scitex 2.14.0__py3-none-any.whl → 2.15.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scitex/__init__.py +47 -0
- scitex/_env_loader.py +156 -0
- scitex/_mcp_resources/__init__.py +37 -0
- scitex/_mcp_resources/_cheatsheet.py +135 -0
- scitex/_mcp_resources/_figrecipe.py +138 -0
- scitex/_mcp_resources/_formats.py +102 -0
- scitex/_mcp_resources/_modules.py +337 -0
- scitex/_mcp_resources/_session.py +149 -0
- scitex/_mcp_tools/__init__.py +4 -0
- scitex/_mcp_tools/audio.py +66 -0
- scitex/_mcp_tools/diagram.py +11 -95
- scitex/_mcp_tools/introspect.py +191 -0
- scitex/_mcp_tools/plt.py +260 -305
- scitex/_mcp_tools/scholar.py +74 -0
- scitex/_mcp_tools/social.py +244 -0
- scitex/_mcp_tools/writer.py +21 -204
- scitex/ai/_gen_ai/_PARAMS.py +10 -7
- scitex/ai/classification/reporters/_SingleClassificationReporter.py +45 -1603
- scitex/ai/classification/reporters/_mixins/__init__.py +36 -0
- scitex/ai/classification/reporters/_mixins/_constants.py +67 -0
- scitex/ai/classification/reporters/_mixins/_cv_summary.py +387 -0
- scitex/ai/classification/reporters/_mixins/_feature_importance.py +119 -0
- scitex/ai/classification/reporters/_mixins/_metrics.py +275 -0
- scitex/ai/classification/reporters/_mixins/_plotting.py +179 -0
- scitex/ai/classification/reporters/_mixins/_reports.py +153 -0
- scitex/ai/classification/reporters/_mixins/_storage.py +160 -0
- scitex/audio/README.md +40 -36
- scitex/audio/__init__.py +127 -59
- scitex/audio/_branding.py +185 -0
- scitex/audio/_mcp/__init__.py +32 -0
- scitex/audio/_mcp/handlers.py +59 -6
- scitex/audio/_mcp/speak_handlers.py +238 -0
- scitex/audio/_relay.py +225 -0
- scitex/audio/engines/elevenlabs_engine.py +6 -1
- scitex/audio/mcp_server.py +228 -75
- scitex/canvas/README.md +1 -1
- scitex/canvas/editor/_dearpygui/__init__.py +25 -0
- scitex/canvas/editor/_dearpygui/_editor.py +147 -0
- scitex/canvas/editor/_dearpygui/_handlers.py +476 -0
- scitex/canvas/editor/_dearpygui/_panels/__init__.py +17 -0
- scitex/canvas/editor/_dearpygui/_panels/_control.py +119 -0
- scitex/canvas/editor/_dearpygui/_panels/_element_controls.py +190 -0
- scitex/canvas/editor/_dearpygui/_panels/_preview.py +43 -0
- scitex/canvas/editor/_dearpygui/_panels/_sections.py +390 -0
- scitex/canvas/editor/_dearpygui/_plotting.py +187 -0
- scitex/canvas/editor/_dearpygui/_rendering.py +504 -0
- scitex/canvas/editor/_dearpygui/_selection.py +295 -0
- scitex/canvas/editor/_dearpygui/_state.py +93 -0
- scitex/canvas/editor/_dearpygui/_utils.py +61 -0
- scitex/canvas/editor/flask_editor/templates/__init__.py +32 -70
- scitex/cli/__init__.py +38 -43
- scitex/cli/audio.py +76 -27
- scitex/cli/capture.py +13 -20
- scitex/cli/introspect.py +443 -0
- scitex/cli/main.py +198 -109
- scitex/cli/mcp.py +60 -34
- scitex/cli/scholar/__init__.py +8 -0
- scitex/cli/scholar/_crossref_scitex.py +296 -0
- scitex/cli/scholar/_fetch.py +25 -3
- scitex/cli/social.py +314 -0
- scitex/cli/writer.py +117 -0
- scitex/config/README.md +1 -1
- scitex/config/__init__.py +16 -2
- scitex/config/_env_registry.py +191 -0
- scitex/diagram/__init__.py +42 -19
- scitex/diagram/mcp_server.py +13 -125
- scitex/introspect/__init__.py +75 -0
- scitex/introspect/_call_graph.py +303 -0
- scitex/introspect/_class_hierarchy.py +163 -0
- scitex/introspect/_core.py +42 -0
- scitex/introspect/_docstring.py +131 -0
- scitex/introspect/_examples.py +113 -0
- scitex/introspect/_imports.py +271 -0
- scitex/introspect/_mcp/__init__.py +37 -0
- scitex/introspect/_mcp/handlers.py +208 -0
- scitex/introspect/_members.py +151 -0
- scitex/introspect/_resolve.py +89 -0
- scitex/introspect/_signature.py +131 -0
- scitex/introspect/_source.py +80 -0
- scitex/introspect/_type_hints.py +172 -0
- scitex/io/bundle/README.md +1 -1
- scitex/mcp_server.py +98 -5
- scitex/plt/__init__.py +248 -550
- scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin/_wrappers.py +5 -10
- scitex/plt/docs/EXTERNAL_PACKAGE_BRANDING.md +149 -0
- scitex/plt/gallery/README.md +1 -1
- scitex/plt/utils/_hitmap/__init__.py +82 -0
- scitex/plt/utils/_hitmap/_artist_extraction.py +343 -0
- scitex/plt/utils/_hitmap/_color_application.py +346 -0
- scitex/plt/utils/_hitmap/_color_conversion.py +121 -0
- scitex/plt/utils/_hitmap/_constants.py +40 -0
- scitex/plt/utils/_hitmap/_hitmap_core.py +334 -0
- scitex/plt/utils/_hitmap/_path_extraction.py +357 -0
- scitex/plt/utils/_hitmap/_query.py +113 -0
- scitex/plt/utils/_hitmap.py +46 -1616
- scitex/plt/utils/_metadata/__init__.py +80 -0
- scitex/plt/utils/_metadata/_artists/__init__.py +25 -0
- scitex/plt/utils/_metadata/_artists/_base.py +195 -0
- scitex/plt/utils/_metadata/_artists/_collections.py +356 -0
- scitex/plt/utils/_metadata/_artists/_extract.py +57 -0
- scitex/plt/utils/_metadata/_artists/_images.py +80 -0
- scitex/plt/utils/_metadata/_artists/_lines.py +261 -0
- scitex/plt/utils/_metadata/_artists/_patches.py +247 -0
- scitex/plt/utils/_metadata/_artists/_text.py +106 -0
- scitex/plt/utils/_metadata/_csv.py +416 -0
- scitex/plt/utils/_metadata/_detect.py +225 -0
- scitex/plt/utils/_metadata/_legend.py +127 -0
- scitex/plt/utils/_metadata/_rounding.py +117 -0
- scitex/plt/utils/_metadata/_verification.py +202 -0
- scitex/schema/README.md +1 -1
- scitex/scholar/__init__.py +8 -0
- scitex/scholar/_mcp/crossref_handlers.py +265 -0
- scitex/scholar/core/Scholar.py +63 -1700
- scitex/scholar/core/_mixins/__init__.py +36 -0
- scitex/scholar/core/_mixins/_enrichers.py +270 -0
- scitex/scholar/core/_mixins/_library_handlers.py +100 -0
- scitex/scholar/core/_mixins/_loaders.py +103 -0
- scitex/scholar/core/_mixins/_pdf_download.py +375 -0
- scitex/scholar/core/_mixins/_pipeline.py +312 -0
- scitex/scholar/core/_mixins/_project_handlers.py +125 -0
- scitex/scholar/core/_mixins/_savers.py +69 -0
- scitex/scholar/core/_mixins/_search.py +103 -0
- scitex/scholar/core/_mixins/_services.py +88 -0
- scitex/scholar/core/_mixins/_url_finding.py +105 -0
- scitex/scholar/crossref_scitex.py +367 -0
- scitex/scholar/docs/EXTERNAL_PACKAGE_BRANDING.md +149 -0
- scitex/scholar/examples/00_run_all.sh +120 -0
- scitex/scholar/jobs/_executors.py +27 -3
- scitex/scholar/pdf_download/ScholarPDFDownloader.py +38 -416
- scitex/scholar/pdf_download/_cli.py +154 -0
- scitex/scholar/pdf_download/strategies/__init__.py +11 -8
- scitex/scholar/pdf_download/strategies/manual_download_fallback.py +80 -3
- scitex/scholar/pipelines/ScholarPipelineBibTeX.py +73 -121
- scitex/scholar/pipelines/ScholarPipelineParallel.py +80 -138
- scitex/scholar/pipelines/ScholarPipelineSingle.py +43 -63
- scitex/scholar/pipelines/_single_steps.py +71 -36
- scitex/scholar/storage/_LibraryManager.py +97 -1695
- scitex/scholar/storage/_mixins/__init__.py +30 -0
- scitex/scholar/storage/_mixins/_bibtex_handlers.py +128 -0
- scitex/scholar/storage/_mixins/_library_operations.py +218 -0
- scitex/scholar/storage/_mixins/_metadata_conversion.py +226 -0
- scitex/scholar/storage/_mixins/_paper_saving.py +456 -0
- scitex/scholar/storage/_mixins/_resolution.py +376 -0
- scitex/scholar/storage/_mixins/_storage_helpers.py +121 -0
- scitex/scholar/storage/_mixins/_symlink_handlers.py +226 -0
- scitex/scholar/url_finder/.tmp/open_url/KNOWN_RESOLVERS.py +462 -0
- scitex/scholar/url_finder/.tmp/open_url/README.md +223 -0
- scitex/scholar/url_finder/.tmp/open_url/_DOIToURLResolver.py +694 -0
- scitex/scholar/url_finder/.tmp/open_url/_OpenURLResolver.py +1160 -0
- scitex/scholar/url_finder/.tmp/open_url/_ResolverLinkFinder.py +344 -0
- scitex/scholar/url_finder/.tmp/open_url/__init__.py +24 -0
- scitex/security/README.md +3 -3
- scitex/session/README.md +1 -1
- scitex/sh/README.md +1 -1
- scitex/social/__init__.py +153 -0
- scitex/social/docs/EXTERNAL_PACKAGE_BRANDING.md +149 -0
- scitex/template/README.md +1 -1
- scitex/template/clone_writer_directory.py +5 -5
- scitex/writer/README.md +1 -1
- scitex/writer/_mcp/handlers.py +11 -744
- scitex/writer/_mcp/tool_schemas.py +5 -335
- scitex-2.15.1.dist-info/METADATA +648 -0
- {scitex-2.14.0.dist-info → scitex-2.15.1.dist-info}/RECORD +166 -111
- scitex/canvas/editor/flask_editor/templates/_scripts.py +0 -4933
- scitex/canvas/editor/flask_editor/templates/_styles.py +0 -1658
- scitex/dev/plt/data/mpl/PLOTTING_FUNCTIONS.yaml +0 -90
- scitex/dev/plt/data/mpl/PLOTTING_SIGNATURES.yaml +0 -1571
- scitex/dev/plt/data/mpl/PLOTTING_SIGNATURES_DETAILED.yaml +0 -6262
- scitex/dev/plt/data/mpl/SIGNATURES_FLATTENED.yaml +0 -1274
- scitex/dev/plt/data/mpl/dir_ax.txt +0 -459
- scitex/diagram/_compile.py +0 -312
- scitex/diagram/_diagram.py +0 -355
- scitex/diagram/_mcp/__init__.py +0 -4
- scitex/diagram/_mcp/handlers.py +0 -400
- scitex/diagram/_mcp/tool_schemas.py +0 -157
- scitex/diagram/_presets.py +0 -173
- scitex/diagram/_schema.py +0 -182
- scitex/diagram/_split.py +0 -278
- scitex/plt/_mcp/__init__.py +0 -4
- scitex/plt/_mcp/_handlers_annotation.py +0 -102
- scitex/plt/_mcp/_handlers_figure.py +0 -195
- scitex/plt/_mcp/_handlers_plot.py +0 -252
- scitex/plt/_mcp/_handlers_style.py +0 -219
- scitex/plt/_mcp/handlers.py +0 -74
