendecomposition of given matrix.
157
- *
158
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
159
- * be computed. Only the lower triangular part of the matrix is referenced.
160
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
161
- *
162
- * This constructor calls compute(const MatrixType&, int) to compute the
163
- * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
164
- * \p options equals #ComputeEigenvectors.
165
- *
166
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
167
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
168
- *
169
- * \sa compute(const MatrixType&, int)
170
- */
171
- template<typename InputType>
172
- EIGEN_DEVICE_FUNC
173
- explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors)
174
- : m_eivec(matrix.rows(), matrix.cols()),
175
- m_eivalues(matrix.cols()),
176
- m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
177
- m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1),
178
- m_isInitialized(false),
179
- m_eigenvectorsOk(false)
180
- {
181
- compute(matrix.derived(), options);
182
- }
183
-
184
- /** \brief Computes eigendecomposition of given matrix.
185
- *
186
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
187
- * be computed. Only the lower triangular part of the matrix is referenced.
188
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
189
- * \returns Reference to \c *this
190
- *
191
- * This function computes the eigenvalues of \p matrix. The eigenvalues()
192
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
193
- * then the eigenvectors are also computed and can be retrieved by
194
- * calling eigenvectors().
195
- *
196
- * This implementation uses a symmetric QR algorithm. The matrix is first
197
- * reduced to tridiagonal form using the Tridiagonalization class. The
198
- * tridiagonal matrix is then brought to diagonal form with implicit
199
- * symmetric QR steps with Wilkinson shift. Details can be found in
200
- * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
201
- *
202
- * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
203
- * are required and \f$ 4n^3/3 \f$ if they are not required.
204
- *
205
- * This method reuses the memory in the SelfAdjointEigenSolver object that
206
- * was allocated when the object was constructed, if the size of the
207
- * matrix does not change.
208
- *
209
- * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
210
- * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
211
- *
212
- * \sa SelfAdjointEigenSolver(const MatrixType&, int)
213
- */
214
- template<typename InputType>
215
- EIGEN_DEVICE_FUNC
216
- SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors);
217
-
218
- /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
219
- *
220
- * This is a variant of compute(const MatrixType&, int options) which
221
- * directly solves the underlying polynomial equation.
222
- *
223
- * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
224
- *
225
- * This method is usually significantly faster than the QR iterative algorithm
226
- * but it might also be less accurate. It is also worth noting that
227
- * for 3x3 matrices it involves trigonometric operations which are
228
- * not necessarily available for all scalar types.
229
- *
230
- * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
231
- * - double: 1e-8
232
- * - float: 1e-3
233
- *
234
- * \sa compute(const MatrixType&, int options)
235
- */
236
- EIGEN_DEVICE_FUNC
237
- SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
238
-
239
- /**
240
- *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
241
- *
242
- * \param[in] diag The vector containing the diagonal of the matrix.
243
- * \param[in] subdiag The subdiagonal of the matrix.
244
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
245
- * \returns Reference to \c *this
246
- *
247
- * This function assumes that the matrix has been reduced to tridiagonal form.
248
- *
249
- * \sa compute(const MatrixType&, int) for more information
250
- */
251
- SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);
252
-
253
- /** \brief Returns the eigenvectors of given matrix.
254
- *
255
- * \returns A const reference to the matrix whose columns are the eigenvectors.
256
- *
257
- * \pre The eigenvectors have been computed before.
258
- *
259
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
260
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
261
- * eigenvectors are normalized to have (Euclidean) norm equal to one. If
262
- * this object was used to solve the eigenproblem for the selfadjoint
263
- * matrix \f$ A \f$, then the matrix returned by this function is the
264
- * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
265
- *
266
- * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
267
- * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
268
- * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
269
- * equal to its transpose, \f$ V^{-1} = V^T \f$.
