scitex 2.13.0__py3-none-any.whl → 2.15.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scitex/__init__.py +80 -2
- scitex/__version__.py +11 -8
- scitex/_env_loader.py +156 -0
- scitex/_mcp_resources/__init__.py +37 -0
- scitex/_mcp_resources/_cheatsheet.py +135 -0
- scitex/_mcp_resources/_figrecipe.py +138 -0
- scitex/_mcp_resources/_formats.py +102 -0
- scitex/_mcp_resources/_modules.py +337 -0
- scitex/_mcp_resources/_session.py +149 -0
- scitex/_mcp_tools/__init__.py +40 -0
- scitex/_mcp_tools/audio.py +200 -0
- scitex/_mcp_tools/canvas.py +128 -0
- scitex/_mcp_tools/capture.py +174 -0
- scitex/_mcp_tools/diagram.py +22 -0
- scitex/_mcp_tools/introspect.py +191 -0
- scitex/_mcp_tools/plt.py +305 -0
- scitex/_mcp_tools/scholar.py +447 -0
- scitex/_mcp_tools/social.py +244 -0
- scitex/_mcp_tools/stats.py +206 -0
- scitex/_mcp_tools/template.py +66 -0
- scitex/_mcp_tools/ui.py +80 -0
- scitex/_mcp_tools/writer.py +37 -0
- scitex/ai/_gen_ai/_PARAMS.py +10 -7
- scitex/ai/classification/reporters/_ClassificationReporter.py +0 -0
- scitex/ai/classification/reporters/_SingleClassificationReporter.py +45 -1603
- scitex/ai/classification/reporters/_mixins/__init__.py +36 -0
- scitex/ai/classification/reporters/_mixins/_constants.py +67 -0
- scitex/ai/classification/reporters/_mixins/_cv_summary.py +387 -0
- scitex/ai/classification/reporters/_mixins/_feature_importance.py +119 -0
- scitex/ai/classification/reporters/_mixins/_metrics.py +275 -0
- scitex/ai/classification/reporters/_mixins/_plotting.py +179 -0
- scitex/ai/classification/reporters/_mixins/_reports.py +153 -0
- scitex/ai/classification/reporters/_mixins/_storage.py +160 -0
- scitex/ai/classification/timeseries/_TimeSeriesBlockingSplit.py +0 -0
- scitex/ai/classification/timeseries/_TimeSeriesCalendarSplit.py +0 -0
- scitex/ai/classification/timeseries/_TimeSeriesSlidingWindowSplit.py +0 -0
- scitex/ai/classification/timeseries/_TimeSeriesSlidingWindowSplit_v01-not-using-n_splits.py +0 -0
- scitex/ai/classification/timeseries/_TimeSeriesStratifiedSplit.py +0 -0
- scitex/ai/classification/timeseries/_normalize_timestamp.py +0 -0
- scitex/ai/metrics/_calc_seizure_prediction_metrics.py +0 -0
- scitex/ai/plt/_plot_feature_importance.py +0 -0
- scitex/ai/plt/_plot_learning_curve.py +0 -0
- scitex/ai/plt/_plot_optuna_study.py +0 -0
- scitex/ai/plt/_plot_pre_rec_curve.py +0 -0
- scitex/ai/plt/_plot_roc_curve.py +0 -0
- scitex/ai/plt/_stx_conf_mat.py +0 -0
- scitex/ai/training/_LearningCurveLogger.py +0 -0
- scitex/audio/README.md +88 -7
- scitex/audio/__init__.py +127 -60
- scitex/audio/__main__.py +17 -21
- scitex/audio/_branding.py +185 -0
- scitex/audio/_mcp/__init__.py +36 -0
- scitex/audio/_mcp/handlers.py +419 -0
- scitex/audio/_mcp/speak_handlers.py +238 -0
- scitex/audio/_mcp/tool_schemas.py +203 -0
- scitex/audio/_relay.py +225 -0
- scitex/audio/engines/elevenlabs_engine.py +6 -1
- scitex/audio/mcp_server.py +355 -337
- scitex/bridge/_figrecipe.py +40 -8
- scitex/bridge/_stats_plt.py +2 -4
- scitex/bridge/_stats_vis.py +7 -5
- scitex/browser/automation/CookieHandler.py +0 -0
- scitex/browser/collaboration/__init__.py +0 -1
- scitex/browser/core/BrowserMixin.py +0 -0
- scitex/browser/core/ChromeProfileManager.py +10 -3
- scitex/browser/debugging/_browser_logger.py +6 -9
- scitex/browser/debugging/_highlight_element.py +0 -0
- scitex/browser/debugging/_show_grid.py +0 -0
- scitex/browser/interaction/click_center.py +0 -0
- scitex/browser/interaction/click_with_fallbacks.py +0 -0
- scitex/browser/interaction/close_popups.py +0 -0
- scitex/browser/interaction/fill_with_fallbacks.py +0 -0
- scitex/browser/pdf/click_download_for_chrome_pdf_viewer.py +0 -0
- scitex/browser/pdf/detect_chrome_pdf_viewer.py +0 -0
- scitex/browser/stealth/HumanBehavior.py +0 -0
- scitex/browser/stealth/StealthManager.py +0 -0
- scitex/canvas/README.md +1 -1
- scitex/canvas/_mcp/__init__.py +4 -0
- scitex/canvas/_mcp/handlers.py +372 -0
- scitex/canvas/_mcp/tool_schemas.py +219 -0
- scitex/canvas/editor/_dearpygui/__init__.py +25 -0
- scitex/canvas/editor/_dearpygui/_editor.py +147 -0
- scitex/canvas/editor/_dearpygui/_handlers.py +476 -0
- scitex/canvas/editor/_dearpygui/_panels/__init__.py +17 -0
- scitex/canvas/editor/_dearpygui/_panels/_control.py +119 -0
- scitex/canvas/editor/_dearpygui/_panels/_element_controls.py +190 -0
- scitex/canvas/editor/_dearpygui/_panels/_preview.py +43 -0
- scitex/canvas/editor/_dearpygui/_panels/_sections.py +390 -0
- scitex/canvas/editor/_dearpygui/_plotting.py +187 -0
- scitex/canvas/editor/_dearpygui/_rendering.py +504 -0
- scitex/canvas/editor/_dearpygui/_selection.py +295 -0
- scitex/canvas/editor/_dearpygui/_state.py +93 -0
- scitex/canvas/editor/_dearpygui/_utils.py +61 -0
- scitex/canvas/editor/flask_editor/templates/__init__.py +32 -70
- scitex/canvas/mcp_server.py +2 -2
- scitex/capture/__init__.py +0 -1
- scitex/capture/_mcp/__init__.py +11 -0
- scitex/capture/_mcp/handlers.py +438 -0
- scitex/capture/_mcp/tool_schemas.py +270 -0
- scitex/cli/__init__.py +44 -2
- scitex/cli/audio.py +150 -3
- scitex/cli/browser.py +310 -0
- scitex/cli/capture.py +14 -3
- scitex/cli/introspect.py +443 -0
- scitex/cli/main.py +230 -103
- scitex/cli/mcp.py +362 -0
- scitex/cli/repro.py +18 -0
- scitex/cli/resource.py +18 -0
- scitex/cli/scholar/__init__.py +97 -0
- scitex/cli/scholar/_crossref_scitex.py +296 -0
- scitex/cli/scholar/_fetch.py +369 -0
- scitex/cli/scholar/_jobs.py +306 -0
- scitex/cli/scholar/_library.py +152 -0
- scitex/cli/scholar/_utils.py +35 -0
- scitex/cli/social.py +314 -0
- scitex/cli/stats.py +18 -0
- scitex/cli/template.py +18 -0
- scitex/cli/tex.py +18 -0
- scitex/cli/writer.py +190 -20
- scitex/compat/__init__.py +74 -0
- scitex/config/README.md +1 -1
- scitex/config/__init__.py +16 -2
- scitex/config/_env_registry.py +191 -0
- scitex/config/default.yaml +31 -0
- scitex/cv/__init__.py +87 -0
- scitex/cv/_draw.py +236 -0
- scitex/cv/_filters.py +217 -0
- scitex/cv/_io.py +157 -0
- scitex/cv/_transform.py +184 -0
- scitex/dev/__init__.py +2 -0
- scitex/dev/cv/__init__.py +60 -0
- scitex/dev/cv/_compose.py +330 -0
- scitex/dev/cv/_title_card.py +351 -0
- scitex/dev/plt/__init__.py +0 -0
- scitex/dev/plt/demo_plotters/__init__.py +0 -0
- scitex/dev/plt/mpl/get_dir_ax.py +0 -0
- scitex/dev/plt/mpl/get_signatures.py +0 -0
- scitex/dev/plt/mpl/get_signatures_details.py +0 -0
- scitex/diagram/__init__.py +42 -19
- scitex/diagram/mcp_server.py +13 -125
- scitex/dt/_normalize_timestamp.py +0 -0
- scitex/gen/__init__.py +0 -0
- scitex/gen/misc.py +0 -0
- scitex/git/_init.py +2 -2
- scitex/git/_session.py +0 -0
- scitex/introspect/__init__.py +75 -0
- scitex/introspect/_call_graph.py +303 -0
- scitex/introspect/_class_hierarchy.py +163 -0
- scitex/introspect/_core.py +42 -0
- scitex/introspect/_docstring.py +131 -0
- scitex/introspect/_examples.py +113 -0
- scitex/introspect/_imports.py +271 -0
- scitex/introspect/_mcp/__init__.py +37 -0
- scitex/introspect/_mcp/handlers.py +208 -0
- scitex/introspect/_members.py +151 -0
- scitex/introspect/_resolve.py +89 -0
- scitex/introspect/_signature.py +131 -0
- scitex/introspect/_source.py +80 -0
- scitex/introspect/_type_hints.py +172 -0
- scitex/io/bundle/README.md +1 -1
- scitex/io/bundle/kinds/__init__.py +0 -0
- scitex/io/bundle/kinds/_figure/__init__.py +0 -0
- scitex/io/bundle/kinds/_plot/__init__.py +0 -0
- scitex/io/bundle/kinds/_shape/__init__.py +0 -0
- scitex/io/bundle/kinds/_text/__init__.py +0 -0
- scitex/logging/_context.py +5 -4
- scitex/mcp_server.py +170 -145
- scitex/plt/__init__.py +249 -548
- scitex/plt/_figrecipe_integration.py +121 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin/_wrappers.py +5 -10
- scitex/plt/_subplots/_FigWrapper.py +139 -88
- scitex/plt/_subplots/_export_as_csv_formatters/_format_pcolormesh.py +0 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_stackplot.py +0 -0
- scitex/plt/docs/EXTERNAL_PACKAGE_BRANDING.md +149 -0
- scitex/plt/gallery/README.md +1 -1
- scitex/plt/styles/_plot_postprocess.py +35 -117
- scitex/plt/styles/_postprocess_helpers.py +158 -0
- scitex/plt/utils/_hitmap/__init__.py +82 -0
- scitex/plt/utils/_hitmap/_artist_extraction.py +343 -0
- scitex/plt/utils/_hitmap/_color_application.py +346 -0
- scitex/plt/utils/_hitmap/_color_conversion.py +121 -0
- scitex/plt/utils/_hitmap/_constants.py +40 -0
- scitex/plt/utils/_hitmap/_hitmap_core.py +334 -0
- scitex/plt/utils/_hitmap/_path_extraction.py +357 -0
- scitex/plt/utils/_hitmap/_query.py +113 -0
- scitex/plt/utils/_hitmap.py +46 -1616
- scitex/plt/utils/_metadata/__init__.py +80 -0
- scitex/plt/utils/_metadata/_artists/__init__.py +25 -0
- scitex/plt/utils/_metadata/_artists/_base.py +195 -0
- scitex/plt/utils/_metadata/_artists/_collections.py +356 -0
- scitex/plt/utils/_metadata/_artists/_extract.py +57 -0
- scitex/plt/utils/_metadata/_artists/_images.py +80 -0
- scitex/plt/utils/_metadata/_artists/_lines.py +261 -0
- scitex/plt/utils/_metadata/_artists/_patches.py +247 -0
- scitex/plt/utils/_metadata/_artists/_text.py +106 -0
- scitex/plt/utils/_metadata/_csv.py +416 -0
- scitex/plt/utils/_metadata/_detect.py +225 -0
- scitex/plt/utils/_metadata/_legend.py +127 -0
- scitex/plt/utils/_metadata/_rounding.py +117 -0
- scitex/plt/utils/_metadata/_verification.py +202 -0
- scitex/repro/_RandomStateManager.py +0 -0
- scitex/repro/_gen_ID.py +0 -0
- scitex/repro/_gen_timestamp.py +0 -0
- scitex/repro/_hash_array.py +0 -0
- scitex/schema/README.md +1 -1
- scitex/scholar/__init__.py +8 -0
- scitex/scholar/_mcp/__init__.py +4 -0
- scitex/scholar/_mcp/all_handlers.py +74 -0
- scitex/scholar/_mcp/crossref_handlers.py +265 -0
- scitex/scholar/_mcp/handlers.py +1478 -0
- scitex/scholar/_mcp/job_handlers.py +172 -0
- scitex/scholar/_mcp/job_tool_schemas.py +166 -0
- scitex/scholar/_mcp/tool_schemas.py +505 -0
- scitex/scholar/auth/core/BrowserAuthenticator.py +126 -9
- scitex/scholar/auth/providers/OpenAthensAuthenticator.py +55 -210
- scitex/scholar/auth/providers/_notifications.py +417 -0
- scitex/scholar/auth/sso/BaseSSOAutomator.py +36 -17
- scitex/scholar/auth/sso/UniversityOfMelbourneSSOAutomator.py +8 -15
- scitex/scholar/citation_graph/__init__.py +0 -1
- scitex/scholar/config/core/_PathManager.py +5 -1
- scitex/scholar/config/default.yaml +1 -1
- scitex/scholar/core/Paper.py +19 -41
- scitex/scholar/core/Scholar.py +64 -1688
- scitex/scholar/core/_mixins/__init__.py +36 -0
- scitex/scholar/core/_mixins/_enrichers.py +270 -0
- scitex/scholar/core/_mixins/_library_handlers.py +100 -0
- scitex/scholar/core/_mixins/_loaders.py +103 -0
- scitex/scholar/core/_mixins/_pdf_download.py +375 -0
- scitex/scholar/core/_mixins/_pipeline.py +312 -0
- scitex/scholar/core/_mixins/_project_handlers.py +125 -0
- scitex/scholar/core/_mixins/_savers.py +69 -0
- scitex/scholar/core/_mixins/_search.py +103 -0
- scitex/scholar/core/_mixins/_services.py +88 -0
- scitex/scholar/core/_mixins/_url_finding.py +105 -0
- scitex/scholar/core/journal_normalizer.py +36 -25
- scitex/scholar/crossref_scitex.py +367 -0
- scitex/scholar/docs/EXTERNAL_PACKAGE_BRANDING.md +149 -0
- scitex/scholar/examples/00_run_all.sh +120 -0
- scitex/scholar/examples/07_storage_integration.py +0 -0
- scitex/scholar/impact_factor/estimation/__init__.py +0 -1
- scitex/scholar/impact_factor/jcr/ImpactFactorJCREngine.py +19 -6
- scitex/scholar/impact_factor/jcr/build_database.py +0 -0
- scitex/scholar/jobs/_Job.py +266 -0
- scitex/scholar/jobs/_JobManager.py +458 -0
- scitex/scholar/jobs/__init__.py +74 -0
- scitex/scholar/jobs/_errors.py +346 -0
- scitex/scholar/jobs/_executors.py +397 -0
- scitex/scholar/mcp_server.py +52 -2
- scitex/scholar/pdf_download/ScholarPDFDownloader.py +38 -416
- scitex/scholar/pdf_download/_cli.py +154 -0
- scitex/scholar/pdf_download/strategies/__init__.py +11 -8
- scitex/scholar/pdf_download/strategies/chrome_pdf_viewer.py +11 -11
- scitex/scholar/pdf_download/strategies/manual_download_fallback.py +80 -3
- scitex/scholar/pipelines/ScholarPipelineBibTeX.py +73 -121
- scitex/scholar/pipelines/ScholarPipelineParallel.py +83 -140
- scitex/scholar/pipelines/ScholarPipelineSearchParallel.py +11 -13
- scitex/scholar/pipelines/ScholarPipelineSingle.py +83 -656
- scitex/scholar/pipelines/_single_steps.py +465 -0
- scitex/scholar/storage/BibTeXHandler.py +71 -23
- scitex/scholar/storage/PaperIO.py +53 -18
- scitex/scholar/storage/_BibTeXValidator.py +571 -0
- scitex/scholar/storage/_LibraryManager.py +97 -1695
- scitex/scholar/storage/__init__.py +17 -3
- scitex/scholar/storage/_mixins/__init__.py +30 -0
- scitex/scholar/storage/_mixins/_bibtex_handlers.py +128 -0
- scitex/scholar/storage/_mixins/_library_operations.py +218 -0
- scitex/scholar/storage/_mixins/_metadata_conversion.py +226 -0
- scitex/scholar/storage/_mixins/_paper_saving.py +456 -0
- scitex/scholar/storage/_mixins/_resolution.py +376 -0
- scitex/scholar/storage/_mixins/_storage_helpers.py +121 -0
- scitex/scholar/storage/_mixins/_symlink_handlers.py +226 -0
- scitex/scholar/url_finder/translators/individual/cell_press.py +131 -4
- scitex/security/README.md +3 -3
- scitex/security/__init__.py +0 -1
- scitex/session/README.md +1 -1
- scitex/session/__init__.py +0 -0
- scitex/session/_decorator.py +0 -0
- scitex/session/_lifecycle.py +0 -0
- scitex/sh/README.md +1 -1
- scitex/social/__init__.py +153 -0
- scitex/social/docs/EXTERNAL_PACKAGE_BRANDING.md +149 -0
- scitex/stats/__init__.py +14 -2
- scitex/stats/__main__.py +2 -2
- scitex/stats/_figrecipe_integration.py +116 -0
- scitex/stats/_mcp/__init__.py +4 -0
- scitex/stats/_mcp/handlers.py +1191 -0
- scitex/stats/_mcp/tool_schemas.py +384 -0
- scitex/stats/auto/__init__.py +0 -1
- scitex/stats/correct/_correct_bonferroni.py +0 -0
- scitex/stats/correct/_correct_fdr.py +0 -0
- scitex/stats/correct/_correct_fdr_.py +0 -0
- scitex/stats/correct/_correct_holm.py +0 -0
- scitex/stats/correct/_correct_sidak.py +0 -0
- scitex/stats/effect_sizes/_cliffs_delta.py +0 -0
- scitex/stats/effect_sizes/_cohens_d.py +0 -0
- scitex/stats/effect_sizes/_epsilon_squared.py +0 -0
- scitex/stats/effect_sizes/_eta_squared.py +0 -0
- scitex/stats/effect_sizes/_prob_superiority.py +0 -0
- scitex/stats/mcp_server.py +2 -2
- scitex/stats/posthoc/_dunnett.py +0 -0
- scitex/stats/posthoc/_games_howell.py +0 -0
- scitex/stats/posthoc/_tukey_hsd.py +0 -0
- scitex/stats/power/_power.py +0 -0
- scitex/stats/utils/_effect_size.py +0 -0
- scitex/stats/utils/_formatters.py +0 -0
- scitex/stats/utils/_power.py +0 -0
- scitex/template/README.md +1 -1
- scitex/template/_mcp/__init__.py +4 -0
- scitex/template/_mcp/handlers.py +259 -0
- scitex/template/_mcp/tool_schemas.py +112 -0
- scitex/template/clone_writer_directory.py +6 -6
- scitex/template/mcp_server.py +2 -2
- scitex/ui/__init__.py +173 -0
- scitex/ui/_backends/__init__.py +66 -0
- scitex/ui/_backends/_audio.py +86 -0
- scitex/ui/_backends/_config.py +250 -0
- scitex/ui/_backends/_desktop.py +184 -0
- scitex/ui/_backends/_emacs.py +210 -0
- scitex/ui/_backends/_email.py +78 -0
- scitex/ui/_backends/_matplotlib.py +118 -0
- scitex/ui/_backends/_playwright.py +109 -0
- scitex/ui/_backends/_types.py +58 -0
- scitex/ui/_backends/_webhook.py +77 -0
- scitex/ui/_backends.py +37 -0
- scitex/ui/_mcp/__init__.py +23 -0
- scitex/ui/_mcp/handlers.py +260 -0
- scitex/ui/_mcp/tool_schemas.py +107 -0
- scitex/ui/mcp_server.py +151 -0
- scitex/utils/_email.py +85 -7
- scitex/utils/_notify.py +16 -5
- scitex/utils/_search.py +11 -9
- scitex/utils/_verify_scitex_format.py +0 -0
- scitex/writer/README.md +1 -1
- scitex/writer/Writer.py +110 -111
- scitex/writer/__init__.py +26 -48
- scitex/writer/_clone_writer_project.py +0 -0
- scitex/writer/_compile/__init__.py +5 -4
- scitex/writer/_compile/_compile_async.py +130 -0
- scitex/writer/_compile/_compile_unified.py +148 -0
- scitex/writer/_compile/_runner.py +2 -2
- scitex/writer/_compile/_validator.py +3 -3
- scitex/writer/_compile/manuscript.py +1 -1
- scitex/writer/_compile/revision.py +1 -1
- scitex/writer/_compile/supplementary.py +1 -1
- scitex/writer/_dataclasses/config/_WriterConfig.py +175 -0
- scitex/writer/_dataclasses/contents/_ManuscriptContents.py +236 -0
- scitex/writer/_dataclasses/core/_Document.py +146 -0
- scitex/writer/_dataclasses/core/_DocumentSection.py +546 -0
- scitex/writer/_dataclasses/results/_CompilationResult.py +165 -0
- scitex/writer/_dataclasses/results/_LaTeXIssue.py +102 -0
- scitex/writer/_dataclasses/tree/MINIMUM_FILES.md +121 -0
- scitex/writer/_mcp/__init__.py +4 -0
- scitex/writer/_mcp/handlers.py +32 -0
- scitex/writer/_mcp/tool_schemas.py +33 -0
- scitex/writer/_project/_trees.py +2 -2
- scitex/writer/utils/__init__.py +19 -2
- scitex/writer/utils/_converters.py +635 -0
- scitex/writer/utils/_parse_latex_logs.py +1 -1
- scitex/writer/utils/_verify_tree_structure.py +205 -0
- scitex-2.15.1.dist-info/METADATA +648 -0
- scitex-2.15.1.dist-info/RECORD +2553 -0
- scitex-2.15.1.dist-info/entry_points.txt +12 -0
- scitex/audio/_mcp_handlers.py +0 -256
- scitex/audio/_mcp_tool_schemas.py +0 -203
- scitex/canvas/_mcp_handlers.py +0 -372
- scitex/canvas/_mcp_tool_schemas.py +0 -219
- scitex/canvas/editor/flask_editor/templates/_scripts.py +0 -4933
- scitex/canvas/editor/flask_editor/templates/_styles.py +0 -1658
- scitex/capture/mcp_handlers.py +0 -401
- scitex/capture/mcp_tool_defs.py +0 -192
- scitex/capture/mcp_tools.py +0 -241
- scitex/capture/mcp_utils.py +0 -30
- scitex/cli/scholar.py +0 -313
- scitex/diagram/_compile.py +0 -312
- scitex/diagram/_diagram.py +0 -355
- scitex/diagram/_mcp_handlers.py +0 -400
- scitex/diagram/_mcp_tool_schemas.py +0 -157
- scitex/diagram/_presets.py +0 -173
- scitex/diagram/_schema.py +0 -182
- scitex/diagram/_split.py +0 -278
- scitex/plt/_mcp_handlers.py +0 -361
- scitex/plt/_mcp_tool_schemas.py +0 -169
- scitex/plt/mcp_server.py +0 -205
- scitex/scholar/.legacy/Scholar.py +0 -400
- scitex/scholar/.legacy/_Scholar.py +0 -1763
- scitex/scholar/.legacy/_ScholarAPI.py +0 -316
- scitex/scholar/.legacy/_tmp/search_engine/_BaseSearchEngine.py +0 -101
- scitex/scholar/.legacy/_tmp/search_engine/_UnifiedSearcher.py +0 -392
- scitex/scholar/.legacy/_tmp/search_engine/__init__.py +0 -53
- scitex/scholar/.legacy/_tmp/search_engine/local/_LocalSearchEngine.py +0 -134
- scitex/scholar/.legacy/_tmp/search_engine/local/_VectorSearchEngine.py +0 -129
- scitex/scholar/.legacy/_tmp/search_engine/web/_ArxivSearchEngine.py +0 -279
- scitex/scholar/.legacy/_tmp/search_engine/web/_CrossRefSearchEngine.py +0 -319
- scitex/scholar/.legacy/_tmp/search_engine/web/_GoogleScholarSearchEngine.py +0 -209
- scitex/scholar/.legacy/_tmp/search_engine/web/_PubMedSearchEngine.py +0 -374
- scitex/scholar/.legacy/_tmp/search_engine/web/_SemanticScholarSearchEngine.py +0 -362
- scitex/scholar/.legacy/database/README.md +0 -121
- scitex/scholar/.legacy/database/README_CONCURRENT_ACCESS.md +0 -103
- scitex/scholar/.legacy/database/_DatabaseEntry.py +0 -232
- scitex/scholar/.legacy/database/_DatabaseIndex.py +0 -426
- scitex/scholar/.legacy/database/_LibraryManager.py +0 -276
- scitex/scholar/.legacy/database/_PaperDatabase.py +0 -543
- scitex/scholar/.legacy/database/_ScholarDatabaseIntegration.py +0 -391
- scitex/scholar/.legacy/database/_StorageIntegratedDB.py +0 -619
- scitex/scholar/.legacy/database/_ZoteroCompatibleDB.py +0 -1194
- scitex/scholar/.legacy/database/__init__.py +0 -28
- scitex/scholar/.legacy/database/manage.py +0 -274
- scitex/scholar/.legacy/lookup/_LookupIndex.py +0 -470
- scitex/scholar/.legacy/lookup/__init__.py +0 -22
- scitex/scholar/.legacy/metadata/README.md +0 -62
- scitex/scholar/.legacy/metadata/__init__.py +0 -1
- scitex/scholar/.legacy/metadata/doi/README.md +0 -368
- scitex/scholar/.legacy/metadata/doi/__init__.py +0 -7
- scitex/scholar/.legacy/metadata/doi/batch/_MetadataHandlerForBatchDOIResolution.py +0 -304
- scitex/scholar/.legacy/metadata/doi/batch/_ProgressManagerForBatchDOIResolution.py +0 -304
- scitex/scholar/.legacy/metadata/doi/batch/_SourceStatsManagerForBatchDOIResolution.py +0 -299
- scitex/scholar/.legacy/metadata/doi/batch/__init__.py +0 -26
- scitex/scholar/.legacy/metadata/doi/resolvers/_BatchDOIResolver.py +0 -586
- scitex/scholar/.legacy/metadata/doi/resolvers/_BibTeXDOIResolver.py +0 -609
- scitex/scholar/.legacy/metadata/doi/resolvers/_DOIResolver.py +0 -192
- scitex/scholar/.legacy/metadata/doi/resolvers/_SingleDOIResolver.py +0 -395
- scitex/scholar/.legacy/metadata/doi/resolvers/__init__.py +0 -2
- scitex/scholar/.legacy/metadata/doi/sources/.combined-SemanticScholarSource/_SemanticScholarSource.py +0 -289
- scitex/scholar/.legacy/metadata/doi/sources/.combined-SemanticScholarSource/_SemanticScholarSourceEnhanced.py +0 -229
- scitex/scholar/.legacy/metadata/doi/sources/_ArXivSource.py +0 -306
- scitex/scholar/.legacy/metadata/doi/sources/_BaseDOISource.py +0 -347
- scitex/scholar/.legacy/metadata/doi/sources/_CrossRefLocalSource.py +0 -79
- scitex/scholar/.legacy/metadata/doi/sources/_CrossRefSource.py +0 -225
- scitex/scholar/.legacy/metadata/doi/sources/_OpenAlexSource.py +0 -306
- scitex/scholar/.legacy/metadata/doi/sources/_PubMedSource.py +0 -302
- scitex/scholar/.legacy/metadata/doi/sources/_SemanticScholarSource.py +0 -341
- scitex/scholar/.legacy/metadata/doi/sources/_SourceManager.py +0 -317
- scitex/scholar/.legacy/metadata/doi/sources/_SourceResolutionStrategy.py +0 -595
- scitex/scholar/.legacy/metadata/doi/sources/_SourceRotationManager.py +0 -585
- scitex/scholar/.legacy/metadata/doi/sources/_URLDOISource.py +0 -394
- scitex/scholar/.legacy/metadata/doi/sources/_UnifiedSource.py +0 -412
- scitex/scholar/.legacy/metadata/doi/sources/__init__.py +0 -38
- scitex/scholar/.legacy/metadata/doi/utils/_PubMedConverter.py +0 -465
- scitex/scholar/.legacy/metadata/doi/utils/_RateLimitHandler.py +0 -707
- scitex/scholar/.legacy/metadata/doi/utils/_TextNormalizer.py +0 -587
- scitex/scholar/.legacy/metadata/doi/utils/_URLDOIExtractor.py +0 -278
- scitex/scholar/.legacy/metadata/doi/utils/__init__.py +0 -40
- scitex/scholar/.legacy/metadata/doi/utils/_to_complete_metadata_structure.py +0 -315
- scitex/scholar/.legacy/metadata/enrichment/README.md +0 -51
- scitex/scholar/.legacy/metadata/enrichment/_LibraryEnricher.py +0 -99
- scitex/scholar/.legacy/metadata/enrichment/__init__.py +0 -2
- scitex/scholar/.legacy/metadata/enrichment/enrichers/_ImpactFactorEnricher.py +0 -107
- scitex/scholar/.legacy/metadata/enrichment/enrichers/_SmartEnricher.py +0 -164
- scitex/scholar/.legacy/metadata/enrichment/enrichers/__init__.py +0 -4
- scitex/scholar/.legacy/metadata/enrichment/sources/_UnifiedMetadataSource.py +0 -126
- scitex/scholar/.legacy/metadata/enrichment/sources/__init__.py +0 -3
- scitex/scholar/.legacy/metadata/query_to_full_meta_json.py +0 -184
- scitex/scholar/.legacy/metadata/urls/.tmp/open_url/KNOWN_RESOLVERS.py +0 -462
- scitex/scholar/.legacy/metadata/urls/.tmp/open_url/README.md +0 -223
- scitex/scholar/.legacy/metadata/urls/.tmp/open_url/_DOIToURLResolver.py +0 -694
- scitex/scholar/.legacy/metadata/urls/.tmp/open_url/_OpenURLResolver.py +0 -1160
- scitex/scholar/.legacy/metadata/urls/.tmp/open_url/_ResolverLinkFinder.py +0 -344
- scitex/scholar/.legacy/metadata/urls/.tmp/open_url/__init__.py +0 -24
- scitex/scholar/.legacy/metadata/urls/README.md +0 -142
- scitex/scholar/.legacy/metadata/urls/_URLMetadataHandler.py +0 -383
- scitex/scholar/.legacy/metadata/urls/_ZoteroTranslatorRunner.py +0 -294
- scitex/scholar/.legacy/metadata/urls/__init__.py +0 -39
- scitex/scholar/.legacy/metadata/urls/_finder.py +0 -319
- scitex/scholar/.legacy/metadata/urls/_handler.py +0 -326
- scitex/scholar/.legacy/metadata/urls/_resolver.py +0 -287
- scitex/scholar/.legacy/metadata/urls/docs/CORE_URL_TYPES.md +0 -187
- scitex/scholar/.legacy/metadata/urls/docs/URL_SCHEMA.md +0 -223
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/.eslintrc +0 -11
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/AGPL +0 -22
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/checkDeletedTxt.sh +0 -46
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/eslint-plugin-zotero-translator/bin/teslint.js +0 -9
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/eslint-plugin-zotero-translator/index.js +0 -15
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/eslint-plugin-zotero-translator/package-lock.json +0 -151
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/eslint-plugin-zotero-translator/package.json +0 -21
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/eslint-plugin-zotero-translator/processor.js +0 -257
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/helper.sh +0 -29
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/lint.sh +0 -12
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/pull-request-check/check-pull-request.sh +0 -39
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/pull-request-check/selenium-test.js +0 -147
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/pull-request-check/translator-server.js +0 -72
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.ci/updateTypes.mjs +0 -75
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.editorconfig +0 -8
- scitex/scholar/.legacy/metadata/urls/zotero_translators/.eslintrc +0 -70
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ABC News Australia.js +0 -224
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ACLS Humanities EBook.js +0 -165
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ACLWeb.js +0 -600
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ACM Digital Library.js +0 -710
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ACS Publications.js +0 -633
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ADS Bibcode.js +0 -664
- scitex/scholar/.legacy/metadata/urls/zotero_translators/AEA Web.js +0 -450
- scitex/scholar/.legacy/metadata/urls/zotero_translators/AGRIS.js +0 -311
- scitex/scholar/.legacy/metadata/urls/zotero_translators/AIP.js +0 -295
- scitex/scholar/.legacy/metadata/urls/zotero_translators/AMS Journals.js +0 -136
- scitex/scholar/.legacy/metadata/urls/zotero_translators/AMS MathSciNet (Legacy).js +0 -313
- scitex/scholar/.legacy/metadata/urls/zotero_translators/AMS MathSciNet.js +0 -288
- scitex/scholar/.legacy/metadata/urls/zotero_translators/APA PsycNET.js +0 -915
- scitex/scholar/.legacy/metadata/urls/zotero_translators/APN.ru.js +0 -132
- scitex/scholar/.legacy/metadata/urls/zotero_translators/APS-Physics.js +0 -204
- scitex/scholar/.legacy/metadata/urls/zotero_translators/APS.js +0 -542
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ARTFL Encyclopedie.js +0 -283
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ARTnews.js +0 -155
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ARTstor.js +0 -619
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ASCE.js +0 -199
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ASCO Meeting Library.js +0 -153
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ASTIS.js +0 -337
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ATS International Journal.js +0 -290
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Access Engineering.js +0 -384
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Access Medicine.js +0 -343
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Access Science.js +0 -391
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Adam Matthew Digital.js +0 -405
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Agencia del ISBN.js +0 -77
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Ahval News.js +0 -309
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Air University Journals.js +0 -236
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Airiti.js +0 -423
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Alexander Street Press.js +0 -198
- scitex/scholar/.legacy/metadata/urls/zotero_translators/AllAfrica.js +0 -291
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Alsharekh.js +0 -242
- scitex/scholar/.legacy/metadata/urls/zotero_translators/AlterNet.js +0 -134
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Aluka.js +0 -261
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Amazon.js +0 -1043
- scitex/scholar/.legacy/metadata/urls/zotero_translators/American Archive of Public Broadcasting.js +0 -592
- scitex/scholar/.legacy/metadata/urls/zotero_translators/American Institute of Aeronautics and Astronautics.js +0 -210
- scitex/scholar/.legacy/metadata/urls/zotero_translators/American Prospect.js +0 -114
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Ancestry.com US Federal Census.js +0 -164
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Annual Reviews.js +0 -329
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Antikvarium.hu.js +0 -280
- scitex/scholar/.legacy/metadata/urls/zotero_translators/AquaDocs.js +0 -390
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Archeion.js +0 -249
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Archiv fuer Sozialgeschichte.js +0 -157
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Archive Ouverte en Sciences de l'Information et de la Communication (AOSIC).js +0 -179
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Archives Canada.js +0 -142
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Ariana News.js +0 -203
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Art Institute of Chicago.js +0 -279
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Artefacts Canada.js +0 -192
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Artforum.js +0 -438
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Atlanta Journal-Constitution.js +0 -311
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Atypon Journals.js +0 -1204
- scitex/scholar/.legacy/metadata/urls/zotero_translators/AustLII and NZLII.js +0 -604
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Australian Dictionary of Biography.js +0 -196
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BAILII.js +0 -176
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BBC Genome.js +0 -254
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BBC.js +0 -430
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BIBSYS.js +0 -112
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BOCC.js +0 -217
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BOE.js +0 -229
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BOFiP-Impots.js +0 -132
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Baidu Scholar.js +0 -276
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bangkok Post.js +0 -216
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Baruch Foundation.js +0 -175
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Beobachter.js +0 -175
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bezneng Gajit.js +0 -92
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BibLaTeX.js +0 -888
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BibTeX.js +0 -4236
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Biblio.com.js +0 -216
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bibliontology RDF.js +0 -1166
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Biblioteca Nacional de Maestros.js +0 -213
