semantic-link-labs 0.8.3__py3-none-any.whl → 0.8.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of semantic-link-labs might be problematic. Click here for more details.

Files changed (109) hide show
  1. {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.5.dist-info}/METADATA +38 -8
  2. {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.5.dist-info}/RECORD +109 -104
  3. {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.5.dist-info}/WHEEL +1 -1
  4. sempy_labs/__init__.py +53 -1
  5. sempy_labs/_bpa_translation/_model/_translations_am-ET.po +24 -5
  6. sempy_labs/_bpa_translation/_model/_translations_ar-AE.po +28 -4
  7. sempy_labs/_bpa_translation/_model/_translations_bg-BG.po +34 -4
  8. sempy_labs/_bpa_translation/_model/_translations_ca-ES.po +33 -4
  9. sempy_labs/_bpa_translation/_model/_translations_cs-CZ.po +31 -4
  10. sempy_labs/_bpa_translation/_model/_translations_da-DK.po +31 -4
  11. sempy_labs/_bpa_translation/_model/_translations_de-DE.po +34 -4
  12. sempy_labs/_bpa_translation/_model/_translations_el-GR.po +36 -4
  13. sempy_labs/_bpa_translation/_model/_translations_es-ES.po +90 -58
  14. sempy_labs/_bpa_translation/_model/_translations_fa-IR.po +31 -5
  15. sempy_labs/_bpa_translation/_model/_translations_fi-FI.po +31 -4
  16. sempy_labs/_bpa_translation/_model/_translations_fr-FR.po +34 -4
  17. sempy_labs/_bpa_translation/_model/_translations_ga-IE.po +34 -4
  18. sempy_labs/_bpa_translation/_model/_translations_he-IL.po +28 -4
  19. sempy_labs/_bpa_translation/_model/_translations_hi-IN.po +32 -4
  20. sempy_labs/_bpa_translation/_model/_translations_hu-HU.po +32 -4
  21. sempy_labs/_bpa_translation/_model/_translations_id-ID.po +32 -4
  22. sempy_labs/_bpa_translation/_model/_translations_is-IS.po +31 -4
  23. sempy_labs/_bpa_translation/_model/_translations_it-IT.po +34 -4
  24. sempy_labs/_bpa_translation/_model/_translations_ja-JP.po +24 -4
  25. sempy_labs/_bpa_translation/_model/_translations_ko-KR.po +72 -56
  26. sempy_labs/_bpa_translation/_model/_translations_mt-MT.po +34 -4
  27. sempy_labs/_bpa_translation/_model/_translations_nl-NL.po +34 -4
  28. sempy_labs/_bpa_translation/_model/_translations_pl-PL.po +95 -71
  29. sempy_labs/_bpa_translation/_model/_translations_pt-BR.po +32 -4
  30. sempy_labs/_bpa_translation/_model/_translations_pt-PT.po +32 -4
  31. sempy_labs/_bpa_translation/_model/_translations_ro-RO.po +33 -4
  32. sempy_labs/_bpa_translation/_model/_translations_ru-RU.po +34 -4
  33. sempy_labs/_bpa_translation/_model/_translations_sk-SK.po +31 -4
  34. sempy_labs/_bpa_translation/_model/_translations_sl-SL.po +32 -4
  35. sempy_labs/_bpa_translation/_model/_translations_sv-SE.po +32 -4
  36. sempy_labs/_bpa_translation/_model/_translations_ta-IN.po +32 -4
  37. sempy_labs/_bpa_translation/_model/_translations_te-IN.po +31 -4
  38. sempy_labs/_bpa_translation/_model/_translations_th-TH.po +31 -4
  39. sempy_labs/_bpa_translation/_model/_translations_tr-TR.po +32 -4
  40. sempy_labs/_bpa_translation/_model/_translations_uk-UA.po +100 -72
  41. sempy_labs/_bpa_translation/_model/_translations_zh-CN.po +23 -5
  42. sempy_labs/_bpa_translation/_model/_translations_zu-ZA.po +32 -4
  43. sempy_labs/_capacities.py +49 -14
  44. sempy_labs/_capacity_migration.py +1 -7
  45. sempy_labs/_data_pipelines.py +6 -0
  46. sempy_labs/_dataflows.py +118 -1
  47. sempy_labs/_dax.py +189 -3
  48. sempy_labs/_deployment_pipelines.py +13 -7
  49. sempy_labs/_environments.py +6 -0
  50. sempy_labs/_eventhouses.py +6 -0
  51. sempy_labs/_eventstreams.py +6 -0
  52. sempy_labs/_external_data_shares.py +6 -4
  53. sempy_labs/_generate_semantic_model.py +26 -3
  54. sempy_labs/_git.py +14 -14
  55. sempy_labs/_helper_functions.py +197 -1
  56. sempy_labs/_icons.py +55 -22
  57. sempy_labs/_kql_databases.py +6 -0
  58. sempy_labs/_kql_querysets.py +6 -0
  59. sempy_labs/_list_functions.py +1 -1
  60. sempy_labs/_managed_private_endpoints.py +166 -0
  61. sempy_labs/_mirrored_databases.py +428 -0
  62. sempy_labs/_mirrored_warehouses.py +2 -0
  63. sempy_labs/_ml_experiments.py +6 -0
  64. sempy_labs/_ml_models.py +7 -1
  65. sempy_labs/_model_bpa.py +215 -181
  66. sempy_labs/_model_bpa_bulk.py +46 -42
  67. sempy_labs/_model_bpa_rules.py +8 -3
  68. sempy_labs/_model_dependencies.py +41 -87
  69. sempy_labs/_notebooks.py +107 -12
  70. sempy_labs/_query_scale_out.py +8 -6
  71. sempy_labs/_refresh_semantic_model.py +299 -49
  72. sempy_labs/_spark.py +12 -5
  73. sempy_labs/_translations.py +2 -0
  74. sempy_labs/_vertipaq.py +89 -86
  75. sempy_labs/_warehouses.py +79 -0
  76. sempy_labs/_workloads.py +128 -0
  77. sempy_labs/_workspace_identity.py +4 -4
  78. sempy_labs/_workspaces.py +14 -1
  79. sempy_labs/admin/__init__.py +2 -0
  80. sempy_labs/admin/_basic_functions.py +131 -43
  81. sempy_labs/admin/_domains.py +18 -18
  82. sempy_labs/directlake/__init__.py +2 -0
  83. sempy_labs/directlake/_directlake_schema_sync.py +2 -1
  84. sempy_labs/directlake/_dl_helper.py +4 -1
  85. sempy_labs/directlake/_get_shared_expression.py +7 -1
  86. sempy_labs/directlake/_guardrails.py +2 -1
  87. sempy_labs/directlake/_show_unsupported_directlake_objects.py +1 -7
  88. sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +78 -0
  89. sempy_labs/directlake/_update_directlake_partition_entity.py +13 -32
  90. sempy_labs/directlake/_warm_cache.py +10 -9
  91. sempy_labs/lakehouse/_get_lakehouse_tables.py +6 -2
  92. sempy_labs/lakehouse/_shortcuts.py +4 -0
  93. sempy_labs/migration/_create_pqt_file.py +5 -2
  94. sempy_labs/migration/_migrate_calctables_to_lakehouse.py +3 -2
  95. sempy_labs/migration/_migrate_calctables_to_semantic_model.py +2 -0
  96. sempy_labs/migration/_migrate_model_objects_to_semantic_model.py +2 -8
  97. sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py +17 -0
  98. sempy_labs/migration/_migration_validation.py +2 -0
  99. sempy_labs/migration/_refresh_calc_tables.py +1 -0
  100. sempy_labs/report/__init__.py +6 -1
  101. sempy_labs/report/_download_report.py +75 -0
  102. sempy_labs/report/_generate_report.py +6 -0
  103. sempy_labs/report/_paginated.py +74 -0
  104. sempy_labs/report/_report_functions.py +6 -0
  105. sempy_labs/report/_report_rebind.py +2 -0
  106. sempy_labs/report/_reportwrapper.py +4 -2
  107. sempy_labs/tom/_model.py +135 -68
  108. {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.5.dist-info}/LICENSE +0 -0
  109. {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.5.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: semantic-link-labs
3
- Version: 0.8.3
3
+ Version: 0.8.5
4
4
  Summary: Semantic Link Labs for Microsoft Fabric
5
5
  Author: Microsoft Corporation
6
6
  License: MIT License
@@ -15,7 +15,7 @@ Classifier: Framework :: Jupyter
15
15
  Requires-Python: <3.12,>=3.10
16
16
  Description-Content-Type: text/markdown
17
17
  License-File: LICENSE
18
- Requires-Dist: semantic-link-sempy >=0.8.0
18
+ Requires-Dist: semantic-link-sempy >=0.8.3
19
19
  Requires-Dist: anytree
20
20
  Requires-Dist: powerbiclient
21
21
  Requires-Dist: polib
@@ -27,7 +27,7 @@ Requires-Dist: pytest >=8.2.1 ; extra == 'test'
27
27
  # Semantic Link Labs
28
28
 
