scikit-network 0.33.0__cp39-cp39-win_amd64.whl → 0.33.3__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (45) hide show
  1. scikit_network-0.33.3.dist-info/METADATA +122 -0
  2. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/RECORD +44 -44
  3. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/WHEEL +1 -1
  4. sknetwork/classification/diffusion.py +1 -1
  5. sknetwork/classification/knn.py +1 -1
  6. sknetwork/classification/metrics.py +3 -3
  7. sknetwork/classification/pagerank.py +1 -1
  8. sknetwork/classification/propagation.py +1 -1
  9. sknetwork/classification/vote.cp39-win_amd64.pyd +0 -0
  10. sknetwork/classification/vote.cpp +686 -679
  11. sknetwork/clustering/leiden_core.cp39-win_amd64.pyd +0 -0
  12. sknetwork/clustering/leiden_core.cpp +715 -704
  13. sknetwork/clustering/louvain.py +3 -3
  14. sknetwork/clustering/louvain_core.cp39-win_amd64.pyd +0 -0
  15. sknetwork/clustering/louvain_core.cpp +715 -704
  16. sknetwork/clustering/metrics.py +1 -1
  17. sknetwork/clustering/tests/test_louvain.py +6 -0
  18. sknetwork/gnn/base_activation.py +1 -0
  19. sknetwork/gnn/gnn_classifier.py +1 -1
  20. sknetwork/hierarchy/metrics.py +3 -3
  21. sknetwork/hierarchy/paris.cp39-win_amd64.pyd +0 -0
  22. sknetwork/hierarchy/paris.cpp +1777 -1155
  23. sknetwork/linalg/diteration.cp39-win_amd64.pyd +0 -0
  24. sknetwork/linalg/diteration.cpp +686 -679
  25. sknetwork/linalg/push.cp39-win_amd64.pyd +0 -0
  26. sknetwork/linalg/push.cpp +1771 -1155
  27. sknetwork/linalg/sparse_lowrank.py +1 -1
  28. sknetwork/ranking/betweenness.cp39-win_amd64.pyd +0 -0
  29. sknetwork/ranking/betweenness.cpp +565 -559
  30. sknetwork/topology/cliques.cp39-win_amd64.pyd +0 -0
  31. sknetwork/topology/cliques.cpp +1731 -1112
  32. sknetwork/topology/core.cp39-win_amd64.pyd +0 -0
  33. sknetwork/topology/core.cpp +1757 -1141
  34. sknetwork/topology/cycles.py +2 -2
  35. sknetwork/topology/minheap.cp39-win_amd64.pyd +0 -0
  36. sknetwork/topology/minheap.cpp +689 -679
  37. sknetwork/topology/triangles.cp39-win_amd64.pyd +0 -0
  38. sknetwork/topology/triangles.cpp +439 -434
  39. sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd +0 -0
  40. sknetwork/topology/weisfeiler_lehman_core.cpp +686 -679
  41. sknetwork/visualization/graphs.py +1 -1
  42. scikit_network-0.33.0.dist-info/METADATA +0 -517
  43. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/AUTHORS.rst +0 -0
  44. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/LICENSE +0 -0
  45. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/top_level.txt +0 -0
@@ -166,7 +166,7 @@ def get_node_colors(n: int, labels: Optional[Iterable], scores: Optional[Iterabl
166
166
  elif scores is not None:
167
167
  colors_score = COOLWARM_RGB.copy()
168
168
  n_colors = colors_score.shape[0]
169
- colors_score_svg = np.array(['rgb' + str(tuple(colors_score[i])) for i in range(n_colors)])
169
+ colors_score_svg = np.array(['rgb' + str(tuple([int(c) for c in colors_score[i]])) for i in range(n_colors)])
170
170
  if isinstance(scores, dict):
171
171
  keys = np.array(list(scores.keys()))
172
172
  values = np.array(list(scores.values()))
@@ -1,517 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: scikit-network
3
- Version: 0.33.0
4
- Summary: Graph algorithms
5
- Home-page: https://github.com/sknetwork-team/scikit-network
6
- Author: Scikit-network team
7
- Author-email: bonald@enst.fr
8
- License: BSD license
9
- Keywords: sknetwork
10
