semantic-link-labs 0.7.3__py3-none-any.whl → 0.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of semantic-link-labs might be problematic. Click here for more details.

Files changed (60) hide show
  1. {semantic_link_labs-0.7.3.dist-info → semantic_link_labs-0.7.4.dist-info}/METADATA +14 -3
  2. {semantic_link_labs-0.7.3.dist-info → semantic_link_labs-0.7.4.dist-info}/RECORD +60 -44
  3. {semantic_link_labs-0.7.3.dist-info → semantic_link_labs-0.7.4.dist-info}/WHEEL +1 -1
  4. sempy_labs/__init__.py +63 -24
  5. sempy_labs/_bpa_translation/{_translations_am-ET.po → _model/_translations_am-ET.po} +22 -0
  6. sempy_labs/_bpa_translation/{_translations_ar-AE.po → _model/_translations_ar-AE.po} +24 -0
  7. sempy_labs/_bpa_translation/_model/_translations_bg-BG.po +938 -0
  8. sempy_labs/_bpa_translation/_model/_translations_ca-ES.po +934 -0
  9. sempy_labs/_bpa_translation/{_translations_cs-CZ.po → _model/_translations_cs-CZ.po} +179 -157
  10. sempy_labs/_bpa_translation/{_translations_da-DK.po → _model/_translations_da-DK.po} +24 -0
  11. sempy_labs/_bpa_translation/{_translations_de-DE.po → _model/_translations_de-DE.po} +77 -52
  12. sempy_labs/_bpa_translation/{_translations_el-GR.po → _model/_translations_el-GR.po} +25 -0
  13. sempy_labs/_bpa_translation/{_translations_es-ES.po → _model/_translations_es-ES.po} +67 -43
  14. sempy_labs/_bpa_translation/{_translations_fa-IR.po → _model/_translations_fa-IR.po} +24 -0
  15. sempy_labs/_bpa_translation/_model/_translations_fi-FI.po +915 -0
  16. sempy_labs/_bpa_translation/{_translations_fr-FR.po → _model/_translations_fr-FR.po} +83 -57
  17. sempy_labs/_bpa_translation/{_translations_ga-IE.po → _model/_translations_ga-IE.po} +25 -0
  18. sempy_labs/_bpa_translation/{_translations_he-IL.po → _model/_translations_he-IL.po} +23 -0
  19. sempy_labs/_bpa_translation/{_translations_hi-IN.po → _model/_translations_hi-IN.po} +24 -0
  20. sempy_labs/_bpa_translation/{_translations_hu-HU.po → _model/_translations_hu-HU.po} +25 -0
  21. sempy_labs/_bpa_translation/_model/_translations_id-ID.po +918 -0
  22. sempy_labs/_bpa_translation/{_translations_is-IS.po → _model/_translations_is-IS.po} +25 -0
  23. sempy_labs/_bpa_translation/{_translations_it-IT.po → _model/_translations_it-IT.po} +25 -0
  24. sempy_labs/_bpa_translation/{_translations_ja-JP.po → _model/_translations_ja-JP.po} +21 -0
  25. sempy_labs/_bpa_translation/_model/_translations_ko-KR.po +823 -0
  26. sempy_labs/_bpa_translation/_model/_translations_mt-MT.po +937 -0
  27. sempy_labs/_bpa_translation/{_translations_nl-NL.po → _model/_translations_nl-NL.po} +80 -56
  28. sempy_labs/_bpa_translation/{_translations_pl-PL.po → _model/_translations_pl-PL.po} +101 -76
  29. sempy_labs/_bpa_translation/{_translations_pt-BR.po → _model/_translations_pt-BR.po} +25 -0
  30. sempy_labs/_bpa_translation/{_translations_pt-PT.po → _model/_translations_pt-PT.po} +25 -0