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bibliotheque et Archives Nationale du Quebec (Pistard).js +0 -147
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bibliotheque et Archives Nationales du Quebec.js +0 -266
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bibliotheque nationale de France.js +0 -872
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BioMed Central.js +0 -585
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BioOne.js +0 -233
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bioconductor.js +0 -343
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Blaetter.js +0 -192
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Blogger.js +0 -244
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bloomberg.js +0 -205
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bloomsbury Food Library.js +0 -296
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bluesky.js +0 -195
- scitex/scholar/.legacy/metadata/urls/zotero_translators/BnF ISBN.js +0 -129
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bookmarks.js +0 -282
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bookshop.org.js +0 -223
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Boston Review.js +0 -332
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bosworth Toller's Anglo-Saxon Dictionary Online.js +0 -496
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bracero History Archive.js +0 -200
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Brill.js +0 -434
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Brukerhandboken.js +0 -153
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bryn Mawr Classical Review.js +0 -303
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Bundesgesetzblatt.js +0 -231
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Business Standard.js +0 -151
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CABI - CAB Abstracts.js +0 -317
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CAOD.js +0 -260
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CBC.js +0 -439
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CCfr (BnF).js +0 -162
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CERN Document Server.js +0 -277
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CEUR Workshop Proceedings.js +0 -145
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CFF References.js +0 -170
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CFF.js +0 -113
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CIA World Factbook.js +0 -128
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CLACSO.js +0 -226
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CLASE.js +0 -135
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CNKI.js +0 -731
- scitex/scholar/.legacy/metadata/urls/zotero_translators/COBISS.js +0 -1945
- scitex/scholar/.legacy/metadata/urls/zotero_translators/COinS.js +0 -336
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CQ Press.js +0 -418
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CROSBI.js +0 -227
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CSIRO Publishing.js +0 -139
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CSL JSON.js +0 -203
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CSV.js +0 -294
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Cairn.info.js +0 -368
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CalMatters.js +0 -228
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Calisphere.js +0 -355
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Camara Brasileira do Livro ISBN.js +0 -842
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Cambridge Core.js +0 -580
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Cambridge Engage Preprints.js +0 -276
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CanLII.js +0 -284
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Canada.com.js +0 -171
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Canadian Letters and Images.js +0 -148
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Canadiana.ca.js +0 -196
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Cascadilla Proceedings Project.js +0 -390
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Cell Press.js +0 -516
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Central and Eastern European Online Library Journals.js +0 -313
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Champlain Society - Collection.js +0 -220
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Chicago Journal of Theoretical Computer Science.js +0 -203
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Christian Science Monitor.js +0 -148
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Chronicling America.js +0 -131
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CiNii Research.js +0 -168
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Citavi 5 XML.js +0 -516
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CiteSeer.js +0 -196
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Citizen Lab.js +0 -347
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Civilization.ca.js +0 -146
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Climate Change and Human Health Literature Portal.js +0 -283
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Clinical Key.js +0 -367
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Code4Lib Journal.js +0 -143
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Colorado State Legislature.js +0 -215
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Columbia University Press.js +0 -238
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Common-Place.js +0 -218
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Computer History Museum Archive.js +0 -1319
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Copernicus.js +0 -461
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Cornell LII.js +0 -252
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Cornell University Press.js +0 -235
- scitex/scholar/.legacy/metadata/urls/zotero_translators/CourtListener.js +0 -265
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Crossref REST.js +0 -1757
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Crossref Unixref XML.js +0 -965
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Current Affairs.js +0 -160
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DABI.js +0 -476
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DAI-Zenon.js +0 -392
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DART-Europe.js +0 -176
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DBLP Computer Science Bibliography.js +0 -462
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DBpia.js +0 -233
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DEPATISnet.js +0 -373
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DOAJ.js +0 -242
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DOI Content Negotiation.js +0 -352
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DOI.js +0 -322
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DPLA.js +0 -425
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DSpace Intermediate Metadata.js +0 -208
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Dagens Nyheter.js +0 -369
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Dagstuhl Research Online Publication Server.js +0 -278
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Dar Almandumah.js +0 -253
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Data.gov.js +0 -225
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Databrary.js +0 -184
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Datacite JSON.js +0 -1182
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Dataverse.js +0 -418
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Daum News.js +0 -139
- scitex/scholar/.legacy/metadata/urls/zotero_translators/De Gruyter Brill.js +0 -674
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Defense Technical Information Center.js +0 -146
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Delpher.js +0 -413
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Demographic Research.js +0 -164
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Denik CZ.js +0 -273
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Der Freitag.js +0 -236
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Der Spiegel.js +0 -479
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Desiring God.js +0 -216
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Deutsche Fotothek.js +0 -364
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Deutsche Nationalbibliothek.js +0 -594
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Dialnet.js +0 -258
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Die Zeit.js +0 -378
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DigiZeitschriften.js +0 -269
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Digital Humanities Quarterly.js +0 -207
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Digital Spy.js +0 -215
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Dimensions.js +0 -233
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Douban.js +0 -316
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Dreier Neuerscheinungsdienst.js +0 -209
- scitex/scholar/.legacy/metadata/urls/zotero_translators/DrugBank.ca.js +0 -209
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Dryad Digital Repository.js +0 -323
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Duke University Press Books.js +0 -250
- scitex/scholar/.legacy/metadata/urls/zotero_translators/E-periodica Switzerland.js +0 -347
- scitex/scholar/.legacy/metadata/urls/zotero_translators/EBSCO Discovery Layer.js +0 -147
- scitex/scholar/.legacy/metadata/urls/zotero_translators/EBSCOhost.js +0 -592
- scitex/scholar/.legacy/metadata/urls/zotero_translators/EIDR.js +0 -184
- scitex/scholar/.legacy/metadata/urls/zotero_translators/EPA National Library Catalog.js +0 -245
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ERIC.js +0 -986
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ESpacenet.js +0 -465
- scitex/scholar/.legacy/metadata/urls/zotero_translators/EUR-Lex.js +0 -423
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Eastview.js +0 -336
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Edinburgh University Press Journals.js +0 -178
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Education Week.js +0 -197
- scitex/scholar/.legacy/metadata/urls/zotero_translators/El Comercio (Peru).js +0 -347
- scitex/scholar/.legacy/metadata/urls/zotero_translators/El Pais.js +0 -262
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Electronic Colloquium on Computational Complexity.js +0 -230
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Elicit.js +0 -120
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Elsevier Health Journals.js +0 -531
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Elsevier Pure.js +0 -420
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Embedded Metadata.js +0 -1951
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Emerald Insight.js +0 -626
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Encyclopedia of Chicago.js +0 -162
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Encyclopedia of Korean Culture.js +0 -221
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Endnote XML.js +0 -1407
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Engineering Village.js +0 -139
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Envidat.js +0 -331
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Epicurious.js +0 -144
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Erudit.js +0 -272
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Euclid.js +0 -220
- scitex/scholar/.legacy/metadata/urls/zotero_translators/EurasiaNet.js +0 -109
- scitex/scholar/.legacy/metadata/urls/zotero_translators/EurogamerUSgamer.js +0 -380
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Europe PMC.js +0 -448
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Evernote.js +0 -104
- scitex/scholar/.legacy/metadata/urls/zotero_translators/F1000 Research.js +0 -655
- scitex/scholar/.legacy/metadata/urls/zotero_translators/FAO Publications.js +0 -1139
- scitex/scholar/.legacy/metadata/urls/zotero_translators/FAZ.NET.js +0 -231
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Fachportal Padagogik.js +0 -839
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Factiva.js +0 -302
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Failed Architecture.js +0 -114
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Fairfax Australia.js +0 -200
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Fatcat.js +0 -425
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Figshare.js +0 -191
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Financial Times.js +0 -187
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Finna.js +0 -357
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Flickr.js +0 -318
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Foreign Affairs.js +0 -485
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Foreign Policy.js +0 -146
- scitex/scholar/.legacy/metadata/urls/zotero_translators/FreeCite.js +0 -95
- scitex/scholar/.legacy/metadata/urls/zotero_translators/FreePatentsOnline.js +0 -265
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Frieze.js +0 -243
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Frontiers.js +0 -667
- scitex/scholar/.legacy/metadata/urls/zotero_translators/GMS German Medical Science.js +0 -319
- scitex/scholar/.legacy/metadata/urls/zotero_translators/GPO Access e-CFR.js +0 -134
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Gale Databases.js +0 -324
- scitex/scholar/.legacy/metadata/urls/zotero_translators/GaleGDC.js +0 -189
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Galegroup.js +0 -327
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Gallica.js +0 -194
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Game Studies.js +0 -155
- scitex/scholar/.legacy/metadata/urls/zotero_translators/GameSpot.js +0 -199
- scitex/scholar/.legacy/metadata/urls/zotero_translators/GameStar GamePro.js +0 -198
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Gasyrlar Awazy.js +0 -156
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Gemeinsamer Bibliotheksverbund ISBN.js +0 -23
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Gene Ontology.js +0 -128
- scitex/scholar/.legacy/metadata/urls/zotero_translators/GitHub.js +0 -501
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Globes.js +0 -243
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Gmail.js +0 -64
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Goodreads.js +0 -219
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Google Books.js +0 -552
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Google Patents.js +0 -959
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Google Play.js +0 -186
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Google Presentation.js +0 -104
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Google Research.js +0 -221
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Google Scholar.js +0 -1361
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Gulag Many Days, Many Lives.js +0 -179
- scitex/scholar/.legacy/metadata/urls/zotero_translators/HAL Archives Ouvertes.js +0 -429
- scitex/scholar/.legacy/metadata/urls/zotero_translators/HCSP.js +0 -312
- scitex/scholar/.legacy/metadata/urls/zotero_translators/HUDOC.js +0 -650
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Haaretz.js +0 -562
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Habr.js +0 -232
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Handelszeitung.js +0 -273
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Hanrei Watch.js +0 -123
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Harper's Magazine.js +0 -365
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Harvard Business Review.js +0 -326
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Harvard Caselaw Access Project.js +0 -244
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Harvard University Press Books.js +0 -286
- scitex/scholar/.legacy/metadata/urls/zotero_translators/HathiTrust.js +0 -311
- scitex/scholar/.legacy/metadata/urls/zotero_translators/HeinOnline.js +0 -266
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Heise.js +0 -200
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Herder.js +0 -236
- scitex/scholar/.legacy/metadata/urls/zotero_translators/HighBeam.js +0 -198
- scitex/scholar/.legacy/metadata/urls/zotero_translators/HighWire 2.0.js +0 -1355
- scitex/scholar/.legacy/metadata/urls/zotero_translators/HighWire.js +0 -209
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Hindawi Publishers.js +0 -177
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Hispanic-American Periodical Index.js +0 -236
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Homeland Security Digital Library.js +0 -426
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Huff Post.js +0 -223
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Human Rights Watch.js +0 -450
- scitex/scholar/.legacy/metadata/urls/zotero_translators/IBISWorld.js +0 -171
- scitex/scholar/.legacy/metadata/urls/zotero_translators/IDEA ALM.js +0 -536
- scitex/scholar/.legacy/metadata/urls/zotero_translators/IEEE Computer Society.js +0 -429
- scitex/scholar/.legacy/metadata/urls/zotero_translators/IEEE Xplore.js +0 -1000
- scitex/scholar/.legacy/metadata/urls/zotero_translators/IETF.js +0 -451
- scitex/scholar/.legacy/metadata/urls/zotero_translators/IGN.js +0 -136
- scitex/scholar/.legacy/metadata/urls/zotero_translators/IMDb.js +0 -566
- scitex/scholar/.legacy/metadata/urls/zotero_translators/INSPIRE.js +0 -247
- scitex/scholar/.legacy/metadata/urls/zotero_translators/IPCC.js +0 -757
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ISTC.js +0 -181
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Idref.js +0 -179
- scitex/scholar/.legacy/metadata/urls/zotero_translators/In These Times.js +0 -196
- scitex/scholar/.legacy/metadata/urls/zotero_translators/InfoTrac.js +0 -279
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Informationssystem Medienpaedagogik.js +0 -305
- scitex/scholar/.legacy/metadata/urls/zotero_translators/IngentaConnect.js +0 -312
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Inside Higher Ed.js +0 -167
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Insignia OPAC.js +0 -114
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Institute of Contemporary Art.js +0 -180
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Institute of Physics.js +0 -340
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Integrum.js +0 -173
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Intellixir.js +0 -264
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Inter-Research Science Center.js +0 -185
- scitex/scholar/.legacy/metadata/urls/zotero_translators/International Nuclear Information System.js +0 -285
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Internet Archive Scholar.js +0 -106
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Internet Archive Wayback Machine.js +0 -152
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Internet Archive.js +0 -552
- scitex/scholar/.legacy/metadata/urls/zotero_translators/InvenioRDM.js +0 -1260
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Isidore.js +0 -235
- scitex/scholar/.legacy/metadata/urls/zotero_translators/J-Stage.js +0 -272
- scitex/scholar/.legacy/metadata/urls/zotero_translators/JETS.js +0 -122
- scitex/scholar/.legacy/metadata/urls/zotero_translators/JISC Historical Texts.js +0 -273
- scitex/scholar/.legacy/metadata/urls/zotero_translators/JRC Publications Repository.js +0 -569
- scitex/scholar/.legacy/metadata/urls/zotero_translators/JSTOR.js +0 -821
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Jahrbuch.js +0 -213
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Japan Times Online.js +0 -138
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Journal of Electronic Publishing.js +0 -147
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Journal of Extension.js +0 -288
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Journal of Machine Learning Research.js +0 -441
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Journal of Religion and Society.js +0 -174
- scitex/scholar/.legacy/metadata/urls/zotero_translators/JurPC.js +0 -274
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Juricaf.js +0 -141
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Juris.js +0 -728
- scitex/scholar/.legacy/metadata/urls/zotero_translators/K10plus ISBN.js +0 -386
- scitex/scholar/.legacy/metadata/urls/zotero_translators/KStudy.js +0 -632
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Kanopy.js +0 -358
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Khaama Press.js +0 -249
- scitex/scholar/.legacy/metadata/urls/zotero_translators/KitapYurdu.com.js +0 -376
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Kommersant.js +0 -174
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Korean National Library.js +0 -621
- scitex/scholar/.legacy/metadata/urls/zotero_translators/L'Annee Philologique.js +0 -267
- scitex/scholar/.legacy/metadata/urls/zotero_translators/LA Times.js +0 -239
- scitex/scholar/.legacy/metadata/urls/zotero_translators/LIBRIS ISBN.js +0 -103
- scitex/scholar/.legacy/metadata/urls/zotero_translators/LIVIVO.js +0 -260
- scitex/scholar/.legacy/metadata/urls/zotero_translators/LWN.net.js +0 -315
- scitex/scholar/.legacy/metadata/urls/zotero_translators/La Croix.js +0 -237
- scitex/scholar/.legacy/metadata/urls/zotero_translators/La Nacion (Argentina).js +0 -231
- scitex/scholar/.legacy/metadata/urls/zotero_translators/La Presse.js +0 -218
- scitex/scholar/.legacy/metadata/urls/zotero_translators/La Republica (Peru).js +0 -174
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Lagen.nu.js +0 -214
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Landesbibliographie Baden-Wurttemberg.js +0 -324
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Lapham's Quarterly.js +0 -1062
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Le Devoir.js +0 -167
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Le Figaro.js +0 -225
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Le Maitron.js +0 -484
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Le Monde.js +0 -258
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Le monde diplomatique.js +0 -200
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Legifrance.js +0 -641
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Legislative Insight.js +0 -406
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Lexis+.js +0 -264
- scitex/scholar/.legacy/metadata/urls/zotero_translators/LexisNexis.js +0 -505
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Libraries Tasmania.js +0 -778
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Aleph).js +0 -385
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Amicus).js +0 -254
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Aquabrowser).js +0 -253
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (BiblioCommons).js +0 -249
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Blacklight).js +0 -341
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Capita Prism).js +0 -162
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (DRA).js +0 -203
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Dynix).js +0 -315
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Encore).js +0 -211
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (InnoPAC).js +0 -305
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Koha).js +0 -225
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Mango).js +0 -285
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (OPALS).js +0 -200
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (PICA).js +0 -2120
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (PICA2).js +0 -331
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Pika).js +0 -488
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Polaris).js +0 -183
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Quolto).js +0 -320
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (RERO ILS).js +0 -754
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (SIRSI eLibrary).js +0 -407
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (SIRSI).js +0 -452
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (SLIMS).js +0 -146
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (TIND ILS).js +0 -773
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (TLCYouSeeMore).js +0 -132
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (TinREAD).js +0 -277
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (VTLS).js +0 -125
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Visual Library 2021).js +0 -765
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Voyager 7).js +0 -199
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Catalog (Voyager).js +0 -212
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Genesis.js +0 -337
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library Hub Discover.js +0 -359
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library of Congress Digital Collections.js +0 -869
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Library of Congress ISBN.js +0 -86
- scitex/scholar/.legacy/metadata/urls/zotero_translators/LingBuzz.js +0 -359
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Lippincott Williams and Wilkins.js +0 -341
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Literary Hub.js +0 -950
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Litres.js +0 -236
- scitex/scholar/.legacy/metadata/urls/zotero_translators/LiveJournal.js +0 -219
- scitex/scholar/.legacy/metadata/urls/zotero_translators/London Review of Books.js +0 -291
- scitex/scholar/.legacy/metadata/urls/zotero_translators/LookUs.js +0 -260
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Lulu.js +0 -264
- scitex/scholar/.legacy/metadata/urls/zotero_translators/MAB2.js +0 -373
- scitex/scholar/.legacy/metadata/urls/zotero_translators/MARC.js +0 -1080
- scitex/scholar/.legacy/metadata/urls/zotero_translators/MARCXML.js +0 -489
- scitex/scholar/.legacy/metadata/urls/zotero_translators/MCV.js +0 -258
- scitex/scholar/.legacy/metadata/urls/zotero_translators/MDPI Journals.js +0 -356
- scitex/scholar/.legacy/metadata/urls/zotero_translators/MEDLINEnbib.js +0 -1561
- scitex/scholar/.legacy/metadata/urls/zotero_translators/METS.js +0 -384
- scitex/scholar/.legacy/metadata/urls/zotero_translators/MIDAS Journals.js +0 -343
- scitex/scholar/.legacy/metadata/urls/zotero_translators/MIT Press Books.js +0 -637
- scitex/scholar/.legacy/metadata/urls/zotero_translators/MODS.js +0 -2545
- scitex/scholar/.legacy/metadata/urls/zotero_translators/MPG PuRe.js +0 -541
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Mailman.js +0 -136
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Mainichi Daily News.js +0 -189
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Mastodon.js +0 -198
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Matbugat.ru.js +0 -110
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Max Planck Institute for the History of Science Virtual Laboratory Library.js +0 -136
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Medium.js +0 -208
- scitex/scholar/.legacy/metadata/urls/zotero_translators/MetaLib.js +0 -126
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Microbiology Society Journals.js +0 -343
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Microsoft Academic.js +0 -424
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Mikromarc.js +0 -207
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Milli Kutuphane.js +0 -244
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Musee du Louvre.js +0 -265
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NASA ADS.js +0 -889
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NASA NTRS.js +0 -610
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NCBI Nucleotide.js +0 -227
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NPR.js +0 -341
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NRC Research Press.js +0 -181
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NRC.nl.js +0 -226
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NTSB Accident Reports.js +0 -226
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NYPL Menus.js +0 -275
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NYPL Research Catalog.js +0 -458
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NYTimes.com.js +0 -858
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NZZ.ch.js +0 -272
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Nagoya University OPAC.js +0 -336
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Academies Press.js +0 -243
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Agriculture Library.js +0 -524
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Archives of Australia.js +0 -522
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Archives of South Africa.js +0 -122
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Bureau of Economic Research.js +0 -363
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Diet Library Catalogue.js +0 -333
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Gallery of Art - USA.js +0 -149
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Gallery of Australia.js +0 -252
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Library of Australia (new catalog).js +0 -223
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Library of Belarus.js +0 -171
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Library of Norway.js +0 -310
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Library of Poland ISBN.js +0 -140
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Post.js +0 -186
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Technical Reports Library.js +0 -276
- scitex/scholar/.legacy/metadata/urls/zotero_translators/National Transportation Library ROSA P.js +0 -562
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Nature Publishing Group.js +0 -3394
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Neural Information Processing Systems.js +0 -385
- scitex/scholar/.legacy/metadata/urls/zotero_translators/New Left Review.js +0 -245
- scitex/scholar/.legacy/metadata/urls/zotero_translators/New Zealand Herald.js +0 -282
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Newlines Magazine.js +0 -190
- scitex/scholar/.legacy/metadata/urls/zotero_translators/News Corp Australia.js +0 -251
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NewsBank.js +0 -202
- scitex/scholar/.legacy/metadata/urls/zotero_translators/NewsnetTamedia.js +0 -509
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Noor Digital Library.js +0 -267
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Note HTML.js +0 -206
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Note Markdown.js +0 -1638