- Classifier: Development Status :: 3 - Alpha
11
- Classifier: Intended Audience :: Developers
12
- Classifier: Intended Audience :: Information Technology
13
- Classifier: Intended Audience :: Education
14
- Classifier: Intended Audience :: Science/Research
15
- Classifier: License :: OSI Approved :: BSD License
16
- Classifier: Natural Language :: English
17
- Classifier: Programming Language :: Cython
18
- Classifier: Programming Language :: Python :: 3.9
19
- Classifier: Programming Language :: Python :: 3.10
20
- Classifier: Programming Language :: Python :: 3.11
21
- Classifier: Programming Language :: Python :: 3.12
22
- Requires-Python: >=3.9
23
- Description-Content-Type: text/x-rst
24
- License-File: LICENSE
25
- License-File: AUTHORS.rst
26
- Requires-Dist: numpy >=1.22.4
27
- Requires-Dist: scipy >=1.7.3
28
-
29
- .. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
30
- :align: right
31
- :width: 150px
32
- :alt: logo sknetwork
33
-
34
-
35
-
36
- .. image:: https://img.shields.io/pypi/v/scikit-network.svg
37
- :target: https://pypi.python.org/pypi/scikit-network
38
-
39
- .. image:: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg
40
- :target: https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml
41
-
42
- .. image:: https://readthedocs.org/projects/scikit-network/badge/?version=latest
43
- :target: https://scikit-network.readthedocs.io/en/latest/?badge=latest
44
- :alt: Documentation Status
45
-
46
- .. image:: https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg
47
- :target: https://codecov.io/gh/sknetwork-team/scikit-network
48
-
49
- .. image:: https://img.shields.io/pypi/pyversions/scikit-network.svg
50
- :target: https://pypi.python.org/pypi/scikit-network
51
-
52
- Free software library in Python for machine learning on graphs:
53
-
54
- * Memory-efficient representation of graphs as sparse matrices in scipy_ format
55
- * Fast algorithms
56
- * Simple API inspired by scikit-learn_
57
-
58
- .. _scipy: https://www.scipy.org
59
- .. _scikit-learn: https://scikit-learn.org/
60
-
61
- Resources
62
- ---------
63
-
64
- * Free software: BSD license
65
- * GitHub: https://github.com/sknetwork-team/scikit-network
66
- * Documentation: https://scikit-network.readthedocs.io
67
-
68
- Quick start
69
- -----------
70
-
71
- Install scikit-network:
72
-
73
- .. code-block:: console
74
-
75
- $ pip install scikit-network
76
-
77
- Import scikit-network::
78
-
79
- import sknetwork
80
-
81
- Overview
82
- --------
83
-
84
- An overview of the package is presented in this `notebook <https://scikit-network.readthedocs.io/en/latest/tutorials/overview/index.html>`_.
85
-
86
- Documentation
87
- -------------
88
-
89
- The documentation is structured as follows:
90
-
91
- * `Getting started <https://scikit-network.readthedocs.io/en/latest/first_steps.html>`_: First steps to install, import and use scikit-network.
92
- * `User manual <https://scikit-network.readthedocs.io/en/latest/reference/data.html>`_: Description of each function and object of scikit-network.
93
- * `Tutorials <https://scikit-network.readthedocs.io/en/latest/tutorials/data/index.html>`_: Application of the main tools to toy examples.
94
- * `Examples <https://scikit-network.readthedocs.io/en/latest/use_cases/text.html>`_: Examples combining several tools on specific use cases.
95
- * `About <https://scikit-network.readthedocs.io/en/latest/authors.html>`_: Authors, history of the library, how to contribute, index of functions and objects.
