scikit-network 0.33.0__cp39-cp39-win_amd64.whl → 0.33.3__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (45) hide show
  1. scikit_network-0.33.3.dist-info/METADATA +122 -0
  2. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/RECORD +44 -44
  3. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/WHEEL +1 -1
  4. sknetwork/classification/diffusion.py +1 -1
  5. sknetwork/classification/knn.py +1 -1
  6. sknetwork/classification/metrics.py +3 -3
  7. sknetwork/classification/pagerank.py +1 -1
  8. sknetwork/classification/propagation.py +1 -1
  9. sknetwork/classification/vote.cp39-win_amd64.pyd +0 -0
  10. sknetwork/classification/vote.cpp +686 -679
  11. sknetwork/clustering/leiden_core.cp39-win_amd64.pyd +0 -0
  12. sknetwork/clustering/leiden_core.cpp +715 -704
  13. sknetwork/clustering/louvain.py +3 -3
  14. sknetwork/clustering/louvain_core.cp39-win_amd64.pyd +0 -0
  15. sknetwork/clustering/louvain_core.cpp +715 -704
  16. sknetwork/clustering/metrics.py +1 -1
  17. sknetwork/clustering/tests/test_louvain.py +6 -0
  18. sknetwork/gnn/base_activation.py +1 -0
  19. sknetwork/gnn/gnn_classifier.py +1 -1
  20. sknetwork/hierarchy/metrics.py +3 -3
  21. sknetwork/hierarchy/paris.cp39-win_amd64.pyd +0 -0
  22. sknetwork/hierarchy/paris.cpp +1777 -1155
  23. sknetwork/linalg/diteration.cp39-win_amd64.pyd +0 -0
  24. sknetwork/linalg/diteration.cpp +686 -679
  25. sknetwork/linalg/push.cp39-win_amd64.pyd +0 -0
  26. sknetwork/linalg/push.cpp +1771 -1155
  27. sknetwork/linalg/sparse_lowrank.py +1 -1
  28. sknetwork/ranking/betweenness.cp39-win_amd64.pyd +0 -0
  29. sknetwork/ranking/betweenness.cpp +565 -559
  30. sknetwork/topology/cliques.cp39-win_amd64.pyd +0 -0
  31. sknetwork/topology/cliques.cpp +1731 -1112
  32. sknetwork/topology/core.cp39-win_amd64.pyd +0 -0
  33. sknetwork/topology/core.cpp +1757 -1141
  34. sknetwork/topology/cycles.py +2 -2
  35. sknetwork/topology/minheap.cp39-win_amd64.pyd +0 -0
  36. sknetwork/topology/minheap.cpp +689 -679
  37. sknetwork/topology/triangles.cp39-win_amd64.pyd +0 -0
  38. sknetwork/topology/triangles.cpp +439 -434
  39. sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd +0 -0
  40. sknetwork/topology/weisfeiler_lehman_core.cpp +686 -679
  41. sknetwork/visualization/graphs.py +1 -1
  42. scikit_network-0.33.0.dist-info/METADATA +0 -517
  43. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/AUTHORS.rst +0 -0
  44. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/LICENSE +0 -0
  45. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,122 @@
1
+ Metadata-Version: 2.4
2
+ Name: scikit-network
3
+ Version: 0.33.3
4
+ Summary: Graph algorithms
5
+ Author: Scikit-network team
6
+ Maintainer-email: Thomas Bonald <bonald@enst.fr>
7
+ License: BSD License
8
+ Project-URL: Repository, https://github.com/sknetwork-team/scikit-network
9
+ Project-URL: Documentation, https://scikit-network.readthedocs.io/
10
+ Project-URL: Changelog, https://github.com/sknetwork-team/scikit-network/blob/master/HISTORY.rst
11
+ Keywords: sknetwork
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Information Technology
15
+ Classifier: Intended Audience :: Education
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: License :: OSI Approved :: BSD License
18
+ Classifier: Natural Language :: English
19
+ Classifier: Programming Language :: Cython
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Classifier: Programming Language :: Python :: 3.12
24
+ Classifier: Programming Language :: Python :: 3.13
25
+ Requires-Python: >=3.9
26
+ Description-Content-Type: text/x-rst
27
+ License-File: LICENSE
28
+ License-File: AUTHORS.rst
29
+ Requires-Dist: numpy>=1.22.4
30
+ Requires-Dist: scipy>=1.7.3
31
+ Provides-Extra: test
32
+ Requires-Dist: pytest; extra == "test"
33
+ Requires-Dist: note; extra == "test"
34
+ Requires-Dist: pluggy>=0.7.1; extra == "test"
35
+ Dynamic: license-file
36
+
37
+ .. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
38
+ :align: right
39
+ :width: 150px
40
+ :alt: logo sknetwork
41
+
42
+
43
+
44
+ .. image:: https://img.shields.io/pypi/v/scikit-network.svg
45
+ :target: https://pypi.python.org/pypi/scikit-network
46
+
47
+ .. image:: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg
48
+ :target: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml
49
+
50
+ .. image:: https://readthedocs.org/projects/scikit-network/badge/?version=latest
51
+ :target: https://scikit-network.readthedocs.io/en/latest/?badge=latest
52
+ :alt: Documentation Status
53
+
54
+ .. image:: https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg
55
+ :target: https://codecov.io/gh/sknetwork-team/scikit-network
56
+
57
+ .. image:: https://img.shields.io/pypi/pyversions/scikit-network.svg
58
+ :target: https://pypi.python.org/pypi/scikit-network
59
+
60
+ Free software library in Python for machine learning on graphs:
61
+
62
+ * Memory-efficient representation of graphs as sparse matrices in scipy_ format
63
+ * Fast algorithms
64
+ * Simple API inspired by scikit-learn_
65
+
66
+ .. _scipy: https://www.scipy.org
67
+ .. _scikit-learn: https://scikit-learn.org/
68
+
69
+ Resources
70
+ ---------
71
+
72
+ * Free software: BSD license
73
+ * GitHub: https://github.com/sknetwork-team/scikit-network
74
+ * Documentation: https://scikit-network.readthedocs.io
75
+
76
+ Quick start
77
+ -----------
78
+
79
+ Install scikit-network:
80
+
81
+ .. code-block:: console
82
+
83
+ $ pip install scikit-network
84
+
85
+ Import scikit-network::
86
+
87
+ import sknetwork
88
+
89
+ Overview
90
+ --------
91
+
92
+ An overview of the package is presented in this `notebook <https://scikit-network.readthedocs.io/en/latest/tutorials/overview/index.html>`_.