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Notre Dame Philosophical Reviews.js +0 -201
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OAPEN.js +0 -331
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OCLC WorldCat FirstSearch.js +0 -213
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OECD.js +0 -216
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ORCID.js +0 -104
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OSF Preprints.js +0 -417
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OSTI Energy Citations.js +0 -202
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OVID Tagged.js +0 -1226
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OZON.ru.js +0 -465
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OhioLINK.js +0 -43
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Old Bailey Online.js +0 -315
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Open Conf.js +0 -172
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Open Knowledge Repository.js +0 -811
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Open WorldCat.js +0 -1401
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OpenAlex JSON.js +0 -740
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OpenAlex.js +0 -444
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OpenEdition Books.js +0 -155
- scitex/scholar/.legacy/metadata/urls/zotero_translators/OpenEdition Journals.js +0 -432
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Optical Society of America.js +0 -562
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Optimization Online.js +0 -418
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Ovid.js +0 -302
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Oxford Dictionaries Premium.js +0 -194
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Oxford English Dictionary.js +0 -122
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Oxford Music and Art Online.js +0 -120
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Oxford Reference.js +0 -202
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Oxford University Press.js +0 -277
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PC Gamer.js +0 -302
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PC Games.js +0 -128
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PEI Archival Information Network.js +0 -242
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PEP Web.js +0 -165
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PKP Catalog Systems.js +0 -1455
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PLoS Journals.js +0 -284
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PRC History Review.js +0 -298
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Pajhwok Afghan News.js +0 -198
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Papers Past.js +0 -297
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Paris Review.js +0 -227
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Pastebin.js +0 -199
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Patents - USPTO.js +0 -210
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Peeters.js +0 -587
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Perceiving Systems.js +0 -350
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Perlego.js +0 -416
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PhilPapers.js +0 -249
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Philosopher's Imprint.js +0 -169
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Pleade.js +0 -329
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Polygon.js +0 -270
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Potsdamer Neueste Nachrichten.js +0 -188
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Preprints.org.js +0 -305
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Primo 2018.js +0 -126
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Primo Normalized XML.js +0 -987
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Primo.js +0 -322
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ProMED.js +0 -66
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ProQuest Ebook Central.js +0 -226
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ProQuest PolicyFile.js +0 -115
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ProQuest.js +0 -2210
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Probing the Past.js +0 -151
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Project Gutenberg.js +0 -191
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Project MUSE.js +0 -451
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Protein Data Bank.js +0 -445
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PubFactory Journals.js +0 -712
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PubMed Central.js +0 -577
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PubMed XML.js +0 -1139
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PubMed.js +0 -1317
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PubPub.js +0 -530
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Public Record Office Victoria.js +0 -252
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Publications Office of the European Union.js +0 -540
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Publications du Quebec.js +0 -225
- scitex/scholar/.legacy/metadata/urls/zotero_translators/PyPI.js +0 -288
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Qatar Digital Library.js +0 -802
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Queensland State Archives.js +0 -303
- scitex/scholar/.legacy/metadata/urls/zotero_translators/R-Packages.js +0 -410
- scitex/scholar/.legacy/metadata/urls/zotero_translators/RAND.js +0 -283
- scitex/scholar/.legacy/metadata/urls/zotero_translators/RDF.js +0 -1777
- scitex/scholar/.legacy/metadata/urls/zotero_translators/REDALYC.js +0 -196
- scitex/scholar/.legacy/metadata/urls/zotero_translators/RIS.js +0 -7265
- scitex/scholar/.legacy/metadata/urls/zotero_translators/RSC Publishing.js +0 -250
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Radio Free Europe Radio Liberty.js +0 -706
- scitex/scholar/.legacy/metadata/urls/zotero_translators/RePEc - Econpapers.js +0 -725
- scitex/scholar/.legacy/metadata/urls/zotero_translators/RePEc - IDEAS.js +0 -337
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Rechtspraak.nl.js +0 -295
- scitex/scholar/.legacy/metadata/urls/zotero_translators/RefWorks Tagged.js +0 -1185
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ReferBibIX.js +0 -463
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Regeringskansliet.js +0 -89
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Research Square.js +0 -335
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ResearchGate.js +0 -394
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Retsinformation.js +0 -348
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Reuters.js +0 -255
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Rock, Paper, Shotgun.js +0 -304
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Roll Call.js +0 -173
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Russian State Library.js +0 -1517
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SAE Papers.js +0 -241
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SAGE Journals.js +0 -427
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SAGE Knowledge.js +0 -505
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SAILDART.js +0 -364
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SALT Research Archives.js +0 -196
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SFU IPinCH.js +0 -946
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SIPRI.js +0 -256
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SIRS Knowledge Source.js +0 -546
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SLUB Dresden.js +0 -300
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SORA.js +0 -340
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SSOAR.js +0 -399
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SSRN.js +0 -235
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SVT Nyheter.js +0 -381
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Sacramento Bee.js +0 -274
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Safari Books Online.js +0 -391
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Scholars Portal Journals.js +0 -220
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Scholia.js +0 -189
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Schweizer Radio und Fernsehen SRF.js +0 -152
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SciELO.js +0 -440
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ScienceDirect.js +0 -1304
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Scopus.js +0 -418
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Semantic Scholar.js +0 -513
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Silverchair.js +0 -886
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Slate.js +0 -228
- scitex/scholar/.legacy/metadata/urls/zotero_translators/SlideShare.js +0 -112
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Springer Link.js +0 -696
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Stack Exchange.js +0 -134
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Standard Ebooks.js +0 -198
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Stanford Encyclopedia of Philosophy.js +0 -285
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Stanford University Press.js +0 -343
- scitex/scholar/.legacy/metadata/urls/zotero_translators/State Records Office of Western Australia.js +0 -439
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Stitcher.js +0 -141
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Store norske leksikon.js +0 -291
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Stuff.co.nz.js +0 -446
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Substack.js +0 -237
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Sud Ouest.js +0 -181
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Sueddeutsche.de.js +0 -205
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Summon 2.js +0 -117
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Superlib.js +0 -647
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Svenska Dagbladet.js +0 -274
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Sveriges radio.js +0 -416
- scitex/scholar/.legacy/metadata/urls/zotero_translators/TEI.js +0 -648
- scitex/scholar/.legacy/metadata/urls/zotero_translators/TV by the Numbers.js +0 -194
- scitex/scholar/.legacy/metadata/urls/zotero_translators/TVNZ.js +0 -165
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Tagesspiegel.js +0 -249
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Talis Aspire.js +0 -316
- scitex/scholar/.legacy/metadata/urls/zotero_translators/TalisPrism.js +0 -445
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Tatknigafund.js +0 -174
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Tatpressa.ru.js +0 -121
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Taylor & Francis eBooks.js +0 -334
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Taylor and Francis+NEJM.js +0 -813
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Tesis Doctorals en Xarxa.js +0 -233
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Art Newspaper.js +0 -268
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Atlantic.js +0 -535
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Boston Globe.js +0 -285
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Chronicle of Higher Education.js +0 -308
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Daily Beast.js +0 -183
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Economic Times - The Times of India.js +0 -305
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Economist.js +0 -207
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Free Dictionary.js +0 -58
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Globe and Mail.js +0 -241
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Guardian.js +0 -717
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Hamilton Spectator.js +0 -129
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Hindu.js +0 -318
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Independent.js +0 -184
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Intercept.js +0 -258
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Met.js +0 -300
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Microfinance Gateway.js +0 -174
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Nation.js +0 -188
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The National Archives (UK).js +0 -242
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The New Republic.js +0 -160
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The New York Review of Books.js +0 -467
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The New Yorker.js +0 -360
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Open Library.js +0 -220
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Straits Times.js +0 -528
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Telegraph.js +0 -337
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Times and Sunday Times.js +0 -180
- scitex/scholar/.legacy/metadata/urls/zotero_translators/The Times of Israel.js +0 -151
- scitex/scholar/.legacy/metadata/urls/zotero_translators/TheMarker.js +0 -108
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Theory of Computing.js +0 -488
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ThesesFR.js +0 -298
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Thieme.js +0 -326
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Time.com.js +0 -557
- scitex/scholar/.legacy/metadata/urls/zotero_translators/TimesMachine.js +0 -222
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Tony Blair Institute for Global Change.js +0 -195
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Toronto Star.js +0 -331
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Transportation Research Board.js +0 -253
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Treesearch.js +0 -535
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Trove.js +0 -616
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Tumblr.js +0 -179
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Twitter.js +0 -413
- scitex/scholar/.legacy/metadata/urls/zotero_translators/UChicago VuFind.js +0 -907
- scitex/scholar/.legacy/metadata/urls/zotero_translators/UNZ Print Archive.js +0 -276
- scitex/scholar/.legacy/metadata/urls/zotero_translators/UPCommons.js +0 -227
- scitex/scholar/.legacy/metadata/urls/zotero_translators/US National Archives Research Catalog.js +0 -275
- scitex/scholar/.legacy/metadata/urls/zotero_translators/USENIX.js +0 -151
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Ubiquity Journals.js +0 -228
- scitex/scholar/.legacy/metadata/urls/zotero_translators/University Press Scholarship.js +0 -301
- scitex/scholar/.legacy/metadata/urls/zotero_translators/University of California Press Books.js +0 -403
- scitex/scholar/.legacy/metadata/urls/zotero_translators/University of Chicago Press Books.js +0 -378
- scitex/scholar/.legacy/metadata/urls/zotero_translators/University of Wisconsin-Madison Libraries Catalog.js +0 -298
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Unqualified Dublin Core RDF.js +0 -153
- scitex/scholar/.legacy/metadata/urls/zotero_translators/UpToDate References.js +0 -203
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Vanity Fair.js +0 -242
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Verniana-Jules Verne Studies.js +0 -190
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Verso Books.js +0 -311
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Vice.js +0 -445
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Victoria & Albert Museum.js +0 -277
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Vimeo.js +0 -188
- scitex/scholar/.legacy/metadata/urls/zotero_translators/VoxEU.js +0 -151
- scitex/scholar/.legacy/metadata/urls/zotero_translators/WHO.js +0 -458
- scitex/scholar/.legacy/metadata/urls/zotero_translators/WIPO.js +0 -189
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wall Street Journal.js +0 -525
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wanfang Data.js +0 -310
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Washington Monthly.js +0 -195
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Washington Post.js +0 -447
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Web of Science Nextgen.js +0 -715
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Web of Science Tagged.js +0 -1242
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Web of Science.js +0 -228
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Welt Online.js +0 -161
- scitex/scholar/.legacy/metadata/urls/zotero_translators/WestLaw UK.js +0 -190
- scitex/scholar/.legacy/metadata/urls/zotero_translators/WikiLeaks PlusD.js +0 -182
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wikidata QuickStatements.js +0 -306
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wikidata.js +0 -911
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wikimedia Commons.js +0 -285
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wikipedia Citation Templates.js +0 -432
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wikipedia.js +0 -385
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wikisource.js +0 -399
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wikiwand.js +0 -122
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wiktionary.js +0 -141
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wildlife Biology in Practice.js +0 -172
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wiley Online Library.js +0 -1412
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wilson Center Digital Archive.js +0 -321
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Winnipeg Free Press.js +0 -204
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Wired.js +0 -249
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Womennews.js +0 -230
- scitex/scholar/.legacy/metadata/urls/zotero_translators/World Digital Library.js +0 -403
- scitex/scholar/.legacy/metadata/urls/zotero_translators/World History Connected.js +0 -185
- scitex/scholar/.legacy/metadata/urls/zotero_translators/World Shakespeare Bibliography Online.js +0 -595
- scitex/scholar/.legacy/metadata/urls/zotero_translators/WorldCat Discovery Service.js +0 -630
- scitex/scholar/.legacy/metadata/urls/zotero_translators/XML ContextObject.js +0 -274
- scitex/scholar/.legacy/metadata/urls/zotero_translators/YPSF.js +0 -224
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Yandex Books.js +0 -265
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Ynet.js +0 -171
- scitex/scholar/.legacy/metadata/urls/zotero_translators/YouTube.js +0 -209
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ZIPonline.js +0 -267
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ZOBODAT.js +0 -341
- scitex/scholar/.legacy/metadata/urls/zotero_translators/Zotero RDF.js +0 -583
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ZoteroBib.js +0 -94
- scitex/scholar/.legacy/metadata/urls/zotero_translators/arXiv.org.js +0 -1099
- scitex/scholar/.legacy/metadata/urls/zotero_translators/artnet.js +0 -207
- scitex/scholar/.legacy/metadata/urls/zotero_translators/beck-online.js +0 -1339
- scitex/scholar/.legacy/metadata/urls/zotero_translators/clinicaltrials.gov.js +0 -331
- scitex/scholar/.legacy/metadata/urls/zotero_translators/dLibra.js +0 -367
- scitex/scholar/.legacy/metadata/urls/zotero_translators/dejure.org.js +0 -242
- scitex/scholar/.legacy/metadata/urls/zotero_translators/deleted.txt +0 -132
- scitex/scholar/.legacy/metadata/urls/zotero_translators/dhistory.js +0 -103
- scitex/scholar/.legacy/metadata/urls/zotero_translators/digibib.net.js +0 -245
- scitex/scholar/.legacy/metadata/urls/zotero_translators/eLibrary.ru.js +0 -867
- scitex/scholar/.legacy/metadata/urls/zotero_translators/eLife.js +0 -462
- scitex/scholar/.legacy/metadata/urls/zotero_translators/eMJA.js +0 -246
- scitex/scholar/.legacy/metadata/urls/zotero_translators/eMedicine.js +0 -123
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ePrint IACR.js +0 -608
- scitex/scholar/.legacy/metadata/urls/zotero_translators/ebrary.js +0 -140
- scitex/scholar/.legacy/metadata/urls/zotero_translators/etatar.ru.js +0 -104
- scitex/scholar/.legacy/metadata/urls/zotero_translators/feb-web.ru.js +0 -167
- scitex/scholar/.legacy/metadata/urls/zotero_translators/fishpond.co.nz.js +0 -224
- scitex/scholar/.legacy/metadata/urls/zotero_translators/fr-online.de.js +0 -209
- scitex/scholar/.legacy/metadata/urls/zotero_translators/govinfo.js +0 -189
- scitex/scholar/.legacy/metadata/urls/zotero_translators/index.d.ts +0 -1646
- scitex/scholar/.legacy/metadata/urls/zotero_translators/informIT database.js +0 -248
- scitex/scholar/.legacy/metadata/urls/zotero_translators/io-port.js +0 -68
- scitex/scholar/.legacy/metadata/urls/zotero_translators/jsconfig.json +0 -10
- scitex/scholar/.legacy/metadata/urls/zotero_translators/jurion.js +0 -377
- scitex/scholar/.legacy/metadata/urls/zotero_translators/mEDRA.js +0 -597
- scitex/scholar/.legacy/metadata/urls/zotero_translators/magazines.russ.ru.js +0 -120
- scitex/scholar/.legacy/metadata/urls/zotero_translators/medes.js +0 -284
- scitex/scholar/.legacy/metadata/urls/zotero_translators/newshub.co.nz.js +0 -206
- scitex/scholar/.legacy/metadata/urls/zotero_translators/newspapers.com.js +0 -335
- scitex/scholar/.legacy/metadata/urls/zotero_translators/openJur.js +0 -161
- scitex/scholar/.legacy/metadata/urls/zotero_translators/package-lock.json +0 -2345
- scitex/scholar/.legacy/metadata/urls/zotero_translators/package.json +0 -24
- scitex/scholar/.legacy/metadata/urls/zotero_translators/reddit.js +0 -275
- scitex/scholar/.legacy/metadata/urls/zotero_translators/sbn.it.js +0 -186
- scitex/scholar/.legacy/metadata/urls/zotero_translators/scinapse.js +0 -273
- scitex/scholar/.legacy/metadata/urls/zotero_translators/semantics Visual Library.js +0 -643
- scitex/scholar/.legacy/metadata/urls/zotero_translators/taz.de.js +0 -200
- scitex/scholar/.legacy/metadata/urls/zotero_translators/unAPI.js +0 -481
- scitex/scholar/.legacy/metadata/urls/zotero_translators/wiso.js +0 -314
- scitex/scholar/.legacy/metadata/urls/zotero_translators/zbMATH.js +0 -278
- scitex/scholar/.legacy/metadata/urls/zotero_translators/zotero.org.js +0 -311
- scitex/scholar/.legacy/search/README.md +0 -205
- scitex/scholar/.legacy/search/_Embedder.py +0 -329
- scitex/scholar/.legacy/search/_SemanticSearch.py +0 -278
- scitex/scholar/.legacy/search/_SemanticSearchEngine.py +0 -452
- scitex/scholar/.legacy/search/_UnifiedSearcher.py +0 -1353
- scitex/scholar/.legacy/search/_VectorDatabase.py +0 -443
- scitex/scholar/.legacy/search/__init__.py +0 -25
- scitex/scholar/.legacy/storage/_EnhancedStorageManager.py +0 -617
- scitex/scholar/.legacy/storage/__init__.py +0 -19
- scitex/scholar/CLAUDE.md +0 -257
- scitex/scholar/TODO.md +0 -174
- scitex/scholar/_mcp_handlers.py +0 -685
- scitex/scholar/_mcp_tool_schemas.py +0 -339
- scitex/scholar/docs/backup/papers-orig.bib +0 -698
- scitex/scholar/docs/backup/papers.bib.zip +0 -0
- scitex/scholar/docs/to_claude/bin/elisp/check_parens.sh +0 -56
- scitex/scholar/docs/to_claude/bin/elisp/elisp-ci/README.md +0 -412
- scitex/scholar/docs/to_claude/bin/elisp/elisp-ci/elisp-ci +0 -622
- scitex/scholar/docs/to_claude/bin/elisp/elisp-ci/elisp-ci-simple +0 -105
- scitex/scholar/docs/to_claude/bin/elisp/find_incorrect_require_provide_statements.sh +0 -113
- scitex/scholar/docs/to_claude/bin/elisp/run_tests_elisp.sh +0 -532
- scitex/scholar/docs/to_claude/bin/elisp/run_tests_elisp_v02.sh +0 -555
- scitex/scholar/docs/to_claude/bin/elisp/sync_elisp_tdd.sh +0 -626
- scitex/scholar/docs/to_claude/bin/general/claude_emacs_server.sh +0 -192
- scitex/scholar/docs/to_claude/bin/general/create_github_release.sh +0 -36
- scitex/scholar/docs/to_claude/bin/general/find_errors.sh +0 -75
- scitex/scholar/docs/to_claude/bin/general/rename.sh +0 -145
- scitex/scholar/docs/to_claude/bin/general/render_mermaid.sh +0 -116
- scitex/scholar/docs/to_claude/bin/general/safe_rm.sh +0 -75
- scitex/scholar/docs/to_claude/bin/general/view_repo.sh +0 -4
- scitex/scholar/docs/to_claude/bin/general/wsl2-buzzer.sh +0 -73
- scitex/scholar/docs/to_claude/bin/python/black_all.sh +0 -41
- scitex/scholar/docs/to_claude/bin/python/run_tests_python_pip_package.sh +0 -291
- scitex/scholar/docs/to_claude/bin/safe_rm.sh +0 -3
- scitex/scholar/docs/to_claude/bin/slurm/README.md +0 -54
- scitex/scholar/docs/to_claude/bin/slurm/login.sh +0 -23
- scitex/scholar/docs/to_claude/bin/slurm/request.sh +0 -62
- scitex/scholar/docs/to_claude/bin/slurm/run.sh +0 -73
- scitex/scholar/docs/to_claude/examples/README.md +0 -9
- scitex/scholar/docs/to_claude/examples/example-elisp-project-emacs-hello-world/ELISP-TEST-REPORT-20250513-012234-48-PASSED-49-TOTAL-97-PERCENT.org +0 -105
- scitex/scholar/docs/to_claude/examples/example-elisp-project-emacs-hello-world/LATEST-ELISP-REPORT.org +0 -105
- scitex/scholar/docs/to_claude/examples/example-elisp-project-emacs-hello-world/README.md +0 -11
- scitex/scholar/docs/to_claude/examples/example-elisp-project-emacs-hello-world/run_tests.sh +0 -652
- scitex/scholar/docs/to_claude/examples/example-elisp-project-emacs-hello-world/tests/test-ehw-core/ELISP-TEST-REPORT-20250512-235622-0-SUCCESS-4-TOTAL-0-PERCENT.org +0 -25
- scitex/scholar/docs/to_claude/examples/example-elisp-project-emacs-hello-world/tests/test-ehw-friends/ELISP-TEST-REPORT-20250512-235622-0-SUCCESS-34-TOTAL-0-PERCENT.org +0 -66
- scitex/scholar/docs/to_claude/examples/example-elisp-project-emacs-hello-world/tests/test-ehw-prep/ELISP-TEST-REPORT-20250512-235622-0-SUCCESS-5-TOTAL-0-PERCENT.org +0 -26
- scitex/scholar/docs/to_claude/examples/example-elisp-project-emacs-hello-world/tests/test-ehw-utils/ELISP-TEST-REPORT-20250512-235622-0-SUCCESS-4-TOTAL-0-PERCENT.org +0 -25
- scitex/scholar/docs/to_claude/examples/example-python-project-scitex/.gitignore +0 -626
- scitex/scholar/docs/to_claude/examples/example-python-project-scitex/README.md +0 -155
- scitex/scholar/docs/to_claude/examples/example-python-project-scitex/config/MNIST.yaml +0 -24
- scitex/scholar/docs/to_claude/examples/example-python-project-scitex/config/PATH.yaml +0 -30
- scitex/scholar/docs/to_claude/examples/example-python-project-scitex/data/.gitkeep +0 -0
- scitex/scholar/docs/to_claude/examples/example-python-project-scitex/scripts/mnist/clf_svm.py +0 -124
- scitex/scholar/docs/to_claude/examples/example-python-project-scitex/scripts/mnist/download.py +0 -165
- scitex/scholar/docs/to_claude/examples/example-python-project-scitex/scripts/mnist/main.sh +0 -26
- scitex/scholar/docs/to_claude/examples/example-python-project-scitex/scripts/mnist/plot_conf_mat.py +0 -86
- scitex/scholar/docs/to_claude/examples/example-python-project-scitex/scripts/mnist/plot_digits.py +0 -118
- scitex/scholar/docs/to_claude/examples/example-python-project-scitex/scripts/mnist/plot_umap_space.py +0 -110
- scitex/scholar/docs/to_claude/guidelines/README.md +0 -9
- scitex/scholar/docs/to_claude/guidelines/USER_PHILOSOPHY/01_DEVELOPMENT_CYCLE.md +0 -47
- scitex/scholar/docs/to_claude/guidelines/USER_PHILOSOPHY/02_NAMING_CONVENSIONS.md +0 -91
- scitex/scholar/docs/to_claude/guidelines/USER_PHILOSOPHY/03_ARCHITECTUAL_AGREEMENT_PROCESS.md +0 -86
- scitex/scholar/docs/to_claude/guidelines/USER_PHILOSOPHY/04_ARCHITECTURE_PREDEFINED.md +0 -77
- scitex/scholar/docs/to_claude/guidelines/USER_PHILOSOPHY/05_PRIORITY_CONFIG.md +0 -22
- scitex/scholar/docs/to_claude/guidelines/USER_PHILOSOPHY/06_MULTIPLE_SPECIAL_AGENTS.md +0 -35
- scitex/scholar/docs/to_claude/guidelines/USER_PHILOSOPHY/07_DEBUGGING_TECHNIQUES.md +0 -153
- scitex/scholar/docs/to_claude/guidelines/command/IMPORTANT-rm.md +0 -69
- scitex/scholar/docs/to_claude/guidelines/command/IMPORTANT-tree.md +0 -162
- scitex/scholar/docs/to_claude/guidelines/elisp/IMPORTANT-ELISP-01-basic.md +0 -65
- scitex/scholar/docs/to_claude/guidelines/elisp/IMPORTANT-ELISP-02-project-structure.md +0 -97
- scitex/scholar/docs/to_claude/guidelines/elisp/IMPORTANT-ELISP-03-file-template.md +0 -70
- scitex/scholar/docs/to_claude/guidelines/elisp/IMPORTANT-ELISP-04-coding-style.md +0 -42
- scitex/scholar/docs/to_claude/guidelines/elisp/IMPORTANT-ELISP-05-testing-guide.md +0 -190
- scitex/scholar/docs/to_claude/guidelines/elisp/IMPORTANT-ELISP-99-example-project.md +0 -15
- scitex/scholar/docs/to_claude/guidelines/elisp/ci.md +0 -650
- scitex/scholar/docs/to_claude/guidelines/elisp/testing-with-docker.md +0 -243
- scitex/scholar/docs/to_claude/guidelines/programming_common/EXAMPLE-README-MODULE-ROOT.md +0 -32
- scitex/scholar/docs/to_claude/guidelines/programming_common/EXAMPLE-README-REPOSITORY-ROOT.md +0 -60
- scitex/scholar/docs/to_claude/guidelines/programming_common/IMPORTANT-art-of-readable-code.md +0 -1317
- scitex/scholar/docs/to_claude/guidelines/programming_common/IMPORTANT-art-of-testing.md +0 -799
- scitex/scholar/docs/to_claude/guidelines/programming_common/IMPORTANT-cleanliness.md +0 -18
- scitex/scholar/docs/to_claude/guidelines/programming_common/IMPORTANT-documentation-performance-claims.md +0 -163
- scitex/scholar/docs/to_claude/guidelines/programming_common/IMPORTANT-general.md +0 -156
- scitex/scholar/docs/to_claude/guidelines/programming_common/IMPORTANT-refactoring.md +0 -32
- scitex/scholar/docs/to_claude/guidelines/programming_common/IMPORTANT-regression-prevention.md +0 -14
- scitex/scholar/docs/to_claude/guidelines/programming_common/IMPORTANT-slurm.md +0 -73
- scitex/scholar/docs/to_claude/guidelines/programming_common/IMPORTANT-start-from-small.md +0 -30
- scitex/scholar/docs/to_claude/guidelines/programming_common/IMPORTANT-test-driven-workflow.md +0 -80
- scitex/scholar/docs/to_claude/guidelines/programming_common/IMPORTANT-version-control.md +0 -47
- scitex/scholar/docs/to_claude/guidelines/programming_common/clean-code.md +0 -305
- scitex/scholar/docs/to_claude/guidelines/programming_common/debugging-message.md +0 -52
- scitex/scholar/docs/to_claude/guidelines/programming_common/do-not-repeat-yourself.md +0 -27
- scitex/scholar/docs/to_claude/guidelines/programming_common/emacs-server.md +0 -39
- scitex/scholar/docs/to_claude/guidelines/programming_common/keep-it-simple-stupid.md +0 -19
- scitex/scholar/docs/to_claude/guidelines/programming_common/renaming-and-cleaning-workflow.md +0 -311
- scitex/scholar/docs/to_claude/guidelines/programming_common/screen.md +0 -32
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-CLAUDE_ID.md +0 -15
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-beyond-control.md +0 -14
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-bug-report.md +0 -43
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-cleanliness.md +0 -162
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-communication.md +0 -13