29
29
  [![PyPI version](https://badge.fury.io/py/semantic-link-labs.svg)](https://badge.fury.io/py/semantic-link-labs)
30
- [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.8.3&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
30
+ [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.8.5&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
31
31
  [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
32
32
  [![Downloads](https://static.pepy.tech/badge/semantic-link-labs)](https://pepy.tech/project/semantic-link-labs)
33
33
 
@@ -37,6 +37,14 @@ Requires-Dist: pytest >=8.2.1 ; extra == 'test'
37
37
 
38
38
  Semantic Link Labs is a Python library designed for use in [Microsoft Fabric notebooks](https://learn.microsoft.com/fabric/data-engineering/how-to-use-notebook). This library extends the capabilities of [Semantic Link](https://learn.microsoft.com/fabric/data-science/semantic-link-overview) offering additional functionalities to seamlessly integrate and work alongside it. The goal of Semantic Link Labs is to simplify technical processes, empowering people to focus on higher level activities and allowing tasks that are better suited for machines to be efficiently handled without human intervention.
39
39
 
40
+ If you encounter any issues, please [raise a bug](https://github.com/microsoft/semantic-link-labs/issues/new?assignees=&labels=&projects=&template=bug_report.md&title=).
41
+
42
+ If you have ideas for new features/functions, please [request a feature](https://github.com/microsoft/semantic-link-labs/issues/new?assignees=&labels=&projects=&template=feature_request.md&title=).
43
+
44
+ Check out the video below for an introduction to Semantic Link, Semantic Link Labs and demos of key features!
45
+
46
+ [![Semantic Link Labs Video](https://img.youtube.com/vi/LSoWDEZk9b0/0.jpg)](https://www.youtube.com/watch?v=LSoWDEZk9b0)
47
+
40
48
  ## Featured Scenarios
41
49
  * Semantic Models
42
50
  * [Migrating an import/DirectQuery semantic model to Direct Lake](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration)
@@ -47,26 +55,46 @@ Semantic Link Labs is a Python library designed for use in [Microsoft Fabric not
47
55
  * [Check Direct Lake Guardrails](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.get_lakehouse_tables)
48
56
  * [Refresh](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Semantic%20Model%20Refresh.ipynb), [clear cache](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.clear_cache), [backup](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.backup_semantic_model), [restore](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.restore_semantic_model), [copy backup files](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.copy_semantic_model_backup_file), [move/deploy across workspaces](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.deploy_semantic_model)
49
57
  * [Run DAX queries which impersonate a user](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.evaluate_dax_impersonation)
50
- * [Manage Query Scale Out](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Query%20Scale%20Out.ipynb).
58
+ * [Manage Query Scale Out](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Query%20Scale%20Out.ipynb)
51
59
  * [Auto-generate descriptions for any/all measures in bulk](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html#sempy_labs.tom.TOMWrapper.generate_measure_descriptions)
60
+ * [Warm the cache of a Direct Lake semantic model after a refresh (using columns currently in memory)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.directlake.html#sempy_labs.directlake.warm_direct_lake_cache_isresident)
61
+ * [Warm the cache of a Direct Lake semantic model (via perspective)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.directlake.html#sempy_labs.directlake.warm_direct_lake_cache_perspective)
62
+ * [Visualize a refresh](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Semantic%20Model%20Refresh.ipynb)
52
63
  * Reports
53
64
  * [Report Best Practice Analyzer (BPA)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.run_report_bpa)
54
65
  * [View report metadata](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Report%20Analysis.ipynb)
55
66
  * [View semantic model objects most frequently used in Power BI reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_semantic_model_object_report_usage)
56
67
  * [View broken reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_report_semantic_model_objects)
68
+ * [Set a report theme](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.ReportWrapper.set_theme)
69
+ * [Migrate report-level measures to the semantic model](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.ReportWrapper.migrate_report_level_measures)
57
70
  * [Rebind reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.report_rebind)
58
71
  * Capacities
59
72
  * [Migrating a Power BI Premium capacity (P sku) to a Fabric capacity (F sku)](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Capacity%20Migration.ipynb)
73
+ * [Migrating a Fabric Trial capacity (FT sku) to a Fabric capacity (F sku)](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Capacity%20Migration.ipynb)
60
74
  * [Create](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.create_fabric_capacity)/[update](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.update_fabric_capacity)/[suspend](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.suspend_fabric_capacity)/[resume](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.resume_fabric_capacity) Fabric capacities.
75
+ * Lakehouses
76
+ * [Optimize lakehouse tables](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.optimize_lakehouse_tables)
77
+ * [Vacuum lakehouse tables](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.vacuum_lakehouse_tables)
61
78
  * APIs
62
79
  * Wrapper functions for [Power BI](https://learn.microsoft.com/rest/api/power-bi/), [Fabric](https://learn.microsoft.com/rest/api/fabric/articles/using-fabric-apis), and [Azure (Fabric Capacity)](https://learn.microsoft.com/rest/api/microsoftfabric/fabric-capacities?view=rest-microsoftfabric-2023-11-01) APIs
63
80
 
81
+ ## Helper Notebooks
64
82
 
65
- ### Check out the [helper notebooks](https://github.com/microsoft/semantic-link-labs/tree/main/notebooks) for getting started!
83
+ Check out the [helper notebooks](https://github.com/microsoft/semantic-link-labs/tree/main/notebooks) for getting started!
84
+ Run the code below to load all the helper notebooks to the workspace of your choice at once.
85
+ ```python
86
+ import sempy_labs as labs
87
+ import requests
66
88
 
67
- If you encounter any issues, please [raise a bug](https://github.com/microsoft/semantic-link-labs/issues/new?assignees=&labels=&projects=&template=bug_report.md&title=).
89
+ workspace_name = None # Update this to the workspace in which you want to save the notebooks
90
+ api_url = "https://api.github.com/repos/microsoft/semantic-link-labs/contents/notebooks"
91
+ response = requests.get(api_url)
92
+ files = response.json()
93
+ notebook_files = {file['name'][:-6]: file['html_url'] for file in files if file['name'].endswith('.ipynb')}
68
94
 
69
- If you have ideas for new features/functions, please [request a feature](https://github.com/microsoft/semantic-link-labs/issues/new?assignees=&labels=&projects=&template=feature_request.md&title=).
95
+ for file_name, file_url in notebook_files.items():
96
+ labs.import_notebook_from_web(notebook_name=file_name, url=file_url, workspace=workspace_name)
97
+ ```
70
98
 
71
99
  ## Install the library in a Fabric notebook
72
100
  ```python
@@ -85,7 +113,7 @@ from sempy_labs import ConnectWarehouse
85
113
  from sempy_labs import ConnectLakehouse
86
114
  ```
87
115
 
88
- ## Load semantic-link-labs into a custom [Fabric environment](https://learn.microsoft.com/fabric/data-engineering/create-and-use-environment)
116
+ ## Load Semantic Link Labs into a custom [Fabric environment](https://learn.microsoft.com/fabric/data-engineering/create-and-use-environment)
89
117
  An even better way to ensure the semantic-link-labs library is available in your workspace/notebooks is to load it as a library in a custom Fabric environment. If you do this, you will not have to run the above '%pip install' code every time in your notebook. Please follow the steps below.
90
118
 
91
119
  #### Create a custom environment
@@ -106,6 +134,8 @@ An even better way to ensure the semantic-link-labs library is available in your
106
134
  2. Select your newly created environment within the 'Environment' drop down in the navigation bar at the top of the notebook
107
135
 