  31. sempy_labs/_bpa_translation/_model/_translations_ro-RO.po +939 -0
  32. sempy_labs/_bpa_translation/{_translations_ru-RU.po → _model/_translations_ru-RU.po} +25 -0
  33. sempy_labs/_bpa_translation/_model/_translations_sk-SK.po +925 -0
  34. sempy_labs/_bpa_translation/_model/_translations_sl-SL.po +922 -0
  35. sempy_labs/_bpa_translation/{_translations_ta-IN.po → _model/_translations_ta-IN.po} +26 -0
  36. sempy_labs/_bpa_translation/{_translations_te-IN.po → _model/_translations_te-IN.po} +24 -0
  37. sempy_labs/_bpa_translation/{_translations_th-TH.po → _model/_translations_th-TH.po} +24 -0
  38. sempy_labs/_bpa_translation/_model/_translations_tr-TR.po +925 -0
  39. sempy_labs/_bpa_translation/_model/_translations_uk-UA.po +933 -0
  40. sempy_labs/_bpa_translation/{_translations_zh-CN.po → _model/_translations_zh-CN.po} +116 -97
  41. sempy_labs/_bpa_translation/{_translations_zu-ZA.po → _model/_translations_zu-ZA.po} +25 -0
  42. sempy_labs/_capacities.py +541 -0
  43. sempy_labs/_connections.py +138 -0
  44. sempy_labs/_environments.py +156 -0
  45. sempy_labs/_helper_functions.py +146 -8
  46. sempy_labs/_icons.py +43 -0
  47. sempy_labs/_list_functions.py +35 -900
  48. sempy_labs/_model_bpa.py +8 -32
  49. sempy_labs/_notebooks.py +143 -0
  50. sempy_labs/_query_scale_out.py +28 -7
  51. sempy_labs/_spark.py +465 -0
  52. sempy_labs/_sql.py +35 -11
  53. sempy_labs/_translations.py +3 -0
  54. sempy_labs/_vertipaq.py +160 -99
  55. sempy_labs/_workspaces.py +294 -0
  56. sempy_labs/directlake/_directlake_schema_sync.py +1 -2
  57. sempy_labs/tom/_model.py +5 -1
  58. {semantic_link_labs-0.7.3.dist-info → semantic_link_labs-0.7.4.dist-info}/LICENSE +0 -0
  59. {semantic_link_labs-0.7.3.dist-info → semantic_link_labs-0.7.4.dist-info}/top_level.txt +0 -0
  60. /sempy_labs/_bpa_translation/{_translations_sv-SE.po → _model/_translations_sv-SE.po} +0 -0
sempy_labs/_spark.py ADDED
@@ -0,0 +1,465 @@
1
+ import sempy.fabric as fabric
2
+ import pandas as pd
3
+ import sempy_labs._icons as icons
4
+ from typing import Optional
5
+ from sempy_labs._helper_functions import (
6
+ resolve_workspace_name_and_id,
7
+ )
8
+ from sempy.fabric.exceptions import FabricHTTPException
9
+
10
+
11
+ def list_custom_pools(workspace: Optional[str] = None) -> pd.DataFrame:
12
+ """
13
+ Lists all `custom pools <https://learn.microsoft.com/fabric/data-engineering/create-custom-spark-pools>`_ within a workspace.
14
+
15
+ Parameters
16
+ ----------
17
+ workspace : str, default=None
18
+ The name of the Fabric workspace.
19
+ Defaults to None which resolves to the workspace of the attached lakehouse
20
+ or if no lakehouse attached, resolves to the workspace of the notebook.
21
+
22
+ Returns
23
+ -------
24
+ pandas.DataFrame
25
+ A pandas dataframe showing all the custom pools within the Fabric workspace.