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-do-not-create-any-new-file-nor-directory-in-project-root.md +0 -9
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-documentation.md +0 -11
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-feature-request.md +0 -33
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-general-multi-agent-coordination.md +0 -311
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-multi-agent-protocol.md +0 -97
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-project-management-bulletin-board.md +0 -48
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-project-management-markdown.md +0 -156
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-project-management-org.org +0 -161
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-tools.md +0 -10
- scitex/scholar/docs/to_claude/guidelines/project/IMPORTANT-understand-message-in-filename.md +0 -12
- scitex/scholar/docs/to_claude/guidelines/project/general.md +0 -7
- scitex/scholar/docs/to_claude/guidelines/project/report.md +0 -50
- scitex/scholar/docs/to_claude/guidelines/project/timeline-gantt-chart.md +0 -49
- scitex/scholar/docs/to_claude/guidelines/python/CHECKLIST.md +0 -51
- scitex/scholar/docs/to_claude/guidelines/python/HOW-TO-DEBUG-with-MULTIPLE_AGENTS.md +0 -191
- scitex/scholar/docs/to_claude/guidelines/python/Machine-Learning.md +0 -15
- scitex/scholar/docs/to_claude/guidelines/python/NOT-FULL-PYTEST-BUT-PARTIAL-PYTEST.md +0 -21
- scitex/scholar/docs/to_claude/guidelines/python/django.md +0 -217
- scitex/scholar/docs/to_claude/guidelines/python/env.md +0 -10
- scitex/scholar/docs/to_claude/guidelines/python/general.md +0 -55
- scitex/scholar/docs/to_claude/guidelines/python/official/cipdb-README.md +0 -219
- scitex/scholar/docs/to_claude/guidelines/python/official/fastmcp-README.md +0 -442
- scitex/scholar/docs/to_claude/guidelines/python/official/fastmcp-TESTING.md +0 -146
- scitex/scholar/docs/to_claude/guidelines/python/official/icecream-README.md +0 -433
- scitex/scholar/docs/to_claude/guidelines/python/official/priority_config-README.md +0 -126
- scitex/scholar/docs/to_claude/guidelines/python/scitex/01-basic.md +0 -42
- scitex/scholar/docs/to_claude/guidelines/python/scitex/02-file-template.md +0 -132
- scitex/scholar/docs/to_claude/guidelines/python/scitex/03-configuration.md +0 -53
- scitex/scholar/docs/to_claude/guidelines/python/scitex/04-coding-style.md +0 -126
- scitex/scholar/docs/to_claude/guidelines/python/scitex/05-testing-guide.md +0 -56
- scitex/scholar/docs/to_claude/guidelines/python/scitex/06-examples-guide.md +0 -42
- scitex/scholar/docs/to_claude/guidelines/python/scitex/11-gen-module.md +0 -15
- scitex/scholar/docs/to_claude/guidelines/python/scitex/11-session-module.md +0 -24
- scitex/scholar/docs/to_claude/guidelines/python/scitex/12-io-module.md +0 -112
- scitex/scholar/docs/to_claude/guidelines/python/scitex/13-plt-module.md +0 -101
- scitex/scholar/docs/to_claude/guidelines/python/scitex/14-dsp-module.md +0 -78
- scitex/scholar/docs/to_claude/guidelines/python/scitex/15-pd-module.md +0 -24
- scitex/scholar/docs/to_claude/guidelines/python/scitex/16-stats-module.md +0 -79
- scitex/scholar/docs/to_claude/guidelines/python/scitex/17-other-modules.md +0 -23
- scitex/scholar/docs/to_claude/guidelines/python/scitex/17-str-module.md +0 -24
- scitex/scholar/docs/to_claude/guidelines/python/scitex/18-directory-structure-for-scientific-work.md +0 -48
- scitex/scholar/docs/to_claude/guidelines/python/scitex/19-directory-structure-for-pip-package.md +0 -234
- scitex/scholar/docs/to_claude/guidelines/python/scitex/99-example-project.md +0 -19
- scitex/scholar/docs/to_claude/guidelines/python/zen_of_python.md +0 -82
- scitex/scholar/docs/to_claude/guidelines/science/IMPORTANT-general.md +0 -16
- scitex/scholar/docs/to_claude/guidelines/science/IMPORTANT-scientific-attitude.md +0 -25
- scitex/scholar/docs/to_claude/guidelines/science/scientific-writing-abstract.md +0 -93
- scitex/scholar/docs/to_claude/guidelines/science/scientific-writing-discussion.md +0 -116
- scitex/scholar/docs/to_claude/guidelines/science/scientific-writing-general-1.md +0 -157
- scitex/scholar/docs/to_claude/guidelines/science/scientific-writing-general-2.md +0 -83
- scitex/scholar/docs/to_claude/guidelines/science/scientific-writing-introduction.md +0 -123
- scitex/scholar/docs/to_claude/guidelines/science/scientific-writing-methods.md +0 -88
- scitex/scholar/docs/to_claude/guidelines/shell/IMPORTANT-general.md +0 -196
- scitex/scholar/examples/SUGGESTIONS.md +0 -865
- scitex/scholar/examples/dev.py +0 -38
- scitex/scholar/library/neurovista/info/bibtex/seizure_prediction_enriched.bib +0 -1092
- scitex/stats/_mcp_handlers.py +0 -1191
- scitex/stats/_mcp_tool_schemas.py +0 -384
- scitex/template/.legacy/_clone_project.py +0 -267
- scitex/template/_mcp_handlers.py +0 -259
- scitex/template/_mcp_tool_schemas.py +0 -112
- scitex/writer/.legacy/Writer_v01-refactored.py +0 -189
- scitex/writer/.legacy/_compile.py +0 -342
- scitex/writer/_compile_async.py +0 -126
- scitex/writer/_validate_tree_structures.py +0 -197
- scitex/writer/dataclasses/config/_WriterConfig.py +0 -175
- scitex/writer/dataclasses/contents/_ManuscriptContents.py +0 -236
- scitex/writer/dataclasses/core/_Document.py +0 -146
- scitex/writer/dataclasses/core/_DocumentSection.py +0 -546
- scitex/writer/dataclasses/results/_CompilationResult.py +0 -165
- scitex/writer/dataclasses/results/_LaTeXIssue.py +0 -102
- scitex/writer/dataclasses/tree/MINIMUM_FILES.md +0 -121
- scitex/writer/tests/__init__.py +0 -3
- scitex/writer/tests/test_diff_between.py +0 -451
- scitex/writer/tests/test_document_section.py +0 -311
- scitex/writer/tests/test_document_workflow.py +0 -393
- scitex/writer/tests/test_writer.py +0 -361
- scitex/writer/tests/test_writer_integration.py +0 -303
- scitex-2.13.0.dist-info/METADATA +0 -1231
- scitex-2.13.0.dist-info/RECORD +0 -3402
- scitex-2.13.0.dist-info/entry_points.txt +0 -11
- /scitex/scholar/docs/{SUMMARY.md → 00_SUMMARY.md} +0 -0
- /scitex/scholar/docs/{STORAGE_ARCHITECTURE.md → 01_STORAGE_ARCHITECTURE.md} +0 -0
- /scitex/scholar/docs/{PIPELINE_ORGANIZATION.md → 02_PIPELINE_ORGANIZATION.md} +0 -0
- /scitex/scholar/docs/{PIPELINE_IMPLEMENTATION_PLAN.md → 03_PIPELINE_IMPLEMENTATION_PLAN.md} +0 -0
- /scitex/scholar/docs/{PIPELINE_IMPLEMENTATION_COMPLETE.md → 04_PIPELINE_IMPLEMENTATION_COMPLETE.md} +0 -0
- /scitex/scholar/docs/{DETAILS_FOR_DEVELOPERS.md → 05_DETAILS_FOR_DEVELOPERS.md} +0 -0
- /scitex/scholar/docs/{IMPACT_FACTOR_CITATION_INTEGRATION.md → 06_IMPACT_FACTOR_CITATION_INTEGRATION.md} +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/__init__.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/config/_CONSTANTS.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/config/__init__.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/contents/_RevisionContents.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/contents/_SupplementaryContents.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/contents/__init__.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/core/__init__.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/results/_SaveSectionsResponse.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/results/_SectionReadResponse.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/results/__init__.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/tree/_ConfigTree.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/tree/_ManuscriptTree.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/tree/_RevisionTree.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/tree/_ScriptsTree.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/tree/_SharedTree.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/tree/_SupplementaryTree.py +0 -0
- /scitex/writer/{dataclasses → _dataclasses}/tree/__init__.py +0 -0
- {scitex-2.13.0.dist-info → scitex-2.15.1.dist-info}/WHEEL +0 -0
- {scitex-2.13.0.dist-info → scitex-2.15.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,1092 +0,0 @@
|
|
|
1
|
-
@article{Kuhlmann2018SeizurePA,
|
|
2
|
-
title = {Seizure prediction — ready for a new era},
|
|
3
|
-
author = {L. Kuhlmann and K. Lehnertz and M. Richardson and B. Schelter and H. Zaveri},
|
|
4
|
-
year = {2018},
|
|
5
|
-
doi = {10.1038/s41582-018-0055-2},
|
|
6
|
-
pmid = {30131521},
|
|
7
|
-
journal = {Nature Reviews Neurology},
|
|
8
|
-
volume = {14},
|
|
9
|
-
citation_count = {393},
|
|
10
|
-
journal_impact_factor = {28.2},
|
|
11
|
-
url = {https://doi.org/10.1038/s41582-018-0055-2},
|
|
12
|
-
pages = {618-630},
|
|
13
|
-
}
|
|
14
|
-
|
|
15
|
-
@article{Natu2022ReviewOEB,
|
|
16
|
-
title = {Review on Epileptic Seizure Prediction: Machine Learning and Deep Learning Approaches},
|
|
17
|
-
author = {Milind Natu and M. Bachute and Shilpa Gite and K. Kotecha and Ankit Vidyarthi},
|
|
18
|
-
year = {2022},
|
|
19
|
-
abstract = {<jats:p>Epileptic seizures occur due to brain abnormalities that can indirectly affect patient’s health. It occurs abruptly without any symptoms and thus increases the mortality rate of humans. Almost 1% of world’s population suffers from epileptic seizures. Prediction of seizures before the beginning of onset is beneficial for preventing seizures by medication. Nowadays, modern computational tools, machine learning, and deep learning methods have been used to predict seizures using EEG. However, EEG signals may get corrupted with background noise, and artifacts such as eye blinks and physical movements of muscles may lead to “pops” in the signal, resulting in electrical interference, which is cumbersome to detect through visual inspection for longer duration recordings. These limitations in automatic detection of interictal spikes and epileptic seizures are preferred, which is an essential tool for examining and scrutinizing the EEG recording more precisely. These restrictions bring our attention to present a review of automated schemes that will help neurologists categorize epileptic and nonepileptic signals. While preparing this review paper, it is observed that feature selection and classification are the main challenges in epilepsy prediction algorithms. This paper presents various techniques depending on various features and classifiers over the last few years. The methods presented will give a detailed understanding and ideas about seizure prediction and future research directions.</jats:p>},
|
|
20
|
-
keywords = {Epileptic seizure, Feature (linguistics)},
|
|
21
|
-
doi = {10.1155/2022/7751263},
|
|
22
|
-
pmid = {35096136},
|
|
23
|
-
journal = {Computational and Mathematical Methods in Medicine},
|
|
24
|
-
volume = {2022},
|
|
25
|
-
citation_count = {74},
|
|
26
|
-
url = {https://api.semanticscholar.org/CorpusId:246191848},
|
|
27
|
-
}
|
|
28
|
-
|
|
29
|
-
@article{Detti2020EEGSAC,
|
|
30
|
-
title = {EEG Synchronization Analysis for Seizure Prediction: A Study on Data of Noninvasive Recordings},
|
|
31
|
-
author = {P. Detti and G. Vatti and Garazi Zabalo Manrique de Lara},
|
|
32
|
-
year = {2020},
|
|
33
|
-
abstract = {<jats:p>Objective: Epilepsy is a neurological disorder arising from anomalies of the electrical activity in the brain, affecting ~65 million individuals worldwide. Prediction methods, typically based on machine learning methods, require a large amount of data for training, in order to correctly classify seizures with small false alarm rates. Methods: In this work, we present a new database containing EEG scalp signals of 14 epileptic patients acquired at the Unit of Neurology and Neurophysiology of the University of Siena, Italy. Furthermore, a patient-specific seizure prediction method, based on the detection of synchronization patterns in the EEG, is proposed and tested on the data of the database. The use of noninvasive EEG data aims to explore the possibility of developing a noninvasive monitoring/control device for the prediction of seizures. The prediction method employs synchronization measures computed over all channel pairs and a computationally inexpensive threshold-based classification approach. Results and conclusions: The experimental analysis, performed by inspection and by the proposed threshold-based classifier on all the patients of the database, shows that the features extracted by the synchronization measures are able to detect preictal and ictal states and allow the prediction of the seizures few minutes before the seizure onsets.</jats:p>},
|
|
34
|
-
keywords = {Epileptic seizure, False alarm, Neurophysiology},
|
|
35
|
-
doi = {10.3390/pr8070846},
|
|
36
|
-
journal = {Processes},
|
|
37
|
-
volume = {8},
|
|
38
|
-
citation_count = {100},
|
|
39
|
-
journal_impact_factor = {2.8},
|
|
40
|
-
url = {https://api.semanticscholar.org/CorpusId:225557909},
|
|
41
|
-
}
|
|
42
|
-
|
|
43
|
-
@article{Rong2020ArtificialIID,
|
|
44
|
-
title = {Artificial Intelligence in Healthcare: Review and Prediction Case Studies},
|
|
45
|
-
author = {Guoguang Rong and Arnaldo Mendez and E. B. Assi and Bo Zhao and Mohamad Sawan},
|
|
46
|
-
year = {2020},
|
|
47
|
-
keywords = {Biomedicine, Scope (computer science)},
|
|
48
|
-
doi = {10.1016/j.eng.2019.08.015},
|
|
49
|
-
journal = {Engineering},
|
|
50
|
-
volume = {6},
|
|
51
|
-
citation_count = {455},
|
|
52
|
-
journal_impact_factor = {10.1},
|
|
53
|
-
url = {https://api.semanticscholar.org/CorpusId:212829945},
|
|
54
|
-
}
|
|
55
|
-
|
|
56
|
-
@article{Hussein2022MultiChannelVTE,
|
|
57
|
-
title = {Multi-Channel Vision Transformer for Epileptic Seizure Prediction},
|
|
58
|
-
author = {Ramy Hussein and Soojin Lee and R. Ward},
|
|
59
|
-
year = {2022},
|
|
60
|
-
abstract = {<jats:p>Epilepsy is a neurological disorder that causes recurrent seizures and sometimes loss of awareness. Around 30% of epileptic patients continue to have seizures despite taking anti-seizure medication. The ability to predict the future occurrence of seizures would enable the patients to take precautions against probable injuries and administer timely treatment to abort or control impending seizures. In this study, we introduce a Transformer-based approach called Multi-channel Vision Transformer (MViT) for automated and simultaneous learning of the spatio-temporal-spectral features in multi-channel EEG data. Continuous wavelet transform, a simple yet efficient pre-processing approach, is first used for turning the time-series EEG signals into image-like time-frequency representations named Scalograms. Each scalogram is split into a sequence of fixed-size non-overlapping patches, which are then fed as inputs to the MViT for EEG classification. Extensive experiments on three benchmark EEG datasets demonstrate the superiority of the proposed MViT algorithm over the state-of-the-art seizure prediction methods, achieving an average prediction sensitivity of 99.80% for surface EEG and 90.28–91.15% for invasive EEG data.</jats:p>},
|
|
61
|
-
doi = {10.3390/biomedicines10071551},
|
|
62
|
-
pmid = {35884859},
|
|
63
|
-
journal = {Biomedicines},
|
|
64
|
-
volume = {10},
|
|
65
|
-
citation_count = {36},
|
|
66
|
-
journal_impact_factor = {3.9},
|
|
67
|
-
url = {https://api.semanticscholar.org/CorpusId:250203545},
|
|
68
|
-
}
|
|
69
|
-
|
|
70
|
-
@article{Assi2017TowardsAPF,
|
|
71
|
-
title = {Towards accurate prediction of epileptic seizures: A review},
|
|
72
|
-
author = {E. B. Assi and D. Nguyen and S. Rihana and M. Sawan},
|
|
73
|
-
year = {2017},
|
|
74
|
-
keywords = {Epileptic seizure},
|
|
75
|
-
doi = {10.1016/j.bspc.2017.02.001},
|
|
76
|
-
journal = {Biomed. Signal Process. Control.},
|
|
77
|
-
volume = {34},
|
|
78
|
-
citation_count = {202},
|
|
79
|
-
url = {https://doi.org/10.1016/J.BSPC.2017.02.001},
|
|
80
|
-
pages = {144-157},
|
|
81
|
-
}
|
|
82
|
-
|
|
83
|
-
@article{Peng2022SeizurePIG,
|
|
84
|
-
title = {Seizure Prediction in EEG Signals Using STFT and Domain Adaptation},
|
|
85
|
-
author = {Peizhen Peng and Yang Song and Lu Yang and Haikun Wei},
|
|
86
|
-
year = {2022},
|
|
87
|
-
abstract = {<jats:p>Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional approaches commonly collect training and testing samples from the same patient due to inter-individual variability. However, the challenging problem of domain shift between various subjects remains unsolved, resulting in a low conversion rate to the clinic. In this work, a domain adaptation (DA)-based model is proposed to circumvent this issue. The short-time Fourier transform (STFT) is employed to extract the time-frequency features from raw EEG data, and an autoencoder is developed to map these features into high-dimensional space. By minimizing the inter-domain distance in the embedding space, this model learns the domain-invariant information, such that the generalization ability is improved by distribution alignment. Besides, to increase the feasibility of its application, this work mimics the data distribution under the clinical sampling situation and tests the model under this condition, which is the first study that adopts the assessment strategy. Experimental results on both intracranial and scalp EEG databases demonstrate that this method can minimize the domain gap effectively compared with previous approaches.</jats:p>},
|
|
88
|
-
keywords = {Autoencoder},
|
|
89
|
-
doi = {10.3389/fnins.2021.825434},
|
|
90
|
-
pmid = {35115906},
|
|
91
|
-
journal = {Frontiers in Neuroscience},
|
|
92
|
-
volume = {15},
|
|
93
|
-
citation_count = {61},
|
|
94
|
-
journal_impact_factor = {3.2},
|
|
95
|
-
url = {https://www.ncbi.nlm.nih.gov/pubmed/35115906},
|
|
96
|
-
}
|
|
97
|
-
|
|
98
|
-
@article{Usman2017EpilepticSPH,
|
|
99
|
-
title = {Epileptic Seizures Prediction Using Machine Learning Methods},
|
|
100
|
-
author = {Syed Muhammad Usman and Muhammad Usman and S. Fong},
|
|
101
|
-
year = {2017},
|
|
102
|
-
abstract = {<jats:p>Epileptic seizures occur due to disorder in brain functionality which can affect patient’s health. Prediction of epileptic seizures before the beginning of the onset is quite useful for preventing the seizure by medication. Machine learning techniques and computational methods are used for predicting epileptic seizures from Electroencephalograms (EEG) signals. However, preprocessing of EEG signals for noise removal and features extraction are two major issues that have an adverse effect on both anticipation time and true positive prediction rate. Therefore, we propose a model that provides reliable methods of both preprocessing and feature extraction. Our model predicts epileptic seizures’ sufficient time before the onset of seizure starts and provides a better true positive rate. We have applied empirical mode decomposition (EMD) for preprocessing and have extracted time and frequency domain features for training a prediction model. The proposed model detects the start of the preictal state, which is the state that starts few minutes before the onset of the seizure, with a higher true positive rate compared to traditional methods, 92.23%, and maximum anticipation time of 33 minutes and average prediction time of 23.6 minutes on scalp EEG CHB-MIT dataset of 22 subjects.</jats:p>},
|
|
103
|
-
keywords = {Epileptic seizure, Anticipation (artificial intelligence), Data pre-processing},
|
|
104
|
-
doi = {10.1155/2017/9074759},
|
|
105
|
-
pmid = {29410700},
|
|
106
|
-
journal = {Computational and Mathematical Methods in Medicine},
|
|
107
|
-
volume = {2017},
|
|
108
|
-
citation_count = {195},
|
|
109
|
-
url = {https://api.semanticscholar.org/CorpusId:5306369},
|
|
110
|
-
}
|
|
111
|
-
|
|
112
|
-
@article{Alotaiby2017EpilepticSPI,
|
|
113
|
-
title = {Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals},
|
|
114
|
-
author = {T. Alotaiby and S. Alshebeili and Faisal M. Alotaibi and Saud R. Alrshoud},
|
|
115
|
-
year = {2017},
|
|
116
|
-
abstract = {<jats:p>This paper presents a patient-specific epileptic seizure predication method relying on the common spatial pattern- (CSP-) based feature extraction of scalp electroencephalogram (sEEG) signals. Multichannel EEG signals are traced and segmented into overlapping segments for both preictal and interictal intervals. The features extracted using CSP are used for training a linear discriminant analysis classifier, which is then employed in the testing phase. A leave-one-out cross-validation strategy is adopted in the experiments. The experimental results for seizure prediction obtained from the records of 24 patients from the CHB-MIT database reveal that the proposed predictor can achieve an average sensitivity of 0.89, an average false prediction rate of 0.39, and an average prediction time of 68.71 minutes using a 120-minute prediction horizon.</jats:p>},
|
|
117
|
-
keywords = {Stereoelectroencephalography, Epileptic seizure},
|
|
118
|
-
doi = {10.1155/2017/1240323},
|
|
119
|
-
pmid = {29225615},
|
|
120
|
-
journal = {Computational Intelligence and Neuroscience},
|
|
121
|
-
volume = {2017},
|
|
122
|
-
citation_count = {140},
|
|
123
|
-
url = {https://api.semanticscholar.org/CorpusId:31034268},
|
|
124
|
-
}
|
|
125
|
-
|
|
126
|
-
@article{Kapoor2022EpilepticSPJ,
|
|
127
|
-
title = {Epileptic Seizure Prediction Based on Hybrid Seek Optimization Tuned Ensemble Classifier Using EEG Signals},
|
|
128
|
-
author = {Bhaskar Kapoor and Bharti Nagpal and P. Jain and Ajith Abraham and L. Gabralla},
|
|
129
|
-
year = {2022},
|
|
130
|
-
abstract = {<jats:p>Visual analysis of an electroencephalogram (EEG) by medical professionals is highly time-consuming and the information is difficult to process. To overcome these limitations, several automated seizure detection strategies have been introduced by combining signal processing and machine learning. This paper proposes a hybrid optimization-controlled ensemble classifier comprising the AdaBoost classifier, random forest (RF) classifier, and the decision tree (DT) classifier for the automatic analysis of an EEG signal dataset to predict an epileptic seizure. The EEG signal is pre-processed initially to make it suitable for feature selection. The feature selection process receives the alpha, beta, delta, theta, and gamma wave data from the EEG, where the significant features, such as statistical features, wavelet features, and entropy-based features, are extracted by the proposed hybrid seek optimization algorithm. These extracted features are fed forward to the proposed ensemble classifier that produces the predicted output. By the combination of corvid and gregarious search agent characteristics, the proposed hybrid seek optimization technique has been developed, and is used to evaluate the fusion parameters of the ensemble classifier. The suggested technique’s accuracy, sensitivity, and specificity are determined to be 96.6120%, 94.6736%, and 91.3684%, respectively, for the CHB-MIT database. This demonstrates the effectiveness of the suggested technique for early seizure prediction. The accuracy, sensitivity, and specificity of the proposed technique are 95.3090%, 93.1766%, and 90.0654%, respectively, for the Siena Scalp database, again demonstrating its efficacy in the early seizure prediction process.</jats:p>},
|
|
131
|
-
keywords = {AdaBoost, Ensemble Learning},
|
|
132
|
-
doi = {10.3390/s23010423},
|
|
133
|
-
pmid = {36617019},
|
|
134
|
-
journal = {Sensors (Basel, Switzerland)},
|
|
135
|
-
volume = {23},
|
|
136
|
-
citation_count = {29},
|
|
137
|
-
url = {https://api.semanticscholar.org/CorpusId:255521270},
|
|
138
|
-
}
|
|
139
|
-
|
|
140
|
-
@article{Chu2017PredictingESK,
|
|
141
|
-
title = {Predicting epileptic seizures from scalp EEG based on attractor state analysis},
|
|
142
|
-
author = {Hyunho Chu and C. Chung and Woorim Jeong and Kwang-Hyun Cho},
|
|
143
|
-
year = {2017},
|
|
144
|
-
abstract = {Epilepsy is the second most common disease of the brain. Epilepsy makes it difficult for patients to live a normal life because it is difficult to predict when seizures will occur. In this regard, if seizures could be predicted a reasonable period of time before their occurrence, epilepsy patients could take precautions against them and improve their safety and quality of life. In this paper, we investigate a novel seizure precursor based on attractor state analysis for seizure prediction.},
|
|
145
|
-
doi = {10.1016/j.cmpb.2017.03.002},
|
|
146
|
-
pmid = {28391821},
|
|
147
|
-
journal = {Computer methods and programs in biomedicine},
|
|
148
|
-
volume = {143},
|
|
149
|
-
citation_count = {119},
|
|
150
|
-
journal_impact_factor = {4.9},
|
|
151
|
-
}
|
|
152
|
-
|
|
153
|
-
@article{Aldahr2023PatientSpecificPPL,
|
|
154
|
-
title = {Patient-Specific Preictal Pattern-Aware Epileptic Seizure Prediction with Federated Learning},
|
|
155
|
-
author = {Raghdah Saem Aldahr and Mohammad Ilyas},
|
|
156
|
-
year = {2023},
|
|
157
|
-
abstract = {Electroencephalography (EEG) signals are the primary source for discriminating the preictal from the interictal stage, enabling early warnings before the seizure onset. Epileptic siezure prediction systems face significant challenges due to data scarcity, diversity, and privacy. This paper proposes a three-tier architecture for epileptic seizure prediction associated with the Federated Learning (FL) model, which is able to achieve enhanced capability by utilizing a significant number of seizure patterns from globally distributed patients while maintaining data privacy. The determination of the preictal state is influenced by global and local model-assisted decision making by modeling the two-level edge layer. The Spiking Encoder (SE), integrated with the Graph Convolutional Neural Network (Spiking-GCNN), works as the local model trained using a bi-timescale approach. Each local model utilizes the aggregated seizure knowledge obtained from the different medical centers through FL and determines the preictal probability in the coarse-grained personalization. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized in fine-grained personalization to recognize epileptic seizure patients by examining the outcomes of the FL model, heart rate variability features, and patient-specific clinical features. Thus, the proposed approach achieved 96.33% sensitivity and 96.14% specificity when tested on the CHB-MIT EEG dataset when modeling was performed using the bi-timescale approach and Spiking-GCNN-based epileptic pattern learning. Moreover, the adoption of federated learning greatly assists the proposed system, yielding a 96.28% higher accuracy as a result of addressing data scarcity.},
|
|
158
|
-
keywords = {Epileptic seizure},
|
|
159
|
-
doi = {10.20944/preprints202306.2253.v1},
|
|
160
|
-
pmid = {37514873},
|
|
161
|
-
journal = {Sensors (Basel, Switzerland)},
|
|
162
|
-
volume = {23},
|
|
163
|
-
citation_count = {6},
|
|
164
|
-
url = {https://api.semanticscholar.org/CorpusId:260151979},
|
|
165
|
-
}
|
|
166
|
-
|
|
167
|
-
@article{Talukder2023ComparativeAOM,
|
|
168
|
-
title = {Comparative Analysis of Epileptic Seizure Prediction: Exploring Diverse Pre-Processing Techniques and Machine Learning Models},
|
|
169
|
-
author = {Md. Simul Hasan Talukder and R. Sulaiman},
|
|
170
|
-
year = {2023},
|
|
171
|
-
keywords = {Epileptic seizure},
|
|
172
|
-
doi = {10.1109/upcon59197.2023.10434289},
|
|
173
|
-
journal = {2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON)},
|
|
174
|
-
citation_count = {11},
|
|
175
|
-
url = {https://api.semanticscholar.org/CorpusId:260775937},
|
|
176
|
-
volume = {10},
|
|
177
|
-
pages = {712-719},
|
|
178
|
-
}
|
|
179
|
-
|
|
180
|
-
@article{Yuan2024EEGBasedSPN,
|
|
181
|
-
title = {EEG-Based Seizure Prediction Using Hybrid DenseNet-ViT Network with Attention Fusion},
|
|
182
|
-
author = {Shasha Yuan and Kuiting Yan and Shihan Wang and Jin-Xing Liu and Juan Wang},
|
|
183
|
-
year = {2024},
|
|
184
|
-
abstract = {Epilepsy seizure prediction is vital for enhancing the quality of life for individuals with epilepsy. In this study, we introduce a novel hybrid deep learning architecture, merging DenseNet and Vision Transformer (ViT) with an attention fusion layer for seizure prediction. DenseNet captures hierarchical features and ensures efficient parameter usage, while ViT offers self-attention mechanisms and global feature representation. The attention fusion layer effectively amalgamates features from both networks, guaranteeing the most relevant information is harnessed for seizure prediction. The raw EEG signals were preprocessed using the short-time Fourier transform (STFT) to implement time-frequency analysis and convert EEG signals into time-frequency matrices. Then, they were fed into the proposed hybrid DenseNet-ViT network model to achieve end-to-end seizure prediction. The CHB-MIT dataset, including data from 24 patients, was used for evaluation and the leave-one-out cross-validation method was utilized to evaluate the performance of the proposed model. Our results demonstrate superior performance in seizure prediction, exhibiting high accuracy and low redundancy, which suggests that combining DenseNet, ViT, and the attention mechanism can significantly enhance prediction capabilities and facilitate more precise therapeutic interventions.},
|
|
185
|
-
doi = {10.3390/brainsci14080839},
|
|
186
|
-
pmid = {39199530},
|
|
187
|
-
journal = {Brain Sciences},
|
|
188
|
-
volume = {14},
|
|
189
|
-
journal_impact_factor = {2.7},
|
|
190
|
-
url = {https://api.semanticscholar.org/CorpusId:272133091},
|
|
191
|
-
}
|
|
192
|
-
|
|
193
|
-
@article{Ji2023AnEFO,
|
|
194
|
-
title = {An effective fusion model for seizure prediction: GAMRNN},
|
|
195
|
-
author = {Hong Ji and Ting Xu and Tao Xue and Tao Xu and Zhiqiang Yan and Yonghong Liu and Badong Chen and Wen Jiang},
|
|
196
|
-
year = {2023},
|
|
197
|
-
abstract = {<jats:p>The early prediction of epileptic seizures holds paramount significance in patient care and medical research. Extracting useful spatial-temporal features to facilitate seizure prediction represents a primary challenge in this field. This study proposes GAMRNN, a novel methodology integrating a dual-layer gated recurrent unit (GRU) model with a convolutional attention module. GAMRNN aims to capture intricate spatial-temporal characteristics by highlighting informative feature channels and spatial pattern dynamics. We employ the Lion optimization algorithm to enhance the model's generalization capability and predictive accuracy. Our evaluation of GAMRNN on the widely utilized CHB-MIT EEG dataset demonstrates its effectiveness in seizure prediction. The results include an impressive average classification accuracy of 91.73%, sensitivity of 88.09%, specificity of 92.09%, and a low false positive rate of 0.053/h. Notably, GAMRNN enables early seizure prediction with a lead time ranging from 5 to 35 min, exhibiting remarkable performance improvements compared to similar prediction models.</jats:p>},
|
|
198
|
-
keywords = {Epileptic seizure, Feature (linguistics)},
|
|
199
|
-
doi = {10.3389/fnins.2023.1246995},
|
|
200
|
-
pmid = {37674519},
|
|
201
|
-
journal = {Frontiers in Neuroscience},
|
|
202
|