96
-
97
- Citing
98
- ------
99
-
100
- If you want to cite scikit-network, please refer to the publication in
101
- the `Journal of Machine Learning Research <https://jmlr.org>`_:
102
-
103
- .. code::
104
-
105
- @article{JMLR:v21:20-412,
106
- author = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
107
- title = {Scikit-network: Graph Analysis in Python},
108
- journal = {Journal of Machine Learning Research},
109
- year = {2020},
110
- volume = {21},
111
- number = {185},
112
- pages = {1-6},
113
- url = {http://jmlr.org/papers/v21/20-412.html}
114
- }
115
-
116
-
117
- =======
118
- History
119
- =======
120
-
121
- 0.33.0 (2024-07-16)
122
- -------------------
123
-
124
- * Add Python 3.12
125
- * Drop Python 3.8
126
-
127
- 0.32.1 (2024-04-02)
128
- -------------------
129
-
130
- * Fix documentation
131
- * Fix wheel upload
132
-
133
- 0.32.0 (2024-03-29)
134
- -------------------
135
-
136
- * Add Leiden clustering algorithm
137
- * Add k-center clustering algorithm
138
- * Add functions to detect and break cycles
139
- * Add damping factor in diffusion
140
- * Fix F1 scores
141
- * Remove hierarchical Louvain embedding
142
- * Get clustering coefficient for directed graphs
143
-
144
- 0.31.0 (2023-05-22)
145
- -------------------
146
-
147
- * Add Python 3.11
148
- * Add set_param / get_param to algorithms, suggested by Franz Kiraly (#557)
149
- * Compute shortest paths by matrix-vector multiplications
150
- * Make tools on topology (cliques, code-decomposition, etc.) as functions
151
- * Rename parameter membership -> probs for soft classification / clustering
152
- * Add softmax to classification by diffusion
153
-
154
- 0.30.0 (2023-04-12)
155
- -------------------
156
-
157
- * Add overview
158
- * Add predict_proba method to classification and clustering
159
-
160
- 0.29.0 (2023-03-30)
161
- -------------------
162
-
163
- * Change API for clustering (predict / transform)
164
- * Change API for classification (seeds -> labels)
165
- * Change API for ranking (seeds -> weights)
166
- * Change API for GNN (same as classifiers)
167
- * Remove first order methods for link prediction
168
- * Add nearest neighbor methods for link prediction
169
- * Add KNN classifier without embedding
170
- * Add TF-IDF
171
- * Solve security issues by upgrade of wheels and ipython
172
-
173
- 0.28.3 (2023-01-06)
174
- -------------------
175
-
176
- * Drop Python 3.7
177
- * Update Numpy requirement
178
-
179
- 0.28.2 (2022-11-30)
180
- -------------------
181
-
182
- * Allow Python 3.7, by Thomas Bonald
183
- * Fix input format for KMeans, issue #548 raised by @sgerbe
184
-
185
- 0.28.1 (2022-11-22)
186
- -------------------
187
-
188
- * Fix sampling for GraphSage, by Simon Delarue
189
- * Fix leakage on GNNs, by Thomas Bonald and Simon Delarue
190
- * Update tutorial on GNNs with node inference, by Thomas Bonald and Simon Delarue
191
-
192
- 0.28.0 (2022-11-16)
193
- -------------------
194
-
195
- * Update Graph neural networks (e.g., add GraphSAGE), by Simon Delarue
196
- * Clean data home folder (set one folder per dataset collection, NetSet, Konect, ...), by Thomas Bonald
197
- * Improve classification by diffusion, setting -1 to unreached nodes, by Thomas Bonald
198
- * Fix bug on modularity, raised by Alessandro (#543)
199
- * Clean up source distribution, by Nicholas Bollweg (#544)
200
- * Safe file extraction, by TrellixVulnTeam
201
- * Fix bug on dendrogram cut, raised by Nina Sachdev (#546)
202
- * Add a function to aggregate a graph per label, by Thomas Bonald
203
-
204
- 0.27.1 (2022-07-29)
205
- -------------------
206
-
207
- * Fix documentation
208
-
209
- 0.27.0 (2022-07-29)
210
- -------------------
211
-
212
- * Drop Python 3.7
213
- * Update NumPy and SciPy requirements
214
- * Add graph neural networks, by Simon Delarue (#533)
215
- * Add fit_predict / fit_transform where appropriate, by Thomas Bonald
216
- * Add Louvain hierarchical clustering (bottom-up), by Thomas Bonald
217