26
+ """
27
+
28
+ # https://learn.microsoft.com/rest/api/fabric/spark/custom-pools/list-workspace-custom-pools
29
+ (workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
30
+
31
+ df = pd.DataFrame(
32
+ columns=[
33
+ "Custom Pool ID",
34
+ "Custom Pool Name",
35
+ "Type",
36
+ "Node Family",
37
+ "Node Size",
38
+ "Auto Scale Enabled",
39
+ "Auto Scale Min Node Count",
40
+ "Auto Scale Max Node Count",
41
+ "Dynamic Executor Allocation Enabled",
42
+ "Dynamic Executor Allocation Min Executors",
43
+ "Dynamic Executor Allocation Max Executors",
44
+ ]
45
+ )
46
+
47
+ client = fabric.FabricRestClient()
48
+ response = client.get(f"/v1/workspaces/{workspace_id}/spark/pools")
49
+ if response.status_code != 200:
50
+ raise FabricHTTPException(response)
51
+
52
+ for i in response.json()["value"]:
53
+
54
+ aScale = i.get("autoScale", {})
55
+ d = i.get("dynamicExecutorAllocation", {})
56
+
57
+ new_data = {
58
+ "Custom Pool ID": i.get("id"),
59
+ "Custom Pool Name": i.get("name"),
60
+ "Type": i.get("type"),
61
+ "Node Family": i.get("nodeFamily"),
62
+ "Node Size": i.get("nodeSize"),
63
+ "Auto Scale Enabled": aScale.get("enabled"),
64
+ "Auto Scale Min Node Count": aScale.get("minNodeCount"),
65
+ "Auto Scale Max Node Count": aScale.get("maxNodeCount"),
66
+ "Dynamic Executor Allocation Enabled": d.get("enabled"),
67
+ "Dynamic Executor Allocation Min Executors": d.get("minExecutors"),
68
+ "Dynamic Executor Allocation Max Executors": d.get("maxExecutors"),
69
+ }
70
+ df = pd.concat([df, pd.DataFrame(new_data, index=[0])], ignore_index=True)
71
+
72
+ bool_cols = ["Auto Scale Enabled", "Dynamic Executor Allocation Enabled"]
73
+ int_cols = [
74
+ "Auto Scale Min Node Count",
75
+ "Auto Scale Max Node Count",
76
+ "Dynamic Executor Allocation Enabled",
77
+ "Dynamic Executor Allocation Min Executors",
78
+ "Dynamic Executor Allocation Max Executors",
79
+ ]
80
+
81
+ df[bool_cols] = df[bool_cols].astype(bool)
82
+ df[int_cols] = df[int_cols].astype(int)
83
+
84
+ return df
85
+
86
+
87
+ def create_custom_pool(
88
+ pool_name: str,
89
+ node_size: str,
90
+ min_node_count: int,
91
+ max_node_count: int,
92
+ min_executors: int,
93
+ max_executors: int,
94
+ node_family: Optional[str] = "MemoryOptimized",
95
+ auto_scale_enabled: Optional[bool] = True,
96
+ dynamic_executor_allocation_enabled: Optional[bool] = True,
97
+ workspace: Optional[str] = None,
98
+ ):
99
+ """
100
+ Creates a `custom pool <https://learn.microsoft.com/fabric/data-engineering/create-custom-spark-pools>`_ within a workspace.
101
+
102
+ Parameters
103
+ ----------
104
+ pool_name : str
105
+ The custom pool name.
106
+ node_size : str
107
+ The `node size <https://learn.microsoft.com/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#nodesize>`_.
108
+ min_node_count : int
109
+ The `minimum node count <https://learn.microsoft.com/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#autoscaleproperties>`_.
110
+ max_node_count : int
111
+ The `maximum node count <https://learn.microsoft.com/en-us/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#autoscaleproperties>`_.
112
+ min_executors : int
113
+ The `minimum executors <https://learn.microsoft.com/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#dynamicexecutorallocationproperties>`_.
114
+ max_executors : int
115
+ The `maximum executors <https://learn.microsoft.com/en-us/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#dynamicexecutorallocationproperties>`_.
116
+ node_family : str, default='MemoryOptimized'
117
+ The `node family <https://learn.microsoft.com/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#nodefamily>`_.
118
+ auto_scale_enabled : bool, default=True
119
+ The status of `auto scale <https://learn.microsoft.com/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#autoscaleproperties>`_.
120
+ dynamic_executor_allocation_enabled : bool, default=True
121
+ The status of the `dynamic executor allocation <https://learn.microsoft.com/en-us/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#dynamicexecutorallocationproperties>`_.