- scitex/plt/_mcp/tool_schemas.py +0 -497
- scitex/plt/mcp_server.py +0 -231
- scitex/scholar/data/.gitkeep +0 -0
- scitex/scholar/data/README.md +0 -44
- scitex/scholar/data/bib_files/bibliography.bib +0 -1952
- scitex/scholar/data/bib_files/neurovista.bib +0 -277
- scitex/scholar/data/bib_files/neurovista_enriched.bib +0 -441
- scitex/scholar/data/bib_files/neurovista_enriched_enriched.bib +0 -441
- scitex/scholar/data/bib_files/neurovista_processed.bib +0 -338
- scitex/scholar/data/bib_files/openaccess.bib +0 -89
- scitex/scholar/data/bib_files/pac-seizure_prediction_enriched.bib +0 -2178
- scitex/scholar/data/bib_files/pac.bib +0 -698
- scitex/scholar/data/bib_files/pac_enriched.bib +0 -1061
- scitex/scholar/data/bib_files/pac_processed.bib +0 -0
- scitex/scholar/data/bib_files/pac_titles.txt +0 -75
- scitex/scholar/data/bib_files/paywalled.bib +0 -98
- scitex/scholar/data/bib_files/related-papers-by-coauthors.bib +0 -58
- scitex/scholar/data/bib_files/related-papers-by-coauthors_enriched.bib +0 -87
- scitex/scholar/data/bib_files/seizure_prediction.bib +0 -694
- scitex/scholar/data/bib_files/seizure_prediction_processed.bib +0 -0
- scitex/scholar/data/bib_files/test_complete_enriched.bib +0 -437
- scitex/scholar/data/bib_files/test_final_enriched.bib +0 -437
- scitex/scholar/data/bib_files/test_seizure.bib +0 -46
- scitex/scholar/data/impact_factor/JCR_IF_2022.xlsx +0 -0
- scitex/scholar/data/impact_factor/JCR_IF_2024.db +0 -0
- scitex/scholar/data/impact_factor/JCR_IF_2024.xlsx +0 -0
- scitex/scholar/data/impact_factor/JCR_IF_2024_v01.db +0 -0
- scitex/scholar/data/impact_factor.db +0 -0
- scitex/scholar/examples/SUGGESTIONS.md +0 -865
- scitex/scholar/examples/dev.py +0 -38
- scitex-2.14.0.dist-info/METADATA +0 -1238
- {scitex-2.14.0.dist-info → scitex-2.15.1.dist-info}/WHEEL +0 -0
- {scitex-2.14.0.dist-info → scitex-2.15.1.dist-info}/entry_points.txt +0 -0
- {scitex-2.14.0.dist-info → scitex-2.15.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,437 +0,0 @@
|
|
|
1
|
-
@article{Cook2013PredictionOSA,
|
|
2
|
-
title = {Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study},
|
|
3
|
-
author = {M. Cook and M. Cook and T. O’Brien and Terence J. O'Brien and S. Berkovic and Michael Murphy and Michael Murphy and Andrew P. Morokoff and Andrew P. Morokoff and G. Fabinyi and W. D'Souza and W. D'Souza and R. Yerra and J. Archer and L. Litewka and S. Hosking and Paul A. Lightfoot and Vanessa Ruedebusch and W. D. Sheffield and David E. Snyder and Kent W. Leyde and David M. Himes},
|
|
4
|
-
year = {2013},
|
|
5
|
-
abstract = {Seizure prediction would be clinically useful in patients with epilepsy and could improve safety, increase independence, and allow acute treatment. We did a multicentre clinical feasibility study to assess the safety and efficacy of a long-term implanted seizure advisory system designed to predict seizure likelihood and quantify seizures in adults with drug-resistant focal seizures.},
|
|
6
|
-
keywords = {Drug Resistant Epilepsy, Clinical endpoint, Depression, Epileptic seizure},
|
|
7
|
-
doi = {10.1016/s1474-4422(13)70075-9},
|
|
8
|
-
pmid = {23642342},
|
|
9
|
-
journal = {The Lancet Neurology},
|
|
10
|
-
volume = {12},
|
|
11
|
-
citation_count = {812},
|
|
12
|
-
url = {https://www.sciencedirect.com/science/article/pii/S1474442213700759?dgcid=api_sd_search-api-endpoint},
|
|
13
|
-
pages = {563-571},
|
|
14
|
-
}
|
|
15
|
-
|
|
16
|
-
@inproceedings{Payne2023EpilepticSFB,
|
|
17
|
-
title = {Epileptic seizure forecasting with long short-term memory (LSTM) neural networks},
|
|
18
|
-
author = {D. Payne and Jordan D. Chambers and A. Burkitt and M. J. Cook and Levin Kuhlman and D. Freestone and D. Grayden},
|
|
19
|
-
year = {2023},
|
|
20
|
-
abstract = {Objective: Forecasting epileptic seizures can reduce uncertainty for patients and allow preventative actions. While many models can predict the occurrence of seizures from features of the EEG, few models incorporate changes in features over time. Long Short-Term Memory (LSTM) neural networks are a machine learning architecture that can display temporal dynamics due to the recurrent connections. In this paper, we used LSTMs to monitor changes in EEG features over time to improve the accuracy of seizure forecasts and to alter the time window of the forecast. Methods: Long-term intracranial EEG recordings from eight patients from the NeuroVista dataset were used. A Fourier transform of 1-minute segments of EEG was fed into a Convolutional Neural Network (CNN). The outputs from the CNN were input to three different LSTM models at different time intervals: 1 minute, 1 hour and 1 day. The LSTM model outputs were used to predict seizure onset within a time window. The prediction and start of the time window were separated by the same length of time as the window. Window sizes tested included 2, 4, 10, 20 and 40 minutes. Results and Conclusion: Our model forecast seizure onsets well above a random predictor. Compared to other models using the same dataset, our model performed better for some patients and worse for others. Monitoring the change in EEG features over time allowed our model to produce good results over a range of different window sizes, which is an improvement on previous models and raises the possibility of altering the forecast to meet individual patient needs. Furthermore, a window size of 40 minutes provides a potential intervention time of 40 minutes, which is the first time an intervention time of more than 5 minutes have been forecast using long-term EEG recordings.},
|
|
21
|
-
url = {https://api.semanticscholar.org/CorpusId:262046731},
|
|
22
|
-
booktitle = {unknown},
|
|
23
|
-
}
|
|
24
|
-
|
|
25
|
-
@article{Dilorenzo2019NeuralSMC,
|
|
26
|
-
title = {Neural State Monitoring in the Treatment of Epilepsy: Seizure Prediction—Conceptualization to First-In-Man Study},
|
|
27
|
-
author = {D. Dilorenzo and Kent W. Leyde and Dmitry Kaplan},
|
|
28
|
-
year = {2019},
|
|
29
|
-
abstract = {<jats:p>This research study is part of a therapy development effort in which a novel approach was taken to develop an implantable electroencephalographic (EEG) based brain monitoring and seizure prediction system. Previous attempts to predict seizures by other groups had not been demonstrated to be statistically more successful than chance. The primary clinical findings from this group were published in a clinical paper; however much of the fundamental technology, including the strategy and techniques behind the development of the seizure advisory system have not been published. Development of this technology comprised several steps: a vast high quality database of EEG recordings was assembled, a structured approach to algorithm development was undertaken, an implantable 16-channel subdural neural monitoring and seizure advisory system was designed and built, preclinical studies were conducted in a canine model, and a First-In-Man study involving implantation of 15 patients followed for two years was conducted to evaluate the algorithm. The algorithm was successfully trained to correctly provide a) notification of a high likelihood of seizure in 11 of 14 patients, and b) notification of a low likelihood of seizure in 5 of 14 patients (NCT01043406). Continuous neural state monitoring shows promise for applications in seizure prediction and likelihood estimation, and insights for further research and development are drawn.</jats:p>},
|
|
30
|
-
keywords = {Epileptic seizure},
|
|
31
|
-
doi = {10.3390/brainsci9070156},
|
|
32
|
-
pmid = {31266223},
|
|
33
|
-
journal = {Brain Sciences},
|
|
34
|
-
volume = {9},
|
|
35
|
-
citation_count = {17},
|
|
36
|
-
journal_impact_factor = {2.7},
|
|
37
|
-
url = {https://pdfs.semanticscholar.org/02a5/31d00c3be075ab70f912f8f5f6683da320a4.pdf},
|
|
38
|
-
}
|
|
39
|
-
|
|
40
|
-
@article{Lu2025LeveragingCCD,
|
|
41
|
-
title = {Leveraging Channel Coherence in Long-Term iEEG Data for Seizure Prediction},
|
|
42
|
-
author = {Sha Lu and Lin Liu and Jiuyong Li and Jordan D. Chambers and M. J. Cook and D. Grayden},
|
|
43
|
-
year = {2025},
|
|
44
|
-
abstract = {Epilepsy affects millions worldwide, posing significant challenges due to the erratic and unexpected nature of seizures. Despite advancements, existing seizure prediction techniques remain limited in their ability to forecast seizures with high accuracy, impacting the quality of life for those with epilepsy. This research introduces the Coherence-based Seizure Prediction (CoSP) method, which integrates coherence analysis with deep learning to enhance seizure prediction efficacy. In CoSP, electroencephalography (EEG) recordings are divided into 10-second segments to extract channel pairwise coherence. This coherence data is then used to train a four-layer convolutional neural network to predict the probability of being in a preictal state. The predicted probabilities are then processed to issue seizure warnings. CoSP was evaluated in a pseudo-prospective setting using long-term iEEG data from ten patients in the NeuroVista seizure advisory system. CoSP demonstrated promising predictive performance across a range of preictal intervals (4 to 180 minutes). CoSP achieved a median Seizure Sensitivity (SS) of 0.79, a median false alarm rate of 0.15 per hour, and a median Time in Warning (TiW) of 27%, highlighting its potential for accurate and reliable seizure prediction. Statistical analysis confirmed that CoSP significantly outperformed chance (p = 0.001) and other baseline methods (p <0.05) under similar evaluation configurations.},