-
volume = {17},
|
|
203
|
-
citation_count = {5},
|
|
204
|
-
journal_impact_factor = {3.2},
|
|
205
|
-
url = {https://api.semanticscholar.org/CorpusId:261084333},
|
|
206
|
-
}
|
|
207
|
-
|
|
208
|
-
@article{Pinto2021APAP,
|
|
209
|
-
title = {A personalized and evolutionary algorithm for interpretable EEG epilepsy seizure prediction},
|
|
210
|
-
author = {Mauro F. Pinto and A. Leal and F\{\'a\}bio Lopes and A. Dourado and Pedro Martins and C. Teixeira},
|
|
211
|
-
year = {2021},
|
|
212
|
-
abstract = {<jats:title>Abstract</jats:title><jats:p>Seizure prediction may improve the quality of life of patients suffering from drug-resistant epilepsy, which accounts for about 30% of the total epileptic patients. The pre-ictal period determination, characterized by a transitional stage between normal brain activity and seizure, is a critical step. Past approaches failed to attain real-world applicability due to lack of generalization capacity. More recently, deep learning techniques may outperform traditional classifiers and handle time dependencies. However, despite the existing efforts for providing interpretable insights, clinicians may not be willing to make high-stake decisions based on them. Furthermore, a disadvantageous aspect of the more usual seizure prediction pipeline is its modularity and significant independence between stages. An alternative could be the construction of a search algorithm that, while considering pipeline stages’ synergy, fine-tunes the selection of a reduced set of features that are widely used in the literature and computationally efficient. With extracranial recordings from 19 patients suffering from temporal-lobe seizures, we developed a patient-specific evolutionary optimization strategy, aiming to generate the optimal set of features for seizure prediction with a logistic regression classifier, which was tested prospectively in a total of 49 seizures and 710 h of continuous recording and performed above chance for 32% of patients, using a surrogate predictor. These results demonstrate the hypothesis of pre-ictal period identification without the loss of interpretability, which may help understanding brain dynamics leading to seizures and improve prediction algorithms.</jats:p>},
|
|
213
|
-
keywords = {Interpretability},
|
|
214
|
-
doi = {10.1038/s41598-021-82828-7},
|
|
215
|
-
pmid = {33564050},
|
|
216
|
-
journal = {Scientific Reports},
|
|
217
|
-
volume = {11},
|
|
218
|
-
citation_count = {59},
|
|
219
|
-
journal_impact_factor = {3.8},
|
|
220
|
-
url = {https://api.semanticscholar.org/CorpusId:231869290},
|
|
221
|
-
}
|
|
222
|
-
|
|
223
|
-
@article{DAlessandro2003EpilepticSPQ,
|
|
224
|
-
title = {Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients},
|
|
225
|
-
author = {M. D'Alessandro and R. Esteller and G. Vachtsevanos and A. Hinson and J. Echauz and B. Litt},
|
|
226
|
-
year = {2003},
|
|
227
|
-
abstract = {Epileptic seizure prediction has steadily evolved from its conception in the 1970s, to proof-of-principle experiments in the late 1980s and 1990s, to its current place as an area of vigorous, clinical and laboratory investigation. As a step toward practical implementation of this technology in humans, we present an individualized method for selecting electroencephalogram (EEG) features and electrode locations for seizure prediction focused on precursors that occur within ten minutes of electrographic seizure onset. This method applies an intelligent genetic search process to EEG signals simultaneously collected from multiple intracranial electrode contacts and multiple quantitative features derived from these signals. The algorithm is trained on a series of baseline and preseizure records and then validated on other, previously unseen data using split sample validation techniques. The performance of this method is demonstrated on multiday recordings obtained from four patients implanted with intracranial electrodes during evaluation for epilepsy surgery. An average probability of prediction (or block sensitivity) of 62.5% was achieved in this group, with an average block false positive (FP) rate of 0.2775 FP predictions/h, corresponding to 90.47% specificity. These findings are presented as an example of a method for training, testing and validating a seizure prediction system on data from individual patients. Given the heterogeneity of epilepsy, it is likely that methods of this type will be required to configure intelligent devices for treating epilepsy to each individual's neurophysiology prior to clinical deployment.},
|
|
228
|
-
keywords = {Epileptic seizure, Neurophysiology, Clinical neurophysiology, Feature (linguistics)},
|
|
229
|
-
doi = {10.1109/tbme.2003.810706},
|
|
230
|
-
pmid = {12769436},
|
|
231
|
-
journal = {IEEE Transactions on Biomedical Engineering},
|
|
232
|
-
volume = {50},
|
|
233
|
-
citation_count = {269},
|
|
234
|
-
journal_impact_factor = {4.4},
|
|
235
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1213858},
|
|
236
|
-
pages = {603-615},
|
|
237
|
-
}
|
|
238
|
-
|
|
239
|
-
@article{Messaoud2021RandomFCR,
|
|
240
|
-
title = {Random Forest classifier for EEG-based seizure prediction},
|
|
241
|
-
author = {R\{\'e\}my Ben Messaoud and Mario Chavez},
|
|
242
|
-
year = {2021},
|
|
243
|
-
abstract = {Epileptic seizure prediction has gained considerable interest in the computational Epilepsy research community. This paper presents a Machine Learning based method for epileptic seizure prediction which outperforms state-of-the art methods. We compute a probability for a given epoch, of being pre-ictal against interictal using the Random Forest classifier and introduce new concepts to enhance the robustness of the algorithm to false alarms. We assessed our method on 20 patients of the benchmark scalp EEG CHB-MIT dataset for a seizure prediction horizon (SPH) of 5 minutes and a seizure occurrence period (SOP) of 30 minutes. Our approach achieves a sensitivity of 82.07 % and a low false positive rate (FPR) of 0.0799 /h. We also tested our approach on intracranial EEG recordings.},
|
|
244
|
-
keywords = {Epileptic seizure, Robustness},
|
|
245
|
-
doi = {10.48550/arxiv.2106.04510},
|
|
246
|
-
journal = {ArXiv},
|
|
247
|
-
citation_count = {7},
|
|
248
|
-
url = {https://api.semanticscholar.org/CorpusId:235368019},
|
|
249
|
-
volume = {abs/2106.04510},
|
|
250
|
-
}
|
|
251
|
-
|
|
252
|
-
@article{Iasemidis2003EpilepticSPS,
|
|
253
|
-
title = {Epileptic seizure prediction and control},
|
|
254
|
-
author = {L. Iasemidis},
|
|
255
|
-
year = {2003},
|
|
256
|
-
abstract = {Epileptic seizures are manifestations of epilepsy, a serious brain dynamical disorder second only to strokes. Of the world's approximately 50 million people with epilepsy, fully 1/3 have seizures that are not controlled by anti-convulsant medication. The field of seizure prediction, in which engineering technologies are used to decode brain signals and search for precursors of impending epileptic seizures, holds great promise to elucidate the dynamical mechanisms underlying the disorder, as well as to enable implantable devices to intervene in time to treat epilepsy. There is currently an explosion of interest in this field in academic centers and medical industry with clinical trials underway to test potential prediction and intervention methodology and devices for Food and Drug Administration (FDA) approval. This invited paper presents an overview of the application of signal processing methodologies based upon the theory of nonlinear dynamics to the problem of seizure prediction. Broader application of these developments to a variety of systems requiring monitoring, forecasting and control is a natural outgrowth of this field.},
|
|
257
|
-
keywords = {Epileptic seizure, Convulsants},
|
|
258
|
-
doi = {10.1109/tbme.2003.810705},
|
|
259
|
-
pmid = {12769431},
|
|
260
|
-
journal = {IEEE Transactions on Biomedical Engineering},
|
|
261
|
-
volume = {50},
|
|
262
|
-
citation_count = {358},
|
|
263
|
-
journal_impact_factor = {4.4},
|
|
264
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1198245},
|
|
265
|
-
pages = {549-558},
|
|
266
|
-
}
|
|
267
|
-
|
|
268
|
-
@article{Fujiwara2016EpilepticSPT,
|
|
269
|
-
title = {Epileptic Seizure Prediction Based on Multivariate Statistical Process Control of Heart Rate Variability Features},
|
|
270
|
-
author = {K. Fujiwara and M. Miyajima and T. Yamakawa and Erika Abe and Yoko Suzuki and Yuriko Sawada and M. Kano and T. Maehara and K. Ohta and T. Sasai-Sakuma and T. Sasano and M. Matsuura and E. Matsushima},
|
|
271
|
-
year = {2016},
|
|
272
|
-
abstract = {The present study proposes a new epileptic seizure prediction method through integrating heart rate variability (HRV) analysis and an anomaly monitoring technique.},
|
|
273
|
-
doi = {10.1109/tbme.2015.2512276},
|
|
274
|
-
pmid = {26841385},
|
|
275
|
-
journal = {IEEE Transactions on Biomedical Engineering},
|
|
276
|
-
volume = {63},
|
|
277
|
-
journal_impact_factor = {4.4},
|
|
278
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7365453},
|
|
279
|
-
pages = {1321-1332},
|
|
280
|
-
}
|
|
281
|
-
|
|
282
|
-
@article{Liu2024EpilepticSPU,
|
|
283
|
-
title = {Epileptic seizure prediction based on EEG using pseudo-three-dimensional CNN},
|
|
284
|
-
author = {Xin Liu and Chunyang Li and Xicheng Lou and Haohuan Kong and Xinwei Li and Zhangyong Li and Lisha Zhong},
|
|
285
|
-
year = {2024},
|
|
286
|
-
abstract = {<jats:p>Epileptic seizures are characterized by their sudden and unpredictable nature, posing significant risks to a patient’s daily life. Accurate and reliable seizure prediction systems can provide alerts before a seizure occurs, as well as give the patient and caregivers provider enough time to take appropriate measure. This study presents an effective seizure prediction method based on deep learning that combine with handcrafted features. The handcrafted features were selected by Max-Relevance and Min-Redundancy (mRMR) to obtain the optimal set of features. To extract the epileptic features from the fused multidimensional structure, we designed a P3D-BiConvLstm3D model, which is a combination of pseudo-3D convolutional neural network (P3DCNN) and bidirectional convolutional long short-term memory 3D (BiConvLstm3D). We also converted EEG signals into a multidimensional structure that fused spatial, manual features, and temporal information. The multidimensional structure is then fed into a P3DCNN to extract spatial and manual features and feature-to-feature dependencies, followed by a BiConvLstm3D input to explore temporal dependencies while preserving the spatial features, and finally, a channel attention mechanism is implemented to emphasize the more representative information in the multichannel output. The proposed has an average accuracy of 98.13%, an average sensitivity of 98.03%, an average precision of 98.30% and an average specificity of 98.23% for the CHB-MIT scalp EEG database. A comparison of the proposed model with other baseline methods was done to confirm the better performance of features through time–space nonlinear feature fusion. The results show that the proposed P3DCNN-BiConvLstm3D-Attention3D method for epilepsy prediction by time–space nonlinear feature fusion is effective.</jats:p>},
|
|
287
|
-
keywords = {Epileptic seizure, Feature (linguistics), Feature vector},
|
|
288
|
-
doi = {10.3389/fninf.2024.1354436},
|
|
289
|
-
pmid = {38566773},
|
|
290
|
-
journal = {Frontiers in Neuroinformatics},
|
|
291
|
-
volume = {18},
|
|
292
|
-
citation_count = {9},
|
|
293
|
-
journal_impact_factor = {2.5},
|
|
294
|
-
url = {https://api.semanticscholar.org/CorpusId:268587462},
|
|
295
|
-
}
|
|
296
|
-
|
|
297
|
-
@article{Truong2021SeizureSPV,
|
|
298
|
-
title = {Seizure Susceptibility Prediction in Uncontrolled Epilepsy},
|
|
299
|
-
author = {N. D. Truong and Yikai Yang and C. Maher and L. Kuhlmann and A. McEwan and A. Nikpour and O. Kavehei},
|
|
300
|
-
year = {2021},
|
|
301
|
-
abstract = {<jats:p>Epileptic seizure forecasting, combined with the delivery of preventative therapies, holds the potential to greatly improve the quality of life for epilepsy patients and their caregivers. Forecasting seizures could prevent some potentially catastrophic consequences such as injury and death in addition to several potential clinical benefits it may provide for patient care in hospitals. The challenge of seizure forecasting lies within the seemingly unpredictable transitions of brain dynamics into the ictal state. The main body of computational research on determining seizure risk has been focused solely on prediction algorithms, which involves a challenging issue of balancing sensitivity and false alarms. There have been some studies on identifying potential biomarkers for seizure forecasting; however, the questions of “What are the true biomarkers for seizure prediction” or even “Is there a valid biomarker for seizure prediction?” are yet to be fully answered. In this paper, we introduce a tool to facilitate the exploration of the potential biomarkers. We confirm using our tool that interictal slowing activities are a promising biomarker for epileptic seizure susceptibility prediction.</jats:p>},
|
|
302
|
-
keywords = {Epileptic seizure},
|
|
303
|
-
doi = {10.3389/fneur.2021.721491},
|
|
304
|
-
pmid = {34589049},
|
|
305
|
-
journal = {Frontiers in Neurology},
|
|
306
|
-
volume = {12},
|
|
307
|
-
citation_count = {11},
|
|
308
|
-
journal_impact_factor = {2.7},
|
|
309
|
-
url = {https://www.ncbi.nlm.nih.gov/pubmed/34589049},
|
|
310
|
-
}
|
|
311
|
-
|
|
312
|
-
@article{KiralKornek2017EpilepticSPW,
|
|
313
|
-
title = {Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System},
|
|
314
|
-
author = {Isabell Kiral-Kornek and Subhrajit Roy and E. Nurse and B. Mashford and Philippa J. Karoly and T. Carroll and D. Payne and Susmita Saha and S. Baldassano and T. O'Brien and D. Grayden and M. Cook and D. Freestone and S. Harrer},
|
|
315
|
-
year = {2017},
|
|
316
|
-
keywords = {Neuromorphic engineering, Wearable Technology},
|
|
317
|
-
doi = {10.1016/j.ebiom.2017.11.032},
|
|
318
|
-
pmid = {29262989},
|
|
319
|
-
journal = {EBioMedicine},
|
|
320
|
-
volume = {27},
|
|
321
|
-
citation_count = {279},
|
|
322
|
-
journal_impact_factor = {9.7},
|
|
323
|
-
url = {https://www.ncbi.nlm.nih.gov/pubmed/29262989},
|
|
324
|
-
pages = {103 - 111},
|
|
325
|
-
}
|
|
326
|
-
|
|
327
|
-
@article{Hussein2020EpilepticSPX,
|
|
328
|
-
title = {Epileptic Seizure Prediction: A Semi-Dilated Convolutional Neural Network Architecture},
|
|
329
|
-
author = {Ramy Hussein and Soojin Lee and R. Ward and M. McKeown},
|
|
330
|
-
year = {2020},
|
|
331
|
-
abstract = {Accurate prediction of epileptic seizures has remained elusive, despite the many advances in machine learning and time-series classification. In this work, we develop a convolutional network module that exploits Electroencephalogram (EEG) scalograms to distinguish between the pre-seizure and normal brain activities. Since these scalograms have rectangular image shapes with many more temporal bins than spectral bins, the presented module uses “semi-dilated convolutions” to create a proportional non-square receptive field. The proposed semi-dilated convolutions support exponential expansion of the receptive field over the long dimension (image width, i.e. time) while maintaining high resolution over the short dimension (image height, i.e., frequency). The proposed architecture comprises a set of co-operative semi-dilated convolutional blocks, each block has a stack of parallel semi-dilated convolutional modules with different dilation rates. Results show that our proposed solution outperforms the state-of-the-art methods, achieving seizure prediction sensitivity scores of 88.45% and 89.52% for the American Epilepsy Society and Melbourne University EEG datasets, respectively.},
|
|
332
|
-
doi = {10.1109/ICPR48806.2021.9412384},
|
|
333
|
-
journal = {2020 25th International Conference on Pattern Recognition (ICPR)},
|
|
334
|
-
url = {https://api.semanticscholar.org/CorpusId:220714062},
|
|
335
|
-
pages = {5436-5443},
|
|
336
|
-
}
|
|
337
|
-
|
|
338
|
-
@article{Dissanayake2020PatientindependentESY,
|
|
339
|
-
title = {Patient-independent Epileptic Seizure Prediction using Deep Learning Models},
|
|
340
|
-
author = {T. Dissanayake and Tharindu Fernando and Simon Denman and S. Sridharan and C. Fookes},
|
|
341
|
-
year = {2020},
|
|
342
|
-
abstract = {Objective: Epilepsy is one of the most prevalent neurological diseases among humans and can lead to severe brain injuries, strokes, and brain tumors. Early detection of seizures can help to mitigate injuries, and can be used to aid the treatment of patients with epilepsy. The purpose of a seizure prediction system is to successfully identify the pre-ictal brain stage, which occurs before a seizure event. Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset, and have been identified as a real-world solution to the seizure prediction problem. However, little attention has been given for designing such models to adapt to the high inter-subject variability in EEG data. Methods: We propose two patient-independent deep learning architectures with different learning strategies that can learn a global function utilizing data from multiple subjects. Results: Proposed models achieve state-of-the-art performance for seizure prediction on the CHB-MIT-EEG dataset, demonstrating 88.81% and 91.54% accuracy respectively. Conclusions: The Siamese model trained on the proposed learning strategy is able to learn patterns related to patient variations in data while predicting seizures. Significance: Our models show superior performance for patient-independent seizure prediction, and the same architecture can be used as a patient-specific classifier after model adaptation. We are the first study that employs model interpretation to understand classifier behavior for the task for seizure prediction, and we also show that the MFCC feature map utilized by our models contains predictive biomarkers related to interictal and pre-ictal brain states.},
|
|
343
|
-
keywords = {Epileptic seizure},
|
|
344
|
-
doi = {10.48550/arxiv.2011.09581},
|
|
345
|
-
journal = {ArXiv},
|
|
346
|
-
citation_count = {8},
|
|
347
|
-
url = {https://api.semanticscholar.org/CorpusId:227054144},
|
|
348
|
-
volume = {abs/2011.09581},
|
|
349
|
-
}
|
|
350
|
-
|
|
351
|
-
@article{Rogowski1981OnTPZ,
|
|
352
|
-
title = {On the prediction of epileptic seizures},
|
|
353
|
-
author = {Z. Rogowski and I. Gath and E. Bental},
|
|
354
|
-
year = {1981},
|
|
355
|
-
abstract = {In 12 epileptic patients suffering from "absences" 8-channel EEG was recorded by telemetry. The autoregressive model was applied to the signal and the prediction coefficients being the basis for calculation of the poles of the predictor. The location of the poles in the z- and s-planes was described as a function of time for 0.1 s steps along the pre-seizure EEG. In 10 of the 12 patients, and in 25 of the 28 recorded seizures this presentation of the poles of the predictor showed specific pattern linked with the occurrence of the seizure. The trajectory of the "most mobile pole" during the pre-seizure period could aid in the prediction of the seizure by several seconds.},
|
|
356
|
-
keywords = {Epileptic seizure, SIGNAL (programming language)},
|
|
357
|
-
doi = {10.1007/bf00335153},
|
|
358
|
-
pmid = {6799009},
|
|
359
|
-
journal = {Biological Cybernetics},
|
|
360
|
-
volume = {42},
|
|
361
|
-
citation_count = {9},
|
|
362
|
-
journal_impact_factor = {1.7},
|
|
363
|
-
url = {https://doi.org/10.1007/BF00335153},
|
|
364
|
-
pages = {9-15},
|
|
365
|
-
}
|
|
366
|
-
|
|
367
|
-
@article{Guo2020EpilepsySPAA,
|
|
368
|
-
title = {Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional Neural Network},
|
|
369
|
-
author = {Yao Guo and Po Yang and Wei Chen and Benny P. L. Lo},
|
|
370
|
-
year = {2020},
|
|
371
|
-
abstract = {Epilepsy seizure prediction paves the way of timely warning for patients to take more active and effective intervention measures. Compared to seizure detection that only identifies the inter-ictal state and the ictal state, far fewer researches have been conducted on seizure prediction because the high similarity makes it challenging to distinguish between the pre-ictal state and the inter-ictal state. In this paper, a novel solution on seizure prediction is proposed using common spatial pattern (CSP) and convolutional neural network (CNN). Firstly, artificial pre-ictal EEG signals based on the original ones are generated by combining the segmented pre-ictal signals to solve the trial imbalance problem between the two states. Secondly, a feature extractor employing wavelet packet decomposition and CSP is designed to extract the distinguishing features in both the time domain and the frequency domain. It can improve overall accuracy while reducing the training time. Finally, a shallow CNN is applied to discriminate between the pre-ictal state and the inter-ictal state. Our proposed solution is evaluated on 23 patients’ data from Boston Children's Hospital-MIT scalp EEG dataset by employing a leave-one-out cross-validation, and it achieves a sensitivity of 92.2% and false prediction rate of 0.12/h. Experimental result demonstrates that the proposed approach outperforms most state-of-the-art methods.},
|
|
372
|
-
doi = {10.1109/jbhi.2019.2933046},
|
|
373
|
-
pmid = {31395568},
|
|
374
|
-
journal = {IEEE Journal of Biomedical and Health Informatics},
|
|
375
|
-
volume = {24},
|
|
376
|
-
journal_impact_factor = {6.7},
|
|
377
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8788635},
|
|
378
|
-
pages = {465-474},
|
|
379
|
-
}
|
|
380
|
-
|
|
381
|
-
@article{Usman2020PrincipleCAAB,
|
|
382
|
-
title = {Principle components analysis for seizures prediction using wavelet
|
|
383
|
-
transform},
|
|
384
|
-
author = {Syed Muhammad Usman and Shahzad Latif and Arshad Beg},
|
|
385
|
-
year = {2020},
|
|
386
|
-
abstract = {Epilepsy is a disease in which frequent seizures occur due to abnormal activity of neurons. Patients affected by this disease can be treated with the help of medicines or surgical procedures. However, both of these methods are not quite useful. The only method to treat epilepsy patients effectively is to predict the seizure before its onset. It has been observed that abnormal activity in the brain signals starts before the occurrence of seizure known as the preictal state. Many researchers have proposed machine learning models for prediction of epileptic seizures by detecting the start of preictal state. However, pre-processing, feature extraction and classification remains a great challenge in the prediction of preictal state. Therefore, we propose a model that uses common spatial pattern filtering and wavelet transform for preprocessing, principal component analysis for feature extraction and support vector machines for detecting preictal state. We have applied our model on 23 subjects and an average sensitivity of 93.1% has been observed for 84 seizures.},
|
|
387
|
-
doi = {10.48550/arxiv.2004.07937},
|
|
388
|
-
eprint = {2004.07937},
|
|
389
|
-
journal = {ArXiv},
|
|
390
|
-
citation_count = {1},
|
|
391
|
-
url = {https://api.semanticscholar.org/CorpusId:86513612},
|
|
392
|
-
volume = {abs/2004.07937},
|
|
393
|
-
}
|
|
394
|
-
|
|
395
|
-
@article{Razi2022EfficientGCAC,
|
|
396
|
-
title = {Efficient graph convolutional networks for seizure prediction using scalp EEG},
|
|
397
|
-
author = {Adeel Razi and Ramy Hussein and Duong Nhu and Qun Wang and cnZhiguoZhou and Liu Jia M and Chen Clp and \{\textcopyright\}. Jia and Duan Liu and Chen Chen and Zhou. This and Manhua Jia and Wenjian Liu and Junwei Duan and Long Chen},
|
|
398
|
-
year = {2022},
|
|
399
|
-
abstract = {<jats:p>Epilepsy is a chronic brain disease that causes persistent and severe damage to the physical and mental health of patients. Daily effective prediction of epileptic seizures is crucial for epilepsy patients especially those with refractory epilepsy. At present, a large number of deep learning algorithms such as Convolutional Neural Networks and Recurrent Neural Networks have been used to predict epileptic seizures and have obtained better performance than traditional machine learning methods. However, these methods usually transform the Electroencephalogram (EEG) signal into a Euclidean grid structure. The conversion suffers from loss of adjacent spatial information, which results in deep learning models requiring more storage and computational consumption in the process of information fusion after information extraction. This study proposes a general Graph Convolutional Networks (GCN) model architecture for predicting seizures to solve the problem of oversized seizure prediction models based on exploring the graph structure of EEG signals. As a graph classification task, the network architecture includes graph convolution layers that extract node features with one-hop neighbors, pooling layers that summarize abstract node features; and fully connected layers that implement classification, resulting in superior prediction performance and smaller network size. The experiment shows that the model has an average sensitivity of 96.51%, an average AUC of 0.92, and a model size of 15.5 k on 18 patients in the CHB-MIT scalp EEG dataset. Compared with traditional deep learning methods, which require a large number of parameters and computational effort and are demanding in terms of storage space and energy consumption, this method is more suitable for implementation on compact, low-power wearable devices as a standard process for building a generic low-consumption graph network model on similar biomedical signals. Furthermore, the edge features of graphs can be used to make a preliminary determination of locations and types of discharge, making it more clinically interpretable.</jats:p>},
|
|
400
|
-
keywords = {Pooling},
|
|
401
|
-
doi = {10.3389/fnins.2022.967116},
|
|
402
|
-
pmid = {35979333},
|
|
403
|
-
journal = {Frontiers in Neuroscience},
|
|
404
|
-
volume = {16},
|
|
405
|
-
citation_count = {29},
|
|
406
|
-
journal_impact_factor = {3.2},
|
|
407
|
-
url = {https://www.ncbi.nlm.nih.gov/pubmed/35979333},
|
|
408
|
-
}
|
|
409
|
-
|
|
410
|
-
@article{Tian2021ANNAD,
|
|
411
|
-
title = {A New Neuromorphic Computing Approach for Epileptic Seizure Prediction},
|
|
412
|
-
author = {Fengshi Tian and Jie Yang and Shiqi Zhao and M. Sawan},
|
|
413
|
-
year = {2021},
|
|
414
|
-
abstract = {Several high specificity and sensitivity seizure prediction methods with convolutional neural networks (CNNs) are reported. However, CNNs are computationally expensive and power hungry. These inconveniences make CNN-based methods hard to be implemented on wearable devices. Motivated by the energy-efficient spiking neural networks (SNNs), a neuromorphic computing approach for seizure prediction is proposed in this work. This approach uses a designed gaussian random discrete encoder to generate spike sequences from the EEG samples and make predictions in a spiking convolutional neural network (Spiking-CNN) which combines the advantages of CNNs and SNNs. The experimental results show that the sensitivity, specificity and AUC can remain 95.1%, 99.2% and 0.912 respectively while the computation complexity is reduced by 98.58% compared to CNN, indicating that the proposed Spiking-CNN is hardware friendly and of high precision.},
|
|
415
|
-
keywords = {Neuromorphic engineering},
|
|
416
|
-
doi = {10.1109/iscas51556.2021.9401560},
|
|
417
|
-
eprint = {2102.12773},
|
|
418
|
-
journal = {2021 IEEE International Symposium on Circuits and Systems (ISCAS)},
|
|
419
|
-
citation_count = {25},
|
|
420
|
-
url = {https://api.semanticscholar.org/CorpusId:232046246},
|
|
421
|
-
pages = {1-5},
|
|
422
|
-
}
|
|
423
|
-
|
|
424
|
-
@article{Yang2018EpilepticSPAE,
|
|
425
|
-
title = {Epileptic Seizure Prediction Based on Permutation Entropy},
|
|
426
|
-
author = {Yanli Yang and Mengni Zhou and Yan Niu and Conggai Li and R. Cao and Bin Wang and Pengfei Yan and Yao Ma and Jie Xiang},
|
|
427
|
-
year = {2018},
|
|
428
|
-
abstract = {Epilepsy is a chronic non-communicable disorder of the brain that affects individuals of all ages. It is caused by a sudden abnormal discharge of brain neurons leading to temporary dysfunction. In this regard, if seizures could be predicted a reasonable period of time before their occurrence, epilepsy patients could take precautions against them and improve their safety and quality of life. However, the potential that permutation entropy(PE) can be applied in human epilepsy prediction from intracranial electroencephalogram (iEEG) recordings remains unclear. Here, we described the novel application of PE to track the dynamical changes of human brain activity from iEEG recordings for the epileptic seizure prediction. The iEEG signals of 19 patients were obtained from the Epilepsy Centre at the University Hospital of Freiburg. After preprocessing, PE was extracted in a sliding time window, and a support vector machine (SVM) was employed to discriminate cerebral state. Then a two-step post-processing method was applied for the purpose of prediction. The results showed that we obtained an average sensitivity (SS) of 94% and false prediction rates (FPR) with 0.111 h−1. The best results with SS of 100% and FPR of 0 h−1 were achieved for some patients. The average prediction horizon was 61.93 min, leaving sufficient treatment time before a seizure. These results indicated that applying PE as a feature to extract information and SVM for classification could predict seizures, and the presented method shows great potential in clinical seizure prediction for human.},
|
|
429
|
-
keywords = {Epileptic seizure},
|
|
430
|
-
doi = {10.3389/fncom.2018.00055},
|
|
431
|
-
pmid = {30072886},
|
|
432
|
-
journal = {Frontiers in Computational Neuroscience},
|
|
433
|
-
volume = {12},
|
|
434
|
-
citation_count = {90},
|
|
435
|
-
journal_impact_factor = {2.1},
|
|
436
|
-
url = {https://api.semanticscholar.org/CorpusId:49865563},
|
|
437
|
-
}
|
|
438
|
-
|
|
439
|
-
@article{Moghim2014PredictingESAF,
|
|
440
|
-
title = {Predicting Epileptic Seizures in Advance},
|
|
441
|
-
author = {Negin Moghim and D. Corne},
|
|
442
|
-
year = {2014},
|
|
443
|
-