108
136
  ## Version History
137
+ * [0.8.5](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.5) (November 13, 2024)
138
+ * [0.8.4](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.4) (October 30, 2024)
109
139
  * [0.8.3](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.3) (October 14, 2024)
110
140
  * [0.8.2](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.2) (October 2, 2024)
111
141
  * [0.8.1](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.1) (October 2, 2024)
@@ -1,121 +1,126 @@
1
- sempy_labs/__init__.py,sha256=5RIFJdqOD_vdHolbUn2XgkkBK-bU5L9-19XV5vIm85E,10416
1
+ sempy_labs/__init__.py,sha256=m-MEq0ztOEFilCXIMz6NhseGu9WqqxFZPUz6wl26L_c,11920
2
2
  sempy_labs/_ai.py,sha256=CzsNw6Wpd2B5Rd0RcY250-_p0L-0gFoMNLEc_KmrobU,16177
3
- sempy_labs/_capacities.py,sha256=rlzK4wGuhWhvFO5jPPCDbpj0oMC7PmleEDXwhNCMxJo,23047
4
- sempy_labs/_capacity_migration.py,sha256=bEPJ6rh_-XTFJsvmUtvILYZyYiH1Ss55u_0EoyotWW0,28158
3
+ sempy_labs/_capacities.py,sha256=HWX1ivlWpyS7Ea_ny-39kUAQYFGMzo42kWMGdJMINos,25466
4
+ sempy_labs/_capacity_migration.py,sha256=PCIodWXas9v7q93hqD2m8EanJHPJzke52jbCWOfnLZk,27764
5
5
  sempy_labs/_clear_cache.py,sha256=ttHsXXR6SRRw4eC0cS8I5h38UbWU9YJii1y-uR9R3KM,12493
6
6
  sempy_labs/_connections.py,sha256=w1NeC9auc07ko2pY3m5vM_9-sgW_chw1OxPzDviVC5k,12179
7
- sempy_labs/_data_pipelines.py,sha256=DfgRL67aEtP6GBFR5AJwvyNdWgw8q0DG3oWIZfnQLgM,5124
8
- sempy_labs/_dataflows.py,sha256=ApGMklXMQZQssYa7egxlBtsYz5mcR3JS69ZgeORXVBM,4051
9
- sempy_labs/_dax.py,sha256=dt1GgHceyM7f6phRBPxRKnmQy_KYKpcgFQHuOjGbpLo,2029
10
- sempy_labs/_deployment_pipelines.py,sha256=-wjqQieR25BR-0r2QfTzg4QuFzOgcayZLnS-fNYIPPU,5347
7
+ sempy_labs/_data_pipelines.py,sha256=WdZjTELNuN_7suWj6NrZUxGnMTzAgIxFw8V6YMb8ags,5644
8
+ sempy_labs/_dataflows.py,sha256=h_iYfNQTkNR7iGPQMO47s5eVR3CrpL04pN50xQl63ac,8253
9
+ sempy_labs/_dax.py,sha256=oYNwMaHusxoqQmfi_S6iF2X5o29dCM7cb2eIiLpFlas,8605
10
+ sempy_labs/_deployment_pipelines.py,sha256=WBBQM85-3-MkXb5OmRPF6U83xLyhKSlYUyhRlkvcl4k,6027
11
11
  sempy_labs/_documentation.py,sha256=yVA8VPEzx_fmljtcvSxtB7-BeupYsfdMXXjp6Fpnyo8,5007
12
- sempy_labs/_environments.py,sha256=oyfEeOLX5XPevumj4Il5t1z2gmsR8xm6pg1wfGoutMc,4821
13
- sempy_labs/_eventhouses.py,sha256=tVUYJkAcwoBZooXawJpCKzx2YypawKECrfKouRTkMJU,3537
14
- sempy_labs/_eventstreams.py,sha256=NV0YAC6V3nBxJIVKWH7ceAtooZoH9rA4zv45xTcb-t0,3556
15
- sempy_labs/_external_data_shares.py,sha256=w-tgTT2a4To1flF9SK0OPHuJ5_RQQcOBtFC14mjISlE,6410
16
- sempy_labs/_generate_semantic_model.py,sha256=314HKcCgp8A-2B5J91PFDzqJhzqYmcVmLXoTpdOgJLM,13220
17
- sempy_labs/_git.py,sha256=D2P5S4Kw1H62l8W6dr58xyJm7h6DZlOnrvScAUIJhnw,12756
18
- sempy_labs/_helper_functions.py,sha256=YK1ADvgIX0eyJmuJwwSPl-lsOXFjTH9W9YQsifbVuu0,32371
19
- sempy_labs/_icons.py,sha256=pwei9IrwbNAxmxCNgX_8cACwjhvmM6cYYZcS3sLR9jc,2696
20
- sempy_labs/_kql_databases.py,sha256=DE_5un0QO5ayYiqKiMDinis0ZysmIWWaEoYQ9ach_8o,4110
21
- sempy_labs/_kql_querysets.py,sha256=kH8diN3DxuCINlKhAvzyXKXtj0uJ0uhcxrWI9j097vU,3646
22
- sempy_labs/_list_functions.py,sha256=s3DtE6j28Xmsbqj8zxZB7U2a2O_1zH8OuKBVQ7g0iJk,55448
23
- sempy_labs/_mirrored_warehouses.py,sha256=xcVnrNwi46snQiS5iFKcZe-GGoFLqva7qW4iOPUD7Y8,1577
24
- sempy_labs/_ml_experiments.py,sha256=fTqFB0qn0T1k4vGmaghvKUolb5Kvg_qfTOYl3ABknt8,3676
25
- sempy_labs/_ml_models.py,sha256=nAISwah2fQI0OOJfBAEuI7d4uKu4DUIHi4BqUye6FQE,3572
12
+ sempy_labs/_environments.py,sha256=avpLSfZyyQFdEDIIxWv2THLjPZwbs9XGXT7ob9l_-ao,5326
13
+ sempy_labs/_eventhouses.py,sha256=vgIFQkXcBPC4SnlrBzT7SRmembExxkm6n0gdKnc7Hlk,4036
14
+ sempy_labs/_eventstreams.py,sha256=Rht0eWoZbYF6XKtE3AOUvGgA21smxC9gdN599z-jY3s,4061
15
+ sempy_labs/_external_data_shares.py,sha256=lUsKy1mexNSmhyFwxSeE2jZKNdDAWDP6iC6UPTXCvyU,6799
16
+ sempy_labs/_generate_semantic_model.py,sha256=ktyPjP0BxE-keQm_VB9siOEGcmKc4_EZRlIKopJFeOM,14476
17
+ sempy_labs/_git.py,sha256=LrerJoooP9z5uUPR_nKyLHxxuZQWguSale8Tuo9SF_M,13163
18
+ sempy_labs/_helper_functions.py,sha256=zOctuWIPfUunBRGmAQ0W-lyQgliEJtpsg0D8pqYTo-4,37788
19
+ sempy_labs/_icons.py,sha256=ez2dx_LCti71S_-eB6WYQ-kOMyiBL8ZJN12-ev5dcmA,3579
20
+ sempy_labs/_kql_databases.py,sha256=oNX9oKnXu5SLkzl4kTMQguh4In-i-0Forcoy1phOe1s,4621
21
+ sempy_labs/_kql_querysets.py,sha256=A-79LiLBKxlADPTuSK9ipy_LjXKcsJZwQHknUXFpVl0,4157
22
+ sempy_labs/_list_functions.py,sha256=5bjRee8aAhW-ddSQNDmwOdQwWTrDSBR1uRZjt1wQLQ4,55426
23
+ sempy_labs/_managed_private_endpoints.py,sha256=bCuC9V4yMFBw1BNlsoxARdIEMPAySW-ljHrhvuziQfw,6179
24
+ sempy_labs/_mirrored_databases.py,sha256=5_5phu50KIvhHNQJ-RQAxd92W4D7GUVMyjAnOb7ZY3Q,14360
25
+ sempy_labs/_mirrored_warehouses.py,sha256=t2fBH5L0UzNahDB4lATDLvmCqYTU-V93_ZVLb5ZISSg,1764
26
+ sempy_labs/_ml_experiments.py,sha256=UVh3cwNvpY-otCBIaKW-sgtzyjwAuu8qJDLhZGBHToE,4196
27
+ sempy_labs/_ml_models.py,sha256=phYLySjN7MO2YYfq7ZQKMS6w18G6L1-7DdNWB4fcLjQ,4044
26
28
  sempy_labs/_model_auto_build.py,sha256=-qDwmFx3KMuIaaUU8CzmCX7CF7ZUVWWu-_GH2UhAU_8,5045
27
- sempy_labs/_model_bpa.py,sha256=khvBVCMooVi_bHbaeQIAiWTBbUeTOYIqgIaJqsgZ9PU,20391
28
- sempy_labs/_model_bpa_bulk.py,sha256=iqJ_GbC5nec5jiLsOGDfbvi_M_WOrQAkwIZU35v-u6E,14893
29
- sempy_labs/_model_bpa_rules.py,sha256=B8hg3_ktS5ql859nL3e9kdV8fNDBgMNO5j2hGrXp6po,44855
30
- sempy_labs/_model_dependencies.py,sha256=rFPVDA6gLKxy2rDPtHHIvVJF9SmJz4xRe4n922bzWtA,13452
31
- sempy_labs/_notebooks.py,sha256=51TsNxCQWAvwJ9UIuFsYjYqRwFnRkPevUNX4ZytFc14,4341
29
+ sempy_labs/_model_bpa.py,sha256=So6-33PiogMBXwtt_drPsBDNVBp7rXJm-caADuXKseE,22268
30
+ sempy_labs/_model_bpa_bulk.py,sha256=W7BOOI-sgMTIoKr8_NnhJswPK4t9x79hdP5kTVYpdkY,15690
31
+ sempy_labs/_model_bpa_rules.py,sha256=96_GkXQGhON-_uyUATgUibk4W9y7e9wl1QciUr96gIQ,45544
32
+ sempy_labs/_model_dependencies.py,sha256=iQLDiwvClmaV6fHH0nRGksHG_GBmJK3NW4stIitmCSQ,11647
33
+ sempy_labs/_notebooks.py,sha256=EUYVeRJrCL9IllQevwRxzkCUU-rzX6KEEH7x7mBYUqc,7422
32
34
  sempy_labs/_one_lake_integration.py,sha256=eIuLxlw8eXfUH2avKhsyLmXZbTllSwGsz2j_HMAikpQ,6234
33
- sempy_labs/_query_scale_out.py,sha256=Wk6vxyI6x1xFV30UpEwvzlD0TnentpKOO-8mEVLc7zE,15253
34
- sempy_labs/_refresh_semantic_model.py,sha256=Kb3sZf9ihBcbh2la6c7wuAhUvGnqrlNR2obAdNJNz98,6920
35
- sempy_labs/_spark.py,sha256=_gkmitnGIf0Q_wKDHcnkmGSyE6GtPgsi2QnudLcBWKU,19477
35
+ sempy_labs/_query_scale_out.py,sha256=xoHnuDUgPYsg-NlUplB9ieb0bClcBQeG4veJNo_4TNw,15708
36
+ sempy_labs/_refresh_semantic_model.py,sha256=SnakEoE04yVvihK4NW3Kx4csWMuYCZfp9oFM7-KNgVU,16795
37
+ sempy_labs/_spark.py,sha256=RIJt9b_l5Sp5XrebhvRD0DEBKDTQdA8Rh7fByV27ngQ,20109
36
38
  sempy_labs/_sql.py,sha256=KttKi95iGxTT8UA1QOpT9ygAdwCfHHlcQSQ5d9gml0E,5358
37
- sempy_labs/_translations.py,sha256=JSNDULYoHmRFUeu8CT14NY8gCbSxbeSgaxDgXG-vMfA,19785
38
- sempy_labs/_vertipaq.py,sha256=RB_AkuiIVGZ10XFFfLxoBOkxpXJR46CIfxngtcWwkg0,36577
39
- sempy_labs/_warehouses.py,sha256=cQH66395Enw2rFK0-K2X09ElnmBLeIWYlF73vqQGV8k,4314
40
- sempy_labs/_workspace_identity.py,sha256=2uum6Ojv1x3Zzp8JEAQ2ER9J5yafb_v_TgZwY5vdBwA,2120
41
- sempy_labs/_workspaces.py,sha256=KZfQ1hAKhfIsq52ZF-RBptueWUh6-P-OA8YDfmSQbpM,10080
42
- sempy_labs/_bpa_translation/_model/_translations_am-ET.po,sha256=ve23guQ48HXXn2_yGicUtr_Orhi9nth_lna8-x93GjA,37928
43
- sempy_labs/_bpa_translation/_model/_translations_ar-AE.po,sha256=YtJzrUXQesme9D-m9JUGw4q7RSYfyXF25FH7PwDWcFI,35787
44
- sempy_labs/_bpa_translation/_model/_translations_bg-BG.po,sha256=bvX36ZCeHGYiiZjDTzGz1kSxR89u05ZwuGPoIl9olX8,42546
45