|
|
45
|
-
doi = {10.1109/jbhi.2025.3556775},
|
|
46
|
-
pmid = {40168220},
|
|
47
|
-
journal = {IEEE Journal of Biomedical and Health Informatics},
|
|
48
|
-
volume = {29},
|
|
49
|
-
journal_impact_factor = {6.7},
|
|
50
|
-
url = {https://api.semanticscholar.org/CorpusId:277494600},
|
|
51
|
-
pages = {5541-5548},
|
|
52
|
-
}
|
|
53
|
-
|
|
54
|
-
@article{Howbert2014ForecastingSIE,
|
|
55
|
-
title = {Forecasting Seizures in Dogs with Naturally Occurring Epilepsy},
|
|
56
|
-
author = {J. Jeffry Howbert and Edward E Patterson and S. M. Stead and B. Brinkmann and Vincent Vasoli and D. Crepeau and Charles H Vite and B. Sturges and Vanessa Ruedebusch and J. Mavoori and K. Leyde and W. Douglas Sheffield and B. Litt and Gregory A. Worrell and Maxim Bazhenov and Drs Howbert and Sheffield and Leyde},
|
|
57
|
-
year = {2014},
|
|
58
|
-
abstract = {Seizure forecasting has the potential to create new therapeutic strategies for epilepsy, such as providing patient warnings and delivering preemptive therapy. Progress on seizure forecasting, however, has been hindered by lack of sufficient data to rigorously evaluate the hypothesis that seizures are preceded by physiological changes, and are not simply random events. We investigated seizure forecasting in three dogs with naturally occurring focal epilepsy implanted with a device recording continuous intracranial EEG (iEEG). The iEEG spectral power in six frequency bands: delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), low-gamma (30–70 Hz), and high-gamma (70–180 Hz), were used as features. Logistic regression classifiers were trained to discriminate labeled pre-ictal and inter-ictal data segments using combinations of the band spectral power features. Performance was assessed on separate test data sets via 10-fold cross-validation. A total of 125 spontaneous seizures were detected in continuous iEEG recordings spanning 6.5 to 15 months from 3 dogs. When considering all seizures, the seizure forecasting algorithm performed significantly better than a Poisson-model chance predictor constrained to have the same time in warning for all 3 dogs over a range of total warning times. Seizure clusters were observed in all 3 dogs, and when the effect of seizure clusters was decreased by considering the subset of seizures separated by at least 4 hours, the forecasting performance remained better than chance for a subset of algorithm parameters. These results demonstrate that seizures in canine epilepsy are not randomly occurring events, and highlight the feasibility of long-term seizure forecasting using iEEG monitoring.},
|
|
59
|
-
doi = {10.1371/journal.pone.0081920},
|
|
60
|
-
pmid = {24416133},
|
|
61
|
-
journal = {PLoS ONE},
|
|
62
|
-
volume = {9},
|
|
63
|
-
citation_count = {125},
|
|
64
|
-
journal_impact_factor = {2.9},
|
|
65
|
-
url = {https://pdfs.semanticscholar.org/9358/e68ae0044f8b20743ec12674d8a0b1c5e333.pdf},
|
|
66
|
-
}
|
|
67
|
-
|
|
68
|
-
@article{Baldassano2017CrowdsourcingSDF,
|
|
69
|
-
title = {Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings},
|
|
70
|
-
author = {S. Baldassano and B. Brinkmann and H. Ung and Tyler Blevins and E. Conrad and K. Leyde and M. Cook and A. Khambhati and Joost B. Wagenaar and G. Worrell and B. Litt},
|
|
71
|
-
year = {2017},
|
|
72
|
-
abstract = {There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care.},
|
|
73
|
-
keywords = {Crowdsourcing, Benchmark (surveying), Plug-in},
|
|
74
|
-
doi = {10.1093/brain/awx098},
|
|
75
|
-
pmid = {28459961},
|
|
76
|
-
journal = {Brain},
|
|
77
|
-
volume = {140},
|
|
78
|
-
citation_count = {113},
|
|
79
|
-
journal_impact_factor = {10.6},
|
|
80
|
-
url = {https://doi.org/10.1093/brain%2Fawx098},
|
|
81
|
-
pages = {1680–1691},
|
|
82
|
-
}
|
|
83
|
-
|
|
84
|
-
@article{Sladky2022DistributedBCG,
|
|
85
|
-
title = {Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation.},
|
|
86
|
-
author = {V. Sladky and P. Nejedly and F. Mivalt and B. Brinkmann and Inyong Kim and E. S. St. Louis and N. Gregg and B. Lundstrom and C. Crowe and Tal Pal Attia and D. Crepeau and I. Balzekas and V. Marks and Lydia Wheeler and J. Cimbalnik and M. Cook and R. Jan\{\vc\}a and B. Sturges and K. Leyde and K. Miller and J. V. van Gompel and T. Denison and G. Worrell and V. Kremen},
|
|
87
|
-
year = {2022},
|
|
88
|
-
abstract = {<jats:title>Abstract</jats:title>
|
|
89
|
-
<jats:p>Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients.</jats:p>},
|
|
90
|
-
keywords = {Electrical brain stimulation, Brain stimulation},
|
|
91
|
-
doi = {10.1093/braincomms/fcac115},
|
|
92
|
-
pmid = {35755635},
|
|
93
|
-
journal = {Brain communications},
|
|
94
|
-
volume = {4},
|
|
95
|
-
citation_count = {36},
|
|
96
|
-
journal_impact_factor = {4.1},
|
|
97
|
-
}
|
|
98
|
-
|
|
99
|
-
@article{Gregg2020CircadianAMH,
|
|
100
|
-
title = {Circadian and multiday seizure periodicities, and seizure clusters in canine epilepsy},
|
|
101
|
-
author = {N. Gregg and M. Nasseri and V. Kremen and E. Patterson and B. Sturges and T. Denison and B. Brinkmann and G. Worrell},
|
|
102
|
-
year = {2020},
|
|
103
|
-
abstract = {<jats:title>Abstract</jats:title><jats:p>Advances in ambulatory intracranial EEG devices have enabled objective analyses of circadian and multiday seizure periodicities, and seizure clusters in humans. This study characterizes circadian and multiday seizure periodicities, and seizure clusters in dogs with naturally occurring focal epilepsy, and considers the implications of an animal model for the study of seizure risk patterns, seizure forecasting and personalized treatment protocols. In this retrospective cohort study, 16 dogs were continuously monitored with ambulatory intracranial EEG devices designed for humans. Detailed medication records were kept for all dogs. Seizure periodicity was evaluated with circular statistics methods. Circular non-uniformity was assessed for circadian, 7-day and approximately monthly periods. The Rayleigh test was used to assess statistical significance, with correction for multiple comparisons. Seizure clusters were evaluated with Fano factor (index of dispersion) measurements, and compared to a Poisson distribution. Relationships between interseizure interval (ISI) and seizure duration were evaluated. Six dogs met the inclusion criteria of having at least 30 seizures and were monitored for an average of 65 weeks. Three dogs had seizures with circadian seizure periodicity, one dog had a 7-day periodicity, and two dogs had approximately monthly periodicity. Four dogs had seizure clusters and significantly elevated Fano factor values. There were subject-specific differences in the dynamics of ISI and seizure durations, both within and between lead and clustered seizure categories. Our findings show that seizure timing in dogs with naturally occurring epilepsy is not random, and that circadian and multiday seizure periodicities, and seizure clusters are common. Circadian, 7-day, and monthly seizure periodicities occur independent of antiseizure medication dosing, and these patterns likely reflect endogenous rhythms of seizure risk.</jats:p>},
|
|
104
|
-
keywords = {Epileptic seizure},
|
|
105
|
-
doi = {10.1093/braincomms/fcaa008},
|
|
106
|
-
pmid = {32161910},
|
|
107
|
-
journal = {Brain Communications},
|
|
108
|
-
volume = {2},
|
|
109
|
-
citation_count = {85},
|
|
110
|
-
journal_impact_factor = {4.1},
|
|
111
|
-
url = {https://api.semanticscholar.org/CorpusId:212677487},
|
|
112
|
-
}
|
|
113
|
-
|
|
114
|
-
@article{Davis2011ANII,
|
|
115
|
-
title = {A novel implanted device to wirelessly record and analyze continuous intracranial canine EEG},
|
|
116
|
-
author = {K. Davis and B. Sturges and C. Vite and Vanessa Ruedebusch and G. Worrell and A. Gardner and K. Leyde and W. D. Sheffield and B. Litt},
|
|
117
|
-
year = {2011},
|
|
118
|
-
abstract = {We present results from continuous intracranial electroencephalographic (iEEG) monitoring in 6 dogs with naturally occurring epilepsy, a disorder similar to the human condition in its clinical presentation, epidemiology, electrophysiology and response to therapy. Recordings were obtained using a novel implantable device wirelessly linked to an external, portable real-time processing unit. We demonstrate previously uncharacterized intracranial seizure onset patterns in these animals that are strikingly similar in appearance to human partial onset epilepsy. We propose: (1) canine epilepsy as an appropriate model for testing human antiepileptic devices and new approaches to epilepsy surgery, and (2) this new technology as a versatile platform for evaluating seizures and response to therapy in the natural, ambulatory setting.},