270
- *
271
- * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
272
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
273
- *
274
- * \sa eigenvalues()
275
- */
276
- EIGEN_DEVICE_FUNC
277
- const EigenvectorsType& eigenvectors() const
278
- {
279
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
280
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
281
- return m_eivec;
282
- }
283
-
284
- /** \brief Returns the eigenvalues of given matrix.
285
- *
286
- * \returns A const reference to the column vector containing the eigenvalues.
287
- *
288
- * \pre The eigenvalues have been computed before.
289
- *
290
- * The eigenvalues are repeated according to their algebraic multiplicity,
291
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
292
- * are sorted in increasing order.
293
- *
294
- * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
295
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
296
- *
297
- * \sa eigenvectors(), MatrixBase::eigenvalues()
298
- */
299
- EIGEN_DEVICE_FUNC
300
- const RealVectorType& eigenvalues() const
301
- {
302
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
303
- return m_eivalues;
304
- }
305
-
306
- /** \brief Computes the positive-definite square root of the matrix.
307
- *
308
- * \returns the positive-definite square root of the matrix
309
- *
310
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
311
- * have been computed before.
312
- *
313
- * The square root of a positive-definite matrix \f$ A \f$ is the
314
- * positive-definite matrix whose square equals \f$ A \f$. This function
315
- * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
316
- * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
317
- *
318
- * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
319
- * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
320
- *
321
- * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
322
- */
323
- EIGEN_DEVICE_FUNC
324
- MatrixType operatorSqrt() const
325
- {
326
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
327
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
328
- return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
329
- }
330
-
331
- /** \brief Computes the inverse square root of the matrix.
332
- *
333
- * \returns the inverse positive-definite square root of the matrix
334
- *
335
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
336
- * have been computed before.
337
- *
338
- * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
339
- * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
340
- * cheaper than first computing the square root with operatorSqrt() and
341
- * then its inverse with MatrixBase::inverse().
342
- *
343
- * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
344
- * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
345
- *
346
- * \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
347
- */
348
- EIGEN_DEVICE_FUNC
349
- MatrixType operatorInverseSqrt() const
350
- {
351
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
352
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
353
- return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
354
- }
355
-
356
- /** \brief Reports whether previous computation was successful.
357
- *
358
- * \returns \c Success if computation was successful, \c NoConvergence otherwise.
359
- */
360
- EIGEN_DEVICE_FUNC
361
- ComputationInfo info() const
362
- {
363
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
364
- return m_info;
365
- }
366
-
367
- /** \brief Maximum number of iterations.
368
- *
369
- * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
370
- * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
371
- */
372
- static const int m_maxIterations = 30;
373
-
374
- protected:
375
- static EIGEN_DEVICE_FUNC
376
- void check_template_parameters()
377
- {
378
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
379
- }
380
-
381
- EigenvectorsType m_eivec;
382
- RealVectorType m_eivalues;
383
- typename TridiagonalizationType::SubDiagonalType m_subdiag;
384
- typename TridiagonalizationType::CoeffVectorType m_hcoeffs;
385
- ComputationInfo m_info;
386
- bool m_isInitialized;
387
- bool m_eigenvectorsOk;
388
- };
389
-
390
- namespace internal {
391
- /** \internal
392
- *
393
- * \eigenvalues_module \ingroup Eigenvalues_Module
394
- *
395
- * Performs a QR step on a tridiagonal symmetric matrix represented as a
396
- * pair of two vectors \a diag and \a subdiag.
397
- *
398
- * \param diag the diagonal part of the input selfadjoint tridiagonal matrix
399
- * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
400
- * \param start starting index of the submatrix to work on
401
- * \param end last+1 index of the submatrix to work on
402
- * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
403
- * \param n size of the input matrix
404
- *
405
- * For compilation efficiency reasons, this procedure does not use eigen expression
406
- * for its arguments.