93
+
94
+ Documentation
95
+ -------------
96
+
97
+ The documentation is structured as follows:
98
+
99
+ * `Getting started <https://scikit-network.readthedocs.io/en/latest/first_steps.html>`_: First steps to install, import and use scikit-network.
100
+ * `User manual <https://scikit-network.readthedocs.io/en/latest/reference/data.html>`_: Description of each function and object of scikit-network.
101
+ * `Tutorials <https://scikit-network.readthedocs.io/en/latest/tutorials/data/index.html>`_: Application of the main tools to toy examples.
102
+ * `Examples <https://scikit-network.readthedocs.io/en/latest/use_cases/text.html>`_: Examples combining several tools on specific use cases.
103
+ * `About <https://scikit-network.readthedocs.io/en/latest/authors.html>`_: Authors, history of the library, how to contribute, index of functions and objects.
104
+
105
+ Citing
106
+ ------
107
+
108
+ If you want to cite scikit-network, please refer to the publication in
109
+ the `Journal of Machine Learning Research <https://jmlr.org>`_:
110
+
111
+ .. code::
112
+
113
+ @article{JMLR:v21:20-412,
114
+ author = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
115
+ title = {Scikit-network: Graph Analysis in Python},
116
+ journal = {Journal of Machine Learning Research},
117
+ year = {2020},
118
+ volume = {21},
119
+ number = {185},
120
+ pages = {1-6},
121
+ url = {http://jmlr.org/papers/v21/20-412.html}
122
+ }
@@ -1,3 +1,5 @@
1
+ scikit_network-0.33.3.dist-info/licenses/AUTHORS.rst,sha256=_GVYaZmiOIOk8o_2X2dGicyCy-1seStrLAZdsk8zKEI,966
2
+ scikit_network-0.33.3.dist-info/licenses/LICENSE,sha256=BJ1Hth1QjBmjIfHcp1sVxlkEqHYM58Vn5bcpYcggMZE,1656
1
3
  sknetwork/__init__.py,sha256=qVhfMlfW4ek8wa9mv2zIyb_BiMWl5twz8457vyHTAEg,554
2
4
  sknetwork/base.py,sha256=_63mkwqXFDke_0ve9DIZJiMHboMYqBONa7B08gao440,2018
3
5
  sknetwork/log.py,sha256=qDR-dnlzJC0ETlotPAy_IbLiQPgu8Vn90mgkqfvT5W0,462
@@ -7,13 +9,13 @@ sknetwork/test_log.py,sha256=ucX3w138eDyD0Wnpk9QEsPoQgAPTJNPy9twzMf5TjQ8,334
7
9
  sknetwork/classification/__init__.py,sha256=QoS3fTnCZ0nFdlDkEphEYqj1NDEf23_aqsfP0G4zLMM,483
8
10
  sknetwork/classification/base.py,sha256=a6JczKf23arkC4Xx6rUEI0gLFAPoyPXKTXCdhV6_bWI,4432
9
11
  sknetwork/classification/base_rank.py,sha256=BChHu6sDkdq_M6coJsC3hac3HWPE2lholi3g97J6lWw,4655
10
- sknetwork/classification/diffusion.py,sha256=WPNeSya95g3X3wEG_X-7aTIvAoBFIGQcXHMts58i1ts,5698
11
- sknetwork/classification/knn.py,sha256=OHKNzFQlSPtkdi8Ih7HgiIh2fn6fv0T7-Eu66CsdBHg,5472
12
- sknetwork/classification/metrics.py,sha256=S_Ze1gqsC9KMZs2K81BDtxRpsv6YvwEss3-v-ekdqmM,7011
13
- sknetwork/classification/pagerank.py,sha256=Nvmj-Y1YFXQxCZpcUhXfKlc6S5BebnIkJZ8DRsyzDTs,2652
14
- sknetwork/classification/propagation.py,sha256=jH5UOM2JkjW-1oxBLx7NaceOwKDBw0hiYKp415Hc8q4,5945
15
- sknetwork/classification/vote.cp39-win_amd64.pyd,sha256=0attXwO5fM1gQInDFgli8Xk7KWSjJX5D4ZWJg5ZNzaE,157184
16
- sknetwork/classification/vote.cpp,sha256=3XvHCgPlMgRdRWEkw9uDk8-HgtPc5__bNdXxb_7oCwU,1023080
12
+ sknetwork/classification/diffusion.py,sha256=YcPTJKZDw9xraZSWraxIBh8x0RmOD1ANsg2lseotQXY,5705