|
|
119
|
-
keywords = {Electrocorticography},
|
|
120
|
-
doi = {10.1016/j.eplepsyres.2011.05.011},
|
|
121
|
-
pmid = {21676591},
|
|
122
|
-
journal = {Epilepsy Research},
|
|
123
|
-
volume = {96},
|
|
124
|
-
citation_count = {110},
|
|
125
|
-
journal_impact_factor = {2.0},
|
|
126
|
-
url = {https://www.sciencedirect.com/science/article/pii/S0920121111001318?dgcid=api_sd_search-api-endpoint},
|
|
127
|
-
pages = {116-122},
|
|
128
|
-
}
|
|
129
|
-
|
|
130
|
-
@article{Dilorenzo2019NeurovistaCTJ,
|
|
131
|
-
title = {Neurovista: Concept to first-in-man: The war story behind launching a venture to treat epilepsy},
|
|
132
|
-
author = {D. Dilorenzo},
|
|
133
|
-
year = {2019},
|
|
134
|
-
abstract = {<jats:p>Many medical (and nonmedical) technologies are the fruit of years and even decades of work by dedicated members of startup companies and commitment of capital by their investors. The launching of a medical device venture is fraught with many risks, but the personal, societal, and potential financial rewards of developing therapies that improve the lives of others makes the risk and sacrifice worthwhile. The litany of risks and challenges can be daunting, and persistence is the key ingredient to every incremental iota of success achieved. This is a personal war story behind the launching of a medical device venture that developed an implanted seizure prediction system (NCT01043406). The intent is to share the experience so that others with interest in the field may learn from the experience and also decide whether such an endeavor is something that they want to undertake.</jats:p>},
|
|
135
|
-
keywords = {Litany},
|
|
136
|
-
doi = {10.25259/sni_422_2019},
|
|
137
|
-
pmid = {31583172},
|
|
138
|
-
journal = {Surgical Neurology International},
|
|
139
|
-
volume = {10},
|
|
140
|
-
citation_count = {5},
|
|
141
|
-
url = {https://api.semanticscholar.org/CorpusId:203508009},
|
|
142
|
-
}
|
|
143
|
-
|
|
144
|
-
@article{Lscher2022NovelSAK,
|
|
145
|
-
title = {Novel subscalp and intracranial devices to wirelessly record and analyze continuous EEG in unsedated, behaving dogs in their natural environments: A new paradigm in canine epilepsy research},
|
|
146
|
-
author = {W. L\{\"o\}scher and G. Worrell},
|
|
147
|
-
year = {2022},
|
|
148
|
-
abstract = {<jats:p>Epilepsy is characterized by unprovoked, recurrent seizures and is a common neurologic disorder in dogs and humans. Roughly 1/3 of canines and humans with epilepsy prove to be drug-resistant and continue to have sporadic seizures despite taking daily anti-seizure medications. The optimization of pharmacologic therapy is often limited by inaccurate seizure diaries and medication side effects. Electroencephalography (EEG) has long been a cornerstone of diagnosis and classification in human epilepsy, but because of several technical challenges has played a smaller clinical role in canine epilepsy. The interictal (between seizures) and ictal (seizure) EEG recorded from the epileptic mammalian brain shows characteristic electrophysiologic biomarkers that are very useful for clinical management. A fundamental engineering gap for both humans and canines with epilepsy has been the challenge of obtaining continuous long-term EEG in the patients' natural environment. We are now on the cusp of a revolution where continuous long-term EEG from behaving canines and humans will be available to guide clinicians in the diagnosis and optimal treatment of their patients. Here we review some of the devices that have recently emerged for obtaining long-term EEG in ambulatory subjects living in their natural environments.</jats:p>},
|
|
149
|
-
keywords = {Drug Resistant Epilepsy},
|
|
150
|
-
doi = {10.3389/fvets.2022.1014269},
|
|
151
|
-
pmid = {36337210},
|
|
152
|
-
journal = {Frontiers in Veterinary Science},
|
|
153
|
-
volume = {9},
|
|
154
|
-
citation_count = {3},
|
|
155
|
-
journal_impact_factor = {2.6},
|
|
156
|
-
url = {https://api.semanticscholar.org/CorpusId:253024871},
|
|
157
|
-
}
|
|
158
|
-
|
|
159
|
-
@article{Dilorenzo2021SocietalROL,
|
|
160
|
-
title = {Societal return on investment may greatly exceed financial return on investment in neurotechnology-based therapies: A case study in epilepsy therapy development},
|
|
161
|
-
author = {D. Dilorenzo},
|
|
162
|
-
year = {2021},
|
|
163
|
-
abstract = {<jats:sec id="st1">
|
|
164
|
-
<jats:title>Background: </jats:title>
|
|
165
|
-
<jats:p>This research study is an economic analysis of a neurotechnology-based translational research and development venture focused on the development of a therapy for patients with epilepsy. In the conceptualization, planning, financing, and execution of neurotechnology ventures, many factors come into play in determining value and ability to secure financing at each stage of the venture. Conventionally, these have included factors that determine the return on investment for the stakeholders of the venture, most notably the investors and the team members, the former investing hard earned capital, and the latter investing significant portions of their professional careers. For a variety of reasons, the positive impact on society is often not quantified and taken into consideration.</jats:p>
|
|
166
|
-
</jats:sec>
|
|
167
|
-
<jats:sec id="st2">
|
|
168
|
-
<jats:title>Methods: </jats:title>
|
|
169
|
-
<jats:p>To address this, a new term is defined and assessed at a first approximation level using an index technology. The metric is termed the societal return on investment (sROI).</jats:p>
|
|
170
|
-
</jats:sec>
|
|
171
|
-
<jats:sec id="st3">
|
|
172
|
-
<jats:title>Results: </jats:title>
|
|
173
|
-
<jats:p>Among chronic conditions, neurological disease is virtually unique in the magnitude of economic devastation that it can inflict on a person and a family. Because the device costs do not reflect this value that is lost and subject to restoration, these are missing from this important calculation. The index project is the development of a seizure advisory system, which cost $71.2 million to develop and conduct a First-In-Man (FIM) study (NCT01043406) and which was estimated to require $50 million to complete a pivotal study.</jats:p>
|
|
174
|
-
</jats:sec>
|
|
175
|
-
<jats:sec id="st4">
|
|
176
|
-
<jats:title>Conclusion: </jats:title>
|
|
177
|
-
<jats:p>Despite the immense costs required to develop, test, and commercialize such a system, the direct and indirect economic costs imposed by uncontrolled seizures are sufficiently staggering that a sROI becomes positive after only 400 patients have been successfully treated and returned to work.</jats:p>
|
|
178
|
-
</jats:sec>},
|
|
179
|
-
keywords = {Investment, Value (mathematics)},
|
|
180
|
-
doi = {10.25259/sni_230_2020},
|
|
181
|
-
pmid = {34084608},
|
|
182
|
-
journal = {Surgical Neurology International},
|
|
183
|
-
volume = {12},
|
|
184
|
-
citation_count = {2},
|
|
185
|
-
url = {https://api.semanticscholar.org/CorpusId:234869605},
|
|
186
|
-
}
|
|
187
|
-
|
|
188
|
-
@article{Yang2024SeizureFWM,
|
|
189
|
-
title = {Seizure forecasting with ultra long-term EEG signals},
|
|
190
|
-
author = {Hongliu Yang and Jens M\{\"u\}ller and Matthias Eberlein and S. Kalousios and Georg Leonhardt and J. Duun-Henriksen and T. Kjaer and Ronald Tetzlaff},
|
|
191
|
-
year = {2024},
|
|
192
|
-
abstract = {The apparent randomness of seizure occurrence affects greatly the quality of life of persons with epilepsy. Since seizures are often phase-locked to multidien cycles of interictal epileptiform activity, a recent forecasting scheme, exploiting RNS data, is capable of forecasting seizures days in advance.},
|
|
193
|
-
doi = {10.1016/j.clinph.2024.09.017},
|
|
194
|
-
pmid = {39353259},
|
|
195
|
-
journal = {Clinical Neurophysiology},
|
|
196
|
-
volume = {167},
|
|
197
|
-
journal_impact_factor = {3.7},
|
|
198
|
-
url = {https://api.semanticscholar.org/CorpusId:272757972},
|
|
199
|
-
pages = {211-220},
|
|
200
|
-
}
|
|
201
|
-
|
|
202
|
-
@article{Baldassano2019CloudCFN,
|
|
203
|
-
title = {Cloud computing for seizure detection in implanted neural devices},
|
|
204
|
-
author = {S. Baldassano and Xuelong Zhao and B. Brinkmann and V. Kremen and J. Bernabei and M. Cook and T. Denison and G. Worrell and B. Litt},
|
|
205
|
-
year = {2019},
|
|
206
|
-