122
+ workspace : str, default=None
123
+ The name of the Fabric workspace.
124
+ Defaults to None which resolves to the workspace of the attached lakehouse
125
+ or if no lakehouse attached, resolves to the workspace of the notebook.
126
+ """
127
+
128
+ # https://learn.microsoft.com/en-us/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool
129
+ (workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
130
+
131
+ request_body = {
132
+ "name": pool_name,
133
+ "nodeFamily": node_family,
134
+ "nodeSize": node_size,
135
+ "autoScale": {
136
+ "enabled": auto_scale_enabled,
137
+ "minNodeCount": min_node_count,
138
+ "maxNodeCount": max_node_count,
139
+ },
140
+ "dynamicExecutorAllocation": {
141
+ "enabled": dynamic_executor_allocation_enabled,
142
+ "minExecutors": min_executors,
143
+ "maxExecutors": max_executors,
144
+ },
145
+ }
146
+
147
+ client = fabric.FabricRestClient()
148
+ response = client.post(
149
+ f"/v1/workspaces/{workspace_id}/spark/pools", json=request_body
150
+ )
151
+
152
+ if response.status_code != 201:
153
+ raise FabricHTTPException(response)
154
+ print(
155
+ f"{icons.green_dot} The '{pool_name}' spark pool has been created within the '{workspace}' workspace."
156
+ )
157
+
158
+
159
+ def update_custom_pool(
160
+ pool_name: str,
161
+ node_size: Optional[str] = None,
162
+ min_node_count: Optional[int] = None,
163
+ max_node_count: Optional[int] = None,
164
+ min_executors: Optional[int] = None,
165
+ max_executors: Optional[int] = None,
166
+ node_family: Optional[str] = None,
167
+ auto_scale_enabled: Optional[bool] = None,
168
+ dynamic_executor_allocation_enabled: Optional[bool] = None,
169
+ workspace: Optional[str] = None,
170
+ ):
171
+ """
172
+ Updates the properties of a `custom pool <https://learn.microsoft.com/fabric/data-engineering/create-custom-spark-pools>`_ within a workspace.
173
+
174
+ Parameters
175
+ ----------
176
+ pool_name : str
177
+ The custom pool name.
178
+ node_size : str, default=None
179
+ The `node size <https://learn.microsoft.com/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#nodesize>`_.
180
+ Defaults to None which keeps the existing property setting.
181
+ min_node_count : int, default=None
182
+ The `minimum node count <https://learn.microsoft.com/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#autoscaleproperties>`_.
183
+ Defaults to None which keeps the existing property setting.
184
+ max_node_count : int, default=None
185
+ The `maximum node count <https://learn.microsoft.com/en-us/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#autoscaleproperties>`_.
186
+ Defaults to None which keeps the existing property setting.
187
+ min_executors : int, default=None
188
+ The `minimum executors <https://learn.microsoft.com/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#dynamicexecutorallocationproperties>`_.
189
+ Defaults to None which keeps the existing property setting.
190
+ max_executors : int, default=None
191
+ The `maximum executors <https://learn.microsoft.com/en-us/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#dynamicexecutorallocationproperties>`_.
192
+ Defaults to None which keeps the existing property setting.
193
+ node_family : str, default=None
194
+ The `node family <https://learn.microsoft.com/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#nodefamily>`_.
195
+ Defaults to None which keeps the existing property setting.
196
+ auto_scale_enabled : bool, default=None
197
+ The status of `auto scale <https://learn.microsoft.com/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#autoscaleproperties>`_.
198
+ Defaults to None which keeps the existing property setting.
199
+ dynamic_executor_allocation_enabled : bool, default=None
200
+ The status of the `dynamic executor allocation <https://learn.microsoft.com/en-us/rest/api/fabric/spark/custom-pools/create-workspace-custom-pool?tabs=HTTP#dynamicexecutorallocationproperties>`_.
201
+ Defaults to None which keeps the existing property setting.
202
+ workspace : str, default=None
203
+ The name of the Fabric workspace.