- sempy_labs/_bpa_translation/_model/_translations_ca-ES.po,sha256=wD6H8JFspuqAaZv_PCi9JKq32cQ7pk7ot8A9bs2R71c,30706
46
- sempy_labs/_bpa_translation/_model/_translations_cs-CZ.po,sha256=109msBczFv_DYpNINTRtrnCugM_OwI_s-_NC8h9NYzQ,30527
47
- sempy_labs/_bpa_translation/_model/_translations_da-DK.po,sha256=3IkzR34Od5iOWwrnjtMpzzmBk3t7M1bcLLxkZNYnyNs,29542
48
- sempy_labs/_bpa_translation/_model/_translations_de-DE.po,sha256=NBd9Hw1tIU2NBrCelXbVulbRM3UK0W6CS-JrQO4Wkj0,31890
49
- sempy_labs/_bpa_translation/_model/_translations_el-GR.po,sha256=t5USYSMTV_9BztQBcERuVVRNRQiSh_TdMr_AD3C_15Y,44695
50
- sempy_labs/_bpa_translation/_model/_translations_es-ES.po,sha256=F4BESD2mHIDl4aJjbmyQVHpGq33_l-rL8PFmdUP1mgk,30951
51
- sempy_labs/_bpa_translation/_model/_translations_fa-IR.po,sha256=0hB_BW3N8qDrT9sVLTEndtaFLcL1FTFn3y_KKSfVjAc,37700
52
- sempy_labs/_bpa_translation/_model/_translations_fi-FI.po,sha256=KlQ9hLdMv3JfqfT9RFEs4xQA1IfaYA_ZTMgauIdJEQg,30050
53
- sempy_labs/_bpa_translation/_model/_translations_fr-FR.po,sha256=sNR3lpq2E_MFPGgDm2cnLSD10YSPXbC7_7YcVjbJoK0,32529
54
- sempy_labs/_bpa_translation/_model/_translations_ga-IE.po,sha256=PqfNCoOX0ZA_p0uRmTxUUahH5YqEieBROv1-x5mCRR8,31719
55
- sempy_labs/_bpa_translation/_model/_translations_he-IL.po,sha256=cYJ4Mp98G0dYn-pxsSpwZLAQFYp7WOmZDuuNLf7qr6A,34471
56
- sempy_labs/_bpa_translation/_model/_translations_hi-IN.po,sha256=m1wXU_o_ylI9NgcSZJBSFcn1Yl7z1byuLZjgli8DOtU,50711
57
- sempy_labs/_bpa_translation/_model/_translations_hu-HU.po,sha256=Xc3DdJ1GotnUaI1Aeae6CDBoH3qRJK5SUC44IeJU6ww,31901
58
- sempy_labs/_bpa_translation/_model/_translations_id-ID.po,sha256=E0S8VIGjeapTqNOYU-KD3hX5wkn3UJN9iFPgCY_VXmA,29438
59
- sempy_labs/_bpa_translation/_model/_translations_is-IS.po,sha256=1adwpfqqOYc11TR35-s1_D3GnfvQOsEEmZrpBTSHuxM,29898
60
- sempy_labs/_bpa_translation/_model/_translations_it-IT.po,sha256=YyfVrs8HvJAiGC3U6zoty4hj0B6Y16OmCTiQqy8UFrk,31656
61
- sempy_labs/_bpa_translation/_model/_translations_ja-JP.po,sha256=0OnJ5pP4lcN4Tpz_2JIkgANXBiRtBfwgcDaSoywIsHw,34274
62
- sempy_labs/_bpa_translation/_model/_translations_ko-KR.po,sha256=ywcZd7Ssv2kskI558Dn8Q9ZmpqZ57f0STiT3xPHIh8c,30613
63
- sempy_labs/_bpa_translation/_model/_translations_mt-MT.po,sha256=OAFBctLRgHDWgDCEIC9-vKMKVPZHsz0-CtUS6UhNA7k,31365
64
- sempy_labs/_bpa_translation/_model/_translations_nl-NL.po,sha256=Ad9qXA8XUUKA0fQOQ9gzT5WE4BuM4od4oxGhTpDkF2c,31076
65
- sempy_labs/_bpa_translation/_model/_translations_pl-PL.po,sha256=GkRaHKhMEylqqb906y9VQIE_9fZdf8i4xp74Vp2PrPM,31324
66
- sempy_labs/_bpa_translation/_model/_translations_pt-BR.po,sha256=eiIVtuNkB22aUF7qb9aDA_lBgnlYHpRvCJn1kGf24HM,30548
67
- sempy_labs/_bpa_translation/_model/_translations_pt-PT.po,sha256=_slJvmdQGGh5ddTWIPeHJyUIsAfSoUNb1uUZsOQaBJk,30482
68
- sempy_labs/_bpa_translation/_model/_translations_ro-RO.po,sha256=D4e65MJB2HT_Ka7mnHItK_DsLWuFPtJaAJ3_V1gqi5c,31470
69
- sempy_labs/_bpa_translation/_model/_translations_ru-RU.po,sha256=Kwifn18wWg_XKnQXzP_5a1hDVAGJFlzxfIY7y-HtwnI,42656
70
- sempy_labs/_bpa_translation/_model/_translations_sk-SK.po,sha256=32hK8E2k5ng8jHuLZlM1ggJf_h9gjiUdVYxcmIARNfs,30468
71
- sempy_labs/_bpa_translation/_model/_translations_sl-SL.po,sha256=gzrtZd0GtyAS5S2m7cSYR4B58ACnLeDVggHkTtZxLe4,29673
72
- sempy_labs/_bpa_translation/_model/_translations_sv-SE.po,sha256=9C7J42uuMTkL-eQyUkJflvI9C_58PTAzNzLchlaPt2U,29794
73
- sempy_labs/_bpa_translation/_model/_translations_ta-IN.po,sha256=jGfprTa0v3x0zKkLlcWwGLeNM4T7z3PMvgk3mnAYd8U,57926
74
- sempy_labs/_bpa_translation/_model/_translations_te-IN.po,sha256=eNkIU4ijYMTGIs4WRvcgzuuTEaagbLtIFlG80NEOr-s,52974
75
- sempy_labs/_bpa_translation/_model/_translations_th-TH.po,sha256=FA9YCtoMbEex-3H2BMDFNpWXGFL1LzF28AS4eexBrTk,49118
76
- sempy_labs/_bpa_translation/_model/_translations_tr-TR.po,sha256=YfcgHAiP0RK2hitZv_0YW2HHHqk1Dkioz5r6vayB5y4,30768
77
- sempy_labs/_bpa_translation/_model/_translations_uk-UA.po,sha256=t7kpMB65cOKNIg8rD8KJPqi9uxmqgY3c66sM19ec-Kg,41959
78
- sempy_labs/_bpa_translation/_model/_translations_zh-CN.po,sha256=QhmS3HSnILLN-OgMUGmNFvGr4TEhoH1FKL0F1SgU2nk,26035
79
- sempy_labs/_bpa_translation/_model/_translations_zu-ZA.po,sha256=0ZivJJa-ggc7PJqLAgDmi8OGGUGzEcleGPmlLL9YYb4,30495
80
- sempy_labs/admin/__init__.py,sha256=m0INXWa0DcVq1tTGWbQAOYeFOaFg435eWmo_uHk59b0,1499
81
- sempy_labs/admin/_basic_functions.py,sha256=ufx11IhljHRuhhSpX24l_uompxJPuNDqq6p9ZPGiwH8,32736
82
- sempy_labs/admin/_domains.py,sha256=ByDqLsm1eDPnTr93yuVsPnhEQLGerWWwWk4_rAlRD1M,11691
83
- sempy_labs/directlake/__init__.py,sha256=ZlpQQDdA5-C10zSf9YICH0waMIFM-55aacsEzvpuHEM,2047
39
+ sempy_labs/_translations.py,sha256=2DpP--U3d8Gp7o9LF-OnZa10onN2unvqSHVQHv3CBZg,19838
40
+ sempy_labs/_vertipaq.py,sha256=sS9wFPxZfr_5dsOIXd-oeQIeCyXkVeCHbp30Kd7raUU,37662
41
+ sempy_labs/_warehouses.py,sha256=KI7Ww5Slw4jfhby4ensGVlDHLWq6u2SvdMCa2R9i778,7205
42
+ sempy_labs/_workloads.py,sha256=x3dS2mOkrS9rA-p70z8849DZlMIvMbzTjMzO_YmnHRg,4449
43
+ sempy_labs/_workspace_identity.py,sha256=d5cdiiqjyUVoSoDiqU8mzWYOvbt2oJrt7sm-ZGEEkDk,2261
44
+ sempy_labs/_workspaces.py,sha256=YdLuKBWBqvzYoGZSkWeAce-XxardzjpnpiaCMiE1aGI,11200
45
+ sempy_labs/_bpa_translation/_model/_translations_am-ET.po,sha256=zQVjJ-t0vtgIYan-HaXtUVJLB_PJvB53Nf5BNoOReU4,39199
46
+ sempy_labs/_bpa_translation/_model/_translations_ar-AE.po,sha256=QP1PjDLFccLDs9zq456crdAST57wrcWVk5rRiqqoCws,36959
47
+ sempy_labs/_bpa_translation/_model/_translations_bg-BG.po,sha256=sqezjpS3wfk09WD7x27bHoCBtgmqeHtyHNKTwG7-bkI,44132
48
+ sempy_labs/_bpa_translation/_model/_translations_ca-ES.po,sha256=nDqyYrt6vn8jhSNZqP-9PxVqOZ4PEiUUmU1YeuJ4WWM,31715
49
+ sempy_labs/_bpa_translation/_model/_translations_cs-CZ.po,sha256=XPXlZl6n3wBvci0q-vcToymkAC5TQs07pt_2Ab_ewz8,31486
50
+ sempy_labs/_bpa_translation/_model/_translations_da-DK.po,sha256=z3Xh3AqqhZa9bHXRlgY8CXx38f-6_7F5uDk-TLhTJRY,30457
51
+ sempy_labs/_bpa_translation/_model/_translations_de-DE.po,sha256=2EKZNJtgkkHG1LiO0po0RHWvHyvBtQy0ez1S8fFdomU,32938
52
+ sempy_labs/_bpa_translation/_model/_translations_el-GR.po,sha256=NicANPu_UyMQF9DO3DJ5-3q6iXEGW2vrWOUV3RxAWOE,46360
53
+ sempy_labs/_bpa_translation/_model/_translations_es-ES.po,sha256=1sj2DImOaRhFNkim6eHG1rOkgDKH4B6LSZrpLGdveh0,31990
54
+ sempy_labs/_bpa_translation/_model/_translations_fa-IR.po,sha256=5cniRIIvvXX1aFkOj5oA2Qz1vhzjFSPtRjw84HElPlg,38965
55
+ sempy_labs/_bpa_translation/_model/_translations_fi-FI.po,sha256=1-sPLQ4IfqsMuS7VSgEYV2ZJ7Un01C8eBMDijHd7tkA,30972
56
+ sempy_labs/_bpa_translation/_model/_translations_fr-FR.po,sha256=s4EWtTFfs1G1pdM1NIllJTZT5aVa-NklwEtd8j88Ql8,33622
57
+ sempy_labs/_bpa_translation/_model/_translations_ga-IE.po,sha256=BNNWV2bRNCxPXDznNVxbC7et7AOPsLMv-0DnH8hUNoc,32745
58
+ sempy_labs/_bpa_translation/_model/_translations_he-IL.po,sha256=laHvv5j-fCBnaK_iO90V2jnzA3TtktRJG-ZjV2QoS40,35601
59
+ sempy_labs/_bpa_translation/_model/_translations_hi-IN.po,sha256=0OCI1-EEVTarKxInIpLL7MhqCeUff2MkF4Ay23GA_N0,52583
60
+ sempy_labs/_bpa_translation/_model/_translations_hu-HU.po,sha256=UKSx3RCxpKX44sKUPepy2SXkN6K2CdNYfs35vtot5a0,32892
61
+ sempy_labs/_bpa_translation/_model/_translations_id-ID.po,sha256=U_rAOHQRug6VoBeQMdPtQHvC1Aw9ZQ3Lm0lx8hMLWhI,30373
62
+ sempy_labs/_bpa_translation/_model/_translations_is-IS.po,sha256=bg8alqxzg7CCu-bKh1U9L37rpgq5bsQdNs4bdkWNCuo,30850
63
+ sempy_labs/_bpa_translation/_model/_translations_it-IT.po,sha256=AIX6etBfKeuViAm07lp5zCaa307PYQEABtwtRgMEob8,32714
64