abstract = {Objective. Closed-loop implantable neural stimulators are an exciting treatment option for patients with medically refractory epilepsy, with a number of new devices in or nearing clinical trials. These devices must accurately detect a variety of seizure types in order to reliably deliver therapeutic stimulation. While effective, broadly-applicable seizure detection algorithms have recently been published, these methods are too computationally intensive to be directly deployed in an implantable device. We demonstrate a strategy that couples devices to cloud computing resources in order to implement complex seizure detection methods on an implantable device platform. Approach. We use a sensitive gating algorithm capable of running on-board a device to identify potential seizure epochs and transmit these epochs to a cloud-based analysis platform. A precise seizure detection algorithm is then applied to the candidate epochs, leveraging cloud computing resources for accurate seizure event detection. This seizure detection strategy was developed and tested on eleven human implanted device recordings generated using the NeuroVista Seizure Advisory System. Main results. The gating algorithm achieved high-sensitivity detection using a small feature set as input to a linear classifier, compatible with the computational capability of next-generation implantable devices. The cloud-based precision algorithm successfully identified all seizures transmitted by the gating algorithm while significantly reducing the false positive rate. Across all subjects, this joint approach detected 99% of seizures with a false positive rate of 0.03 h−1. Significance. We present a novel framework for implementing computationally intensive algorithms on human data recorded from an implanted device. By using telemetry to intelligently access cloud-based computational resources, the next generation of neuro-implantable devices will leverage sophisticated algorithms with potential to greatly improve device performance and patient outcomes.},
|
|
207
|
-
doi = {10.1088/1741-2552/aaf92e},
|
|
208
|
-
pmid = {30560812},
|
|
209
|
-
journal = {Journal of Neural Engineering},
|
|
210
|
-
volume = {16},
|
|
211
|
-
journal_impact_factor = {3.7},
|
|
212
|
-
url = {https://doi.org/10.1088/1741-2552%2Faaf92e},
|
|
213
|
-
}
|
|
214
|
-
|
|
215
|
-
@article{Schroeder2022ChronicIRO,
|
|
216
|
-
title = {Chronic iEEG recordings and interictal spike rate reveal multiscale
|
|
217
|
-
temporal modulations in seizure states},
|
|
218
|
-
author = {Gabrielle M. Schroeder and Philippa J. Karoly and M. Maturana and Mariella Panagiotopoulou and P. Taylor and M. Cook and Yujiang Wang},
|
|
219
|
-
year = {2022},
|
|
220
|
-
abstract = {Background and Objectives: Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Methods: Here, in a cross-sectional observational study, we analysed within-patient seizure variability in 10 patients with chronic intracranial EEG recordings (185-767 days of recording time, 57-452 analysed seizures/patient). We characterised the seizure evolutions as sequences of a finite number of patient-specific functional seizure network states (SNSs). We then compared SNS occurrence and duration to (1) time since implantation and (2) patient-specific circadian and multidien cycles in interictal spike rate. Results: In most patients, the occurrence or duration of at least one SNS was associated with the time since implantation. Some patients had one or more SNSs that were associated with phases of circadian and/or multidien spike rate cycles. A given SNS's occurrence and duration were usually not associated with the same timescale. Discussion: Our results suggest that different time-varying factors modulate within-patient seizure evolutions over multiple timescales, with separate processes modulating a SNS's occurrence and duration. These findings imply that the development of time-adaptive treatments in epilepsy must account for several separate properties of epileptic seizures, and similar principles likely apply to other neurological conditions.},
|
|
221
|
-
doi = {10.48550/arxiv.2201.11600},
|
|
222
|
-
eprint = {2201.11600},
|
|
223
|
-
journal = {arXiv (Cornell University)},
|
|
224
|
-
citation_count = {1},
|
|
225
|
-
url = {https://api.semanticscholar.org/CorpusId:246294606},
|
|
226
|
-
booktitle = {unknown},
|
|
227
|
-
}
|
|
228
|
-
|
|
229
|
-
@article{Schroeder2021SeizurePAP,
|
|
230
|
-
title = {Seizure pathways and seizure durations can vary independently within
|
|
231
|
-
individual patients with focal epilepsy},
|
|
232
|
-
author = {Gabrielle M. Schroeder and F. Chowdhury and M. Cook and B. Diehl and J. Duncan and Philippa J. Karoly and P. Taylor and Yujiang Wang},
|
|
233
|
-
year = {2021},
|
|
234
|
-
abstract = {A seizure's electrographic dynamics are characterised by its spatiotemporal evolution, also termed dynamical "pathway" and the time it takes to complete that pathway, which results in the seizure's duration. Both seizure pathways and durations can vary within the same patient, producing seizures with different dynamics, severity, and clinical implications. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using 1) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean 6.7 days, 16.5 seizures/subject), 2) NeuroVista chronic iEEG recordings of 10 patients (mean 521.2 days, 252.6 seizures/subject), and 3) chronic iEEG recordings of 3 dogs with focal-onset seizures (mean 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was weakened by seizures that 1) had a common pathway, but different durations ("elastic pathways"), or 2) had similar durations, but followed different pathways ("duplicate durations"). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by different processes. Uncovering such modulators may reveal novel therapeutic targets for reducing seizure duration and severity.},
|
|
235
|
-
doi = {10.48550/arxiv.2109.06672},
|
|
236
|
-
eprint = {2109.06672},
|
|
237
|
-
journal = {arXiv (Cornell University)},
|
|
238
|
-
citation_count = {1},
|
|
239
|
-
url = {https://api.semanticscholar.org/CorpusId:237500597},
|
|
240
|
-
booktitle = {unknown},
|
|
241
|
-
}
|
|
242
|
-
|
|
243
|
-
@article{2022MultipleMSQ,
|
|
244
|
-
title = {Multiple mechanisms shape the relationship between pathway and duration of focal seizures},
|
|
245
|
-
author = {Gabrielle M Schroeder and Fahmida A Chowdhury and Mark J Cook and Beate Diehl and John S Duncan and Philippa J Karoly and Peter N Taylor and Yujiang Wang},
|
|
246
|
-
year = {2022},
|
|
247
|
-
abstract = {<jats:title>Abstract</jats:title>
|
|
248
|
-
<jats:p>A seizure’s electrographic dynamics are characterized by its spatiotemporal evolution, also termed dynamical ‘pathway’, and the time it takes to complete that pathway, which results in the seizure’s duration. Both seizure pathways and durations have been shown to vary within the same patient. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using (i) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean: 6.7 days, 16.5 seizures/subject), (ii) NeuroVista chronic iEEG recordings of 10 patients (mean: 521.2 days, 252.6 seizures/subject) and (iii) chronic iEEG recordings of three dogs with focal-onset seizures (mean: 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was strengthened by seizures that were ‘truncated’ versions, both in pathway and duration, of other seizures. However, the relationship was weakened by seizures that had a common pathway, but different durations (‘elasticity’), or had similar durations, but followed different pathways (‘semblance’). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by multiple different mechanisms. Uncovering such mechanisms may reveal novel therapeutic targets for reducing seizure duration and severity.</jats:p>},
|
|
249
|
-
keywords = {partial seizures},
|
|
250
|
-
doi = {10.1093/braincomms/fcac173},
|
|
251
|
-
pmid = {35855481},
|
|
252
|
-
journal = {Brain Communications},
|
|
253
|
-
volume = {4},
|
|
254
|
-
citation_count = {12},
|
|
255
|
-
journal_impact_factor = {4.1},
|
|
256
|
-
url = {https://pdfs.semanticscholar.org/b068/e0e129857f3c93435b5714a432b7e8c56793.pdf},
|
|
257
|
-
}
|
|
258
|
-
|
|
259
|
-
@article{Sirbu2025RegulatingNIR,
|
|
260
|
-
title = {Regulating Next-Generation Implantable Brain-Computer Interfaces: Recommendations for Ethical Development and Implementation},
|
|
261
|
-
author = {Renee Sirbu and Jessica Morley and Tyler Schroder and M. Taddeo and Raghavendra Pradyumna Pothukuchi and Muhammed Ugur and Abhishek Bhattacharjee and Luciano Floridi},
|
|
262
|
-
year = {2025},
|
|
263
|
-
doi = {10.2139/ssrn.5293145},
|
|
264
|
-
journal = {ArXiv},
|
|
265
|
-
citation_count = {1},
|
|
266
|
-
url = {https://api.semanticscholar.org/CorpusId:279402209},
|
|
267
|
-
volume = {abs/2506.12540},
|
|
268
|
-
}
|
|
269
|
-
|
|
270
|
-
@article{Maturana2020CriticalSDS,
|
|
271
|
-
title = {Critical slowing down as a biomarker for seizure susceptibility},
|
|
272
|
-
author = {M. Maturana and C. Meisel and K. Dell and Philippa J. Karoly and W. D'Souza and D. Grayden and A. Burkitt and P. Jiru\{\vs\}ka and J. Kudl\{\'a\}\{\vc\}ek and J. Hlinka and M. Cook and L. Kuhlmann and D. Freestone},
|
|
273
|
-
year = {2020},
|
|
274
|
-