204
+ Defaults to None which resolves to the workspace of the attached lakehouse
205
+ or if no lakehouse attached, resolves to the workspace of the notebook.
206
+ """
207
+
208
+ # https://learn.microsoft.com/en-us/rest/api/fabric/spark/custom-pools/update-workspace-custom-pool?tabs=HTTP
209
+ (workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
210
+
211
+ df = list_custom_pools(workspace=workspace)
212
+ df_pool = df[df["Custom Pool Name"] == pool_name]
213
+
214
+ if len(df_pool) == 0:
215
+ raise ValueError(
216
+ f"{icons.red_dot} The '{pool_name}' custom pool does not exist within the '{workspace}'. Please choose a valid custom pool."
217
+ )
218
+
219
+ if node_family is None:
220
+ node_family = df_pool["Node Family"].iloc[0]
221
+ if node_size is None:
222
+ node_size = df_pool["Node Size"].iloc[0]
223
+ if auto_scale_enabled is None:
224
+ auto_scale_enabled = bool(df_pool["Auto Scale Enabled"].iloc[0])
225
+ if min_node_count is None:
226
+ min_node_count = int(df_pool["Min Node Count"].iloc[0])
227
+ if max_node_count is None:
228
+ max_node_count = int(df_pool["Max Node Count"].iloc[0])
229
+ if dynamic_executor_allocation_enabled is None:
230
+ dynamic_executor_allocation_enabled = bool(
231
+ df_pool["Dynami Executor Allocation Enabled"].iloc[0]
232
+ )
233
+ if min_executors is None:
234
+ min_executors = int(df_pool["Min Executors"].iloc[0])
235
+ if max_executors is None:
236
+ max_executors = int(df_pool["Max Executors"].iloc[0])
237
+
238
+ request_body = {
239
+ "name": pool_name,
240
+ "nodeFamily": node_family,
241
+ "nodeSize": node_size,
242
+ "autoScale": {
243
+ "enabled": auto_scale_enabled,
244
+ "minNodeCount": min_node_count,
245
+ "maxNodeCount": max_node_count,
246
+ },
247
+ "dynamicExecutorAllocation": {
248
+ "enabled": dynamic_executor_allocation_enabled,
249
+ "minExecutors": min_executors,
250
+ "maxExecutors": max_executors,
251
+ },
252
+ }
253
+
254
+ client = fabric.FabricRestClient()
255
+ response = client.post(
256
+ f"/v1/workspaces/{workspace_id}/spark/pools", json=request_body
257
+ )
258
+
259
+ if response.status_code != 200:
260
+ raise FabricHTTPException(response)
261
+ print(
262
+ f"{icons.green_dot} The '{pool_name}' spark pool within the '{workspace}' workspace has been updated."
263
+ )
264
+
265
+
266
+ def delete_custom_pool(pool_name: str, workspace: Optional[str] = None):
267
+ """
268
+ Deletes a `custom pool <https://learn.microsoft.com/fabric/data-engineering/create-custom-spark-pools>`_ within a workspace.
269
+
270
+ Parameters
271
+ ----------
272
+ pool_name : str
273
+ The custom pool name.
274
+ workspace : str, default=None
275
+ The name of the Fabric workspace.
276
+ Defaults to None which resolves to the workspace of the attached lakehouse
277
+ or if no lakehouse attached, resolves to the workspace of the notebook.
278
+ """
279
+
280
+ (workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
281
+
282
+ dfL = list_custom_pools(workspace=workspace)
283
+ dfL_filt = dfL[dfL["Custom Pool Name"] == pool_name]
284
+
285
+ if len(dfL_filt) == 0:
286
+ raise ValueError(
287
+ f"{icons.red_dot} The '{pool_name}' custom pool does not exist within the '{workspace}' workspace."
288
+ )
289
+ poolId = dfL_filt["Custom Pool ID"].iloc[0]
290
+
291
+ client = fabric.FabricRestClient()
292
+ response = client.delete(f"/v1/workspaces/{workspace_id}/spark/pools/{poolId}")
293
+
294
+ if response.status_code != 200:
295
+ raise FabricHTTPException(response)
296
+ print(
297
+ f"{icons.green_dot} The '{pool_name}' spark pool has been deleted from the '{workspace}' workspace."