407
- *
408
- * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
409
- * "implicit symmetric QR step with Wilkinson shift"
410
- */
411
- template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
412
- EIGEN_DEVICE_FUNC
413
- static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
414
- }
415
-
416
- template<typename MatrixType>
417
- template<typename InputType>
418
- EIGEN_DEVICE_FUNC
419
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
420
- ::compute(const EigenBase<InputType>& a_matrix, int options)
421
- {
422
- check_template_parameters();
423
-
424
- const InputType &matrix(a_matrix.derived());
425
-
426
- EIGEN_USING_STD(abs);
427
- eigen_assert(matrix.cols() == matrix.rows());
428
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
429
- && (options&EigVecMask)!=EigVecMask
430
- && "invalid option parameter");
431
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
432
- Index n = matrix.cols();
433
- m_eivalues.resize(n,1);
434
-
435
- if(n==1)
436
- {
437
- m_eivec = matrix;
438
- m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
439
- if(computeEigenvectors)
440
- m_eivec.setOnes(n,n);
441
- m_info = Success;
442
- m_isInitialized = true;
443
- m_eigenvectorsOk = computeEigenvectors;
444
- return *this;
445
- }
446
-
447
- // declare some aliases
448
- RealVectorType& diag = m_eivalues;
449
- EigenvectorsType& mat = m_eivec;
450
-
451
- // map the matrix coefficients to [-1:1] to avoid over- and underflow.
452
- mat = matrix.template triangularView<Lower>();
453
- RealScalar scale = mat.cwiseAbs().maxCoeff();
454
- if(scale==RealScalar(0)) scale = RealScalar(1);
455
- mat.template triangularView<Lower>() /= scale;
456
- m_subdiag.resize(n-1);
457
- m_hcoeffs.resize(n-1);
458
- internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors);
459
-
460
- m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
461
-
462
- // scale back the eigen values
463
- m_eivalues *= scale;
464
-
465
- m_isInitialized = true;
466
- m_eigenvectorsOk = computeEigenvectors;
467
- return *this;
468
- }
469
-
470
- template<typename MatrixType>
471
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
472
- ::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
473
- {
474
- //TODO : Add an option to scale the values beforehand
475
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
476
-
477
- m_eivalues = diag;
478
- m_subdiag = subdiag;
479
- if (computeEigenvectors)
480
- {
481
- m_eivec.setIdentity(diag.size(), diag.size());
482
- }
483
- m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
484
-
485
- m_isInitialized = true;
486
- m_eigenvectorsOk = computeEigenvectors;
487
- return *this;
488
- }
489
-
490
- namespace internal {
491
- /**
492
- * \internal
493
- * \brief Compute the eigendecomposition from a tridiagonal matrix
494
- *
495
- * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
496
- * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
497
- * \param[in] maxIterations : the maximum number of iterations
498
- * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
499
- * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
500
- * \returns \c Success or \c NoConvergence
501
- */
502
- template<typename MatrixType, typename DiagType, typename SubDiagType>
503
- EIGEN_DEVICE_FUNC
504
- ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
505
- {
506
- ComputationInfo info;
507
- typedef typename MatrixType::Scalar Scalar;
508
-
509
- Index n = diag.size();
510
- Index end = n-1;
511
- Index start = 0;
512
- Index iter = 0; // total number of iterations
513
-
514
- typedef typename DiagType::RealScalar RealScalar;
515
- const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
516
- const RealScalar precision_inv = RealScalar(1)/NumTraits<RealScalar>::epsilon();
517
- while (end>0)
518
- {
519
- for (Index i = start; i<end; ++i) {
520
- if (numext::abs(subdiag[i]) < considerAsZero) {
521
- subdiag[i] = RealScalar(0);
522
- } else {
523
- // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1]))
524
- // Scaled to prevent underflows.
525
- const RealScalar scaled_subdiag = precision_inv * subdiag[i];
526
- if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i])+numext::abs(diag[i+1]))) {
527
- subdiag[i] = RealScalar(0);
528
- }
529
- }
530
- }
531
-
532
- // find the largest unreduced block at the end of the matrix.