+ sempy_labs/_bpa_translation/_model/_translations_ja-JP.po,sha256=gmp1GMJiWBh8uMjsI6ssFO2Z0tfRYZKOjkRISsl2_oU,35515
65
+ sempy_labs/_bpa_translation/_model/_translations_ko-KR.po,sha256=mriTo9wTVUYXKPvyUlEOQXjEyk8WvTrGpn-giG0K8RU,31536
66
+ sempy_labs/_bpa_translation/_model/_translations_mt-MT.po,sha256=evcU-RWda5eEDPCx03vDga4XK-RgQ7kGslpwpibCsA8,32404
67
+ sempy_labs/_bpa_translation/_model/_translations_nl-NL.po,sha256=TRl73cUvRsS_rU3YlYazNdqqp6cXN4oLpGy179PB5sc,32114
68
+ sempy_labs/_bpa_translation/_model/_translations_pl-PL.po,sha256=9F8gQRSQJ2LqBqWrEtS9owTzk6cQQ2t4Y9YSq5js_H4,32365
69
+ sempy_labs/_bpa_translation/_model/_translations_pt-BR.po,sha256=i4_NEdBEl-KkGtD0S_XSJ1RTK83raBOoJEVFNoLUOHI,31547
70
+ sempy_labs/_bpa_translation/_model/_translations_pt-PT.po,sha256=R62JMSclCp4LTxt9gnkHW35OVxfdIahkjjbypkVALSc,31478
71
+ sempy_labs/_bpa_translation/_model/_translations_ro-RO.po,sha256=N0wx6LFI96YARRx9cBFHUfM4jat6W0gGTaUkTsHDGeY,32504
72
+ sempy_labs/_bpa_translation/_model/_translations_ru-RU.po,sha256=Qg6rf8uXJceQzbbEDIPVkd2sYkV1I3C29ewIrp5AOk8,44205
73
+ sempy_labs/_bpa_translation/_model/_translations_sk-SK.po,sha256=wn7cMTW0CmdembIO3vbEk_MC2p96ZGA2OL7giYGudvo,31465
74
+ sempy_labs/_bpa_translation/_model/_translations_sl-SL.po,sha256=Oz4vo_J--RaYHy-Vgu8LYxU0jsM0LnXLyuctMSzeCu0,30646
75
+ sempy_labs/_bpa_translation/_model/_translations_sv-SE.po,sha256=430zBBJW9WpvSYxHbBIReJXh8mqZRK7Sx56KVm5h9Zs,30742
76
+ sempy_labs/_bpa_translation/_model/_translations_ta-IN.po,sha256=jHJ8GDDtMUihkL0AJSeHpQKWPN6v7hc4z3qnv48JGZg,59930
77
+ sempy_labs/_bpa_translation/_model/_translations_te-IN.po,sha256=eA4fCPLJTVOX8nYJIm0RB6TUJ-LwV8Y7Umj2FWfdmo8,54810
78
+ sempy_labs/_bpa_translation/_model/_translations_th-TH.po,sha256=kZeMgGHn0J454eZJz9oQ0Yxi68Ziej7gbbu5-T_5mko,50906
79
+ sempy_labs/_bpa_translation/_model/_translations_tr-TR.po,sha256=NdW-X4E0QmeLKM0WH-qiHje3YEBrYPKCM0uFXOTsTOA,31759
80
+ sempy_labs/_bpa_translation/_model/_translations_uk-UA.po,sha256=3NsFN8hoor_5L6738FjpJ8o4spwp8FNFGbVItHD-_ec,43500
81
+ sempy_labs/_bpa_translation/_model/_translations_zh-CN.po,sha256=ipMbnet7ZI5mZoC8KonYKVwGmFLHFB_9KIDOoBgSNfo,26815
82
+ sempy_labs/_bpa_translation/_model/_translations_zu-ZA.po,sha256=5v6tVKGruqneAeMoa6F3tyg_JBL8qOpqOJofWpq2W3U,31518
83
+ sempy_labs/admin/__init__.py,sha256=4TdPPh5SW3cBrtZXnTsiFQnOir5nwP5oU4kX9m5vINA,1561
84
+ sempy_labs/admin/_basic_functions.py,sha256=ITCDRd45ygorwj74rZr5WoV6-6-OeCJ9Jejp6UMr6uY,37181
85
+ sempy_labs/admin/_domains.py,sha256=tVjUiV4bLdVKl665ouYGfzYPFsRhPwYHYy7efCncvsE,12337
86
+ sempy_labs/directlake/__init__.py,sha256=etaj-3wqe5t93mu74tGYjEOQ6gtHWUogidOygiVvlq8,2131
84
87
  sempy_labs/directlake/_directlake_schema_compare.py,sha256=ocHFU6E6HSKgcNLywGM0dx0ie9AXYwk-E7o7EYcqiN4,4422
85
- sempy_labs/directlake/_directlake_schema_sync.py,sha256=dGit9iahUgw-H5Pb9iozrtEQWbtPoND5R8HCJnT7UiQ,4100
86
- sempy_labs/directlake/_dl_helper.py,sha256=K4IN37gA_aRaFjpUT6hN1ExBMOR04_be2RSOtHh7k0Y,9260
88
+ sempy_labs/directlake/_directlake_schema_sync.py,sha256=fhh6Xjd42HjI5x_Ejwq1N4qqnXQsKpXmyPcYl7cNG6A,4151
89
+ sempy_labs/directlake/_dl_helper.py,sha256=76i3yr9fqohHIZwrAeooWVCxrTyVzi5Hu6YlFjFms5E,9321
87
90
  sempy_labs/directlake/_generate_shared_expression.py,sha256=EauK1M4fabCZjsHYAWxEYaVJKqxJ99nZQaN2pKdd1lg,3077
88
91
  sempy_labs/directlake/_get_directlake_lakehouse.py,sha256=sovI4ds2SEgkp4Fi465jtJ4seRvQxdYgcixRDvsUwNM,2321
89
- sempy_labs/directlake/_get_shared_expression.py,sha256=Xl2_GYqRll95cN7JjwLlULbcRXM71Ij9JkrYAp7cNJM,1943
90
- sempy_labs/directlake/_guardrails.py,sha256=A-Bxdx3qytvVlard9oDEpR3KTMp3n3n-cHGV8Nq5Igc,2501
92
+ sempy_labs/directlake/_get_shared_expression.py,sha256=js7qryOyNZT0m-aGywGFq5AufQGeRIwfxYHJnc70oaw,2070
93
+ sempy_labs/directlake/_guardrails.py,sha256=elPIrqBy7gX7ZhVC7dBqhuFohET9QX9cCX1Harwrw3A,2525
91
94
  sempy_labs/directlake/_list_directlake_model_calc_tables.py,sha256=_rpnbgsFAz2W16PpgIOB0Rj_Fs1ZKrDbz3DUaaR_bfU,2143
92
- sempy_labs/directlake/_show_unsupported_directlake_objects.py,sha256=iSiMW4tBDEEsznDKx_7p7uDV6neI5PnsakvU2pytRy4,3331
93
- sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py,sha256=LpxYPxF_rkLD2okyKejLIV-qA8UeJ9xRWyv32kNdR_c,2822
94
- sempy_labs/directlake/_update_directlake_partition_entity.py,sha256=DCPNZfhqVG_yXnQbrMuattGGo1tuXt54RdAaiN84MSQ,8570
95
- sempy_labs/directlake/_warm_cache.py,sha256=X4R2_i4jFnFXYmwhDIxPb9h1CdPVLzFKHItsz0QpeRg,8248
95
+ sempy_labs/directlake/_show_unsupported_directlake_objects.py,sha256=xm6bih0mbYfWP6ca8BKMZobfS4hhcHNFIhR5I6sNpgw,3181
96
+ sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py,sha256=X-eNLMhAftsdfs9OOqRcB3tM5X8j9zrN1JqYXpntc2U,5843
97
+ sempy_labs/directlake/_update_directlake_partition_entity.py,sha256=Z67WolTLIrflLFBvRuhmE_MxYGhSBQCFvjqojz6yavw,7614
98
+ sempy_labs/directlake/_warm_cache.py,sha256=b7XvH74nQrEoraOflrXs4-fVuiLtRrmsQI35TBnYEqs,8307
96
99
  sempy_labs/lakehouse/__init__.py,sha256=6LVQltQ3cjyiuxvjXTuNdJ163zSqi4h_tEZY4zsxuSw,647
97
100
  sempy_labs/lakehouse/_get_lakehouse_columns.py,sha256=Bb_iCTlNwl0wdN4dW_E7tVnfbHhHwQT_l0SUqvcbYpo,2582
98
- sempy_labs/lakehouse/_get_lakehouse_tables.py,sha256=W5ZNC52v79FBXBhHwmhnyQHBuy-PnDJyC5OX4zf-h_4,8802
101
+ sempy_labs/lakehouse/_get_lakehouse_tables.py,sha256=zizPKtwDojIN6wbPhrQOUL6-_-kq8zqfbsT8BmS94i8,9010
99
102
  sempy_labs/lakehouse/_lakehouse.py,sha256=_yn0ySUrJQD9nySa3gFpEGr6AvF-vOKIMNJruotfxHQ,5224
100
- sempy_labs/lakehouse/_shortcuts.py,sha256=MT_Cqog5cTMz9fN3M_ZjAaQSjXXiyCyPWGY8LbaXZsI,6977
103
+ sempy_labs/lakehouse/_shortcuts.py,sha256=tHkeLcSOiDv36XFysyiQBSKsq9-ohb20vXziU-lf0G4,7337
101
104
  sempy_labs/migration/__init__.py,sha256=w4vvGk6wTWXVfofJDmio2yIFvSSJsxOpjv6mvNGmrOI,1043
102
- sempy_labs/migration/_create_pqt_file.py,sha256=4u5cod8Q0IDMoNicUAzNBfAVlE9OSd3mHJcSSRCIdgQ,9246
103
- sempy_labs/migration/_migrate_calctables_to_lakehouse.py,sha256=y5fDjqgl-rpXgZWMGagLQS_aUqJ2ksWLR-cnriWJO7Q,17986
104
- sempy_labs/migration/_migrate_calctables_to_semantic_model.py,sha256=GC3zthtCsESLl_Mao-3C01_CzbfGBDTaEdq6k0DT2yQ,6203
105
- sempy_labs/migration/_migrate_model_objects_to_semantic_model.py,sha256=DAXz5TwPlrDxxciBp3NrTOlnkjeKaOYfntWMgyCXI10,23318
106
- sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py,sha256=TX0NIffDocbK1B4cfssUHXjOG1htcaFOFWzDsBCGsi0,6515
107
- sempy_labs/migration/_migration_validation.py,sha256=ZsUdVlBmo03ycaZE6fFRRGU6qpEDZ_lcN8C-iuAcC30,2738
108
- sempy_labs/migration/_refresh_calc_tables.py,sha256=eDj0OJQ07Tum4umZH0NsUW5Rx_YXEpGnAu8OVVoQ4yk,5190
105
+ sempy_labs/migration/_create_pqt_file.py,sha256=RgRo1lG9lex9Xwe5dwSJ2udHiE7w0N_a5BilS2cX6xo,9320
106
+ sempy_labs/migration/_migrate_calctables_to_lakehouse.py,sha256=5fSZHylS8yLmk7maYDsvKbOqB9unxT4sQZq5HxBZwQY,17969
107
+ sempy_labs/migration/_migrate_calctables_to_semantic_model.py,sha256=yNSx126ru7-mUXI3iISwmw8a5jRCwcWw4l5eMXldrcU,6253
108
+ sempy_labs/migration/_migrate_model_objects_to_semantic_model.py,sha256=8IN45AKxic3_4yrC-N5rqWMzO6bCLF9qoyWxbxrvBHc,22900
109
+ sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py,sha256=6B50BkJW70p0ZdmXKAQsPVsaJUt7_5Ez_KP3iyaBcg4,7046
110
+ sempy_labs/migration/_migration_validation.py,sha256=pl5Yv4BwRHZfAL0p2soj_Gk8FL3UcwiqKbX23pJe1oQ,2788
111
+ sempy_labs/migration/_refresh_calc_tables.py,sha256=gUFssZ5vyN4OmViLYkBNkLmYscvQTk8RBZ-i_lrCJYU,5239
109
112
  sempy_labs/report/_BPAReportTemplate.json,sha256=9Uh-7E6d2ooxQ7j5JRayv_ayEULc7Gzg42kZGKdOqH8,63920
110