298
+ )
299
+
300
+
301
+ def get_spark_settings(workspace: Optional[str] = None) -> pd.DataFrame:
302
+ """
303
+ Shows the spark settings for a workspace.
304
+
305
+ Parameters
306
+ ----------
307
+ workspace : str, default=None
308
+ The name of the Fabric workspace.
309
+ Defaults to None which resolves to the workspace of the attached lakehouse
310
+ or if no lakehouse attached, resolves to the workspace of the notebook.
311
+
312
+ Returns
313
+ -------
314
+ pandas.DataFrame
315
+ A pandas dataframe showing the spark settings for a workspace.
316
+ """
317
+
318
+ # https://learn.microsoft.com/en-us/rest/api/fabric/spark/workspace-settings/get-spark-settings?tabs=HTTP
319
+ (workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
320
+
321
+ df = pd.DataFrame(
322
+ columns=[
323
+ "Automatic Log Enabled",
324
+ "High Concurrency Enabled",
325
+ "Customize Compute Enabled",
326
+ "Default Pool Name",
327
+ "Default Pool Type",
328
+ "Max Node Count",
329
+ "Max Executors",
330
+ "Environment Name",
331
+ "Runtime Version",
332
+ ]
333
+ )
334
+
335
+ client = fabric.FabricRestClient()
336
+ response = client.get(f"/v1/workspaces/{workspace_id}/spark/settings")
337
+ if response.status_code != 200:
338
+ raise FabricHTTPException(response)
339
+
340
+ i = response.json()
341
+ p = i.get("pool")
342
+ dp = i.get("pool", {}).get("defaultPool", {})
343
+ sp = i.get("pool", {}).get("starterPool", {})
344
+ e = i.get("environment", {})
345
+
346
+ new_data = {
347
+ "Automatic Log Enabled": i.get("automaticLog").get("enabled"),
348
+ "High Concurrency Enabled": i.get("highConcurrency").get(
349
+ "notebookInteractiveRunEnabled"
350
+ ),
351
+ "Customize Compute Enabled": p.get("customizeComputeEnabled"),
352
+ "Default Pool Name": dp.get("name"),
353
+ "Default Pool Type": dp.get("type"),
354
+ "Max Node Count": sp.get("maxNodeCount"),
355
+ "Max Node Executors": sp.get("maxExecutors"),
356
+ "Environment Name": e.get("name"),
357
+ "Runtime Version": e.get("runtimeVersion"),
358
+ }
359
+ df = pd.concat([df, pd.DataFrame(new_data, index=[0])], ignore_index=True)
360
+
361
+ bool_cols = [
362
+ "Automatic Log Enabled",
363
+ "High Concurrency Enabled",
364
+ "Customize Compute Enabled",
365
+ ]
366
+ int_cols = ["Max Node Count", "Max Executors"]
367
+
368
+ df[bool_cols] = df[bool_cols].astype(bool)
369
+ df[int_cols] = df[int_cols].astype(int)
370
+
371
+ return df
372
+
373
+
374
+ def update_spark_settings(
375
+ automatic_log_enabled: Optional[bool] = None,
376
+ high_concurrency_enabled: Optional[bool] = None,
377
+ customize_compute_enabled: Optional[bool] = None,
378
+ default_pool_name: Optional[str] = None,
379
+ max_node_count: Optional[int] = None,
380
+ max_executors: Optional[int] = None,
381
+ environment_name: Optional[str] = None,
382
+ runtime_version: Optional[str] = None,
383
+ workspace: Optional[str] = None,
384
+ ):
385
+ """
386
+ Updates the spark settings for a workspace.
387
+
388
+ Parameters
389
+ ----------
390
+ automatic_log_enabled : bool, default=None
391
+ The status of the `automatic log <https://learn.microsoft.com/rest/api/fabric/spark/workspace-settings/update-spark-settings?tabs=HTTP#automaticlogproperties>`_.