abstract = {Epilepsy is the second most common neurological disorder, affecting 0.6–0.8% of the world's population. In this neurological disorder, abnormal activity of the brain causes seizures, the nature of which tend to be sudden. Antiepileptic Drugs (AEDs) are used as long-term therapeutic solutions that control the condition. Of those treated with AEDs, 35% become resistant to medication. The unpredictable nature of seizures poses risks for the individual with epilepsy. It is clearly desirable to find more effective ways of preventing seizures for such patients. The automatic detection of oncoming seizures, before their actual onset, can facilitate timely intervention and hence minimize these risks. In addition, advance prediction of seizures can enrich our understanding of the epileptic brain. In this study, drawing on the body of work behind automatic seizure detection and prediction from digitised Invasive Electroencephalography (EEG) data, a prediction algorithm, ASPPR (Advance Seizure Prediction via Pre-ictal Relabeling), is described. ASPPR facilitates the learning of predictive models targeted at recognizing patterns in EEG activity that are in a specific time window in advance of a seizure. It then exploits advanced machine learning coupled with the design and selection of appropriate features from EEG signals. Results, from evaluating ASPPR independently on 21 different patients, suggest that seizures for many patients can be predicted up to 20 minutes in advance of their onset. Compared to benchmark performance represented by a mean S1-Score (harmonic mean of Sensitivity and Specificity) of 90.6% for predicting seizure onset between 0 and 5 minutes in advance, ASPPR achieves mean S1-Scores of: 96.30% for prediction between 1 and 6 minutes in advance, 96.13% for prediction between 8 and 13 minutes in advance, 94.5% for prediction between 14 and 19 minutes in advance, and 94.2% for prediction between 20 and 25 minutes in advance.},
|
|
444
|
-
keywords = {Epileptic seizure},
|
|
445
|
-
doi = {10.1371/journal.pone.0099334},
|
|
446
|
-
pmid = {24911316},
|
|
447
|
-
journal = {PLoS ONE},
|
|
448
|
-
volume = {9},
|
|
449
|
-
citation_count = {119},
|
|
450
|
-
journal_impact_factor = {2.9},
|
|
451
|
-
url = {https://api.semanticscholar.org/CorpusId:17778854},
|
|
452
|
-
}
|
|
453
|
-
|
|
454
|
-
@article{Liu2019UsingDLAG,
|
|
455
|
-
title = {Using Deep Learning and Machine Learning to Detect Epileptic Seizure
|
|
456
|
-
with Electroencephalography (EEG) Data},
|
|
457
|
-
author = {Haotian Liu and Lin Xi and Ying Zhao and Zhixiang Li},
|
|
458
|
-
year = {2019},
|
|
459
|
-
abstract = {The prediction of epileptic seizure has always been extremely challenging in medical domain. However, as the development of computer technology, the application of machine learning introduced new ideas for seizure forecasting. Applying machine learning model onto the predication of epileptic seizure could help us obtain a better result and there have been plenty of scientists who have been doing such works so that there are sufficient medical data provided for researchers to do training of machine learning models.},
|
|
460
|
-
keywords = {Binary classification, Feature Engineering, Epileptic seizure, Gradient boosting, Feature (linguistics)},
|
|
461
|
-
doi = {10.11648/j.mlr.20190403.11},
|
|
462
|
-
eprint = {1910.02544},
|
|
463
|
-
journal = {ArXiv},
|
|
464
|
-
volume = {4},
|
|
465
|
-
citation_count = {13},
|
|
466
|
-
url = {https://api.semanticscholar.org/CorpusId:203836141},
|
|
467
|
-
}
|
|
468
|
-
|
|
469
|
-
@article{Shi2023B2ViTNBAH,
|
|
470
|
-
title = {B2-ViT Net: Broad Vision Transformer Network With Broad Attention for Seizure Prediction},
|
|
471
|
-
author = {Shuiling Shi and Wenqi Liu},
|
|
472
|
-
year = {2023},
|
|
473
|
-
keywords = {Interpretability, Feature (linguistics), Feature Learning},
|
|
474
|
-
doi = {10.1109/tnsre.2023.3346955},
|
|
475
|
-
pmid = {38145523},
|
|
476
|
-
journal = {IEEE Transactions on Neural Systems and Rehabilitation Engineering},
|
|
477
|
-
volume = {32},
|
|
478
|
-
citation_count = {13},
|
|
479
|
-
journal_impact_factor = {4.8},
|
|
480
|
-
url = {https://api.semanticscholar.org/CorpusId:266550135},
|
|
481
|
-
pages = {178-188},
|
|
482
|
-
}
|
|
483
|
-
|
|
484
|
-
@article{Batista2024EEGESAI,
|
|
485
|
-
title = {EEG epilepsy seizure prediction: the post-processing stage as a chronology},
|
|
486
|
-
author = {Joana Batista and Mauro F. Pinto and Mariana Tavares and F\{\'a\}bio Lopes and Ana Oliveira and C\{\'e\}sar A. Teixeira},
|
|
487
|
-
year = {2024},
|
|
488
|
-
abstract = {<jats:title>Abstract</jats:title><jats:p>Almost one-third of epileptic patients fail to achieve seizure control through anti-epileptic drug administration. In the scarcity of completely controlling a patient’s epilepsy, seizure prediction plays a significant role in clinical management and providing new therapeutic options such as warning or intervention devices. Seizure prediction algorithms aim to identify the preictal period that Electroencephalogram (EEG) signals can capture. However, this period is associated with substantial heterogeneity, varying among patients or even between seizures from the same patient. The present work proposes a patient-specific seizure prediction algorithm using post-processing techniques to explore the existence of a set of chronological events of brain activity that precedes epileptic seizures. The study was conducted with 37 patients with Temporal Lobe Epilepsy (TLE) from the EPILEPSIAE database. The designed methodology combines univariate linear features with a classifier based on Support Vector Machines (SVM) and two post-processing techniques to handle pre-seizure temporality in an easily explainable way, employing knowledge from network theory. In the Chronological Firing Power approach, we considered the preictal as a sequence of three brain activity events separated in time. In the Cumulative Firing Power approach, we assumed the preictal period as a sequence of three overlapping events. These methodologies were compared with a control approach based on the typical machine learning pipeline. We considered a Seizure Prediction horizon (SPH) of 5 mins and analyzed several values for the Seizure Occurrence Period (SOP) duration, between 10 and 55 mins. Our results showed that the Cumulative Firing Power approach may improve the seizure prediction performance. This new strategy performed above chance for 62% of patients, whereas the control approach only validated 49% of its models.</jats:p>},
|
|
489
|
-
keywords = {Epileptic seizure, Univariate},
|
|
490
|
-
doi = {10.1038/s41598-023-50609-z},
|
|
491
|
-
pmid = {38172583},
|
|
492
|
-
journal = {Scientific Reports},
|
|
493
|
-
volume = {14},
|
|
494
|
-
citation_count = {10},
|
|
495
|
-
journal_impact_factor = {3.8},
|
|
496
|
-
url = {https://api.semanticscholar.org/CorpusId:266754792},
|
|
497
|
-
}
|
|
498
|
-
|
|
499
|
-
@article{Wu2021C2SPNetJCAJ,
|
|
500
|
-
title = {C2SP-Net: Joint Compression and Classification Network for Epilepsy Seizure Prediction},
|
|
501
|
-
author = {Di Wu and Yi Shi and Ziyu Wang and Jie Yang and M. Sawan},
|
|
502
|
-
year = {2021},
|
|
503
|
-
abstract = {Recent developments in brain-machine interface technology have rendered seizure prediction possible. However, the transmission of a large volume of electrophysiological signals between sensors and processing apparatuses and the related computation become two major bottlenecks for seizure prediction systems due to the constrained bandwidth and limited computational resources, especially for power-critical wearable and implantable medical devices. Although many data compression methods can be adopted to compress the signals to reduce communication bandwidth requirement, they require complex compression and reconstruction procedures before the signal can be used for seizure prediction. In this paper, we propose $\text\{C\}^\{\{2\}\}$ SP-Net, a framework to jointly solve compression, prediction, and reconstruction without extra computation overhead. The framework consists of a plug-and-play in-sensor compression matrix to reduce transmission bandwidth requirements. The compressed signal can be utilized for seizure prediction without additional reconstruction steps. Reconstruction of the original signal can also be carried out in high fidelity. Compression and classification overhead from the energy consumption perspective, prediction accuracy, sensitivity, false prediction rate, and reconstruction quality of the proposed framework are evaluated using various compression ratios. The experimental results illustrate that our proposed framework is energy efficient and outperforms the competitive state-of-the-art baselines by a large margin in prediction accuracy. In particular, our proposed method produces an average loss of 0.6% in prediction accuracy with a compression ratio ranging from 1/2 to 1/16.},
|
|
504
|
-
doi = {10.1109/TNSRE.2023.3235390},
|
|
505
|
-
journal = {IEEE Transactions on Neural Systems and Rehabilitation Engineering},
|
|
506
|
-
journal_impact_factor = {4.8},
|
|
507
|
-
url = {https://api.semanticscholar.org/CorpusId:239885442},
|
|
508
|
-
volume = {31},
|
|
509
|
-
pages = {841-850},
|
|
510
|
-
}
|
|
511
|
-
|
|
512
|
-
@article{Zhong2023EpilepticPUAK,
|
|
513
|
-
title = {Epileptic prediction using spatiotemporal information combined with optimal features strategy on EEG},
|
|
514
|
-
author = {Lisha Zhong and Jiangzhong Wan and Fangji Yi and Shuling He and Jia Wu and Zhiwei Huang and Yi Lu and Jiazhang Yang and Zhangyong Li},
|
|
515
|
-
year = {2023},
|
|
516
|
-
abstract = {<jats:sec><jats:title>Objective</jats:title><jats:p>Epilepsy is the second most common brain neurological disease after stroke, which has the characteristics of sudden and recurrence. Seizure prediction is seriously important for improving the quality of patients’ lives.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>From the perspective of multiple dimensions including time-frequency, entropy and brain network, this paper proposed a novel approach by constructing the optimal spatiotemporal feature set to predict seizures. Based on strong independence and large information capabilities, the two-dimensional feature screening algorithm is performed to eliminate unnecessary redundant features. In order to verify the effectiveness of the optimal feature set, support vector machine (SVM) was used to classify the preictal and interictal states on both the Kaggle intracranial EEG and CHB-MIT scalp EEG dataset.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>This model achieved an average accuracy of 98.01%, AUC of 0.96, F-Score of 98.3% and FPR of 0.0383/h on the Kaggle dataset; On the CHB-MIT dataset, the average accuracy, AUC, F-score and FPR were 95.93%, 0.92, 94.97% and 0.0473/h, respectively. Further ablation experiments have confirmed that the temporal and spatial features fusion has better performance than the individual temporal or spatial features.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>Compared to the state-of-the-art methods, our approach outperforms most of these existing techniques. The results show that our approach can effectively extract the spatiotemporal information of epileptic EEG signals to predict epileptic seizures with high performance.</jats:p></jats:sec>},
|
|
517
|
-
keywords = {Feature (linguistics), Epileptic seizure},
|
|
518
|
-
doi = {10.3389/fnins.2023.1174005},
|
|
519
|
-
pmid = {37081931},
|
|
520
|
-
journal = {Frontiers in Neuroscience},
|
|
521
|
-
volume = {17},
|
|
522
|
-
citation_count = {9},
|
|
523
|
-
journal_impact_factor = {3.2},
|
|
524
|
-
url = {https://api.semanticscholar.org/CorpusId:257914789},
|
|
525
|
-
}
|
|
526
|
-
|
|
527
|
-
@article{Alasiry2025EpilepticSDAL,
|
|
528
|
-
title = {Epileptic seizures diagnosis and prognosis from EEG signals using heterogeneous graph neural network},
|
|
529
|
-
author = {Areej Alasiry and Gabriel Avelino R. Sampedro and Ahmad S. Almadhor and Roben A. Juanatas and Shtwai Alsubai and Vincent Karovic},
|
|
530
|
-
year = {2025},
|
|
531
|
-
abstract = {<jats:p>Epilepsy, often associated with neurodegenerative disorders following brain strokes, manifests as abnormal electrical activity bursts in the cerebral cortex, disrupting regular brain function. Electroencephalogram (EEG) recordings capture these distinctive brain signals, offering crucial insights into seizure detection and management. This study presents a novel approach leveraging a graph neural network (GNN) model with a heterogeneous graph representation to detect epileptic seizures from EEG data. Utilizing the well-established CHB-MIT EEG dataset for training and evaluation, the proposed method includes preprocessing steps such as signal segmentation, resampling, label encoding, normalization, and exploratory data analysis. We employed a standard train-test split with stratified sampling to ensure class distribution and reduce bias. Experimental comparisons with long short-term memory (LSTM) and recurrent neural network (RNN) models highlight the GNN’s superior performance, achieving a classification accuracy of 98.0% and demonstrating incremental improvements in precision and F1-score. These findings emphasize the efficacy of GNN in capturing spatial and temporal dependencies within EEG data, surpassing conventional deep learning techniques. Furthermore, the study highlights the model’s interpretability, which is essential for clinical decision-making. By advancing EEG-based seizure prediction methods, this research offers a robust framework for enhancing patient outcomes in epilepsy management while addressing the limitations of existing approaches.</jats:p>},
|
|
532
|
-
doi = {10.7717/peerj-cs.2765},
|
|
533
|
-
pmid = {40567653},
|
|
534
|
-
journal = {PeerJ Computer Science},
|
|
535
|
-
volume = {11},
|
|
536
|
-
citation_count = {1},
|
|
537
|
-
journal_impact_factor = {3.5},
|
|
538
|
-
url = {https://api.semanticscholar.org/CorpusId:278024614},
|
|
539
|
-
}
|
|
540
|
-
|
|
541
|
-
@article{Englot2024ChasingTHAM,
|
|
542
|
-
title = {Chasing the Holy Grail: Seizure Prediction Through Neural Cycles},
|
|
543
|
-
author = {Dario J. Englot},
|
|
544
|
-
year = {2024},
|
|
545
|
-
abstract = {<jats:p>
|
|
546
|
-
<jats:boxed-text orientation="portrait" position="float">
|
|
547
|
-
<jats:p>
|
|
548
|
-
<jats:bold>Hippocampal Network Activity Forecasts Epileptic Seizures</jats:bold>
|
|
549
|
-
</jats:p>
|
|
550
|
-
<jats:p>
|
|
551
|
-
Khambhati AN, Chang EF, Baud MO, Rao VR.
|
|
552
|
-
<jats:italic>Nat Med</jats:italic>
|
|
553
|
-
. 2024. doi:
|
|
554
|
-
<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://doi.org/10.1038/s41591-024-03149-6">10.1038/s41591-024-03149-6</jats:ext-link>
|
|
555
|
-
. Online ahead of print.
|
|
556
|
-
</jats:p>
|
|
557
|
-
<jats:p>Seizures in people with epilepsy were long thought to occur at random, but recent methods for seizure forecasting enable estimation of the likelihood of seizure occurrence over short horizons. These methods rely on days-long cyclical patterns of brain electrical activity and other physiological variables that determine seizure likelihood and that require measurement through long-term, multimodal recordings. In this retrospective cohort study of 15 adults with bitemporal epilepsy who had a device that provides chronic intracranial recordings, functional connectivity of hippocampal networks fluctuated in multiday cycles with patterns that mirrored cycles of seizure likelihood. A functional connectivity biomarker of seizure likelihood derived from 90 s recordings of background hippocampal activity generalized across individuals and forecasted 24 h seizure likelihood as accurately as cycle-based models requiring months-long baseline recordings. Larger, prospective studies are needed to validate this approach, but our results have the potential to make reliable seizure forecasts accessible to more people with epilepsy.</jats:p>
|
|
558
|
-
</jats:boxed-text>
|
|
559
|
-
</jats:p>},
|
|
560
|
-
doi = {10.1177/15357597241281842},
|
|
561
|
-
pmid = {39539397},
|
|
562
|
-
journal = {Epilepsy Currents},
|
|
563
|
-
volume = {25},
|
|
564
|
-
journal_impact_factor = {5.8},
|
|
565
|
-
url = {https://api.semanticscholar.org/CorpusId:273716774},
|
|
566
|
-
pages = {48 - 50},
|
|
567
|
-
}
|
|
568
|
-
|
|
569
|
-
@article{Khan2023UsingSRAN,
|
|
570
|
-
title = {Using Sparse Representation of EEG Signal from a Shallow Sparse Autoencoder for Epileptic Seizure Prediction},
|
|
571
|
-
author = {Gul Hameed Khan and N. Khan and Wala Saadeh and M. B. Altaf},
|
|
572
|
-
year = {2023},
|
|
573
|
-
abstract = {: Patients with epilepsy are affected with unexpected seizure events, which significantly diminish their quality of life. It is crucial to evaluate whether an epileptic patient’s brain state is indicative of a possible seizure occurrence so that necessary therapy or alarm can be generated on time. If seizures could be predicted before the onset, interventions may be applied to avoid further damage during seizure attack, and patients could take medications or other treatments to prevent seizures from occurring. This research describes a patient-specific technique for predicting epileptic seizures based on a hybrid model. Single layer sparse autoencoder is trained to obtain a aparse representation of the scalp electroencephalogram (EEG) signals. SVM classifier is used to categorize the sparse signal as inter-ictal or pre-ictal. Individual EEG channel analysis for seizure prediction are presented. In addition, various hidden sizes of the autoencoder for optimal sparse representation are anlyzed.The proposed model evaluates 13 patients from the CHB-MIT dataset and obtains a sensitivity of 98% and an area under the curve (AUC) of 98%. We have evaluated the performance of our hybrid strategy to both deep learning models and conventional procedures. The proposed method outperforms current seizure prediction techniques, proving its efficacy.},
|
|
574
|
-
keywords = {Autoencoder, Epileptic seizure, Representation, SIGNAL (programming language)},
|
|
575
|
-
doi = {10.5220/0011813400003414},
|
|
576
|
-
journal = {Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies},
|
|
577
|
-
citation_count = {1},
|
|
578
|
-
url = {https://api.semanticscholar.org/CorpusId:257360988},
|
|
579
|
-
booktitle = {International Conference on Bio-inspired Systems and Signal Processing},
|
|
580
|
-
}
|
|
581
|
-
|
|
582
|
-
@article{Xiong2023EEGBasedEPAO,
|
|
583
|
-
title = {EEG-Based Epilepsy Prediction: Evaluation Metrics, Data Deficiency and Limitation of Current Methods.},
|
|
584
|
-
author = {Bowen Xiong},
|
|
585
|
-
year = {2023},
|
|
586
|
-
abstract = {<jats:p>Epilepsy is a disease of the brain that can do severe damage for patient’s health. Due to the recurrent and unpredictable characteristics of epilepsy, it is of vital importance to develop reliable methods to predict seizures in advance. Nowadays, many researchers have developed deep learning (DL) or machine learning (ML) methods to predict epileptic seizures with electroencephalogram (EEG). But there are still many problems and challenges on the way towards a high-performance and generalized model. This study discussed and analyzed the current ML and DL techniques used in seizure prediction and summarized some challenges that remains to be solved, including the Inconsistency of the evaluation metrics, the imbalance and insufficiency of the available data and some limitations of current models. This study summarized the solutions that used to solve them and proposed some suggestions that can help improve the performance of the models. Furthermore, this review discussed some potential DL/ML methods that can be applied in the area of seizure prediction. This study aims to provide researchers with clear concepts in future works and proposed future directions.</jats:p>},
|
|
587
|
-
doi = {10.3233/shti230818},
|
|
588
|
-
pmid = {38007719},
|
|
589
|
-
journal = {Studies in health technology and informatics},
|
|
590
|
-
volume = {308},
|
|
591
|
-
citation_count = {2},
|
|
592
|
-
}
|
|
593
|
-
|
|
594
|
-
@article{Deshmukh2023PredictionOEAP,
|
|
595
|
-
title = {Prediction of Epilepsy Seizures by Machine Learning Methods},
|
|
596
|
-
author = {M. T. Deshmukh and S. Suralkar},
|
|
597
|
-
year = {2023},
|
|
598
|
-
abstract = {<jats:p>According to the Globe Health Organization (WHO), more than 50 million people throughout the world are living with a diagnosis of epilepsy, making it perhaps of the most widely recognized neurological issue. Epileptic seizures are a leading cause of hospitalization and mortality across the globe. Accurate and prompt diagnosis is more crucial than ever given the increase in epileptic seizures all through the globe and their effect on individuals' lives. Epilepsy, cancer, diabetes, heart disease, thyroid disease, and many more are only some of the diseases for which machine learning approaches are being applied in prediction and diagnosis. Epilepsy is one ailment that may be treated early on to save a person's life. The main objective of this research is to use feature label extraction to the dataset in order to obtain the best ML models for epileptic seizures. In order to predict epilepsy, we used the techniques of logistic regression, SVM, linear SVM, KNN, and RNN in this study. The models employed in this research are accurate to varying degrees and have attributes including precision, recall, f1-score, and support. This study demonstrates that the model is able to accurately predict the occurrence of epilepsy. Our discoveries demonstrate that involving Examination highlight extraction in the dataset, the Regional Neural Network (RNN) model with 99.9998 % Training data accuracy and 97.78% Test data accuracy and 100% prediction probability of epilepsy seizure produces the best results and also the feature characteristics of RNN is better as compared to other models used in current research work.</jats:p>},
|
|
599
|
-
doi = {10.17762/ijritcc.v11i7.7939},
|
|
600
|
-
journal = {International Journal on Recent and Innovation Trends in Computing and Communication},
|
|
601
|
-
volume = {11},
|
|
602
|
-
url = {https://api.semanticscholar.org/CorpusId:262174641},
|
|
603
|
-
}
|
|
604
|
-
|
|
605
|
-
@article{Hussein2019HumanIEAQ,
|
|
606
|
-
title = {Human Intracranial EEG Quantitative Analysis and Automatic Feature
|
|
607
|
-
Learning for Epileptic Seizure Prediction},
|
|
608
|
-
author = {Ramy Hussein and M. O. Ahmed and R. Ward and Z. J. Wang and L. Kuhlmann and Yi Guo},
|
|
609
|
-
year = {2019},
|
|
610
|
-
abstract = {Objective: The aim of this study is to develop an efficient and reliable epileptic seizure prediction system using intracranial EEG (iEEG) data, especially for people with drug-resistant epilepsy. The prediction procedure should yield accurate results in a fast enough fashion to alert patients of impending seizures. Methods: We quantitatively analyze the human iEEG data to obtain insights into how the human brain behaves before and between epileptic seizures. We then introduce an efficient pre-processing method for reducing the data size and converting the time-series iEEG data into an image-like format that can be used as inputs to convolutional neural networks (CNNs). Further, we propose a seizure prediction algorithm that uses cooperative multi-scale CNNs for automatic feature learning of iEEG data. Results: 1) iEEG channels contain complementary information and excluding individual channels is not advisable to retain the spatial information needed for accurate prediction of epileptic seizures. 2) The traditional PCA is not a reliable method for iEEG data reduction in seizure prediction. 3) Hand-crafted iEEG features may not be suitable for reliable seizure prediction performance as the iEEG data varies between patients and over time for the same patient. 4) Seizure prediction results show that our algorithm outperforms existing methods by achieving an average sensitivity of 87.85% and AUC score of 0.84. Conclusion: Understanding how the human brain behaves before seizure attacks and far from them facilitates better designs of epileptic seizure predictors. Significance: Accurate seizure prediction algorithms can warn patients about the next seizure attack so they could avoid dangerous activities. Medications could then be administered to abort the impending seizure and minimize the risk of injury.},
|
|
611
|
-
keywords = {Epileptic seizure, Feature (linguistics)},
|
|
612
|
-
doi = {10.48550/arxiv.1904.03603},
|
|
613
|
-
eprint = {1904.03603},
|
|
614
|
-
journal = {ArXiv},
|
|
615
|
-
citation_count = {39},
|
|
616
|
-
url = {https://api.semanticscholar.org/CorpusId:102352588},
|
|
617
|
-
volume = {abs/1904.03603},
|
|
618
|
-
}
|
|
619
|
-
|
|
620
|
-
@article{Ode2022DevelopmentOAAR,
|
|
621
|
-
title = {Development of an epileptic seizure prediction algorithm using R–R intervals with self-attentive autoencoder},
|
|
622
|
-
author = {Rikumo Ode and K. Fujiwara and M. Miyajima and Toshikata Yamakawa and M. Kano and K. Jin and N. Nakasato and Yasuko Sawai and T. Hoshida and M. Iwasaki and Y. Murata and Satsuki Watanabe and Yutaka Watanabe and Yoko Suzuki and M. Inaji and N. Kunii and S. Oshino and H. M. Khoo and H. Kishima and T. Maehara},
|
|
623
|
-
year = {2022},
|
|
624
|
-
abstract = {<jats:title>Abstract</jats:title><jats:p>Epilepsy is a neurological disorder that may affect the autonomic nervous system (ANS) from 15 to 20 min before seizure onset, and disturbances of ANS affect R–R intervals (RRI) on an electrocardiogram (ECG). This study aims to develop a machine learning algorithm for predicting focal epileptic seizures by monitoring R–R interval (RRI) data in real time. The developed algorithm adopts a self-attentive autoencoder (SA-AE), which is a neural network for time-series data. The results of applying the developed seizure prediction algorithm to clinical data demonstrated that it functioned well in most patients; however, false positives (FPs) occurred in specific participants. In a future work, we will investigate the causes of FPs and optimize the developing seizure prediction algorithm to further improve performance using newly added clinical data.</jats:p>},
|
|
625
|
-
keywords = {Autoencoder, Epileptic seizure},
|
|
626
|
-
doi = {10.1007/s10015-022-00832-0},
|
|
627
|
-
journal = {Artificial Life and Robotics},
|
|
628
|
-
volume = {28},
|
|
629
|
-
citation_count = {8},
|
|
630
|
-
journal_impact_factor = {0.8},
|
|
631
|
-
url = {https://api.semanticscholar.org/CorpusId:254202961},
|
|
632
|
-
pages = {403-409},
|
|
633
|
-
}
|
|
634
|
-
|
|
635
|
-
@article{Nazari2022EpilepsySPAS,
|
|
636
|
-
title = {Epilepsy seizure prediction with few-shot learning method},
|
|
637
|
-
author = {Jamal Nazari and Ali Motie Nasrabadi and M. Menhaj and S. Raiesdana},
|
|
638
|
-
year = {2022},
|
|
639
|
-
abstract = {<jats:title>Abstract</jats:title><jats:p>Epileptic seizures prediction and timely alarms allow the patient to take effective and preventive actions. In this paper, a convolutional neural network (CNN) is proposed to diagnose the preictal period. Our goal is for those epileptic patients in whom seizures occur late and it is very challenging to record the preictal signal for them. In the previous works, generalized methods were inevitably used for this group of patients which were not very accurate. Our approach to solve this problem is to provide a few-shot learning method. This method, having the previous knowledge, is trained with only a small number of samples, learns new tasks and reduces the efforts to collect more data. Evaluation results for three patients from the CHB–MIT database, for a 10-min seizure prediction horizon (SPH) and a 20-min seizure occurrence period (SOP), averaged sensitivity of 95.70% and a false prediction rate (FPR) of 0.057/h and for the 5-min prediction horizon and the 25-min seizure occurrence period averaged sensitivity of 98.52% and a false prediction rate of (FPR) of 0.045/h. The proposed few-shot learning method, based on previous knowledge gained from the generalizable method, is regulated with a few new patient samples for the patient. Our results show that the accuracy obtained in this method is higher than the generalizable methods.</jats:p>},
|
|
640
|
-
keywords = {Epileptic seizure, False positive rate},
|
|
641
|
-
doi = {10.1186/s40708-022-00170-8},
|
|
642
|
-
pmid = {36112246},
|
|
643
|
-
journal = {Brain Informatics},
|
|
644
|
-
volume = {9},
|
|
645
|
-
citation_count = {4},
|
|
646
|
-
url = {https://api.semanticscholar.org/CorpusId:252310192},
|
|
647
|
-
}
|
|
648
|
-
|
|
649
|
-
@article{Aung2021PredictionOEAT,
|
|
650
|
-
title = {Prediction of epileptic seizures based on multivariate multiscale modified-distribution entropy},
|
|
651
|
-
author = {Si Thu Aung and Y. Wongsawat},
|
|
652
|
-
year = {2021},
|
|
653
|
-
abstract = {Epilepsy is a common neurological disease that affects a wide range of the world population and is not limited by age. Moreover, seizures can occur anytime and anywhere because of the sudden abnormal discharge of brain neurons, leading to malfunction. The seizures of approximately 30% of epilepsy patients cannot be treated with medicines or surgery; hence these patients would benefit from a seizure prediction system to live normal lives. Thus, a system that can predict a seizure before its onset could improve not only these patients’ social lives but also their safety. Numerous seizure prediction methods have already been proposed, but the performance measures of these methods are still inadequate for a complete prediction system. Here, a seizure prediction system is proposed by exploring the advantages of multivariate entropy, which can reflect the complexity of multivariate time series over multiple scales (frequencies), called multivariate multiscale modified-distribution entropy (MM-mDistEn), with an artificial neural network (ANN). The phase-space reconstruction and estimation of the probability density between vectors provide hidden complex information. The multivariate time series property of MM-mDistEn provides more understandable information within the multichannel data and makes it possible to predict of epilepsy. Moreover, the proposed method was tested with two different analyses: simulation data analysis proves that the proposed method has strong consistency over the different parameter selections, and the results from experimental data analysis showed that the proposed entropy combined with an ANN obtains performance measures of 98.66% accuracy, 91.82% sensitivity, 99.11% specificity, and 0.84 area under the curve (AUC) value. In addition, the seizure alarm system was applied as a postprocessing step for prediction purposes, and a false alarm rate of 0.014 per hour and an average prediction time of 26.73 min before seizure onset were achieved by the proposed method. Thus, the proposed entropy as a feature extraction method combined with an ANN can predict the ictal state of epilepsy, and the results show great potential for all epilepsy patients.},
|
|
654
|
-
doi = {10.7717/peerj-cs.744},
|
|
655
|
-
pmid = {34722874},
|
|
656
|
-
journal = {PeerJ Computer Science},
|
|
657
|
-
volume = {7},
|
|
658
|
-
citation_count = {12},
|
|
659
|
-
journal_impact_factor = {3.5},
|
|
660
|
-
url = {https://api.semanticscholar.org/CorpusId:239014245},
|
|
661
|
-
}
|
|
662
|
-
|
|
663
|
-
@article{Peng2022SeizurePWAU,
|
|
664
|
-
title = {Seizure Prediction With HIVE-CODAs: The Hierarchical Vote Collective of Domain Adaptation Methods},