- sempy_labs/report/__init__.py,sha256=LqbIi1SnB532l79ldsFbeIkk-6dEnWkJYgNCaF2IR08,1056
111
- sempy_labs/report/_generate_report.py,sha256=b5yJ8tvOuSE6suE27iQyklMC18TinY4Iz57Kih0GOnM,12060
113
+ sempy_labs/report/__init__.py,sha256=esE_i1lL2AdcwWs7cE8AKSXZy_7w_4jJJtFULFkDPcU,1244
114
+ sempy_labs/report/_download_report.py,sha256=C3jsUJ59L5iv8H9NJWVlIuMUrr66VCnVG4xJJ-hACXs,2772
115
+ sempy_labs/report/_generate_report.py,sha256=7MbGqXXRS4l76v3rAZgBMMU4j3QEFM9Lxz8ko5yjEcE,12560
116
+ sempy_labs/report/_paginated.py,sha256=-u0vV6byPOBWUOmeBtjPCTmarymucoRv_DvXA54FIHY,2281
112
117
  sempy_labs/report/_report_bpa.py,sha256=pvj6BdSALuMTB-nl9L-TOKaTXqBpIr3CqkJhdXd0YSQ,13570
113
118
  sempy_labs/report/_report_bpa_rules.py,sha256=tPVGA0hmE6QMLlWtig7Va7Ksr2yXWl_Lndq--tWWd6w,4959
114
- sempy_labs/report/_report_functions.py,sha256=ITf1meTcq9PvESB6pennU2sRPCt2doyCbA23tRak_3w,29304
119
+ sempy_labs/report/_report_functions.py,sha256=nKqsVsjGrv8TUXsBXpb5ejEopAaFELc7YzhGerJUTBI,30099
115
120
  sempy_labs/report/_report_helper.py,sha256=fkSo5m3_KlAlo-fu8FTnxINigWbZI66ex-r44WalKsw,8711
116
121
  sempy_labs/report/_report_list_functions.py,sha256=4k-bPEi4uW_ozHTZNc_67idP1LQZPT-gO9ToRCv06fk,3127
117
- sempy_labs/report/_report_rebind.py,sha256=I0LVxMmPzchZLuHsz2wsH4uSzvhJNTgIFwOIVZ-Dm2c,5017
118
- sempy_labs/report/_reportwrapper.py,sha256=Ud88HmUmWLfG5CgHXSXBraOOea_DVvP3z_cl_hqDOTE,75724
122
+ sempy_labs/report/_report_rebind.py,sha256=GbOfEb9qz4SdXVGopiWSkGMDKnneJxd7wx4_OWKZ1Js,5188
123
+ sempy_labs/report/_reportwrapper.py,sha256=f5nVYKHqUjqoTBLcwZbNlH9YBZlWqadpfkLJYvJ2WNg,75780
119
124
  sempy_labs/report/_bpareporttemplate/.platform,sha256=kWRa6B_KwSYLsvVFDx372mQriQO8v7dJ_YzQV_cfD-Q,303
120
125
  sempy_labs/report/_bpareporttemplate/definition.pbir,sha256=bttyHZYKqjA8OBb_cezGlX4H82cDvGZVCl1QB3fij4E,343
121
126
  sempy_labs/report/_bpareporttemplate/.pbi/localSettings.json,sha256=kzjBlNdjbsSBBSHBwbQc298AJCr9Vp6Ex0D5PemUuT0,1578
@@ -146,9 +151,9 @@ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visua
146
151
  sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/page.json,sha256=wBVuNc8S2NaUA0FC708w6stmR2djNZp8nAsHMqesgsc,293
147
152
  sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/visuals/ce8532a7e25020271077/visual.json,sha256=mlY6t9OlSe-Y6_QmXJpS1vggU6Y3FjISUKECL8FVSg8,931
148
153
  sempy_labs/tom/__init__.py,sha256=Qbs8leW0fjzvWwOjyWK3Hjeehu7IvpB1beASGsi28bk,121
149
- sempy_labs/tom/_model.py,sha256=t1IUh9Mqe1swzHlOZ1r7dcz5wWBFPq7MyeBLIbstrHk,168731
150
- semantic_link_labs-0.8.3.dist-info/LICENSE,sha256=ws_MuBL-SCEBqPBFl9_FqZkaaydIJmxHrJG2parhU4M,1141
151
- semantic_link_labs-0.8.3.dist-info/METADATA,sha256=uVZzCOFYEBbKVOesWFT3xJroaca3lI7qxolC7U9yDX8,16718
152
- semantic_link_labs-0.8.3.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
153
- semantic_link_labs-0.8.3.dist-info/top_level.txt,sha256=kiQX1y42Dbein1l3Q8jMUYyRulDjdlc2tMepvtrvixQ,11
154
- semantic_link_labs-0.8.3.dist-info/RECORD,,
154
+ sempy_labs/tom/_model.py,sha256=gW0uR-Fx8zNkaIZS6wUTtEJeYQjMsbcaSft9lv9SGGA,172011
155
+ semantic_link_labs-0.8.5.dist-info/LICENSE,sha256=ws_MuBL-SCEBqPBFl9_FqZkaaydIJmxHrJG2parhU4M,1141
156
+ semantic_link_labs-0.8.5.dist-info/METADATA,sha256=K5_wjyzRaw-p85GzF4laagXYMFuSIxR0ypuXx6nadno,19241
157
+ semantic_link_labs-0.8.5.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
158
+ semantic_link_labs-0.8.5.dist-info/top_level.txt,sha256=kiQX1y42Dbein1l3Q8jMUYyRulDjdlc2tMepvtrvixQ,11
159
+ semantic_link_labs-0.8.5.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.1.0)
2
+ Generator: setuptools (75.5.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
sempy_labs/__init__.py CHANGED
@@ -1,3 +1,23 @@
1
+ from sempy_labs._mirrored_databases import (
2
+ get_mirrored_database_definition,
3
+ get_mirroring_status,
4
+ list_mirrored_databases,
5
+ stop_mirroring,
6
+ start_mirroring,
7
+ create_mirrored_database,
8
+ delete_mirrored_database,
9
+ update_mirrored_database_definition,
10
+ get_tables_mirroring_status,
11
+ )
12
+ from sempy_labs._managed_private_endpoints import (
13
+ list_managed_private_endpoints,
14
+ create_managed_private_endpoint,
15
+ delete_managed_private_endpoint,
16
+ )
17
+ from sempy_labs._workloads import (
18
+ list_workloads,
19
+ patch_workload,
20
+ )
1
21
  from sempy_labs._external_data_shares import (
2
22
  list_external_data_shares_in_item,
3
23
  create_external_data_share,
@@ -17,6 +37,8 @@ from sempy_labs._warehouses import (
17
37
  create_warehouse,
18
38
  list_warehouses,
19
39
  delete_warehouse,
40
+ get_warehouse_columns,
41
+ get_warehouse_tables,
20
42
  )
21
43
  from sempy_labs._data_pipelines import (
22
44
  list_data_pipelines,
@@ -100,6 +122,8 @@ from sempy_labs._workspaces import (
100
122
  from sempy_labs._notebooks import (
101
123
  get_notebook_definition,
102
124
  import_notebook_from_web,
125
+ update_notebook_definition,
126
+ create_notebook,
103
127
  )
104
128
  from sempy_labs._sql import (
105
129
  ConnectWarehouse,
@@ -127,6 +151,7 @@ from sempy_labs._dataflows import (
127
151
  list_dataflow_storage_accounts,
128
152
  assign_workspace_to_dataflow_storage,
129
153
  list_dataflows,
154
+ list_upstream_dataflows,
130
155
  )
131
156
  from sempy_labs._connections import (
132
157
  list_connections,
@@ -135,7 +160,11 @@ from sempy_labs._connections import (
135
160
  # create_connection_vnet,
136
161
  # create_connection_on_prem
137
162
  )
138
- from sempy_labs._dax import evaluate_dax_impersonation
163
+ from sempy_labs._dax import (
164
+ evaluate_dax_impersonation,
165
+ get_dax_query_dependencies,
166
+ get_dax_query_memory_size,
167
+ )
139
168
  from sempy_labs._generate_semantic_model import (
140
169
  create_blank_semantic_model,
141
170
  create_semantic_model_from_bim,
@@ -209,6 +238,7 @@ from sempy_labs._query_scale_out import (
209
238
  from sempy_labs._refresh_semantic_model import (
210
239
  refresh_semantic_model,
211
240
  cancel_dataset_refresh,
241
+ get_semantic_model_refresh_history,
212
242
  )
213
243
  from sempy_labs._translations import translate_semantic_model
214
244
  from sempy_labs._vertipaq import (
@@ -373,4 +403,26 @@ __all__ = [
373
403
  "revoke_external_data_share",
374
404
  "migrate_fabric_trial_capacity",
375
405
  "create_resource_group",
406
+ "list_workloads",
407
+ "patch_workload",
408
+ "update_notebook_definition",
409
+ "create_notebook",
410
+ "get_semantic_model_refresh_history",
411
+ "get_warehouse_columns",
412
+ "get_warehouse_tables",
413
+ "list_managed_private_endpoints",
414
+ "create_managed_private_endpoint",
415
+ "delete_managed_private_endpoint",
416
+ "get_dax_query_dependencies",
417
+ "get_dax_query_memory_size",
418
+ "get_mirrored_database_definition",
419
+ "get_mirroring_status",
420
+ "list_mirrored_databases",
421
+ "stop_mirroring",
422
+ "start_mirroring",
423
+ "create_mirrored_database",
424
+ "delete_mirrored_database",
425
+ "update_mirrored_database_definition",
426
+ "get_tables_mirroring_status",
427
+ "list_upstream_dataflows",
376
428
  ]
@@ -579,9 +579,7 @@ msgstr ""
579
579
  msgid ""
580
580
  "Set dimensions tables to dual mode instead of import when using DirectQuery "
581
581
  "on fact tables"
582
- msgstr ""
583
- "https://learn.microsoft.com/power-bi/transform-model/desktop-storage-"
584
- "mode#propagation-of-the-dual-setting"
582
+ msgstr "DirectQuery በሚጠቀሙበት ጊዜ የመጠየቂያ አፈጻጸም ለማሻሻል ወደ Dual mode መመደብ አለበት."
585
583
 