392
+ Defaults to None which keeps the existing property setting.
393
+ high_concurrency_enabled : bool, default=None
394
+ The status of the `high concurrency <https://learn.microsoft.com/rest/api/fabric/spark/workspace-settings/update-spark-settings?tabs=HTTP#highconcurrencyproperties>`_ for notebook interactive run.
395
+ Defaults to None which keeps the existing property setting.
396
+ customize_compute_enabled : bool, default=None
397
+ `Customize compute <https://learn.microsoft.com/rest/api/fabric/spark/workspace-settings/update-spark-settings?tabs=HTTP#poolproperties>`_ configurations for items.
398
+ Defaults to None which keeps the existing property setting.
399
+ default_pool_name : str, default=None
400
+ `Default pool <https://learn.microsoft.com/rest/api/fabric/spark/workspace-settings/update-spark-settings?tabs=HTTP#poolproperties>`_ for workspace.
401
+ Defaults to None which keeps the existing property setting.
402
+ max_node_count : int, default=None
403
+ The `maximum node count <https://learn.microsoft.com/en-us/rest/api/fabric/spark/workspace-settings/update-spark-settings?tabs=HTTP#starterpoolproperties>`_.
404
+ Defaults to None which keeps the existing property setting.
405
+ max_executors : int, default=None
406
+ The `maximum executors <https://learn.microsoft.com/rest/api/fabric/spark/workspace-settings/update-spark-settings?tabs=HTTP#starterpoolproperties>`_.
407
+ Defaults to None which keeps the existing property setting.
408
+ environment_name : str, default=None
409
+ The name of the `default environment <https://learn.microsoft.com/rest/api/fabric/spark/workspace-settings/update-spark-settings?tabs=HTTP#environmentproperties>`_. Empty string indicated there is no workspace default environment
410
+ Defaults to None which keeps the existing property setting.
411
+ runtime_version : str, default=None
412
+ The `runtime version <https://learn.microsoft.com/rest/api/fabric/spark/workspace-settings/update-spark-settings?tabs=HTTP#environmentproperties>`_.
413
+ Defaults to None which keeps the existing property setting.
414
+ workspace : str, default=None
415
+ The name of the Fabric workspace.
416
+ Defaults to None which resolves to the workspace of the attached lakehouse
417
+ or if no lakehouse attached, resolves to the workspace of the notebook.
418
+ """
419
+
420
+ # https://learn.microsoft.com/en-us/rest/api/fabric/spark/workspace-settings/update-spark-settings?tabs=HTTP
421
+ (workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
422
+
423
+ dfS = get_spark_settings(workspace=workspace)
424
+
425
+ if automatic_log_enabled is None:
426
+ automatic_log_enabled = bool(dfS["Automatic Log Enabled"].iloc[0])
427
+ if high_concurrency_enabled is None:
428
+ high_concurrency_enabled = bool(dfS["High Concurrency Enabled"].iloc[0])
429
+ if customize_compute_enabled is None:
430
+ customize_compute_enabled = bool(dfS["Customize Compute Enabled"].iloc[0])
431
+ if default_pool_name is None:
432
+ default_pool_name = dfS["Default Pool Name"].iloc[0]
433
+ if max_node_count is None:
434
+ max_node_count = int(dfS["Max Node Count"].iloc[0])
435
+ if max_executors is None:
436
+ max_executors = int(dfS["Max Executors"].iloc[0])
437
+ if environment_name is None:
438
+ environment_name = dfS["Environment Name"].iloc[0]
439
+ if runtime_version is None:
440
+ runtime_version = dfS["Runtime Version"].iloc[0]
441
+
442
+ request_body = {
443
+ "automaticLog": {"enabled": automatic_log_enabled},
444
+ "highConcurrency": {"notebookInteractiveRunEnabled": high_concurrency_enabled},
445
+ "pool": {
446
+ "customizeComputeEnabled": customize_compute_enabled,
447
+ "defaultPool": {"name": default_pool_name, "type": "Workspace"},
448
+ "starterPool": {
449
+ "maxNodeCount": max_node_count,
450
+ "maxExecutors": max_executors,
451
+ },
452
+ },
453
+ "environment": {"name": environment_name, "runtimeVersion": runtime_version},
454
+ }
455
+
456
+ client = fabric.FabricRestClient()
457
+ response = client.patch(
458
+ f"/v1/workspaces/{workspace_id}/spark/settings", json=request_body
459
+ )
460
+
461
+ if response.status_code != 200:
462
+ raise FabricHTTPException(response)
463
+ print(
464
+ f"{icons.green_dot} The spark settings within the '{workspace}' workspace have been updated accordingly."