533
- while (end>0 && subdiag[end-1]==RealScalar(0))
534
- {
535
- end--;
536
- }
537
- if (end<=0)
538
- break;
539
-
540
- // if we spent too many iterations, we give up
541
- iter++;
542
- if(iter > maxIterations * n) break;
543
-
544
- start = end - 1;
545
- while (start>0 && subdiag[start-1]!=0)
546
- start--;
547
-
548
- internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
549
- }
550
- if (iter <= maxIterations * n)
551
- info = Success;
552
- else
553
- info = NoConvergence;
554
-
555
- // Sort eigenvalues and corresponding vectors.
556
- // TODO make the sort optional ?
557
- // TODO use a better sort algorithm !!
558
- if (info == Success)
559
- {
560
- for (Index i = 0; i < n-1; ++i)
561
- {
562
- Index k;
563
- diag.segment(i,n-i).minCoeff(&k);
564
- if (k > 0)
565
- {
566
- numext::swap(diag[i], diag[k+i]);
567
- if(computeEigenvectors)
568
- eivec.col(i).swap(eivec.col(k+i));
569
- }
570
- }
571
- }
572
- return info;
573
- }
574
-
575
- template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
576
- {
577
- EIGEN_DEVICE_FUNC
578
- static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
579
- { eig.compute(A,options); }
580
- };
581
-
582
- template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
583
- {
584
- typedef typename SolverType::MatrixType MatrixType;
585
- typedef typename SolverType::RealVectorType VectorType;
586
- typedef typename SolverType::Scalar Scalar;
587
- typedef typename SolverType::EigenvectorsType EigenvectorsType;
588
-
589
-
590
- /** \internal
591
- * Computes the roots of the characteristic polynomial of \a m.
592
- * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
593
- */
594
- EIGEN_DEVICE_FUNC
595
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
596
- {
597
- EIGEN_USING_STD(sqrt)
598
- EIGEN_USING_STD(atan2)
599
- EIGEN_USING_STD(cos)
600
- EIGEN_USING_STD(sin)
601
- const Scalar s_inv3 = Scalar(1)/Scalar(3);
602
- const Scalar s_sqrt3 = sqrt(Scalar(3));
603
-
604
- // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
605
- // eigenvalues are the roots to this equation, all guaranteed to be
606
- // real-valued, because the matrix is symmetric.
607
- Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
608
- Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
609
- Scalar c2 = m(0,0) + m(1,1) + m(2,2);
610
-
611
- // Construct the parameters used in classifying the roots of the equation
612
- // and in solving the equation for the roots in closed form.
613
- Scalar c2_over_3 = c2*s_inv3;
614
- Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
615
- a_over_3 = numext::maxi(a_over_3, Scalar(0));
616
-
617
- Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
618
-
619
- Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
620
- q = numext::maxi(q, Scalar(0));
621
-
622
- // Compute the eigenvalues by solving for the roots of the polynomial.