586
584
  # description
587
585
  msgid "Minimize Power Query transformations"
@@ -717,6 +715,11 @@ msgstr ""
717
715
  "የተለያዩ ስሞች ያሏቸው እና በተመሳሳይ የ DAX አገላለጽ የተገለፁ ሁለት መለኪያዎች የተትረፍርፈውን ለመቀነስ ማስወገድ "
718
716
  "አለባቸው."
719
717
 
718
+ # description
719
+ msgid ""
720
+ "Avoid addition or subtraction of constant values to results of divisions"
721
+ msgstr "የማያቋርጥ ዋጋ መጨመር የሥራ ውርጅና ሊያስከትል ይችላል።"
722
+
720
723
  # description
721
724
  msgid "Avoid using '1-(x/y)' syntax"
722
725
  msgstr ""
@@ -785,9 +788,15 @@ msgid "Ensure tables have relationships"
785
788
  msgstr "ይህ ደንብ በሞዴሉ ውስጥ ከማንኛውም ሌላ ጠረጴዛ ጋር ግንኙነት የሌላቸው ሠንጠረዦች ጎላ አድርጎ ይገልጻል።"
786
789
 
787
790
  # description
788
- msgid "Visible objects with no description"
791
+ msgid "Calculation groups with no calculation items"
789
792
  msgstr "የስሌት ቡድኖች የስሌት እቃዎች ካልኖራቸው በስተቀር ምንም ተግባር የላቸውም።"
790
793
 