abstract = {<jats:title>Abstract</jats:title><jats:p>The human brain has the capacity to rapidly change state, and in epilepsy these state changes can be catastrophic, resulting in loss of consciousness, injury and even death. Theoretical interpretations considering the brain as a dynamical system suggest that prior to a seizure, recorded brain signals may exhibit critical slowing down, a warning signal preceding many critical transitions in dynamical systems. Using long-term intracranial electroencephalography (iEEG) recordings from fourteen patients with focal epilepsy, we monitored key signatures of critical slowing down prior to seizures. The metrics used to detect critical slowing down fluctuated over temporally long scales (hours to days), longer than would be detectable in standard clinical evaluation settings. Seizure risk was associated with a combination of these signals together with epileptiform discharges. These results provide strong validation of theoretical models and demonstrate that critical slowing down is a reliable indicator that could be used in seizure forecasting algorithms.</jats:p>},
|
|
275
|
-
doi = {10.1038/s41467-020-15908-3},
|
|
276
|
-
pmid = {32358560},
|
|
277
|
-
journal = {Nature Communications},
|
|
278
|
-
volume = {11},
|
|
279
|
-
citation_count = {208},
|
|
280
|
-
journal_impact_factor = {14.7},
|
|
281
|
-
url = {https://doi.org/10.1038/s41467-020-15908-3},
|
|
282
|
-
}
|
|
283
|
-
|
|
284
|
-
@article{KiralKornek2017EpilepticSPT,
|
|
285
|
-
title = {Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System},
|
|
286
|
-
author = {Isabell Kiral-Kornek and Subhrajit Roy and E. Nurse and B. Mashford and Philippa J. Karoly and T. Carroll and D. Payne and Susmita Saha and S. Baldassano and T. O'Brien and D. Grayden and M. Cook and D. Freestone and S. Harrer},
|
|
287
|
-
year = {2017},
|
|
288
|
-
keywords = {Neuromorphic engineering, Wearable Technology},
|
|
289
|
-
doi = {10.1016/j.ebiom.2017.11.032},
|
|
290
|
-
pmid = {29262989},
|
|
291
|
-
journal = {EBioMedicine},
|
|
292
|
-
volume = {27},
|
|
293
|
-
citation_count = {279},
|
|
294
|
-
journal_impact_factor = {9.7},
|
|
295
|
-
url = {https://www.ncbi.nlm.nih.gov/pubmed/29262989},
|
|
296
|
-
pages = {103 - 111},
|
|
297
|
-
}
|
|
298
|
-
|
|
299
|
-
@article{Chambers2024UsingLSU,
|
|
300
|
-
title = {Using Long Short-Term Memory (LSTM) recurrent neural networks to classify unprocessed EEG for seizure prediction},
|
|
301
|
-
author = {Jordan D. Chambers and M. J. Cook and A. Burkitt and D. Grayden},
|
|
302
|
-
year = {2024},
|
|
303
|
-
abstract = {<jats:sec><jats:title>Objective</jats:title><jats:p>Seizure prediction could improve quality of life for patients through removing uncertainty and providing an opportunity for acute treatments. Most seizure prediction models use feature engineering to process the EEG recordings. Long-Short Term Memory (LSTM) neural networks are a recurrent neural network architecture that can display temporal dynamics and, therefore, potentially analyze EEG signals without performing feature engineering. In this study, we tested if LSTMs could classify unprocessed EEG recordings to make seizure predictions.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Long-term intracranial EEG data was used from 10 patients. 10-s segments of EEG were input to LSTM models that were trained to classify the EEG signal. The final seizure prediction was generated from 5 outputs of the LSTM model over 50 s and combined with time information to account for seizure cycles.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The LSTM models could make predictions significantly better than a random predictor. When compared to other publications using the same dataset, our model performed better than several others and was comparable to the best models published to date. Furthermore, this framework could still produce predictions significantly better than chance when the experimental paradigm design was altered, without the need to reperform feature engineering.</jats:p></jats:sec><jats:sec><jats:title>Significance</jats:title><jats:p>Removing the need to perform feature engineering is an advancement on previously published models. This framework can be applied to many different patients’ needs and a variety of acute interventions. Also, it opens the possibility of personalized seizure predictions that can be altered to meet daily needs.</jats:p></jats:sec>},
|
|
304
|
-
keywords = {Feature Engineering, Feature (linguistics), Epileptic seizure},
|
|
305
|
-
doi = {10.3389/fnins.2024.1472747},
|
|
306
|
-
pmid = {39618708},
|
|
307
|
-
journal = {Frontiers in Neuroscience},
|
|
308
|
-
volume = {18},
|
|
309
|
-
citation_count = {2},
|
|
310
|
-
journal_impact_factor = {3.2},
|
|
311
|
-
url = {https://pdfs.semanticscholar.org/64f2/fd71f87c53805884066219095443d6dbaaeb.pdf},
|
|
312
|
-
}
|
|
313
|
-
|
|
314
|
-
@article{Kuhlmann2018EpilepsyecosystemorgCRV,
|
|
315
|
-
title = {Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG},
|
|
316
|
-
author = {L. Kuhlmann and Philippa J. Karoly and D. Freestone and B. Brinkmann and A. Temko and A. Barachant and Feng Li and Gilberto Titericz and Brian Lang and Daniel Lavery and Kelly Roman and D. Broadhead and Scott Dobson and Gareth Jones and Qingnan Tang and Irina Ivanenko and O. Panichev and T. Proix and M. N\{\'a\}hl\{\'i\}k and D. Grunberg and Chip Reuben and G. Worrell and B. Litt and D. Liley and D. Grayden and M. Cook},
|
|
317
|
-
year = {2018},
|
|
318
|
-
abstract = {Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions. However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage quality data to enable cost-effective, rapid development of predictive algorithms. A crowd-sourcing ecosystem for seizure prediction is presented involving an international competition, a follow-up held-out data evaluation, and an online platform, Epilepsyecosystem.org, for yielding further improvements in prediction performance. Crowd-sourced algorithms were obtained via the 'Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge' conducted at kaggle.com. Long-term continuous intracranial electroencephalography (iEEG) data (442 days of recordings and 211 lead seizures per patient) from prediction-resistant patients who had the lowest seizure prediction performances from the NeuroVista Seizure Advisory System clinical trial were analysed. Contestants (646 individuals in 478 teams) from around the world developed algorithms to distinguish between 10-min inter-seizure versus pre-seizure data clips. Over 10 000 algorithms were submitted. The top algorithms as determined by using the contest data were evaluated on a much larger held-out dataset. The data and top algorithms are available online for further investigation and development. The top performing contest entry scored 0.81 area under the classification curve. The performance reduced by only 6.7% on held-out data. Many other teams also showed high prediction reproducibility. Pseudo-prospective evaluation demonstrated that many algorithms, when used alone or weighted by circadian information, performed better than the benchmarks, including an average increase in sensitivity of 1.9 times the original clinical trial sensitivity for matched time in warning. These results indicate that clinically-relevant seizure prediction is possible in a wider range of patients than previously thought possible. Moreover, different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring. The crowd-sourcing ecosystem for seizure prediction will enable further worldwide community study of the data to yield greater improvements in prediction performance by way of competition, collaboration and synergism.10.1093/brain/awy210_video1awy210media15817489051001.},
|
|
319
|
-
keywords = {Crowd sourcing},
|
|
320
|
-
doi = {10.1093/brain/awy210},
|
|
321
|
-
pmid = {30101347},
|
|
322
|
-
journal = {Brain},
|
|
323
|
-
volume = {141},
|
|
324
|
-
citation_count = {178},
|
|
325
|
-
journal_impact_factor = {10.6},
|
|
326
|
-
url = {https://doi.org/10.1093/brain%2Fawy210},
|
|
327
|
-
pages = {2619–2630},
|
|
328
|
-
}
|
|
329
|
-
|
|
330
|
-
@article{Karoly2017TheCPW,
|
|
331
|
-
title = {The circadian profile of epilepsy improves seizure forecasting},
|
|
332
|
-
author = {Philippa J. Karoly and H. Ung and D. Grayden and L. Kuhlmann and Kent W. Leyde and M. Cook and D. Freestone},
|
|
333
|
-
year = {2017},
|
|
334
|
-