13
+ sknetwork/classification/knn.py,sha256=RIlLqksGOWLCAhgQ3X8KqCVD6Qcj9C0Tgrz4spk_LDE,5479
14
+ sknetwork/classification/metrics.py,sha256=BY3RPwnFCCX3HYmHJiZtNWSzKPtVTACUVX3u1TMGe2c,7032
15
+ sknetwork/classification/pagerank.py,sha256=GTbTSplrDoxpKb-LZmjibEHPgjeicGInCBEOI_bwVu4,2659
16
+ sknetwork/classification/propagation.py,sha256=soL5zmSIohmJw-song-2liwXuPB40N0_R4w6W1-tlIE,5952
17
+ sknetwork/classification/vote.cp39-win_amd64.pyd,sha256=PJac2CjOq3znaLkayzO-W7YXbyWAAHki5geEpjrb7W0,157184
18
+ sknetwork/classification/vote.cpp,sha256=jM-bikQUBdH0OB_WphpiPNtTjuxU6PJR1GP9BLiUlKE,1020487
17
19
  sknetwork/classification/vote.pyx,sha256=-mNsL96aaA1UL-qfeUgZlbdvKZUK9R4MLmq0BNFWVKA,1640
18
20
  sknetwork/classification/tests/__init__.py,sha256=Per0oy1Frnm5jB7dnpod1g_xbgYhqkNteWQV5cemcH0,32
19
21
  sknetwork/classification/tests/test_API.py,sha256=WV5cY8yhTHBHYRbDE3InZ4v-agymxLPMKxa2NqjbWZo,1154
@@ -26,21 +28,21 @@ sknetwork/clustering/__init__.py,sha256=Ju06e1zwMUfOn_1soTOlxJJu1F5u9VNxFXWN8TTP
26
28
  sknetwork/clustering/base.py,sha256=LsH_wlP19lDnIZWVUXbKwSta05ii5dWMqS-J-AkY6HE,6104
27
29
  sknetwork/clustering/kcenters.py,sha256=MKmsR7zWTITeEAqFyRDKpglU7yZZEjR8H0TLJXdDjtw,8942
28
30
  sknetwork/clustering/leiden.py,sha256=THQdYR_DhGF8xJLTEiSmd8cx0Y70ms5nZ1emnoqcxBg,9924
29
- sknetwork/clustering/leiden_core.cp39-win_amd64.pyd,sha256=xK91ZXqXJNHO5bi7y4BqHxRcejXTARG9YRN6WeyT7G0,201728
30
- sknetwork/clustering/leiden_core.cpp,sha256=WTVPqmwEQ02Qt5l1Yt8RvuIe5qsWfRDFHrbfj1Woc4g,1205016
31
+ sknetwork/clustering/leiden_core.cp39-win_amd64.pyd,sha256=t4ZrCbniacSPkQu10uVsDJ0NhROzHqgDuVuPBO3d6qU,201216
32
+ sknetwork/clustering/leiden_core.cpp,sha256=vaNg634358G3-IyR6mpqGBcQEf3vkihQaflSBONymF8,1202497
31
33
  sknetwork/clustering/leiden_core.pyx,sha256=kEppO0iSs0UqK3ybtSVIHRSojJ4KNfe6pUNo9sShh7E,4424
32
- sknetwork/clustering/louvain.py,sha256=BjBlOw70MVgZHwpIWYo4CmLlzC58jALSTqbRE7x8z4I,11111
33
- sknetwork/clustering/louvain_core.cp39-win_amd64.pyd,sha256=KVtWS5N6K9vV21TJdNAtXSW73c_QfHw83nJm_LMJuRA,197632
34
- sknetwork/clustering/louvain_core.cpp,sha256=TRftGdCtrOj9PtEFQGGi1nGaJn20b_KoOrW6LSB55Bw,1185580
34
+ sknetwork/clustering/louvain.py,sha256=RMIPR068mPNkB4SzubwMhKZSUepnaju8ORr-SHUKe2g,11111
35
+ sknetwork/clustering/louvain_core.cp39-win_amd64.pyd,sha256=c07ALsPFO1dWEzrvvahda1_f909h80Cp_wRFdUT9aWg,197120
36
+ sknetwork/clustering/louvain_core.cpp,sha256=d6k5jT1vlv7_4_OEd9-uSuGaNIkprbf0MrY2xuJKl24,1183061
35
37
  sknetwork/clustering/louvain_core.pyx,sha256=2KPnBhBeSlIxmoScZW7jwsmVxJyAyHQs3pcH9AfBM2Y,4213
36
- sknetwork/clustering/metrics.py,sha256=ptLLtUpFtdKLZ4lcx_MN-PpOrzv--PWhAcEFoFghccM,3151
38
+ sknetwork/clustering/metrics.py,sha256=yBvtH97m66OTkgZnwcoMYFReMFdi9di37NDyMn56CxU,3158
37
39
  sknetwork/clustering/postprocess.py,sha256=uynPXvjYXiFNShxGZyLkpIwRl5nIlIVEm-auMCNZA0o,2105
38
40
  sknetwork/clustering/propagation_clustering.py,sha256=s-Y7EQEqGM2wdl1zAOQzfmy-8LGab1eB00u_AOkYzl0,3885
39
41
  sknetwork/clustering/tests/__init__.py,sha256=tCA27jkL3pdstka9XWQEA1NbC6ZqL7Rf-1V1UcySCEE,28