623
- Scalar rho = sqrt(a_over_3);
624
- Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
625
- Scalar cos_theta = cos(theta);
626
- Scalar sin_theta = sin(theta);
627
- // roots are already sorted, since cos is monotonically decreasing on [0, pi]
628
- roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
629
- roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
630
- roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
631
- }
632
-
633
- EIGEN_DEVICE_FUNC
634
- static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
635
- {
636
- EIGEN_USING_STD(abs);
637
- EIGEN_USING_STD(sqrt);
638
- Index i0;
639
- // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
640
- mat.diagonal().cwiseAbs().maxCoeff(&i0);
641
- // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
642
- // so let's save it:
643
- representative = mat.col(i0);
644
- Scalar n0, n1;
645
- VectorType c0, c1;
646
- n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
647
- n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
648
- if(n0>n1) res = c0/sqrt(n0);
649
- else res = c1/sqrt(n1);
650
-
651
- return true;
652
- }
653
-
654
- EIGEN_DEVICE_FUNC
655
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
656
- {
657
- eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
658
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
659
- && (options&EigVecMask)!=EigVecMask
660
- && "invalid option parameter");
661
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
662
-
663
- EigenvectorsType& eivecs = solver.m_eivec;
664
- VectorType& eivals = solver.m_eivalues;
665
-
666
- // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
667
- Scalar shift = mat.trace() / Scalar(3);
668
- // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
669
- MatrixType scaledMat = mat.template selfadjointView<Lower>();
670
- scaledMat.diagonal().array() -= shift;
671
- Scalar scale = scaledMat.cwiseAbs().maxCoeff();
672
- if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
673
-
674
- // compute the eigenvalues
675
- computeRoots(scaledMat,eivals);
676
-
677
- // compute the eigenvectors
678
- if(computeEigenvectors)
679
- {
680
- if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
681
- {
682
- // All three eigenvalues are numerically the same
683
- eivecs.setIdentity();
684
- }
685
- else
686
- {
687
- MatrixType tmp;
688
- tmp = scaledMat;
689
-
690
- // Compute the eigenvector of the most distinct eigenvalue
691
- Scalar d0 = eivals(2) - eivals(1);
692
- Scalar d1 = eivals(1) - eivals(0);
693
- Index k(0), l(2);
694
- if(d0 > d1)
695
- {
696
- numext::swap(k,l);
697
- d0 = d1;
698
- }
699
-
700
- // Compute the eigenvector of index k
701
- {
702
- tmp.diagonal().array () -= eivals(k);
703
- // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
704
- extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
705
- }
706
-
707
- // Compute eigenvector of index l
708
- if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
709
- {
710
- // If d0 is too small, then the two other eigenvalues are numerically the same,
711
- // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
712
- eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
713
- eivecs.col(l).normalize();
714
- }
715
- else
716
- {
717
- tmp = scaledMat;
718
- tmp.diagonal().array () -= eivals(l);
719
-
720
- VectorType dummy;
721
- extract_kernel(tmp, eivecs.col(l), dummy);
722
- }
723
-
724
- // Compute last eigenvector from the other two
725
- eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
726
- }
727
- }
728
-
729
- // Rescale back to the original size.
730
- eivals *= scale;
731
- eivals.array() += shift;
732
-
733
- solver.m_info = Success;
734
- solver.m_isInitialized = true;
735
- solver.m_eigenvectorsOk = computeEigenvectors;
736
- }
737
- };
738
-
739
- // 2x2 direct eigenvalues decomposition, code from Hauke Heibel
740
- template<typename SolverType>
741
- struct direct_selfadjoint_eigenvalues<SolverType,2,false>
742
- {
743
- typedef typename SolverType::MatrixType MatrixType;
744
- typedef typename SolverType::RealVectorType VectorType;
745
- typedef typename SolverType::Scalar Scalar;
746
- typedef typename SolverType::EigenvectorsType EigenvectorsType;
747
-
748
- EIGEN_DEVICE_FUNC
749
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
750
- {
751
- EIGEN_USING_STD(sqrt);
752
- const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
753
- const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
754
- roots(0) = t1 - t0;
755
- roots(1) = t1 + t0;
756
- }
757
-
758
- EIGEN_DEVICE_FUNC
759
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
760
- {
761
- EIGEN_USING_STD(sqrt);
762
- EIGEN_USING_STD(abs);
763
-
764
- eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
765
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
766
- && (options&EigVecMask)!=EigVecMask
767
- && "invalid option parameter");
768
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
769
-
770
- EigenvectorsType& eivecs = solver.m_eivec;
771
- VectorType& eivals = solver.m_eivalues;
772
-
773
- // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
774
- Scalar shift = mat.trace() / Scalar(2);
775
- MatrixType scaledMat = mat;
776
- scaledMat.coeffRef(0,1) = mat.coeff(1,0);
777
- scaledMat.diagonal().array() -= shift;
778
- Scalar scale = scaledMat.cwiseAbs().maxCoeff();
779
- if(scale > Scalar(0))
780
- scaledMat /= scale;
781
-
782
- // Compute the eigenvalues
783
- computeRoots(scaledMat,eivals);
784
-
785
- // compute the eigen vectors
786
- if(computeEigenvectors)
787
- {
788
- if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
789
- {
790
- eivecs.setIdentity();
791
- }
792
- else
793
- {
794
- scaledMat.diagonal().array () -= eivals(1);
795
- Scalar a2 = numext::abs2(scaledMat(0,0));
796
- Scalar c2 = numext::abs2(scaledMat(1,1));
797
- Scalar b2 = numext::abs2(scaledMat(1,0));
798
- if(a2>c2)
799
- {
800
- eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
801
- eivecs.col(1) /= sqrt(a2+b2);
802
- }
803
- else
804
- {
805
- eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
806
- eivecs.col(1) /= sqrt(c2+b2);
807
- }
808
-
809
- eivecs.col(0) << eivecs.col(1).unitOrthogonal();
810
- }
811
- }
812
-
813
- // Rescale back to the original size.
