scikit-network 0.33.0__cp39-cp39-win_amd64.whl → 0.33.3__cp39-cp39-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- scikit_network-0.33.3.dist-info/METADATA +122 -0
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/RECORD +44 -44
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/WHEEL +1 -1
- sknetwork/classification/diffusion.py +1 -1
- sknetwork/classification/knn.py +1 -1
- sknetwork/classification/metrics.py +3 -3
- sknetwork/classification/pagerank.py +1 -1
- sknetwork/classification/propagation.py +1 -1
- sknetwork/classification/vote.cp39-win_amd64.pyd +0 -0
- sknetwork/classification/vote.cpp +686 -679
- sknetwork/clustering/leiden_core.cp39-win_amd64.pyd +0 -0
- sknetwork/clustering/leiden_core.cpp +715 -704
- sknetwork/clustering/louvain.py +3 -3
- sknetwork/clustering/louvain_core.cp39-win_amd64.pyd +0 -0
- sknetwork/clustering/louvain_core.cpp +715 -704
- sknetwork/clustering/metrics.py +1 -1
- sknetwork/clustering/tests/test_louvain.py +6 -0
- sknetwork/gnn/base_activation.py +1 -0
- sknetwork/gnn/gnn_classifier.py +1 -1
- sknetwork/hierarchy/metrics.py +3 -3
- sknetwork/hierarchy/paris.cp39-win_amd64.pyd +0 -0
- sknetwork/hierarchy/paris.cpp +1777 -1155
- sknetwork/linalg/diteration.cp39-win_amd64.pyd +0 -0
- sknetwork/linalg/diteration.cpp +686 -679
- sknetwork/linalg/push.cp39-win_amd64.pyd +0 -0
- sknetwork/linalg/push.cpp +1771 -1155
- sknetwork/linalg/sparse_lowrank.py +1 -1
- sknetwork/ranking/betweenness.cp39-win_amd64.pyd +0 -0
- sknetwork/ranking/betweenness.cpp +565 -559
- sknetwork/topology/cliques.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/cliques.cpp +1731 -1112
- sknetwork/topology/core.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/core.cpp +1757 -1141
- sknetwork/topology/cycles.py +2 -2
- sknetwork/topology/minheap.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/minheap.cpp +689 -679
- sknetwork/topology/triangles.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/triangles.cpp +439 -434
- sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/weisfeiler_lehman_core.cpp +686 -679
- sknetwork/visualization/graphs.py +1 -1
- scikit_network-0.33.0.dist-info/METADATA +0 -517
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/AUTHORS.rst +0 -0
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/LICENSE +0 -0
- {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/top_level.txt +0 -0
sknetwork/clustering/metrics.py
CHANGED
|
@@ -64,7 +64,7 @@ def get_modularity(input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: n
|
|
|
64
64
|
>>> from sknetwork.data import house
|
|
65
65
|
>>> adjacency = house()
|
|
66
66
|
>>> labels = np.array([0, 0, 1, 1, 0])
|
|
67
|
-
>>> np.round(get_modularity(adjacency, labels), 2)
|
|
67
|
+
>>> float(np.round(get_modularity(adjacency, labels), 2))
|
|
68
68
|
0.11
|
|
69
69
|
"""
|
|
70
70
|
adjacency, bipartite = get_adjacency(input_matrix.astype(float))
|
|
@@ -17,6 +17,12 @@ class TestLouvainClustering(unittest.TestCase):
|
|
|
17
17
|
labels = Louvain().fit_predict(adjacency)
|
|
18
18
|
self.assertEqual(len(labels), n)
|
|
19
19
|
|
|
20
|
+
def test_format(self):
|
|
21
|
+
adjacency = test_graph()
|
|
22
|
+
n = adjacency.shape[0]
|
|
23
|
+
labels = Louvain().fit_predict(adjacency.toarray())
|
|
24
|
+
self.assertEqual(len(labels), n)
|
|
25
|
+
|
|
20
26
|
def test_modularity(self):
|
|
21
27
|
adjacency = karate_club()
|
|
22
28
|
louvain_d = Louvain(modularity='dugue')
|
sknetwork/gnn/base_activation.py
CHANGED
sknetwork/gnn/gnn_classifier.py
CHANGED
|
@@ -93,7 +93,7 @@ class GNNClassifier(BaseGNN):
|
|
|
93
93
|
>>> features = adjacency.copy()
|
|
94
94
|
>>> gnn = GNNClassifier(dims=1, early_stopping=False)
|
|
95
95
|
>>> labels_pred = gnn.fit_predict(adjacency, features, labels, random_state=42)
|
|
96
|
-
>>> round(np.mean(labels_pred == labels_true), 2)
|
|
96
|
+
>>> float(round(np.mean(labels_pred == labels_true), 2))
|
|
97
97
|
0.88
|
|
98
98
|
"""
|
|
99
99
|
|
sknetwork/hierarchy/metrics.py
CHANGED
|
@@ -100,7 +100,7 @@ def dasgupta_cost(adjacency: sparse.csr_matrix, dendrogram: np.ndarray, weights:
|
|
|
100
100
|
>>> adjacency = house()
|
|
101
101
|
>>> dendrogram = paris.fit_transform(adjacency)
|
|
102
102
|
>>> cost = dasgupta_cost(adjacency, dendrogram)
|
|
103
|
-
>>> np.round(cost, 2)
|
|
103
|
+
>>> float(np.round(cost, 2))
|
|
104
104
|
3.33
|
|
105
105
|
|
|
106
106
|
References
|
|
@@ -154,7 +154,7 @@ def dasgupta_score(adjacency: sparse.csr_matrix, dendrogram: np.ndarray, weights
|
|
|
154
154
|
>>> adjacency = house()
|
|
155
155
|
>>> dendrogram = paris.fit_transform(adjacency)
|
|
156
156
|
>>> score = dasgupta_score(adjacency, dendrogram)
|
|
157
|
-
>>> np.round(score, 2)
|
|
157
|
+
>>> float(np.round(score, 2))
|
|
158
158
|
0.33
|
|
159
159
|
|
|
160
160
|
References
|
|
@@ -194,7 +194,7 @@ def tree_sampling_divergence(adjacency: sparse.csr_matrix, dendrogram: np.ndarra
|
|
|
194
194
|
>>> adjacency = house()
|
|
195
195
|
>>> dendrogram = paris.fit_transform(adjacency)
|
|
196
196
|
>>> score = tree_sampling_divergence(adjacency, dendrogram)
|
|
197
|
-
>>> np.round(score, 2)
|
|
197
|
+
>>> float(np.round(score, 2))
|
|
198
198
|
0.05
|
|
199
199
|
|
|
200
200
|
References
|
|
Binary file
|