40
42
  sknetwork/clustering/tests/test_API.py,sha256=PKxuTh49IyKzwkLfgFAmJiuBhWJQBEYtNxzOEYgc5uE,1566
41
43
  sknetwork/clustering/tests/test_kcenters.py,sha256=BWvcTo8iNDFbKawVrRe8N6q4ujS0Co4MHpkT-P8_A9U,2037
42
44
  sknetwork/clustering/tests/test_leiden.py,sha256=oEN0Dz9popCEYE-qqEdmTEqqr3af9TB3WDmRNWYAidE,1189
43
- sknetwork/clustering/tests/test_louvain.py,sha256=rYZLrb8Ld_F2KDCos5RP9-1szkVXHnXLWHd4SbOwvAY,4807
45
+ sknetwork/clustering/tests/test_louvain.py,sha256=rnW-WGa9YA0u__JdXlODqbqAgPadeMlyu40VZ1ri29c,5006
44
46
  sknetwork/clustering/tests/test_metrics.py,sha256=ZTr4T-d-g6kQJinei9VH6Teb_rOScmj5XLG168EI5LQ,1868
45
47
  sknetwork/clustering/tests/test_postprocess.py,sha256=41l4coS_1CHqGOCnnucqxU6UkXws89YVMjef162ZTEQ,1417
46
48
  sknetwork/data/__init__.py,sha256=qt9xm8RuVQqJQct_A2aCytKjTkMmegnPaRFcHqFbyDY,261
@@ -78,9 +80,9 @@ sknetwork/embedding/tests/test_svd.py,sha256=LXIDhxUDxJBLnVnq567yVqs0eTJFPqBhzri
78
80
  sknetwork/gnn/__init__.py,sha256=808PNZEYNHZrIBpKqPzAMKES8yhN6QXEVUWkZVJIJWI,529
79
81
  sknetwork/gnn/activation.py,sha256=rhvEXgrIix4nZ9I3WYZ0e1MID_DESCCC_XlVcOa4Wpo,3677
80
82
  sknetwork/gnn/base.py,sha256=qHnKsfsUW4LIdwm3vzfAahBjweCkIDRzk62i4piNBuc,5889
81
- sknetwork/gnn/base_activation.py,sha256=Kxs_d4aPOpMRXZMBAW7WKkA_uWLXRM7XM-JqE4nFHhc,2395
83
+ sknetwork/gnn/base_activation.py,sha256=EuSOOFqaKNZyHzx2wHeaAUyR19qmsKjPLq5Z9VozTG4,2397
82
84
  sknetwork/gnn/base_layer.py,sha256=_zL_SyVYvhxch9N1i44Qkgar_M5xVRz7JcxqUjVwDjY,4057
83
- sknetwork/gnn/gnn_classifier.py,sha256=RmqgyRgKkdU1Bht5i390xulBzLkuvFwqFkUnZGx7r9c,12915
85
+ sknetwork/gnn/gnn_classifier.py,sha256=OSy6BURNFW1-5AmwPnJYYcrAc_eH1pS_99pu8V2vyy4,12922
84
86
  sknetwork/gnn/layer.py,sha256=JBNFABBgGtMeXdQaS8wGnsSd7Jqs18jbIguITTOCQRE,5679
85
87
  sknetwork/gnn/loss.py,sha256=FwULPjbUe3OFIhIBKJoNfdYX41ALckX2ANKvC69yyoI,5342
86
88
  sknetwork/gnn/neighbor_sampler.py,sha256=l5OkylbRQsDpmkfeHAaSA7gHi5l7OUKtL4YvH-YTMWM,1929
@@ -99,9 +101,9 @@ sknetwork/gnn/tests/test_utils.py,sha256=MJvOXEWouRiIVaPM76W0hizt3jFb-1_BXHLd1zk
99
101
  sknetwork/hierarchy/__init__.py,sha256=-2-y7iBVQRanXLSl9kY8VASJVqx37trYmVNcz74QsUc,418
100
102
  sknetwork/hierarchy/base.py,sha256=DvVUNgJgfaFlWyl4QbdHmp-VldPMFLPx9irt74kpyrU,2789
101
103
  sknetwork/hierarchy/louvain_hierarchy.py,sha256=MoO0mlvuFUFNYssl1zOAWlcyg-2OLzJI6VFPjIS1FiA,10118
102
- sknetwork/hierarchy/metrics.py,sha256=5WZLsSLYKifLIQ9aPrXyzvPtTFN5ROSlNivhV-n9VuY,8280
103
- sknetwork/hierarchy/paris.cp39-win_amd64.pyd,sha256=3X5c7LHsX56UEjA1ThqriaQ3TgWeY0LW5tm6VTSLhgo,226816
104
- sknetwork/hierarchy/paris.cpp,sha256=vYkuRGN-BYv411ym2455Y_8qnnqvh_k5-rh2dT5wYSI,1472503
104
+ sknetwork/hierarchy/metrics.py,sha256=UzfTDFZExTn6j3wQQ_FXF7frHGNvfS5mpj1ZtlR63iQ,8301
105
+ sknetwork/hierarchy/paris.cp39-win_amd64.pyd,sha256=6i9Gp2KaLoFV68SCeIjxHTBpgkja04KHYF1WXVCvrjM,227840
106
+ sknetwork/hierarchy/paris.cpp,sha256=mrd3oTIJffMuZSKwT6zEjaZLT8lLS-gN1d7J3EcDOfU,1494366
105
107
  sknetwork/hierarchy/paris.pyx,sha256=CSr7eJBGPQoHff3czQpDuaW3V16ZsgdnVoFQ_rkFWBk,12129
106
108
