scikit-network 0.33.0__cp39-cp39-win_amd64.whl → 0.33.3__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (45) hide show
  1. scikit_network-0.33.3.dist-info/METADATA +122 -0
  2. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/RECORD +44 -44
  3. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/WHEEL +1 -1
  4. sknetwork/classification/diffusion.py +1 -1
  5. sknetwork/classification/knn.py +1 -1
  6. sknetwork/classification/metrics.py +3 -3
  7. sknetwork/classification/pagerank.py +1 -1
  8. sknetwork/classification/propagation.py +1 -1
  9. sknetwork/classification/vote.cp39-win_amd64.pyd +0 -0
  10. sknetwork/classification/vote.cpp +686 -679
  11. sknetwork/clustering/leiden_core.cp39-win_amd64.pyd +0 -0
  12. sknetwork/clustering/leiden_core.cpp +715 -704
  13. sknetwork/clustering/louvain.py +3 -3
  14. sknetwork/clustering/louvain_core.cp39-win_amd64.pyd +0 -0
  15. sknetwork/clustering/louvain_core.cpp +715 -704
  16. sknetwork/clustering/metrics.py +1 -1
  17. sknetwork/clustering/tests/test_louvain.py +6 -0
  18. sknetwork/gnn/base_activation.py +1 -0
  19. sknetwork/gnn/gnn_classifier.py +1 -1
  20. sknetwork/hierarchy/metrics.py +3 -3
  21. sknetwork/hierarchy/paris.cp39-win_amd64.pyd +0 -0
  22. sknetwork/hierarchy/paris.cpp +1777 -1155
  23. sknetwork/linalg/diteration.cp39-win_amd64.pyd +0 -0
  24. sknetwork/linalg/diteration.cpp +686 -679
  25. sknetwork/linalg/push.cp39-win_amd64.pyd +0 -0
  26. sknetwork/linalg/push.cpp +1771 -1155
  27. sknetwork/linalg/sparse_lowrank.py +1 -1
  28. sknetwork/ranking/betweenness.cp39-win_amd64.pyd +0 -0
  29. sknetwork/ranking/betweenness.cpp +565 -559
  30. sknetwork/topology/cliques.cp39-win_amd64.pyd +0 -0
  31. sknetwork/topology/cliques.cpp +1731 -1112
  32. sknetwork/topology/core.cp39-win_amd64.pyd +0 -0
  33. sknetwork/topology/core.cpp +1757 -1141
  34. sknetwork/topology/cycles.py +2 -2
  35. sknetwork/topology/minheap.cp39-win_amd64.pyd +0 -0
  36. sknetwork/topology/minheap.cpp +689 -679
  37. sknetwork/topology/triangles.cp39-win_amd64.pyd +0 -0
  38. sknetwork/topology/triangles.cpp +439 -434
  39. sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd +0 -0
  40. sknetwork/topology/weisfeiler_lehman_core.cpp +686 -679
  41. sknetwork/visualization/graphs.py +1 -1
  42. scikit_network-0.33.0.dist-info/METADATA +0 -517
  43. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/AUTHORS.rst +0 -0
  44. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/LICENSE +0 -0
  45. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/top_level.txt +0 -0
@@ -64,7 +64,7 @@ def get_modularity(input_matrix: Union[sparse.csr_matrix, np.ndarray], labels: n
64
64
  >>> from sknetwork.data import house
65
65
  >>> adjacency = house()
66
66
  >>> labels = np.array([0, 0, 1, 1, 0])
67
- >>> np.round(get_modularity(adjacency, labels), 2)
67
+ >>> float(np.round(get_modularity(adjacency, labels), 2))
68
68
  0.11
69
69
  """
70
70
  adjacency, bipartite = get_adjacency(input_matrix.astype(float))
@@ -17,6 +17,12 @@ class TestLouvainClustering(unittest.TestCase):
17
17
  labels = Louvain().fit_predict(adjacency)
18
18
  self.assertEqual(len(labels), n)
19
19
 
20
+ def test_format(self):
21
+ adjacency = test_graph()
22
+ n = adjacency.shape[0]
23
+ labels = Louvain().fit_predict(adjacency.toarray())
24
+ self.assertEqual(len(labels), n)
25
+
20
26
  def test_modularity(self):
21
27
  adjacency = karate_club()
22
28
  louvain_d = Louvain(modularity='dugue')
@@ -9,6 +9,7 @@ import numpy as np
9
9
 
10
10
  class BaseActivation:
11
11
  """Base class for activation functions.
12
+
12
13
  Parameters
13
14
  ----------
14
15
  name : str
@@ -93,7 +93,7 @@ class GNNClassifier(BaseGNN):
93
93
  >>> features = adjacency.copy()
94
94
  >>> gnn = GNNClassifier(dims=1, early_stopping=False)
95
95
  >>> labels_pred = gnn.fit_predict(adjacency, features, labels, random_state=42)
96
- >>> round(np.mean(labels_pred == labels_true), 2)
96
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
97
97
  0.88
98
98
  """
99
99
 
@@ -100,7 +100,7 @@ def dasgupta_cost(adjacency: sparse.csr_matrix, dendrogram: np.ndarray, weights:
100
100
  >>> adjacency = house()
101
101
  >>> dendrogram = paris.fit_transform(adjacency)
102
102
  >>> cost = dasgupta_cost(adjacency, dendrogram)
103
- >>> np.round(cost, 2)
103
+ >>> float(np.round(cost, 2))
104
104
  3.33
105
105
 
106
106
  References
@@ -154,7 +154,7 @@ def dasgupta_score(adjacency: sparse.csr_matrix, dendrogram: np.ndarray, weights
154
154
  >>> adjacency = house()
155
155
  >>> dendrogram = paris.fit_transform(adjacency)
156
156
  >>> score = dasgupta_score(adjacency, dendrogram)
157
- >>> np.round(score, 2)
157
+ >>> float(np.round(score, 2))
158
158
  0.33
159
159
 
160
160
  References
@@ -194,7 +194,7 @@ def tree_sampling_divergence(adjacency: sparse.csr_matrix, dendrogram: np.ndarra
194
194
  >>> adjacency = house()
195
195
  >>> dendrogram = paris.fit_transform(adjacency)
196
196
  >>> score = tree_sampling_divergence(adjacency, dendrogram)
197
- >>> np.round(score, 2)
197
+ >>> float(np.round(score, 2))
198
198
  0.05
199
199
 
200
200
  References