|
|
665
|
-
author = {Peizhen Peng},
|
|
666
|
-
year = {2022},
|
|
667
|
-
abstract = {<jats:p>Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional methods are usually trained and tested on the same patient due to the interindividual variability. However, the challenging problem of the domain shift between different subjects remains unsolved, resulting in low prevalence of clinical application. In this study, a generic model based on the domain adaptation (DA) technique is proposed to alleviate such problems. Ensemble learning is employed by developing a hierarchical vote collective of seven DA modules over multi-modality data, such that the predictive performance is improved by training multiple models. Moreover, to increase the feasibility of its implementation, this study mimics the data distribution of clinical sampling and tests the model under this simulated realistic condition. Based on the performance of seven subnetworks, the applicability of each DA algorithm for seizure prediction is evaluated, which is the first study that provides the assessment. Experimental results on both intracranial and scalp EEG databases demonstrate that this method can reduce the domain gap effectively compared with previous studies.</jats:p>},
|
|
668
|
-
keywords = {Epileptic seizure, Domain Adaptation},
|
|
669
|
-
doi = {10.3389/fphy.2021.811681},
|
|
670
|
-
journal = {Frontiers in Physics},
|
|
671
|
-
volume = {9},
|
|
672
|
-
citation_count = {1},
|
|
673
|
-
journal_impact_factor = {1.9},
|
|
674
|
-
url = {https://api.semanticscholar.org/CorpusId:245681574},
|
|
675
|
-
booktitle = {Frontiers of Physics},
|
|
676
|
-
}
|
|
677
|
-
|
|
678
|
-
@article{Banupriya2021RobustOOAV,
|
|
679
|
-
title = {Robust Optimization of electroencephalograph (EEG) Signals for Epilepsy Seizure Prediction by utilizing VSPO Genetic Algorithms with SVM and Machine Learning Methods},
|
|
680
|
-
author = {C. Banupriya and A. D. Devi},
|
|
681
|
-
year = {2021},
|
|
682
|
-
abstract = {Objectives: To optimize the EEG signals in order to predict the epileptic seizures at early stage and to improve the accuracy level by employing genetic algorithm and machine learning methods. Methods: Virus Swarm Particle Optimization Technique (VSPO) based Genetic algorithm is utilized for the purpose of feature selection and Machine Learning SVM technique is utilized for classification of EEG signals to determine seizure or non-seizure. The Discrete Wavelet Transform (DWT) is utilized for factor extraction to assess the recurrence range of EEG signals associated with seizures, to partition them into separate spaces using DWT of EEG symbols, and to consider the variations between seizure and normal functionality. VPSO-GA with SVM extracts the features from the Andrzejak R G dataset and then selects the relevant function to perform classification and prediction in order to optimize the EEG signals for early ES prediction and to improve the accuracy level. To demonstrate the effectiveness of the proposed algorithm, MATLAB is used for implementation. The performance results are compared to the existing baseline versions FCM-MPSO, EDMLC and K-MODE. Findings: EEG signals are optimized and early ES prediction is done with 98.13% accuracy level, 98.03% sensitivity, 98.01% specificity, 98.90% Precision, 97.96% Recall, 191 True Positive, 104 True Negative and 98.46% F-Score to predict the seizure in an optimized manner which is high compared to the existing versions. Novelty: According to the findings of the comprehensive study, the proposed algorithm VPSO-SVM outperforms FCM-MPSO, EDMLC and K-MODE in terms of accuracy level of epileptic seizure prediction at early stage by optimizing the EEG signals in a robust manner. pathological epileptic GA, ML, NB techniques to study 54-DWT EEG signal waves, bi-class epilepsy detection time the use of multi-resolution wavelets, detect sudden epileptic automatically in EEG signals. Using DWT, EEG five sub wavelet approximately 20-24 dataset average sensitivity specificity more than 90% all class modes, diagnose two simultaneously in a dynamic way. epilepsy EEG signals, MC epilepsy short-term four-part processing EEG time interictal},
|
|
683
|
-
keywords = {Epileptic seizure},
|
|
684
|
-
doi = {10.17485/ijst/v14i16.625},
|
|
685
|
-
journal = {Indian Journal of Science and Technology},
|
|
686
|
-
volume = {14},
|
|
687
|
-
citation_count = {14},
|
|
688
|
-
url = {https://api.semanticscholar.org/CorpusId:236614252},
|
|
689
|
-
}
|
|
690
|
-
|
|
691
|
-
@article{Budde2021SeizurePIAW,
|
|
692
|
-
title = {Seizure Prediction in Genetic Rat Models of Absence Epilepsy: Improved Performance through Multiple-Site Cortico-Thalamic Recordings Combined with Machine Learning},
|
|
693
|
-
author = {Bj\{\"o\}rn Budde and V. Maksimenko and K. Sarink and T. Seidenbecher and G. van Luijtelaar and T. Hahn and H. Pape and A. L\{\"u\}ttjohann},
|
|
694
|
-
year = {2021},
|
|
695
|
-
abstract = {<jats:title>Abstract</jats:title><jats:p>Seizure prediction is the grand challenge of epileptology. However, effort was devoted to prediction of focal seizures, while generalized seizures were regarded as stochastic events. Long-lasting local field potential (LFP) recordings containing several hundred generalized spike and wave discharges (SWDs), acquired at eight locations in the cortico-thalamic system of absence epileptic rats, were iteratively analyzed in all possible combinations of either two or three recording sites, by a wavelet-based algorithm, calculating the product of the wavelet-energy signaling increases in synchronicity. Sensitivity and false alarm rate of prediction were compared between various combinations, and wavelet spectra of true and false positive predictions were fed to a random forest machine learning algorithm to further differentiate between them. Wavelet analysis of intracortical and cortico-thalamic LFP traces showed a significantly smaller number of false alarms compared with intrathalamic combinations, while predictions based on recordings in Layers IV, V, and VI of the somatosensory-cortex significantly outreached all other combinations in terms of prediction sensitivity. In 24-h out-of-sample recordings of nine Genetic Absence Epilepsy Rats from Strasbourg (GAERS), containing diurnal fluctuations of SWD occurrence, classification of true and false positives by the trained random forest further reduced the false alarm rate by 71%, although at some trade-off between false alarms and sensitivity of prediction, as reflected in relatively low F1 score values. Results provide support for the cortical-focus theory of absence epilepsy and allow the conclusion that SWDs are predictable to some degree. The latter paves the way for the development of closed-loop SWD prediction-prevention systems. Suggestions for a possible translation to human data are outlined.</jats:p>},
|
|
696
|
-
keywords = {False alarm},
|
|
697
|
-
doi = {10.1523/eneuro.0160-21.2021},
|
|
698
|
-
pmid = {34782347},
|
|
699
|
-
journal = {eNeuro},
|
|
700
|
-
volume = {9},
|
|
701
|
-
citation_count = {8},
|
|
702
|
-
journal_impact_factor = {2.7},
|
|
703
|
-
url = {https://api.semanticscholar.org/CorpusId:244131810},
|
|
704
|
-
}
|
|
705
|
-
|
|
706
|
-
@article{Patel2021EssentialsOPAX,
|
|
707
|
-
title = {Essentials of Predicting Epileptic Seizures Based on EEG Using Machine Learning: A Review},
|
|
708
|
-
author = {Vibha Patel and Jaishree Tailor and Amit Ganatra},
|
|
709
|
-
year = {2021},
|
|
710
|
-
abstract = {<jats:sec>
|
|
711
|
-
<jats:title>Objective:</jats:title>
|
|
712
|
-
<jats:p>Epilepsy is one of the chronic diseases, which requires exceptional attention. The unpredictability of the seizures makes it worse for a person suffering from epilepsy.</jats:p>
|
|
713
|
-
</jats:sec>
|
|
714
|
-
<jats:sec>
|
|
715
|
-
<jats:title>Methods:</jats:title>
|
|
716
|
-
<jats:p>The challenge to predict seizures using modern machine learning algorithms and computing resources would be a boon to a person with epilepsy and its caregivers. Researchers have shown great interest in the task of epileptic seizure prediction for a few decades. However, the results obtained have not clinical applicability because of the high false-positive ratio. The lack of standard practices in the field of epileptic seizure prediction makes it challenging for novice ones to follow the research. The chances of reproducibility of the result are negligible due to the unavailability of implementation environment-related details, use of standard datasets, and evaluation parameters.</jats:p>
|
|
717
|
-
</jats:sec>
|
|
718
|
-
<jats:sec>
|
|
719
|
-
<jats:title>Results:</jats:title>
|
|
720
|
-
<jats:p>Work here presents the essential components required for the prediction of epileptic seizures, which includes the basics of epilepsy, its treatment, and the need for seizure prediction algorithms. It also gives a detailed comparative analysis of datasets used by different researchers, tools and technologies used, different machine learning algorithm considerations, and evaluation parameters.</jats:p>
|
|
721
|
-
</jats:sec>
|
|
722
|
-
<jats:sec>
|
|
723
|
-
<jats:title>Conclusion:</jats:title>
|
|
724
|
-
<jats:p>The main goal of this paper is to synthesize different methodologies for creating a broad view of the state-of-the-art in the field of seizure prediction.</jats:p>
|
|
725
|
-
</jats:sec>},
|
|
726
|
-
keywords = {Unavailability, Epileptic seizure},
|
|
727
|
-
doi = {10.2174/1874120702115010090},
|
|
728
|
-
journal = {The Open Biomedical Engineering Journal},
|
|
729
|
-
volume = {15},
|
|
730
|
-
citation_count = {6},
|
|
731
|
-
url = {https://api.semanticscholar.org/CorpusId:239067574},
|
|
732
|
-
}
|
|
733
|
-
|
|
734
|
-
@article{Korshunova2018TowardsIDAY,
|
|
735
|
-
title = {Towards Improved Design and Evaluation of Epileptic Seizure Predictors},
|
|
736
|
-
author = {I. Korshunova and Pieter-Jan Kindermans and Jonas Degrave and T. Verhoeven and B. Brinkmann and J. Dambre},
|
|
737
|
-
year = {2018},
|
|
738
|
-
abstract = {Key issues in the epilepsy seizure prediction research are (1) the reproducibility of results (2) the inability to compare multiple approaches directly. To overcome these problems, the seizure prediction challenge was organized on Kaggle.com. It aimed at establishing benchmarks on a dataset with predefined train, validation, and test sets. Our main objective is to analyze the competition format, and to propose improvements, which would facilitate a better comparison of algorithms. The second objective is to present a novel deep learning approach to seizure prediction and compare it to other commonly used methods using patient centered metrics.},
|
|
739
|
-
doi = {10.1109/tbme.2017.2700086},
|
|
740
|
-
pmid = {28475041},
|
|
741
|
-
journal = {IEEE Transactions on Biomedical Engineering},
|
|
742
|
-
volume = {65},
|
|
743
|
-
journal_impact_factor = {4.4},
|
|
744
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7915772},
|
|
745
|
-
pages = {502-510},
|
|
746
|
-
}
|
|
747
|
-
|
|
748
|
-
@article{Namazi2015ASPAZ,
|
|
749
|
-
title = {A signal processing based analysis and prediction of seizure onset in patients with epilepsy},
|
|
750
|
-
author = {H. Namazi and V. Kulish and J. Hussaini and Jalal Hussaini and Ali Delaviz and Fatemeh Delaviz and Shaghayegh Habibi and Sara Ramezanpoor},
|
|
751
|
-
year = {2015},
|
|
752
|
-
abstract = {One of the main areas of behavioural neuroscience is forecasting the human behaviour. Epilepsy is a central nervous system disorder in which nerve cell activity in the brain becomes disrupted, causing seizures or periods of unusual behaviour, sensations and sometimes loss of consciousness. An estimated 5% of the world population has epileptic seizure but there is not any method to cure it. More than 30% of people with epilepsy cannot control seizure. Epileptic seizure prediction, refers to forecasting the occurrence of epileptic seizures, is one of the most important but challenging problems in biomedical sciences, across the world. In this research we propose a new methodology which is based on studying the EEG signals using two measures, the Hurst exponent and fractal dimension. In order to validate the proposed method, it is applied to epileptic EEG signals of patients by computing the Hurst exponent and fractal dimension, and then the results are validated versus the reference data. The results of these analyses show that we are able to forecast the onset of a seizure on average of 25.76 seconds before the time of occurrence.},
|
|
753
|
-
doi = {10.18632/oncotarget.6341},
|
|
754
|
-
pmid = {26586477},
|
|
755
|
-
journal = {Oncotarget},
|
|
756
|
-
volume = {7},
|
|
757
|
-
citation_count = {102},
|
|
758
|
-
journal_impact_factor = {2.7},
|
|
759
|
-
url = {https://api.semanticscholar.org/CorpusId:14252389},
|
|
760
|
-
pages = {342 - 350},
|
|
761
|
-
}
|
|
762
|
-
|
|
763
|
-
@article{Hussain2020EpilepticSPBA,
|
|
764
|
-
title = {Epileptic Seizure Prediction},
|
|
765
|
-
author = {S. Hussain and Gurajapu Raja Sumant},
|
|
766
|
-
year = {2020},
|
|
767
|
-
journal = {Epilepsy - Update on Classification, Etiologies, Instrumental Diagnosis and Treatment},
|
|
768
|
-
url = {https://api.semanticscholar.org/CorpusId:229412725},
|
|
769
|
-
}
|
|
770
|
-
|
|
771
|
-
@article{Kim2020ProspectsOSBB,
|
|
772
|
-
title = {Prospects of Seizure Prediction Technology for Patients with Epilepsy},
|
|
773
|
-
author = {Tae Joon Kim and K. Jung},
|
|
774
|
-
year = {2020},
|
|
775
|
-
abstract = {뇌전증은 반복적인 뇌전증 발작을 특징으로 하는 신경계 질환 Epilepsy, which is characterized by recurrent seizures, is a relatively common disorder. For patients with drug-refractory epilepsy, it is necessary to forecast and cope with seizures since they cause accidents and diminish quality of life. Seizure prediction is challenging, but numerous studies have investigated methods of detecting the physical changes preceding seizures. Attempts are being made to use wearable devices to deploy technologies that recognize limb movements or changes in the autonomic nervous system and associated heart rate variability. The most researched field is electroencephalography, with the goal of identifying electrical abnormalities before seizures with high sensitivity through deep learning models. If we overcome the limitations of practical applications, seizure prediction technology will change the paradigm of epilepsy treatment.},
|
|
776
|
-
keywords = {Epileptic seizure},
|
|
777
|
-
doi = {10.35615/epilia.2020.00157},
|
|
778
|
-
journal = {Epilia: Epilepsy and Community},
|
|
779
|
-
volume = {2},
|
|
780
|
-
citation_count = {1},
|
|
781
|
-
url = {https://api.semanticscholar.org/CorpusId:224894713},
|
|
782
|
-
booktitle = {unknown},
|
|
783
|
-
}
|
|
784
|
-
|
|
785
|
-
@article{Dilorenzo2019NeuralSMBC,
|
|
786
|
-
title = {Neural State Monitoring in the Treatment of Epilepsy: Seizure Prediction—Conceptualization to First-In-Man Study},
|
|
787
|
-
author = {D. Dilorenzo and Kent W. Leyde and Dmitry Kaplan},
|
|
788
|
-
year = {2019},
|
|
789
|
-
abstract = {<jats:p>This research study is part of a therapy development effort in which a novel approach was taken to develop an implantable electroencephalographic (EEG) based brain monitoring and seizure prediction system. Previous attempts to predict seizures by other groups had not been demonstrated to be statistically more successful than chance. The primary clinical findings from this group were published in a clinical paper; however much of the fundamental technology, including the strategy and techniques behind the development of the seizure advisory system have not been published. Development of this technology comprised several steps: a vast high quality database of EEG recordings was assembled, a structured approach to algorithm development was undertaken, an implantable 16-channel subdural neural monitoring and seizure advisory system was designed and built, preclinical studies were conducted in a canine model, and a First-In-Man study involving implantation of 15 patients followed for two years was conducted to evaluate the algorithm. The algorithm was successfully trained to correctly provide a) notification of a high likelihood of seizure in 11 of 14 patients, and b) notification of a low likelihood of seizure in 5 of 14 patients (NCT01043406). Continuous neural state monitoring shows promise for applications in seizure prediction and likelihood estimation, and insights for further research and development are drawn.</jats:p>},
|
|
790
|
-
keywords = {Epileptic seizure},
|
|
791
|
-
doi = {10.3390/brainsci9070156},
|
|
792
|
-
pmid = {31266223},
|
|
793
|
-
journal = {Brain Sciences},
|
|
794
|
-
volume = {9},
|
|
795
|
-
citation_count = {17},
|
|
796
|
-
journal_impact_factor = {2.7},
|
|
797
|
-
url = {https://api.semanticscholar.org/CorpusId:195786948},
|
|
798
|
-
}
|
|
799
|
-
|
|
800
|
-
@article{Lu2023AnESBD,
|
|
801
|
-
title = {An Epileptic Seizure Prediction Method Based on CBAM-3D CNN-LSTM Model},
|
|
802
|
-
author = {Xiang Lu and Anhao Wen and Lei Sun and Hao Wang and Yinjing Guo and Yande Ren},
|
|
803
|
-
year = {2023},
|
|
804
|
-
abstract = {Epilepsy as a common disease of the nervous system, with high incidence, sudden and recurrent characteristics. Therefore, timely prediction of seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients. Epilepsy seizures is the result of temporal and spatial evolution, Existing deep learning methods often ignore its spatial features, in order to make better use of the temporal and spatial characteristics of epileptic EEG signals. We propose a CBAM-3D CNN-LSTM model to predict epilepsy seizures. First, we apply short-time Fourier transform(STFT) to preprocess EEG signals. Secondly, the 3D CNN model was used to extract the features of preictal stage and interictal stage from the preprocessed signals. Thirdly, Bi-LSTM is connected to 3D CNN for classification. Finally CBAM is introduced into the model. Different attention is given to the data channel and space to extract key information, so that the model can accurately extract interictal and pre-ictal features. Our proposed approach achieved an accuracy of 97.95%, a sensitivity of 98.40%, and a false alarm rate of 0.017 h−1 on 11 patients from the public CHB-MIT scalp EEG dataset. Clinical and Translational Impact Statement—Timely prediction of epileptic seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients.},
|
|
805
|
-
keywords = {Epileptic seizure},
|
|
806
|
-
doi = {10.1109/jtehm.2023.3290036},
|
|
807
|
-
pmid = {37426305},
|
|
808
|
-
journal = {IEEE Journal of Translational Engineering in Health and Medicine},
|
|
809
|
-
volume = {11},
|
|
810
|
-
citation_count = {33},
|
|
811
|
-
journal_impact_factor = {3.7},
|
|
812
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10164022},
|
|
813
|
-
pages = {417 - 423},
|
|
814
|
-
}
|
|
815
|
-
|
|
816
|
-
@article{Agarwal2018EpilepticSPBE,
|
|
817
|
-
title = {Epileptic Seizure Prediction over EEG Data using Hybrid CNN-SVM Model with Edge Computing Services},
|
|
818
|
-
author = {Punjal Agarwal and Hwang-Cheng Wang and Kathiravan Srinivasan},
|
|
819
|
-
year = {2018},
|
|
820
|
-
abstract = {<jats:p>Epilepsy is one of the most common neurological disorders, which is characterized by unpredictable brain seizure. About 30% of the patients are not even aware that they have epilepsy and many have to undergo surgeries to relieve the pain. Therefore, developing a robust brain-computer interface for seizure prediction can help epileptic patients significantly. In this paper, we propose a hybrid CNN-SVM model for better epileptic seizure prediction. A convolutional neural network (CNN) consists of a multilayer structure, which can be adapted and modified according to the requirement of different applications. A support vector machine is a discriminative classifier which can be described by a separating optimal hyperplane used for categorizing new samples. The combination of CNN and SVM is found to provide an effective way for epileptic prediction. Furthermore, the resulting model is made autonomous using edge computing services and is shown to be a viable seizure prediction method. The results can be beneficial in real-life support of epilepsy patients.</jats:p>},
|
|
821
|
-
keywords = {Epileptic seizure, Discriminative model},
|
|
822
|
-
doi = {10.1051/matecconf/201821003016},
|
|
823
|
-
journal = {MATEC Web of Conferences},
|
|
824
|
-
volume = {210},
|
|
825
|
-
citation_count = {31},
|
|
826
|
-
url = {https://api.semanticscholar.org/CorpusId:55456708},
|
|
827
|
-
}
|
|
828
|
-
|
|
829
|
-
@article{Freestone2015SeizurePSBF,
|
|
830
|
-
title = {Seizure Prediction: Science Fiction or Soon to Become Reality?},
|
|
831
|
-
author = {D. Freestone and Philippa J. Karoly and A. Peterson and L. Kuhlmann and Alan Lai and F. Goodarzy and M. Cook},
|
|
832
|
-
year = {2015},
|
|
833
|
-
abstract = {This review highlights recent developments in the field of epileptic seizure prediction. We argue that seizure prediction is possible; however, most previous attempts have used data with an insufficient amount of information to solve the problem. The review discusses four methods for gaining more information above standard clinical electrophysiological recordings. We first discuss developments in obtaining long-term data that enables better characterisation of signal features and trends. Then, we discuss the usage of electrical stimulation to probe neural circuits to obtain robust information regarding excitability. Following this, we present a review of developments in high-resolution micro-electrode technologies that enable neuroimaging across spatial scales. Finally, we present recent results from data-driven model-based analyses, which enable imaging of seizure generating mechanisms from clinical electrophysiological measurements. It is foreseeable that the field of seizure prediction will shift focus to a more probabilistic forecasting approach leading to improvements in the quality of life for the millions of people who suffer uncontrolled seizures. However, a missing piece of the puzzle is devices to acquire long-term high-quality data. When this void is filled, seizure prediction will become a reality.},
|
|
834
|
-
doi = {10.1007/s11910-015-0596-3},
|
|
835
|
-
pmid = {26404726},
|
|
836
|
-
journal = {Current Neurology and Neuroscience Reports},
|
|
837
|
-
volume = {15},
|
|
838
|
-
citation_count = {73},
|
|
839
|
-
journal_impact_factor = {4.8},
|
|
840
|
-
url = {https://doi.org/10.1007/s11910-015-0596-3},
|
|
841
|
-
pages = {1-9},
|
|
842
|
-
}
|
|
843
|
-
|
|
844
|
-
@article{Zhang2024ASCBG,
|
|
845
|
-
title = {A scheme combining feature fusion and hybrid deep learning models for epileptic seizure detection and prediction},
|
|
846
|
-
author = {Jincan Zhang and Shaojie Zheng and Wenna Chen and Ganqin Du and Qizhi Fu and H. Jiang},
|
|
847
|
-
year = {2024},
|
|
848
|
-
abstract = {Epilepsy is one of the most well-known neurological disorders globally, leading to individuals experiencing sudden seizures and significantly impacting their quality of life. Hence, there is an urgent necessity for an efficient method to detect and predict seizures in order to mitigate the risks faced by epilepsy patients. In this paper, a new method for seizure detection and prediction is proposed, which is based on multi-class feature fusion and the convolutional neural network-gated recurrent unit-attention mechanism (CNN-GRU-AM) model. Initially, the Electroencephalography (EEG) signal undergoes wavelet decomposition through the Discrete Wavelet Transform (DWT), resulting in six subbands. Subsequently, time-frequency domain and nonlinear features are extracted from each subband. Finally, the CNN-GRU-AM further extracts features and performs classification. The CHB-MIT dataset is used to validate the proposed approach. The results of tenfold cross validation show that our method achieved a sensitivity of 99.24% and 95.47%, specificity of 99.51% and 94.93%, accuracy of 99.35% and 95.16%, and an AUC of 99.34% and 95.15% in seizure detection and prediction tasks, respectively. The results show that the method proposed in this paper can effectively achieve high-precision detection and prediction of seizures, so as to remind patients and doctors to take timely protective measures.},
|
|
849
|
-
keywords = {Epileptic seizure, Feature (linguistics)},
|
|
850
|
-
doi = {10.1038/s41598-024-67855-4},
|
|
851
|
-
pmid = {39043914},
|
|
852
|
-
journal = {Scientific Reports},
|
|
853
|
-
volume = {14},
|
|
854
|
-
citation_count = {17},
|
|
855
|
-
journal_impact_factor = {3.8},
|
|
856
|
-
url = {https://www.ncbi.nlm.nih.gov/pubmed/39043914},
|
|
857
|
-
}
|
|
858
|
-
|
|
859
|
-
@article{Eberlein2019EvaluationOMBH,
|
|
860
|
-
title = {Evaluation of machine learning methods for seizure prediction in epilepsy},
|
|
861
|
-
author = {Matthias Eberlein and Jens M\{\"u\}ller and Hongliu Yang and Simon Walz and Janina Schreiber and R. Tetzlaff and Susanne Creutz and Ortrud Uckermann and G. Leonhardt},
|
|
862
|
-
year = {2019},
|
|
863
|
-
abstract = {<jats:title>Abstract</jats:title>
|
|
864
|
-
<jats:p>Epilepsy affects about 50 million people worldwide of which one third is refractory to medication. An automated and reliable system that warns of impending seizures would greatly improve patient’s quality of life by overcoming the uncertainty and helplessness due to the unpredicted events. Here we present new seizure prediction results including a performance comparison of different methods. The analysis is based on a new set of intracranial EEG data that has been recorded in our working group during presurgical evaluation. We applied two different methods for seizure prediction and evaluated their performance pseudoprospectively. The comparison of this evaluation with common statistical evaluation reveals possible reasons for overly optimistic estimations of the performance of seizure forecasting systems.</jats:p>},
|
|
865
|
-
keywords = {Epileptic seizure, Learned helplessness},
|
|
866
|
-
doi = {10.1515/cdbme-2019-0028},
|
|
867
|
-
journal = {Current Directions in Biomedical Engineering},
|
|
868
|
-
volume = {5},
|
|
869
|
-
citation_count = {8},
|
|
870
|
-
url = {https://api.semanticscholar.org/CorpusId:202730348},
|
|
871
|
-
pages = {109 - 112},
|
|
872
|
-
}
|
|
873
|
-
|
|
874
|
-
@article{Salant1998PredictionOEBI,
|
|
875
|
-
title = {Prediction of epileptic seizures from two-channel EEG},
|
|
876
|
-
author = {Y. Salant and Prof. I. Gath and O. Henriksen},
|
|
877
|
-
year = {1998},
|
|
878
|
-
abstract = {Multivariate spectral estimation based on parametric modelling has been applied to epileptic surface EEG in order to detect EEG changes that occur prior to the clinical outbreak of the seizure. A better time/frequency resolution has been achieved using residual energy ratios (Dickinson's method). Prediction of oncoming seizures was based on detection of increased preictal synchronisation by calculation of coherence and pole trajectories. The method has been tested on simulated EEG data and on real EEG data from patients with primary generalised epilepsy. Prediction times of 1-6 s have been found in several seizures from five patients.},
|
|
879
|
-
keywords = {Epileptic seizure, Clinical neurophysiology},
|
|
880
|
-
doi = {10.1007/bf02524422},
|
|
881
|
-
pmid = {10367436},
|
|
882
|
-
journal = {Medical and Biological Engineering and Computing},
|
|
883
|
-
volume = {36},
|
|
884
|
-
citation_count = {95},
|
|
885
|
-
url = {https://doi.org/10.1007/BF02524422},
|
|
886
|
-
pages = {549-556},
|
|
887
|
-
}
|
|
888
|
-
|
|
889
|
-
@article{Zhu2024EpilepticSPBJ,
|
|
890
|
-
title = {Epileptic seizure prediction via multidimensional transformer and recurrent neural network fusion},
|
|
891
|
-
author = {Rong Zhu and Wen-Xin Pan and Jin-Xing Liu and Junliang Shang},
|
|
892
|
-
year = {2024},
|
|
893
|
-
abstract = {Background Epilepsy is a prevalent neurological disorder in which seizures cause recurrent episodes of unconsciousness or muscle convulsions, seriously affecting the patient’s work, quality of life, and health and safety. Timely prediction of seizures is critical for patients to take appropriate therapeutic measures. Accurate prediction of seizures remains a challenge due to the complex and variable nature of EEG signals. The study proposes an epileptic seizure model based on a multidimensional Transformer with recurrent neural network(LSTM-GRU) fusion for seizure classification of EEG signals. Methodology Firstly, a short-time Fourier transform was employed in the extraction of time-frequency features from EEG signals. Second, the extracted time-frequency features are learned using the Multidimensional Transformer model. Then, LSTM and GRU are then used for further learning of the time and frequency characteristics of the EEG signals. Next, the output features of LSTM and GRU are spliced and categorized using the gating mechanism. Subsequently, seizure prediction is conducted. Results The model was tested on two datasets: the Bonn EEG dataset and the CHB-MIT dataset. On the CHB-MIT dataset, the average sensitivity and average specificity of the model were 98.24% and 97.27%, respectively. On the Bonn dataset, the model obtained about 99% and about 98% accuracy on the binary classification task and the tertiary upper classification task, respectively. Conclusion The findings of the experimental investigation demonstrate that our model is capable of exploiting the temporal and frequency characteristics present within EEG signals.},
|
|
894
|
-
keywords = {Epileptic seizure},
|
|
895
|
-
doi = {10.1186/s12967-024-05678-7},
|
|
896
|
-
pmid = {39367475},
|
|
897
|
-
journal = {Journal of Translational Medicine},
|
|
898
|
-
volume = {22},
|
|
899
|
-
citation_count = {21},
|
|
900
|
-
journal_impact_factor = {6.1},
|
|
901
|
-
url = {https://www.ncbi.nlm.nih.gov/pubmed/39367475},
|
|
902
|
-
}
|
|
903
|
-
|
|
904
|
-
@article{Ra2023ANEBK,
|
|
905
|
-
title = {A novel epileptic seizure prediction method based on synchroextracting transform and 1-dimensional convolutional neural network},
|
|
906
|
-
author = {Jee Sook Ra and Tianning Li and Yan Li},
|
|
907
|
-
year = {2023},
|
|
908
|
-
abstract = {BACKGROUND AND OBJECTIVE
|
|
909
|
-
Epilepsy is a serious brain disorder affecting more than 50 million people worldwide. If epileptic seizures can be predicted in advance, patients can take measures to avoid unfortunate consequences. Important approaches for epileptic seizure predictions are often signal transformation and classification using electroencephalography (EEG) signals. A time-frequency (TF) transformation, such as the short-term Fourier transform (STFT), has been widely used over many years but curtailed by the Heisenberg uncertainty principle. This research focuses on decomposing epileptic EEG signals with a higher resolution so that an epileptic seizure can be predicted accurately before its episodes.