  sknetwork/hierarchy/postprocess.py,sha256=81Hj7eCHvU_2mdq0FTeYuZAqk4FIudZfZbvU39_sqyM,12422
107
109
  sknetwork/hierarchy/tests/__init__.py,sha256=jRlC4pbyKuxaiXvByYK-4ix7DwYWxpjwKNvSXZ7rQJE,27
@@ -111,8 +113,8 @@ sknetwork/hierarchy/tests/test_metrics.py,sha256=sljCTCIXNvanQ3Bf-g0x0jyjXs05EBl
111
113
  sknetwork/hierarchy/tests/test_postprocess.py,sha256=Bm1_XU6OgwZr_1B28IA5m_HZRqI7GMwlTLpzkXux__Y,2266
112
114
  sknetwork/linalg/__init__.py,sha256=COkAHs_EsxWzd_tHl6qq8laEfSsjoMuWVx3VbNFEgzU,542
113
115
  sknetwork/linalg/basics.py,sha256=WDlylrkBTCQpjXGtzs8kshJYfpo0h3uM8TMhHmnAnnM,1179
114
- sknetwork/linalg/diteration.cp39-win_amd64.pyd,sha256=R_98AOBum-W_xsfAIw_xe2Jyo49F24Z6KhUm0W6TDMs,147456
115
- sknetwork/linalg/diteration.cpp,sha256=zX2-YycRqpq2eEmijzkFuM9aA0M9nxxf11Ax5Gvse6k,1019890
116
+ sknetwork/linalg/diteration.cp39-win_amd64.pyd,sha256=szToydUoTom6siYa3d_4z5tusy-5Pp19IBxwhi7xLOM,146944
117
+ sknetwork/linalg/diteration.cpp,sha256=YJZAXEB_5c197uUnA2WOQQfR5A0Cn_WujGOOoBfPrn8,1017297
116
118
  sknetwork/linalg/diteration.pyx,sha256=1r7a1usqftiBNTPOAwHFQPK__nZ67J-87wQLM25GqEU,1431
117
119
  sknetwork/linalg/eig_solver.py,sha256=lMqxTg66_T-LsgGqc9oo_ngxpTceekavnCFOANWEpPA,2793
118
120
  sknetwork/linalg/laplacian.py,sha256=qifd-8iltcTKCQW-7fG5z3XfwVrrrCeaBqbViBQCLf0,416
@@ -120,10 +122,10 @@ sknetwork/linalg/normalizer.py,sha256=Z0-paMHwp51aY_ssCP2RfXNVQqTFA9gsIHfy-fhG5Q
120
122
  sknetwork/linalg/operators.py,sha256=nNTtdI_I0HEhnpHOxUYRHmEzUDcz9CbwjDc5eEKzlNQ,7657
121
123
  sknetwork/linalg/polynome.py,sha256=qnIhfpRk26JMinuNCrZO1EDj5ci65ZLxkKJyhO7HxpE,2201
122
124
  sknetwork/linalg/ppr_solver.py,sha256=D7LUMQgFAtnGhh8pxpKrISH1H9d5MknFpHib8bPA5x4,6703
123
- sknetwork/linalg/push.cp39-win_amd64.pyd,sha256=WIS0rDozRZmDk2LPOEohAOOQib8SNXanzDm9nDZNNEc,165376
124
- sknetwork/linalg/push.cpp,sha256=_a7JhhX0vQE1EhZ62zvbpPb5rKDagdnX89xtkZyQnPE,1156787
125
+ sknetwork/linalg/push.cp39-win_amd64.pyd,sha256=_CeSTdN4tCZglQ0hdRFYGkVMKpjMzKYcIj0lPdVDASo,165376
126
+ sknetwork/linalg/push.cpp,sha256=fpfxXBUvzYlBCxR10SOQmDPfbhOH39ZO8deu1S1dv5E,1178473
125
127
  sknetwork/linalg/push.pyx,sha256=79ycseJ1jOznzc1_KSexTGy_0dlX1jQVnf_WI8Ufvgc,2429
126
- sknetwork/linalg/sparse_lowrank.py,sha256=-6-cNRs6tpiNqA8ah3mBKWap3Nh9GQHTFIarPjIiC7U,5170
128
+ sknetwork/linalg/sparse_lowrank.py,sha256=rfyg9lg4HmWdce3eFi1IPaTPsd2SAWR_pAdqDOyvYyA,5177
127
129
  sknetwork/linalg/svd_solver.py,sha256=XxP4AyKQInBQN3imcbtahXseZ4YyKj4ZI2UAJK1mDs4,2772
128
130
  sknetwork/linalg/tests/__init__.py,sha256=i2cO6oXoryXdEJ-HdSFZsY7LZdNit7W3GC8J8LAUMU4,24
129
131
  sknetwork/linalg/tests/test_eig.py,sha256=c_BpjP_S7xCwYgk2N7kaFfsjV1-nfUYCu3Rys07bPeo,1548
@@ -151,8 +153,8 @@ sknetwork/path/tests/test_search.py,sha256=wJzwbbe86axJRmausJp-KcsNTB9n7kpo6YBd7
151
153
  sknetwork/path/tests/test_shortest_path.py,sha256=zeM-qgbTs3i29gvF568otKOKgv_pbryV_yGefThLEIY,1422
152
154
  sknetwork/ranking/__init__.py,sha256=lbkUSZ3alkLK0xGiUx5ptPqhQKIjIKK80uPk0KymJPc,356
153
155
  sknetwork/ranking/base.py,sha256=W3gw9j_ikhyETr3dpEYo9RINUUHlSn8Dez_eAnlIsDg,1573
154