814
- eivals *= scale;
815
- eivals.array() += shift;
816
-
817
- solver.m_info = Success;
818
- solver.m_isInitialized = true;
819
- solver.m_eigenvectorsOk = computeEigenvectors;
820
- }
821
- };
822
-
823
- }
824
-
825
- template<typename MatrixType>
826
- EIGEN_DEVICE_FUNC
827
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
828
- ::computeDirect(const MatrixType& matrix, int options)
829
- {
830
- internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
831
- return *this;
832
- }
833
-
834
- namespace internal {
835
-
836
- // Francis implicit QR step.
837
- template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
838
- EIGEN_DEVICE_FUNC
839
- static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
840
- {
841
- // Wilkinson Shift.
842
- RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
843
- RealScalar e = subdiag[end-1];
844
- // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
845
- // underflow thus leading to inf/NaN values when using the following commented code:
846
- // RealScalar e2 = numext::abs2(subdiag[end-1]);
847
- // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
848
- // This explain the following, somewhat more complicated, version:
849
- RealScalar mu = diag[end];
850
- if(td==RealScalar(0)) {
851
- mu -= numext::abs(e);
852
- } else if (e != RealScalar(0)) {
853
- const RealScalar e2 = numext::abs2(e);
854
- const RealScalar h = numext::hypot(td,e);
855
- if(e2 == RealScalar(0)) {
856
- mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e);
857
- } else {
858
- mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
859
- }
860
- }
861
-
862
- RealScalar x = diag[start] - mu;
863
- RealScalar z = subdiag[start];
864
- // If z ever becomes zero, the Givens rotation will be the identity and
865
- // z will stay zero for all future iterations.
866
- for (Index k = start; k < end && z != RealScalar(0); ++k)
867
- {
868
- JacobiRotation<RealScalar> rot;
869
- rot.makeGivens(x, z);
870
-
871
- // do T = G' T G
872
- RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
873
- RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
874
-
875
- diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
876
- diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
877
- subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
878
-
879
- if (k > start)
880
- subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
881
-
882
- // "Chasing the bulge" to return to triangular form.
883
- x = subdiag[k];
884
- if (k < end - 1)
885
- {
886
- z = -rot.s() * subdiag[k+1];
887
- subdiag[k + 1] = rot.c() * subdiag[k+1];
888
- }
889
-
890
- // apply the givens rotation to the unit matrix Q = Q * G
891
- if (matrixQ)
892
- {
893
- // FIXME if StorageOrder == RowMajor this operation is not very efficient
894
- Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
895
- q.applyOnTheRight(k,k+1,rot);
896
- }
897
- }
898
- }
899
-
900
- } // end namespace internal
901
-
902
- } // end namespace Eigen
903
-
904
- #endif // EIGEN_SELFADJOINTEIGENSOLVER_H