|
|
910
|
-
|
|
911
|
-
|
|
912
|
-
METHODS
|
|
913
|
-
This study applies a synchroextracting transformation (SET) and singular value decomposition (SET-SVD) to improve the time-frequency resolution. The SET is a more energy-concentrated TF representation than classical TF analysis methods.
|
|
914
|
-
|
|
915
|
-
|
|
916
|
-
RESULTS
|
|
917
|
-
The pre-seizure classification method employing a 1-dimensional convolutional neural network (1D-CNN) reached an accuracy of 99.71% (the CHB-MIT database) and 100% (the Bonn University database). The experiments on the CHB-MIT show that the accuracy, sensitivity and specificity from the SET-SVD method, compared with the results of the STFT, are increased by 8.12%, 6.24% and 13.91%, respectively. In addition, a multi-layer perceptron (MLP) was also used as a classifier. Its experimental results also show that the SET-SVD generates a higher accuracy, sensitivity and specificity by 5.0%, 2.41% and 11.42% than the STFT, respectively.
|
|
918
|
-
|
|
919
|
-
|
|
920
|
-
CONCLUSIONS
|
|
921
|
-
The results of two classification methods (the MLP and 1D-CNN) show that the SET-SVD has the capacity to extract more accurate information than the STFT. The 1D-CNN model is suitable for a fast and accurate patient-specific EEG classification.},
|
|
922
|
-
keywords = {Epileptic seizure, Multilayer perceptron},
|
|
923
|
-
doi = {10.1016/j.cmpb.2023.107678},
|
|
924
|
-
pmid = {37418802},
|
|
925
|
-
journal = {Computer methods and programs in biomedicine},
|
|
926
|
-
volume = {240},
|
|
927
|
-
citation_count = {17},
|
|
928
|
-
journal_impact_factor = {4.9},
|
|
929
|
-
}
|
|
930
|
-
|
|
931
|
-
@article{Chen2024EpilepsySDBL,
|
|
932
|
-
title = {Epilepsy Seizure Detection and Prediction using an Approximate Spiking
|
|
933
|
-
Convolutional Transformer},
|
|
934
|
-
author = {Qinyu Chen and Congyi Sun and Chang Gao and Shih-Chii Liu},
|
|
935
|
-
year = {2024},
|
|
936
|
-
abstract = {Epilepsy is a common disease of the nervous system. Timely prediction of seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients. This paper presents a tiny neuromorphic Spiking Convolutional Transformer, named Spiking Conformer, to detect and predict epileptic seizure segments from scalped long-term electroencephalogram (EEG) recordings. We report evaluation results from the Spiking Conformer model using the Boston Children’s Hospital-MIT (CHB-MIT) EEG dataset. By leveraging spike-based addition operations, the Spiking Conformer significantly reduces the classification computational cost compared to the non-spiking model. Additionally, we introduce an approximate spiking neuron layer to further reduce spike-triggered neuron updates by nearly 38% without sacrificing accuracy. Using raw EEG data as input, the proposed Spiking Conformer achieved an average sensitivity rate of 94.9% and a specificity rate of 99.3% for the seizure detection task, and 96.8%, 89.5% for the seizure prediction task, and needs >10x fewer operations compared to the non-spiking equivalent model.},
|
|
937
|
-
doi = {10.1109/iscas58744.2024.10558341},
|
|
938
|
-
eprint = {2402.09424},
|
|
939
|
-
journal = {2024 IEEE International Symposium on Circuits and Systems (ISCAS)},
|
|
940
|
-
citation_count = {6},
|
|
941
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10558341},
|
|
942
|
-
pages = {1-5},
|
|
943
|
-
}
|
|
944
|
-
|
|
945
|
-
@article{Ji2024EpilepticSPBM,
|
|
946
|
-
title = {Epileptic Seizure Prediction Using Spatiotemporal Feature Fusion on EEG},
|
|
947
|
-
author = {Dezan Ji and Landi He and Xingchen Dong and Haotian Li and Xiangwen Zhong and Guoyang Liu and Weidong Zhou},
|
|
948
|
-
year = {2024},
|
|
949
|
-
abstract = {<jats:p> Electroencephalography (EEG) plays a crucial role in epilepsy analysis, and epileptic seizure prediction has significant value for clinical treatment of epilepsy. Currently, prediction methods using Convolutional Neural Network (CNN) primarily focus on local features of EEG, making it challenging to simultaneously capture the spatial and temporal features from multi-channel EEGs to identify the preictal state effectively. In order to extract inherent spatial relationships among multi-channel EEGs while obtaining their temporal correlations, this study proposed an end-to-end model for the prediction of epileptic seizures by incorporating Graph Attention Network (GAT) and Temporal Convolutional Network (TCN). Low-pass filtered EEG signals were fed into the GAT module for EEG spatial feature extraction, and followed by TCN to capture temporal features, allowing the end-to-end model to acquire the spatiotemporal correlations of multi-channel EEGs. The system was evaluated on the publicly available CHB-MIT database, yielding segment-based accuracy of 98.71%, specificity of 98.35%, sensitivity of 99.07%, and F1-score of 98.71%, respectively. Event-based sensitivity of 97.03% and False Positive Rate (FPR) of 0.03/h was also achieved. Experimental results demonstrated this system can achieve superior performance for seizure prediction by leveraging the fusion of EEG spatiotemporal features without the need of feature engineering. </jats:p>},
|
|
950
|
-
keywords = {Epileptic seizure, Feature (linguistics)},
|
|
951
|
-
doi = {10.1142/s0129065724500412},
|
|
952
|
-
pmid = {38770650},
|
|
953
|
-
journal = {International journal of neural systems},
|
|
954
|
-
volume = {34},
|
|
955
|
-
citation_count = {12},
|
|
956
|
-
journal_impact_factor = {6.6},
|
|
957
|
-
}
|
|
958
|
-
|
|
959
|
-
@article{Wei2024ACGBN,
|
|
960
|
-
title = {A Compact Graph Convolutional Network With Adaptive Functional Connectivity for Seizure Prediction},
|
|
961
|
-
author = {Boxuan Wei and Lu Xu and Jicong Zhang},
|
|
962
|
-
year = {2024},
|
|
963
|
-
abstract = {Seizure prediction using EEG has significant implications for the daily monitoring and treatment of epilepsy patients. However, the task is challenging due to the underlying spatiotemporal correlations and patient heterogeneity. Traditional methods often use large-scale models with independent components to capture the spatial and temporal features of EEG separately or explore shared patterns among patients with the help of pre-defined functional connectivity. In this paper, we propose a compact model, called the graph convolutional network based on adaptive functional connectivity (AFC-GCN), for seizure prediction. The model can adaptively infer evolution of functional connectivity in epilepsy patients during seizures through data-driven methods and synchronously analyze spatiotemporal response of functional connectivity in multiple topologies. On CHB-MIT datasets, the experimental results demonstrate that AFC-GCN achieves accurate and robust performance with low complexity. (AUC: 0.9820, accuracy: 0.9815, sensitivity: 0.9802, FPR: 0.0172). The proposed method has the potential to predict seizure during daily monitoring.},
|
|
964
|
-
doi = {10.1109/tnsre.2024.3460348},
|
|
965
|
-
pmid = {39269793},
|
|
966
|
-
journal = {IEEE Transactions on Neural Systems and Rehabilitation Engineering},
|
|
967
|
-
volume = {32},
|
|
968
|
-
citation_count = {4},
|
|
969
|
-
journal_impact_factor = {4.8},
|
|
970
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680083},
|
|
971
|
-
pages = {3531-3542},
|
|
972
|
-
}
|
|
973
|
-
|
|
974
|
-
@article{Ibrahim2023EpilepticSPBO,
|
|
975
|
-
title = {Epileptic seizure prediction based on multiresolution convolutional neural networks},
|
|
976
|
-
author = {Ali K. Ibrahim and H. Zhuang and E. Tognoli and Ali Muhamed Ali and N. Erdol},
|
|
977
|
-
year = {2023},
|
|
978
|
-
abstract = {<jats:p>Epilepsy withholds patients’ control of their body or consciousness and puts them at risk in the course of their daily life. This article pursues the development of a smart neurocomputational technology to alert epileptic patients wearing EEG sensors of an impending seizure. An innovative approach for epileptic seizure prediction has been proposed to improve prediction accuracy and reduce the false alarm rate in comparison with state-of-the-art benchmarks. Maximal overlap discrete wavelet transform was used to decompose EEG signals into different frequency resolutions, and a multiresolution convolutional neural network is designed to extract discriminative features from each frequency band. The algorithm automatically generates patient-specific features to best classify preictal and interictal segments of the subject. The method can be applied to any patient case from any dataset without the need for a handcrafted feature extraction procedure. The proposed approach was tested with two popular epilepsy patient datasets. It achieved a sensitivity of 82% and a false prediction rate of 0.058 with the Children’s Hospital Boston-MIT scalp EEG dataset and a sensitivity of 85% and a false prediction rate of 0.19 with the American Epilepsy Society Seizure Prediction Challenge dataset. This technology provides a personalized solution for the patient that has improved sensitivity and specificity, yet because of the algorithm’s intrinsic ability for generalization, it emancipates from the reliance on epileptologists’ expertise to tune a wearable technological aid, which will ultimately help to deploy it broadly, including in medically underserved locations across the globe.</jats:p>},
|
|
979
|
-
keywords = {Discriminative model, Epileptic seizure, False alarm},
|
|
980
|
-
doi = {10.3389/frsip.2023.1175305},
|
|
981
|
-
journal = {Frontiers in Signal Processing},
|
|
982
|
-
volume = {3},
|
|
983
|
-
citation_count = {6},
|
|
984
|
-
journal_impact_factor = {1.3},
|
|
985
|
-
url = {https://doi.org/10.3389/frsip.2023.1175305},
|
|
986
|
-
booktitle = {Frontiers in Signal Processing},
|
|
987
|
-
}
|
|
988
|
-
|
|
989
|
-
@article{Pontes2024ConceptdriftsAFBP,
|
|
990
|
-
title = {Concept-drifts adaptation for machine learning EEG epilepsy seizure prediction},
|
|
991
|
-
author = {Edson David Pontes and Mauro F. Pinto and F\{\'a\}bio Lopes and C\{\'e\}sar A. Teixeira},
|
|
992
|
-
year = {2024},
|
|
993
|
-
abstract = {<jats:title>Abstract</jats:title>
|
|
994
|
-
<jats:p>The administration of antiepileptic drugs or surgical interventions fails to control seizures in about 30% of patients. Seizure prediction is a viable strategy for enhancing their quality of life because it can be used in intervention or warning systems. These systems may disarm seizures or, at the very least, lessen their adverse effects. Identifying the preictal interval, which marks the change from regular brain activity to a seizure, is critical to this research field. Even though several predictive studies applied various Electroencephalogram based methodologies, only some have been used in medical devices, and none have been clinically applicable. Recent studies have shown that tracking and handling data changes with time, known as concept drifts is highly relevant in seizure prediction; therefore, it is essential to develop methods able to automatically detect and address changes in context without human intervention. In this work, we aimed to evaluate the impact of automatic concept drift adapting methods in seizure prediction. We tested approaches to predict seizures while adapting to concept drifts during the model’s learning process; for that, we proposed and compared to the Control three patient-specific seizure prediction approaches with a 10-minute seizure prediction horizon: a seizure prediction algorithm incorporating a window adjustment method by optimising performance with Support Vector Machines1 (Backwards-Landmark Window), a seizure prediction algorithm incorporating a data-batch (seizures)selection method using a logistic regression2 (Seizure-batch Regression), and a seizure prediction algorithm with a dynamicintegration of classifiers3 (Dynamic Weighted Ensemble). The proposed methodologies included a retraining process after eachseizure and combined a set of univariate linear features with classifiers based on Support Vector Machines. The Firing Power wasused as a post-processing technique to generate alarms before seizures. Considering a group of 37 patients with Temporal LobeEpilepsy from the EPILEPSIAE database, the best-performing approach (Backwards-Landmark Window) aimed to select datafrom the concept closest to the preictal period of the last training seizure; this led to results of 0.75 ± 0.33 for sensitivity and 1.03 ± 1.00 for false positive rate per hour. Even though the best-performing approach statistically validated 89% of the patients with the surrogate predictor, it is necessary to determine the maximum false positive rate appropriate for each intervention system.</jats:p>},
|
|
995
|
-
keywords = {Epileptic seizure},
|
|
996
|
-
doi = {10.21203/rs.3.rs-3917503/v1},
|
|
997
|
-
pmid = {38589379},
|
|
998
|
-
journal = {Scientific Reports},
|
|
999
|
-
volume = {14},
|
|
1000
|
-
citation_count = {4},
|
|
1001
|
-
journal_impact_factor = {3.8},
|
|
1002
|
-
url = {https://www.ncbi.nlm.nih.gov/pubmed/38589379},
|
|
1003
|
-
}
|
|
1004
|
-
|
|
1005
|
-
@article{Hejazi2019PredictionOEBQ,
|
|
1006
|
-
title = {Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using Granger causality and directed transfer function methods},
|
|
1007
|
-
author = {Mona Hejazi and Ali Motie Nasrabadi},
|
|
1008
|
-
year = {2019},
|
|
1009
|
-
abstract = {Epilepsy is a chronic disorder, which causes strange perceptions, muscle spasms, sometimes seizures, and loss of awareness, associated with abnormal neuronal activity in the brain. The goal of this study is to investigate how effective connectivity (EC) changes effect on unexpected seizures prediction, as this will authorize the patients to play it safe and avoid risk. We approve the hypothesis that EC variables near seizure change significantly so seizure can be predicted in accordance with this variation. We introduce two time-variant coefficients based on standard deviation of EC on Freiburg EEG dataset by using directed transfer function and Granger causality methods and compare index changes over the course of time in five different frequency bands. Comparison of the multivariate and bivariate analysis of factors is implemented in this investigation. The performance based on the suggested methods shows the seizure occurrence period is approximately 50 min that is expected onset stated in, the maximum value of sensitivity approaching ~ 80%, and 0.33 FP/h is the false prediction rate. The findings revealed that greater accuracy and sensitivity are obtained by the designed system in comparison with the results of other works in the same condition. Even though these results still are not sufficient for clinical applications. Based on the conclusions, it can generally be observed that the greater results by DTF method are in the gamma and beta frequency bands.},
|
|
1010
|
-
keywords = {Causality, Brain Function},
|
|
1011
|
-
doi = {10.1007/s11571-019-09534-z},
|
|
1012
|
-
pmid = {31565091},
|
|
1013
|
-
journal = {Cognitive Neurodynamics},
|
|
1014
|
-
volume = {13},
|
|
1015
|
-
citation_count = {37},
|
|
1016
|
-
journal_impact_factor = {3.1},
|
|
1017
|
-
url = {https://doi.org/10.1007/s11571-019-09534-z},
|
|
1018
|
-
pages = {461 - 473},
|
|
1019
|
-
}
|
|
1020
|
-
|
|
1021
|
-
@article{Boutkhil2023AnEEBR,
|
|
1022
|
-
title = {An Efficient EEG Channels-Selection Approaches For Epilepsy Seizure Prediction},
|
|
1023
|
-
author = {Sidaoui Boutkhil and Sadouni Kadour},
|
|
1024
|
-
year = {2023},
|
|
1025
|
-
abstract = {<jats:p>In this study, we are interested in the epilepsy seizures problem. Indeed, we used binary SVM to predict the ongoing seizures and multiclass SVM to predict different states of patients' epilepsy. Brain activity is used as an efficient source for predicting seizures, it's recorded in Electroencephalography (EEG) segments signal. We propose and compare in this paper, three ideas select channels: the highest frequency channels, the channels of the left part of the head, and the channels of the right part of the head. A features extraction stage is important to produce a rich and relevant dataset, in effect, 22 features are calculated for each segment of 5 min from EEG signal. A binary SVM is used to predict the ongoing seizures named pre-ictal, and a one-versus-all multi-class SVM is used to predict four classes (pre-ictal, ictal, inter-ictal, and post-ictal). A classification rate toward 97%, on the selected channels corpus, was achieved by SVM (binary and multiclass) with the majority of patients.</jats:p>},
|
|
1026
|
-
doi = {10.47750/pnr.2023.14.03.406},
|
|
1027
|
-
journal = {Journal of Pharmaceutical Negative Results},
|
|
1028
|
-
url = {https://doi.org/10.47750/pnr.2023.14.03.406},
|
|
1029
|
-
}
|
|
1030
|
-
|
|
1031
|
-
@article{Batista2023EEGESBS,
|
|
1032
|
-
title = {EEG Epilepsy Seizure Prediction: The Post-processing Stage as a Chronology},
|
|
1033
|
-
author = {Joana Batista and Mauro F. Pinto and Mariana Taveres and F\{\'a\}bio Lopes and Ana Oliveira and Gonçalo Costa and C\{\'e\}sar A. Teixeira},
|
|
1034
|
-
year = {2023},
|
|
1035
|
-
abstract = {Almost one-third of epileptic patients fail to achieve seizure control through anti-epileptic drug administration. In those cases, seizure prediction plays a significant role in clinical management and therapy. Seizure prediction algorithms aim to identify the preictal period that Electroencephalogram (EEG) signals can capture. However, this period is associated with substantial heterogeneity. The present work proposes patient-specific seizure prediction algorithms using post-processing techniques to explore the existence of a set of chronological brain events that precedes epileptic seizures. The study was conducted with 37 patients from the EPILEPSIAE database. The designed methodology combines univariate linear features with a classifier based on Support Vector Machines (SVM) and two post-processing techniques to handle pre-seizure temporality in an easily explainable way, employing knowledge from brain network theory. In the Chronological Firing Power approach, we considered the preictal as a sequence of three brain events separated in time. In the Cumulative Firing Power approach, we assumed the preictal period as a sequence of three overlapping events. These methodologies were compared with a control approach based on the typical machine learning pipeline. Our results showed that the Cumulative Firing Power approach may improve the seizure prediction performance. This new strategy performed above chance for 62% of patients, whereas the Control approach only validated 49% of its models.},
|
|
1036
|
-
doi = {10.1109/ieeeconf58974.2023.10404130},
|
|
1037
|
-
journal = {2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology},
|
|
1038
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10404130},
|
|
1039
|
-
pages = {167-168},
|
|
1040
|
-
}
|
|
1041
|
-
|
|
1042
|
-
@article{Cogun2021ACSBT,
|
|
1043
|
-
title = {A Channel Selection Method for Epilepsy Seizure Prediction},
|
|
1044
|
-
author = {Ercan Coşgun and A. Çelebi and M. G\{\"u\}ll\{\"u\}},
|
|
1045
|
-
year = {2021},
|
|
1046
|
-
abstract = {The development of systems that can predict epilepsy seizures in real time offers great hope for epilepsy patients. These systems aim to prevent accidents that patients may experience due to loss of consciousness during seizures. Therefore, systems that can predict epileptic seizures should both work in real time and be designed to maintain the daily activities of the patient. In this case, a system with as few electrodes as possible should be developed. In this study, it is aimed to choose the most appropriate electrode in predicting epileptic seizures. Channel selection is made according to two parameters and its effect on seizure prediction is examined. The first parameter is the difference in variance between preictal and interictal; The other parameter is the weighted average sensitivity (WAS). The Rusboosted Tree ensemble classification is used to calculate WAS. The prediction process is carried out with the method we proposed in the previous study. For performance evaluation, prediction accuracy, sensitivity (SEN) and false alarm rates per hour (FPR) are calculated. The prediction performance for the channel selected according to the variance difference results are 69%, 70.9% and 0.054 respectively and the for the channel selected according to WAS results are 69%, 71.8% and 0.031 respectively.},
|
|
1047
|
-
keywords = {Epileptic seizure},
|
|
1048
|
-
doi = {10.1109/inista52262.2021.9548583},
|
|
1049
|
-
journal = {2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA)},
|
|
1050
|
-
citation_count = {3},
|
|
1051
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9548583},
|
|
1052
|
-
pages = {1-5},
|
|
1053
|
-
}
|
|
1054
|
-
|
|
1055
|
-
@article{Liu2009EpilepticSPBU,
|
|
1056
|
-
title = {Epileptic Seizure Prediction by a System of Particle Filter Associated with a Neural Network},
|
|
1057
|
-
author = {Derong Liu and Zhongyu Pang and Zhuo Wang},
|
|
1058
|
-
year = {2009},
|
|
1059
|
-
abstract = {None of the current epileptic seizure prediction methods can widely be accepted, due to their poor consistency in performance. In this work, we have developed a novel approach to analyze intracranial EEG data. The energy of the frequency band of 4–12 Hz is obtained by wavelet transform. A dynamic model is introduced to describe the process and a hidden variable is included. The hidden variable can be considered as indicator of seizure activities. The method of particle filter associated with a neural network is used to calculate the hidden variable. Six patients' intracranial EEG data are used to test our algorithm including 39 hours of ictal EEG with 22 seizures and 70 hours of normal EEG recordings. The minimum least square error algorithm is applied to determine optimal parameters in the model adaptively. The results show that our algorithm can successfully predict 15 out of 16 seizures and the average prediction time is 38.5 minutes before seizure onset. The sensitivity is about 93.75% and the specificity (false prediction rate) is approximately 0.09 FP/h. A random predictor is used to calculate the sensitivity under significance level of 5%. Compared to the random predictor, our method achieved much better performance.},
|
|
1060
|
-
keywords = {Epileptic seizure},
|
|
1061
|
-
doi = {10.1155/2009/638534},
|
|
1062
|
-
journal = {EURASIP Journal on Advances in Signal Processing},
|
|
1063
|
-
volume = {2009},
|
|
1064
|
-
citation_count = {14},
|
|
1065
|
-
journal_impact_factor = {1.7},
|
|
1066
|
-
url = {https://api.semanticscholar.org/CorpusId:14582646},
|
|
1067
|
-
pages = {1-10},
|
|
1068
|
-
}
|
|
1069
|
-
|
|
1070
|
-
@article{Hashimoto2013HeartRVBV,
|
|
1071
|
-
title = {Heart rate variability features for epilepsy seizure prediction},
|
|
1072
|
-
author = {Hirotsugu Hashimoto and K. Fujiwara and Yoko Suzuki and M. Miyajima and T. Yamakawa and M. Kano and T. Maehara and K. Ohta and T. Sasano and M. Matsuura and E. Matsushima},
|
|
1073
|
-
year = {2013},
|
|
1074
|
-
keywords = {Epileptic seizure},
|
|
1075
|
-
doi = {10.1109/apsipa.2013.6694240},
|
|
1076
|
-
journal = {2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference},
|
|
1077
|
-
citation_count = {12},
|
|
1078
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6694240},
|
|
1079
|
-
pages = {1-4},
|
|
1080
|
-
}
|
|
1081
|
-
|
|
1082
|
-
@article{Haddad2014EpilepsySPBW,
|
|
1083
|
-
title = {Epilepsy seizure prediction using graph theory},
|
|
1084
|
-
author = {Tahar Haddad and Larbi Talbi and A. Lakhssassi and Naim Ben-Hamida and S. Aouini},
|
|
1085
|
-
year = {2014},
|
|
1086
|
-
keywords = {Seizure threshold},
|
|
1087
|
-
doi = {10.1109/newcas.2014.6934040},
|
|
1088
|
-
journal = {2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS)},
|
|
1089
|
-
citation_count = {5},
|
|
1090
|
-
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6934040},
|
|
1091
|
-
pages = {293-296},
|
|
1092
|
-
}
|