- sknetwork/ranking/betweenness.cp39-win_amd64.pyd,sha256=uZ8dSy2HhO-UMGMR0OyeWl1eW3idGAGl0qfIOFghST8,74752
155
- sknetwork/ranking/betweenness.cpp,sha256=6OQrJJYyq7Ba7rCmvDVdcC-YyGzNTB1mVdM55a-WIrk,380616
156
+ sknetwork/ranking/betweenness.cp39-win_amd64.pyd,sha256=biFC7XLb_jM-Eye6wPEuhGr3DrBxfb7N5x41kUAYMlU,75776
157
+ sknetwork/ranking/betweenness.cpp,sha256=TsWysfuoqrYpbvCECurmXzOfn-3fdtkAEU1ynugzDdU,379044
156
158
  sknetwork/ranking/betweenness.pyx,sha256=fe5_gwRQ0TaFi_0-vUGfy6XC5kW5un5xly7-xVDgxrU,3184
157
159
  sknetwork/ranking/closeness.py,sha256=CvdAaqsM8HvAi6zGCuLcVF0BUu9n9UPBz_YxZhFF_sM,2932
158
160
  sknetwork/ranking/hits.py,sha256=uhGJH2C0U9hLsVRutI6M1ulbEIM7L6dCeYqiAhtTD9A,2855
@@ -173,24 +175,24 @@ sknetwork/regression/tests/__init__.py,sha256=GvqvsSMbqMYwRmWw4VrZntwccz1jOPqrqu
173
175
  sknetwork/regression/tests/test_API.py,sha256=7x_n8bG8hUcJVRYDbdC6GvPmwW5cE7HmASlu5SHnwFI,1056
174
176
  sknetwork/regression/tests/test_diffusion.py,sha256=_ivBfsfmRQyiFChMS8N1J7HoJDhZtKdeydBIu7SuSvU,2117
175
177
  sknetwork/topology/__init__.py,sha256=Ho06JPdSeiy5sq-Cv3e9y4AiFVMUQ_RUNUDDpKegWnM,542
176
- sknetwork/topology/cliques.cp39-win_amd64.pyd,sha256=2hOtZmCEC3cA9dkKg0weU75yMsrcOnT7L7rPMKvHlG8,186368
177
- sknetwork/topology/cliques.cpp,sha256=AuIbIJg8O1Dq77fy69Qr2slR5wthrB4mohPuJL1j6MI,1223582
178
+ sknetwork/topology/cliques.cp39-win_amd64.pyd,sha256=TKsrfi9yv9DH_IzSfbmpf_cXZ8A2hWhu6Sn_g_Mw5wE,186368
179
+ sknetwork/topology/cliques.cpp,sha256=Eb7CyX4Dr48QuZ3Bqr88yFCNrOckHRmKS_G0yS87fg4,1245341
178
180
  sknetwork/topology/cliques.pyx,sha256=y6Ee5oaX7IdVhXXjSOazqT5dYo4gSTQ8Mq0u1Abg0vw,4659
179
- sknetwork/topology/core.cp39-win_amd64.pyd,sha256=iWolxUSFutEUMoTADIR7Q9xFTkNMsizNgav9Z6s6Cdc,156672
180
- sknetwork/topology/core.cpp,sha256=jj7E1c67E65ccw-Ts_6QdPPyR8QIZ3FePVsvjoVcTbg,1132865
181
+ sknetwork/topology/core.cp39-win_amd64.pyd,sha256=Su6EsDPbxqCsb79XEVNkvgYB_qn1ka63vvy1suE3TKE,157184
182
+ sknetwork/topology/core.cpp,sha256=8FBnCtuQ527Eb39f89x734hsutJHMVNcZmgRTDEJurI,1154556
181
183
  sknetwork/topology/core.pyx,sha256=0PO4HnOYivjrFY1NMlXHd7wscu0R5Fg-Toj3YVRwXDo,2555
182
- sknetwork/topology/cycles.py,sha256=EgVtANHvY-MBcIe3yRVaBYzz1amsiV6GfuDEMIO3Kl0,9246
183
- sknetwork/topology/minheap.cp39-win_amd64.pyd,sha256=7IGqlJplPox-qu9IBJ-rcS9gL7FdJSSXzm4172K56uI,134656
184
- sknetwork/topology/minheap.cpp,sha256=YJHIv7zPKiL4r4GexZcGnU6A13pGu4QsFMdOcKccPnA,1016262
184
+ sknetwork/topology/cycles.py,sha256=HGDPC042PDKwf4SOa1ryR3Ooq_8xKqQZw7xWMHPdB8Q,9238
185
+ sknetwork/topology/minheap.cp39-win_amd64.pyd,sha256=Xkpg8KTH-KkL8FKMl9Z0J5xPc7pU3-Hy70R_Zmfeino,134656
186
+ sknetwork/topology/minheap.cpp,sha256=GsKUv7vnHU_jRFRxmp4bnfFWW4gMwDA_73ng-2fEFRM,1013739
185
187
  sknetwork/topology/minheap.pxd,sha256=AHeBNN8wGzT429K6AyhbrFUoBkWVwbkyUIY6TkeJ80g,584
186
188
  sknetwork/topology/minheap.pyx,sha256=KOmjjlljgkGUJNL8PQ6WaNzx-Ro84QoSve_8baDN1B0,3419
187
189
  sknetwork/topology/structure.py,sha256=28mSnrukLU_GDil8e5ouLZ9PuoQyJ0UmQ4WgMu9Wzew,7479
188
- sknetwork/topology/triangles.cp39-win_amd64.pyd,sha256=01xwaUZafAS4hBLhYP9c4yuO-uYMxbw1Qm4HNywIqmg,60416