465
+ )
sempy_labs/_sql.py CHANGED
@@ -1,6 +1,6 @@
1
1
  import sempy.fabric as fabric
2
2
  import pandas as pd
3
- from typing import Optional, Union
3
+ from typing import Optional, Union, List
4
4
  from sempy._utils._log import log
5
5
  import struct
6
6
  import uuid
@@ -59,29 +59,53 @@ class ConnectWarehouse:
59
59
  self.connection = pyodbc.connect(conn_str, attrs_before={1256: tokenstruct})
60
60
 
61
61
  @log
62
- def query(self, sql: str) -> pd.DataFrame:
62
+ def query(
63
+ self, sql: Union[str, List[str]]
64
+ ) -> Union[List[pd.DataFrame], pd.DataFrame, None]:
63
65
  """
64
- Runs a SQL query against a Fabric Warehouse.
66
+ Runs a SQL or T-SQL query (or multiple queries) against a Fabric Warehouse.
65
67
 
66
68
  Parameters
67
69
  ----------
68
- sql : str
69
- The SQL query.
70
+ sql : str or List[str]
71
+ A single SQL or T-SQL query, or a list of queries to be executed.
70
72
 
71
73
  Returns
72
74
  -------
73
- pandas.DataFrame
74
- A pandas dataframe with the result of the SQL query.
75
+ Union[List[pandas.DataFrame], pandas.DataFrame, None]
76
+ A list of pandas DataFrames if multiple SQL queries return results,
77
+ a single DataFrame if one query is executed and returns results, or None.
75
78
  """
76
79
  cursor = None
80
+ results = [] # To store results from multiple queries if needed
81
+
82
+ # If the input is a single string, convert it to a list for consistency
83
+ if isinstance(sql, str):
84
+ sql = [sql]
77
85
 
78
86
  try:
79
87
  cursor = self.connection.cursor()
80
- cursor.execute(sql)
81
88
 
82
- return pd.DataFrame.from_records(
83
- cursor.fetchall(), columns=[col[0] for col in cursor.description]
84
- )
89
+ for sql_query in sql:
90
+ cursor.execute(sql_query)
91
+
92
+ # Commit for non-select queries (like CREATE, INSERT, etc.)
93
+ if not cursor.description:
94
+ self.connection.commit()
95
+ else:
96
+ # Fetch and append results for queries that return a result set
97
+ result = pd.DataFrame.from_records(
98
+ cursor.fetchall(),
99
+ columns=[col[0] for col in cursor.description],
100
+ )
101
+ results.append(result)
102
+
103
+ # Return results if any queries returned a result set
104
+ if results:
105
+ return results if len(results) > 1 else results[0]
106
+ else:
107
+ return None
108
+
85
109
  finally:
86
110
  if cursor:
87
111
  cursor.close()
@@ -3,6 +3,7 @@ import pandas as pd
3
3
  from typing import List, Optional, Union
4
4
  from sempy._utils._log import log
5
5
  import sempy_labs._icons as icons
6
+ from sempy_labs._helper_functions import get_language_codes
6
7
 
7
8
 
8
9
  @log
@@ -48,6 +49,8 @@ def translate_semantic_model(
48
49
  if isinstance(languages, str):
49
50
  languages = [languages]
50
51
 
52
+ languages = get_language_codes(languages)
53
+
51
54
  df_prep = pd.DataFrame(
52
55
  columns=["Object Type", "Name", "Description", "Display Folder"]
53
56
  )