794
+ # description
795
+ msgid "Visible objects with no description"
796
+ msgstr ""
797
+ "በዕቃዎች ላይ መግለጫዎችን ይጨምሩ. እነዚህ መግለጫዎች በፓወር ቢ አይ ዴስክቶፕ ውስጥ በሚገኘው የመስክ ዝርዝር ውስጥ "
798
+ "በhover ላይ ይታያሉ. በተጨማሪም እነዚህን መግለጫዎች አውቶማቲክ የመረጃ መዝገበ ቃላት ለመፍጠር መጠቀም ትችላለህ።"
799
+
791
800
  # description
792
801
  msgid "Provide format string for 'Date' columns"
793
802
  msgstr "በስማቸው \"ወር\" ያላቸው የአይነት \"DateTime\" ዓምዶች \"mm/dd/yyyy\" ተብለው ሊሰሩ ይገባል።"
@@ -806,9 +815,19 @@ msgstr "የሚታዩ እርምጃዎች የእነሱ ቅርጽ አውታር ን
806
815
  msgid "Add data category for columns"
807
816
  msgstr "ለተስማሚ ዓምዶች የዳታ መደብ ርብርብ ይጨምሩ."
808
817
 
818
+ # description
819
+ msgid ""
820
+ "Percentages should be formatted with thousands separators and 1 decimal"
821
+ msgstr "የተሻለ የተጠቃሚ ልምድ ለማግኘት, የመተግበሪያ መለኪያዎች በ a '%' ምልክት መሰራት አለባቸው."
822
+
823
+ # description
824
+ msgid ""
825
+ "Whole numbers should be formatted with thousands separators and no decimals"
826
+ msgstr "የተሻለ የተጠቃሚ ተሞክሮ ለማግኘት, ሙሉ ቁጥሮች commas ጋር መሰራት አለበት."
827
+
809
828
  # description
810
829
  msgid "Hide foreign keys"
811
- msgstr "የውጭ ቁልፍ ሁሌም መደበቅ አለበት።"
830
+ msgstr "የውጭ ቁልፎች መጨረሻ ተጠቃሚዎች ሊጠቀሙባቸው ስለማይገባ ምንጊዜም መደበቅ ይኖርባቸዋል።"
812
831
 
813
832
  # description
814
833
  msgid "Mark primary keys"
@@ -590,8 +590,8 @@ msgid ""
590
590
  "Set dimensions tables to dual mode instead of import when using DirectQuery "
591
591
  "on fact tables"
592
592
  msgstr ""
593
- "https://learn.microsoft.com/power-bi/transform-model/desktop-storage-"
594
- "mode#propagation-of-the-dual-setting"
593
+ "عند استخدام DirectQuery، يجب تعيين جداول الأبعاد إلى الوضع المزدوج لتحسين "
594
+ "أداء الاستعلام."
595
595
 
596
596
  # description
597
597
  msgid "Minimize Power Query transformations"
@@ -735,6 +735,11 @@ msgstr ""
735
735
  msgid "No two measures should have the same definition"
736
736
  msgstr "يجب تجنب تدبيرين بأسماء مختلفة ومعرفين بنفس تعبير DAX لتقليل التكرار."
737
737
 
738
+ # description
739
+ msgid ""
740
+ "Avoid addition or subtraction of constant values to results of divisions"
741
+ msgstr "قد تؤدي إضافة قيمة ثابتة إلى تدهور الأداء."
742
+
738
743
  # description
739
744
  msgid "Avoid using '1-(x/y)' syntax"
740
745
  msgstr ""
@@ -809,9 +814,16 @@ msgstr ""
809
814
  "تبرز هذه القاعدة الجداول غير المتصلة بأي جدول آخر في النموذج له علاقة."
810
815
 
811
816
  # description
812
- msgid "Visible objects with no description"
817
+ msgid "Calculation groups with no calculation items"
813
818
  msgstr "مجموعات الحساب ليس لها وظيفة ما لم يكن لديها عناصر حسابية."
814
819
 
820
+ # description
821
+ msgid "Visible objects with no description"
822
+ msgstr ""
823
+ "إضافة أوصاف إلى الكائنات. تظهر هذه الأوصاف عند التمرير داخل قائمة الحقول في "
824
+ "Power BI Desktop. بالإضافة إلى ذلك، يمكنك الاستفادة من هذه الأوصاف لإنشاء "
825
+ "قاموس بيانات تلقائي."
826
+
815
827
  # description
816
828
  msgid "Provide format string for 'Date' columns"
817
829
  msgstr ""
@@ -832,9 +844,21 @@ msgstr "يجب تعيين خاصية سلسلة التنسيق الخاصة با
832
844
  msgid "Add data category for columns"
833
845
  msgstr "إضافة خاصية فئة البيانات للأعمدة المناسبة."
834
846
 
847
+ # description
848
+ msgid ""
849
+ "Percentages should be formatted with thousands separators and 1 decimal"
850
+ msgstr "للحصول على تجربة مستخدم أفضل ، يجب تنسيق مقاييس percengage بعلامة \"٪\"."
851
+
852
+ # description
853
+ msgid ""
854
+ "Whole numbers should be formatted with thousands separators and no decimals"
855
+ msgstr "للحصول على تجربة مستخدم أفضل ، يجب تنسيق الأرقام الصحيحة بفواصل."
856
+
835
857
  # description
836
858
  msgid "Hide foreign keys"
837
- msgstr "يجب دائما إخفاء المفاتيح الخارجية."
859
+ msgstr ""
860
+ "يجب دائما إخفاء المفاتيح الخارجية حيث لا ينبغي استخدامها من قبل المستخدمين "
861
+ "النهائيين."
838
862
 
839
863
  # description
840
864
  msgid "Mark primary keys"