189
- sknetwork/topology/triangles.cpp,sha256=t-ixPvaku_VWclQD3f5qWDzFG6ltyLfhCLQyPc0WJNE,354316
190
+ sknetwork/topology/triangles.cp39-win_amd64.pyd,sha256=ZWeiXhNMdxF3mhV3Xz2E23eOkS9hj5oa1XjymaviDAM,59904
191
+ sknetwork/topology/triangles.cpp,sha256=w_1Qj_5lqUxOqJwMrhMHQzvoRE41eCf5us0bN1KyNyg,352722
190
192
  sknetwork/topology/triangles.pyx,sha256=q_f23ZidyizvR9P4X4OIX8o8bAZZTtV7tnjXqmyYZuY,4500
191
193
  sknetwork/topology/weisfeiler_lehman.py,sha256=U5b5RoTFtqBeFwkuBXs4g0Px2UWRFePyneu-tfgnY_I,4441
192
- sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd,sha256=aU379Kqs0hAgXKwm5k6Qc-TAzmW1srD6QovgAjEPBwo,156672
193
- sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=tUPW6EiP44seR-oLmXmQKxpGwHu9t-FC9cVoG_x0dBc,1027132
194
+ sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd,sha256=IcHjVdiMShOo4L3joWmqZ5Wt9HLCK_IJWS5598pEKCo,157184
195
+ sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=Mrnmm0uBo0qdOoYNJ4RnrtyRB1E5tyMwwgjhf83iW_w,1024539
194
196
  sknetwork/topology/weisfeiler_lehman_core.pyx,sha256=lpUV1BpxtedsGBfOl19b8OFXCIbyaAA4ZYlW6BzSxbw,3148
195
197
  sknetwork/topology/tests/__init__.py,sha256=84T-xv8JCFeA9D7Rxw9gy3_dNAoE8CY1k1pYcuG8K3s,26
196
198
  sknetwork/topology/tests/test_cliques.py,sha256=vdRMDmF8AKkIWE-LnU2yGzk1wzwzq9PdggpeS-8wfRw,866
@@ -216,13 +218,11 @@ sknetwork/utils/tests/test_values.py,sha256=K3ctTXpSy9fwiHnpFVlHX5KeTd2wNF4kbFiT
216
218
  sknetwork/visualization/__init__.py,sha256=Ww8O1hby1xf_mtRgFftc9srMzvbFgWOzj_khKkqq9Mg,220
217
219
  sknetwork/visualization/colors.py,sha256=NhyMQeetfH16khnJD2gD_uZJkBD3JQDV0K3Jzacamqw,2543
218
220
  sknetwork/visualization/dendrograms.py,sha256=HtubynuGsJ5b7bD5I8dIKL5UqhqynmqOhw_wJt6VGUA,10178
219
- sknetwork/visualization/graphs.py,sha256=vLsuL2AUyrc8B5nxM2K713QPRjf7i1PRaoRXYbY44L4,42215
221
+ sknetwork/visualization/graphs.py,sha256=eh13BapGK3VdczrgPROcdpyOJUcjTkFcx-uGK5V4kCU,42233
220
222
  sknetwork/visualization/tests/__init__.py,sha256=hrso2pNVzMWn4D2pRyWA_xAMib-xacKjm-rf91MyGGk,31
221
223
  sknetwork/visualization/tests/test_dendrograms.py,sha256=e0u3qL9SlWlrQiVAeCVXxq7P6-mU0GaCz3FBu6cm_HA,2519
222
224
  sknetwork/visualization/tests/test_graphs.py,sha256=FPZcgGj9asTjOvtkXpENYjeE8xtwh1ES4XYWcYe56Jo,9597
223
- scikit_network-0.33.0.dist-info/AUTHORS.rst,sha256=_GVYaZmiOIOk8o_2X2dGicyCy-1seStrLAZdsk8zKEI,966
224
- scikit_network-0.33.0.dist-info/LICENSE,sha256=BJ1Hth1QjBmjIfHcp1sVxlkEqHYM58Vn5bcpYcggMZE,1656
225
- scikit_network-0.33.0.dist-info/METADATA,sha256=PzTdCbvlCrvHqifMwdHv1PYO6hV3Z5SlhJFXu883PgU,14992
226
- scikit_network-0.33.0.dist-info/WHEEL,sha256=IOiaTK2n2qfpcM4gTpfQdKcMwVKZrIq4mlPd3WeRras,99
227
- scikit_network-0.33.0.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
228
- scikit_network-0.33.0.dist-info/RECORD,,
225
+ scikit_network-0.33.3.dist-info/METADATA,sha256=c2RiM9z5AZxEyN5mwZUWHjhb7N3RuNhvIHjmWqhltJI,4593
226
+ scikit_network-0.33.3.dist-info/WHEEL,sha256=RXjBKdSUIP0YC6JPJG7bc0sl_UrYP7JdTYfEui8v8Eo,99
227
+ scikit_network-0.33.3.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