abstract = {It is now established that epilepsy is characterized by periodic dynamics that increase seizure likelihood at certain times of day, and which are highly patient-specific. However, these dynamics are not typically incorporated into seizure prediction algorithms due to the difficulty of estimating patient-specific rhythms from relatively short-term or unreliable data sources. This work outlines a novel framework to develop and assess seizure forecasts, and demonstrates that the predictive power of forecasting models is improved by circadian information. The analyses used long-term, continuous electrocorticography from nine subjects, recorded for an average of 320 days each. We used a large amount of out-of-sample data (a total of 900 days for algorithm training, and 2879 days for testing), enabling the most extensive post hoc investigation into seizure forecasting. We compared the results of an electrocorticography-based logistic regression model, a circadian probability, and a combined electrocorticography and circadian model. For all subjects, clinically relevant seizure prediction results were significant, and the addition of circadian information (combined model) maximized performance across a range of outcome measures. These results represent a proof-of-concept for implementing a circadian forecasting framework, and provide insight into new approaches for improving seizure prediction algorithms. The circadian framework adds very little computational complexity to existing prediction algorithms, and can be implemented using current-generation implant devices, or even non-invasively via surface electrodes using a wearable application. The ability to improve seizure prediction algorithms through straightforward, patient-specific modifications provides promise for increased quality of life and improved safety for patients with epilepsy.},
|
|
335
|
-
keywords = {Electrocorticography},
|
|
336
|
-
doi = {10.1093/brain/awx173},
|
|
337
|
-
pmid = {28899023},
|
|
338
|
-
journal = {Brain},
|
|
339
|
-
volume = {140},
|
|
340
|
-
citation_count = {195},
|
|
341
|
-
journal_impact_factor = {10.6},
|
|
342
|
-
url = {https://doi.org/10.1093/brain%2Fawx173},
|
|
343
|
-
pages = {2169–2182},
|
|
344
|
-
}
|
|
345
|
-
|
|
346
|
-
@article{Chen2022SeizureFBX,
|
|
347
|
-
title = {Seizure Forecasting by High-Frequency Activity (80–170 Hz) in Long-term Continuous Intracranial EEG Recordings},
|
|
348
|
-
author = {Zhuying Chen and M. Maturana and A. Burkitt and M. Cook and D. Grayden},
|
|
349
|
-
year = {2022},
|
|
350
|
-
abstract = {Background and Objectives Reliable seizure forecasting has important implications in epilepsy treatment and improving the quality of lives for people with epilepsy. High-frequency activity (HFA) is a biomarker that has received significant attention over the past 2 decades, but its predictive value in seizure forecasting remains uncertain. This work aimed to determine the utility of HFA in seizure forecasting. Methods We used seizure data and HFA (80–170 Hz) data obtained from long-term, continuous intracranial EEG recordings of patients with drug-resistant epilepsy. Instantaneous rates and phases of HFA cycles were used as features for seizure forecasting. Seizure forecasts based on each individual HFA feature, and with the use of a combined approach, were generated pseudo-prospectively (causally). To compute the instantaneous phases for pseudo-prospective forecasting, real-time phase estimation based on an autoregressive model was used. Features were combined with a weighted average approach. The performance of seizure forecasting was primarily evaluated by the area under the curve (AUC). Results Of 15 studied patients (median recording duration 557 days, median seizures 151), 12 patients with >10 seizures after 100 recording days were included in the pseudo-prospective analysis. The presented real-time phase estimation is feasible and can causally estimate the instantaneous phases of HFA cycles with high accuracy. Pseudo-prospective seizure forecasting based on HFA rates and phases performed significantly better than chance in 11 of 12 patients, although there were patient-specific differences. Combining rate and phase information improved forecasting performance compared to using either feature alone. The combined forecast using the best-performing channel yielded a median AUC of 0.70, a median sensitivity of 0.57, and a median specificity of 0.77. Discussion These findings show that HFA could be useful for seizure forecasting and represent proof of concept for using prior information of patient-specific relationships between HFA and seizures in pseudo-prospective forecasting. Future seizure forecasting algorithms might benefit from the inclusion of HFA, and the real-time phase estimation approach can be extended to other biomarkers. Classification of Evidence This study provides Class IV evidence that HFA (80–170 Hz) in long-term continuous intracranial EEG can be useful to forecast seizures in patients with refractory epilepsy.},
|
|
351
|
-
doi = {10.1212/wnl.0000000000200348},
|
|
352
|
-
pmid = {35523589},
|
|
353
|
-
journal = {Neurology},
|
|
354
|
-
volume = {99},
|
|
355
|
-
citation_count = {4},
|
|
356
|
-
journal_impact_factor = {7.7},
|
|
357
|
-
url = {https://doi.org/10.1212/WNL.0000000000200348},
|
|
358
|
-
pages = {e364 - e375},
|
|
359
|
-
}
|
|
360
|
-
|
|
361
|
-
@article{Andrade2024OnTPY,
|
|
362
|
-
title = {On the performance of seizure prediction machine learning methods across different databases: the sample and alarm-based perspectives},
|
|
363
|
-
author = {In\{\^e\}s Andrade and C\{\'e\}sar A. Teixeira and Mauro F. Pinto},
|
|
364
|
-
year = {2024},
|
|
365
|
-
abstract = {<jats:p>Epilepsy affects 1% of the global population, with approximately one-third of patients resistant to anti-seizure medications (ASMs), posing risks of physical injuries and psychological issues. Seizure prediction algorithms aim to enhance the quality of life for these individuals by providing timely alerts. This study presents a patient-specific seizure prediction algorithm applied to diverse databases (EPILEPSIAE, CHB-MIT, AES, and Epilepsy Ecosystem). The proposed algorithm undergoes a standardized framework, including data preprocessing, feature extraction, training, testing, and postprocessing. Various databases necessitate adaptations in the algorithm, considering differences in data availability and characteristics. The algorithm exhibited variable performance across databases, taking into account sensitivity, FPR/h, specificity, and AUC score. This study distinguishes between sample-based approaches, which often yield better results by disregarding the temporal aspect of seizures, and alarm-based approaches, which aim to simulate real-life conditions but produce less favorable outcomes. Statistical assessment reveals challenges in surpassing chance levels, emphasizing the rarity of seizure events. Comparative analyses with existing studies highlight the complexity of standardized assessments, given diverse methodologies and dataset variations. Rigorous methodologies aiming to simulate real-life conditions produce less favorable outcomes, emphasizing the importance of realistic assumptions and comprehensive, long-term, and systematically structured datasets for future research.</jats:p>},
|
|
366
|
-
doi = {10.3389/fnins.2024.1417748},
|
|
367
|
-
pmid = {39077429},
|
|
368
|
-
journal = {Frontiers in Neuroscience},
|
|
369
|
-
volume = {18},
|
|
370
|
-
journal_impact_factor = {3.2},
|
|
371
|
-
url = {https://api.semanticscholar.org/CorpusId:271222900},
|
|
372
|
-
}
|
|
373
|
-
|
|
374
|
-
@article{Brinkmann2015ForecastingSUZ,
|
|
375
|
-
title = {Forecasting Seizures Using Intracranial EEG Measures and SVM in Naturally Occurring Canine Epilepsy},
|
|
376
|
-
author = {Benjamin H. Brinkmann and E. Patterson and C. Vite and Vincent Vasoli and D. Crepeau and M. Stead and J. Howbert and V. Cherkassky and Joost B. Wagenaar and B. Litt and G. Worrell},
|
|
377
|
-
year = {2015},
|
|
378
|
-
abstract = {Management of drug resistant focal epilepsy would be greatly assisted by a reliable warning system capable of alerting patients prior to seizures to allow the patient to adjust activities or medication. Such a system requires successful identification of a preictal, or seizure-prone state. Identification of preictal states in continuous long- duration intracranial electroencephalographic (iEEG) recordings of dogs with naturally occurring epilepsy was investigated using a support vector machine (SVM) algorithm. The dogs studied were implanted with a 16-channel ambulatory iEEG recording device with average channel reference for a mean (st. dev.) of 380.4 (+87.5) days producing 220.2 (+104.1) days of intracranial EEG recorded at 400 Hz for analysis. The iEEG records had 51.6 (+52.8) seizures identified, of which 35.8 (+30.4) seizures were preceded by more than 4 hours of seizure-free data. Recorded iEEG data were stratified into 11 contiguous, non-overlapping frequency bands and binned into one-minute synchrony features for analysis. Performance of the SVM classifier was assessed using a 5-fold cross validation approach, where preictal training data were taken from 90 minute windows with a 5 minute pre-seizure offset. Analysis of the optimal preictal training time was performed by repeating the cross validation over a range of preictal windows and comparing results. We show that the optimization of feature selection varies for each subject, i.e. algorithms are subject specific, but achieve prediction performance significantly better than a time-matched Poisson random predictor (p<0.05) in 5/5 dogs analyzed.},
|
|
379
|
-
doi = {10.1371/journal.pone.0133900},
|
|
380
|
-
pmid = {26241907},
|
|
381
|
-
journal = {PLoS ONE},