228
+ scikit_network-0.33.3.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.3.0)
2
+ Generator: setuptools (80.4.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp39-cp39-win_amd64
5
5
 
@@ -55,7 +55,7 @@ class DiffusionClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = diffusion.fit_predict(adjacency, labels)
58
- >>> round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.97
60
60
 
61
61
  References
@@ -55,7 +55,7 @@ class NNClassifier(BaseClassifier):
55
55
  >>> labels_true = graph.labels
56
56
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
57
57
  >>> labels_pred = classifier.fit_predict(adjacency, labels)
58
- >>> round(np.mean(labels_pred == labels_true), 2)
58
+ >>> float(round(np.mean(labels_pred == labels_true), 2))
59
59
  0.82
60
60
  """
61
61
  def __init__(self, n_neighbors: int = 3, embedding_method: Optional[BaseEmbedding] = None, normalize: bool = True):
@@ -34,7 +34,7 @@ def get_accuracy_score(labels_true: np.ndarray, labels_pred: np.ndarray) -> floa
34
34
  >>> import numpy as np
35
35
  >>> labels_true = np.array([0, 0, 1, 1])
36
36
  >>> labels_pred = np.array([0, 0, 0, 1])
37
- >>> round(get_accuracy_score(labels_true, labels_pred), 2)
37
+ >>> float(round(get_accuracy_score(labels_true, labels_pred), 2))
38
38
  0.75
39
39
  """
40
40
  check_vector_format(labels_true, labels_pred)
@@ -105,7 +105,7 @@ def get_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, return_precis
105
105
  >>> import numpy as np
106
106
  >>> labels_true = np.array([0, 0, 1, 1])
107
107
  >>> labels_pred = np.array([0, 0, 0, 1])
108
- >>> round(get_f1_score(labels_true, labels_pred), 2)
108
+ >>> float(round(get_f1_score(labels_true, labels_pred), 2))
109
109
  0.67
110
110
  """
111
111
  values = set(labels_true[labels_true >= 0]) | set(labels_pred[labels_pred >= 0])
@@ -188,7 +188,7 @@ def get_average_f1_score(labels_true: np.ndarray, labels_pred: np.ndarray, avera
188
188
  >>> import numpy as np
189
189
  >>> labels_true = np.array([0, 0, 1, 1])
190
190
  >>> labels_pred = np.array([0, 0, 0, 1])
191
- >>> round(get_average_f1_score(labels_true, labels_pred), 2)
191
+ >>> float(round(get_average_f1_score(labels_true, labels_pred), 2))
192
192
  0.73
193
193
  """
194
194
  if average == 'micro':
@@ -51,7 +51,7 @@ class PageRankClassifier(RankClassifier):
51
51
  >>> labels_true = graph.labels
52
52
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
53
53
  >>> labels_pred = pagerank.fit_predict(adjacency, labels)
54
- >>> np.round(np.mean(labels_pred == labels_true), 2)
54
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
55
55
  0.97
56
56
 
57
57
  References
@@ -58,7 +58,7 @@ class Propagation(BaseClassifier):
58
58
  >>> labels_true = graph.labels
59
59
  >>> labels = {0: labels_true[0], 33: labels_true[33]}
60
60
  >>> labels_pred = propagation.fit_predict(adjacency, labels)
61
- >>> np.round(np.mean(labels_pred == labels_true), 2)
61
+ >>> float(np.round(np.mean(labels_pred == labels_true), 2))
62
62
  0.94
63
63
 
64
64
  References