|
|
382
|
-
volume = {10},
|
|
383
|
-
citation_count = {78},
|
|
384
|
-
journal_impact_factor = {2.9},
|
|
385
|
-
url = {https://pdfs.semanticscholar.org/b20d/72dbae1ba253711817d57ea36af51e994f82.pdf},
|
|
386
|
-
}
|
|
387
|
-
|
|
388
|
-
@article{Haderlein2023PathSFAA,
|
|
389
|
-
title = {Path Signatures for Seizure Forecasting},
|
|
390
|
-
author = {Jonas F. Haderlein and A. Peterson and P. Z. Eskikand and M. Cook and A. Burkitt and I. Mareels and D. Grayden},
|
|
391
|
-
year = {2023},
|
|
392
|
-
abstract = {Predicting future system behaviour from past observed behaviour (time series) is fundamental to science and engineering. In computational neuroscience, the prediction of future epileptic seizures from brain activity measurements, using EEG data, remains largely unresolved despite much dedicated research effort. Based on a longitudinal and state-of-the-art data set using intercranial EEG measurements from people with epilepsy, we consider the automated discovery of predictive features (or biomarkers) to forecast seizures in a patient-specific way. To this end, we use the path signature, a recent development in the analysis of data streams, to map from measured time series to seizure prediction. The predictor is based on linear classification, here augmented with sparsity constraints, to discern time series with and without an impending seizure. This approach may be seen as a step towards a generic pattern recognition pipeline where the main advantages are simplicity and ease of customisation, while maintaining forecasting performance on par with modern machine learning. Nevertheless, it turns out that although the path signature method has some powerful theoretical guarantees, appropriate time series statistics can achieve essentially the same results in our context of seizure prediction. This suggests that, due to their inherent complexity and non-stationarity, the brain's dynamics are not identifiable from the available EEG measurement data, and, more concretely, epileptic episode prediction is not reliably achieved using EEG measurement data alone.},
|
|
393
|
-
keywords = {Epileptic seizure},
|
|
394
|
-
doi = {10.48550/arxiv.2308.09312},
|
|
395
|
-
eprint = {2308.09312},
|
|
396
|
-
journal = {ArXiv},
|
|
397
|
-
citation_count = {1},
|
|
398
|
-
url = {https://api.semanticscholar.org/CorpusId:261030304},
|
|
399
|
-
volume = {abs/2308.09312},
|
|
400
|
-
}
|
|
401
|
-
|
|
402
|
-
@inproceedings{Schelter2007WelcomeTTAB,
|
|
403
|
-
title = {Welcome to the 3rd International Workshop on Seizure Prediction in Epilepsy!},
|
|
404
|
-
author = {B. Schelter},
|
|
405
|
-
year = {2007},
|
|
406
|
-
url = {https://www.bcf.uni-freiburg.de/events/pdf/2007-seizure-prediction-workshop.pdf},
|
|
407
|
-
booktitle = {unknown},
|
|
408
|
-
}
|
|
409
|
-
|
|
410
|
-
@article{Karoly2018SeizurePAAC,
|
|
411
|
-
title = {Seizure pathways: A model-based investigation},
|
|
412
|
-
author = {Philippa J. Karoly and L. Kuhlmann and Daniel Soudry and D. Grayden and M. Cook and D. Freestone},
|
|
413
|
-
year = {2018},
|
|
414
|
-
abstract = {We present the results of a model inversion algorithm for electrocorticography (ECoG) data recorded during epileptic seizures. The states and parameters of neural mass models were tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These models provide an estimate of the effective connectivity within intracortical circuits over the time course of seizures. Observing the dynamics of effective connectivity provides insight into mechanisms of seizures. Estimation of patients seizure dynamics revealed: 1) a highly stereotyped pattern of evolution for each patient, 2) distinct sub-groups of onset mechanisms amongst patients, and 3) different offset mechanisms for long and short seizures. Stereotypical dynamics suggest that, once initiated, seizures follow a deterministic path through the parameter space of a neural model. Furthermore, distinct sub-populations of patients were identified based on characteristic motifs in the dynamics at seizure onset. There were also distinct patterns between long and short duration seizures that were related to seizure offset. Understanding how these different patterns of seizure evolution arise may provide new insights into brain function and guide treatment for epilepsy, since specific therapies may have preferential effects on the various parameters that could potentially be individualized. Methods that unite computational models with data provide a powerful means to generate testable hypotheses for further experimental research. This work provides a demonstration that the hidden connectivity parameters of a neural mass model can be dynamically inferred from data. Our results underscore the power of theoretical models to inform epilepsy management. It is our hope that this work guides further efforts to apply computational models to clinical data.},
|
|
415
|
-
keywords = {Electrocorticography, Nerve net, Biological neural network},
|
|
416
|
-
doi = {10.1371/journal.pcbi.1006403},
|
|
417
|
-
pmid = {30307937},
|
|
418
|
-
journal = {PLoS Computational Biology},
|
|
419
|
-
volume = {14},
|
|
420
|
-
citation_count = {52},
|
|
421
|
-
journal_impact_factor = {3.8},
|
|
422
|
-
url = {https://pdfs.semanticscholar.org/e97d/85cc55e4db0e7e010a8c4090e898eb0afc72.pdf},
|
|
423
|
-
}
|
|
424
|
-
|
|
425
|
-
@article{Ahmad2022FPGAIOAD,
|
|
426
|
-
title = {FPGA Implementation of Epileptic Seizure Detection using Artificial Neural Network},
|
|
427
|
-
author = {Ahmad A. Ahmad and Yasmin M. Massoud and L. Kuhlmann and M. A. E. Ghany},
|
|
428
|
-
year = {2022},
|
|
429
|
-
abstract = {Epilepsy is a neurological disorder accompanied by a sudden, uncontrolled electrical disturbance in the brain which is called seizures. So far, epilepsy has no actual treatment, but its symptoms and accompanying seizures are rather controlled by medication. This makes the continuous monitoring of epilepsy patients an important point to consider. Recently, machine learning and deep learning techniques are utilized in seizure prediction algorithms, which supports seizure monitoring significantly. Additionally, Field-programmable Gate Arrays (FPGAs) were used extensively in the past years to create hardware implementations of machine learning models to predict seizures. In this work, we aim to implement FPGA-based general and patient specific seizure prediction that detect seizures for all epilepsy patients using multilayer perceptron neural network models, which was not done before. This will be done by first extracting features from The raw electroencephalogram (EEG) signal samples provided by Melbourne-NeuroVista seizure trial and the Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge. Results show that the general model had an AUC score of 0.71 while the patient specific model had an AUC score of 0.79.},
|
|
430
|
-
keywords = {Epileptic seizure},
|
|
431
|
-
doi = {10.1109/niles56402.2022.9942397},
|
|
432
|
-
journal = {2022 4th Novel Intelligent and Leading Emerging Sciences Conference (NILES)},
|
|
433
|
-
volume = {13},
|
|
434
|
-
citation_count = {1},
|
|
435
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9942397},
|
|
436
|
-
pages = {340-344},
|
|
437
|
-
}
|
|
@@ -1,46 +0,0 @@
|
|
|
1
|
-
@article{Cmpora2019,
|
|
2
|
-
title = {Seizure Detection Using Wearable Sensors and Machine Learning},
|
|
3
|
-
author = {Cimpora, Giulia and Rodriguez-Villegas, Esther},
|
|
4
|
-
year = {2019},
|
|
5
|
-
journal = {Scientific Reports},
|
|
6
|
-
volume = {9},
|
|
7
|
-
number = {1},
|
|
8
|
-
pages = {3111}
|
|
9
|
-
}
|
|
10
|
-
|
|
11
|
-
@article{Gagliano2019,
|
|
12
|
-
title = {A Statistical Feature-Based Seizure Prediction Algorithm From Scalp EEG},
|
|
13
|
-
author = {Gagliano, Laura and Bou Assi, Elie and Nguyen, Dang K. and Sawan, Mohamad},
|
|
14
|
-
year = {2019},
|
|
15
|
-
journal = {Scientific Reports},
|
|
16
|
-
volume = {9},
|
|
17
|
-
pages = {10937}
|
|
18
|
-
}
|
|
19
|
-
|
|
20
|
-
@article{LeCun2015,
|
|
21
|
-
title = {Deep Learning},
|
|
22
|
-
author = {LeCun, Yann and Bengio, Yoshua and Hinton, Geoffrey},
|
|
23
|
-
year = {2015},
|
|
24
|
-
journal = {Nature},
|
|
25
|
-
volume = {521},
|
|
26
|
-
number = {7553},
|
|
27
|
-
pages = {436--444}
|
|
28
|
-
}
|
|
29
|
-
|
|
30
|
-
@article{Smith2020,
|
|
31
|
-
title = {Phase-amplitude coupling in epileptic patients: A new biomarker for seizure prediction},
|
|
32
|
-
author = {Smith, John and Doe, Jane and Johnson, Robert},
|
|
33
|
-
year = {2020},
|
|
34
|
-
journal = {Nature Neuroscience},
|
|
35
|
-
volume = {23},
|
|
36
|
-
pages = {123--134}
|
|
37
|
-
}
|
|
38
|
-
|
|
39
|
-
@article{Wang2021,
|
|
40
|
-
title = {Real-time seizure prediction using deep neural networks},
|
|
41
|
-
author = {Wang, Li and Zhang, Wei and Chen, Ming},
|
|
42
|
-
year = {2021},
|
|
43
|
-
journal = {Brain},
|
|
44
|
-
volume = {144},
|
|
45
|
-
pages = {789--802}
|
|
46
|
-
}
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
File without changes
|