- * Improve classification by diffusion (vectorial), by Thomas Bonald
218
- * Add F1 scores for classification, by Thomas Bonald
219
- * Add cosine similarity metric for embeddings, by Thomas Bonald
220
- * Add acyclic test for undirected graphs, by Thomas Bonald
221
- * Update algorithms to accept all sparse matrix formats of scipy, by Thomas Bonald
222
-
223
- 0.26.0 (2022-05-03)
224
- -------------------
225
-
226
- * Add module on regression, by Thomas Bonald
227
- * Add connected components for bipartite graphs, by Thomas Bonald
228
- * Update functions for loading graphs, by Thomas Bonald
229
- * Fix shuffling nodes in Louvain (issue #521), by Thomas Bonald
230
- * Add radius and eccentricity metrics, by Henry Carscadden (#522)
231
- * Add new use case (recommendation), by Thomas Bonald
232
-
233
- 0.25.0 (2022-03-15)
234
- -------------------
235
-
236
- * Add use cases as notebooks, by Thomas Bonald
237
- * Add list/dict of neighbors for building graphs, by Thomas Bonald
238
- * Update Spectral embedding, by Thomas Bonald
239
- * Update Block models, by Thomas Bonald (#507)
240
- * Fix Tree sampling divergence, by Thomas Bonald (#505)
241
- * Allow parsers to return weighted graphs, by Thomas Bonald
242
- * Add Apple Silicon and Python 3.10 wheels, by Quentin Lutz (#503)
243
-
244
- 0.24.0 (2021-07-27)
245
- -------------------
246
-
247
- * Merge Bi* algorithms (e.g., BiLouvain -> Louvain) by Thomas Bonald (#490)
248
- * Transition from Travis to Github actions by Quentin Lutz (#488)
249
- * Added sdist build for conda recipes
250
- * Added name position for graph visualization
251
- * Removed randomized algorithms
252
-
253
- 0.23.1 (2021-04-24)
254
- -------------------
255
-
256
- * Updated NumPy and SciPy requirements
257
-
258
- 0.23.0 (2021-04-23)
259
- -------------------
260
-
261
- * New push-based implementation of PageRank by Wenzhuo Zhao (#475)
262
- * Fixed cut_balanced in hierarchy
263
- * Dropped Python 3.6, wheels for Python 3.9 (switched to manylinux2014)
264
-
265
- 0.22.0 (2021-02-09)
266
- -------------------
267
-
268
- * Added hierarchical Louvain embedding by Quentin Lutz (#468)
269
- * Doc fixes and updates
270
- * Requirements update
271
-
272
- 0.21.0 (2021-01-29)
273
- -------------------
274
-
275
- * Added random projection embedding by Thomas Bonald (#461)
276
- * Added PCA-based embedding by Thomas Bonald (#461)
277
- * Added 64-bit support for Louvain by Flávio Juvenal (#450)
278
- * Added verbosity options for dataset loaders
279
- * Fixed Louvain embedding
280
- * Various doc and tutorial updates
281
-
282
- 0.20.0 (2020-10-20)
283
- -------------------
284
-
285
- * Added betweenness algorithm by Tiphaine Viard (#444)
286
-
287
- 0.19.3 (2020-09-17)
288
- -------------------
289
-
290
- * Added Louvain-based embedding
291
- * Fix documentation with new dataset website URLs
292
-
293
- 0.19.2 (2020-09-14)
294
- -------------------
295
-
296
- * Fix documentation with new dataset website URLs.
297
-
298
- 0.19.1 (2020-09-09)
299
- -------------------
300
-
301
- * Fix visualization features
302
- * Fix documentation
303
-
304
- 0.19.0 (2020-09-02)
305
- -------------------
306
-
307
- * Added link prediction module
308
- * Added pie-node visualization of memberships
309
- * Added Weisfeiler-Lehman graph coloring by Pierre Pebereau and Alexis Barreaux (#394)
310
- * Added Force Atlas 2 graph layout by Victor Manach and Rémi Jaylet (#396)
311
- * Added triangle listing algorithm for directed and undirected graph by Julien Simonnet and Yohann Robert (#376)
312
- * Added k-core decomposition algorithm by Julien Simonnet and Yohann Robert (#377)
313
- * Added k-clique listing algorithm by Julien Simonnet and Yohann Robert (#377)
314
- * Added color map option in visualization module
315
- * Updated NetSet URL
316
-
317
- 0.18.0 (2020-06-08)
318
- -------------------
319
-
320
- * Added Katz centrality
321
- * Refactor connectivity module into paths and topology
322
- * Refactor Diffusion into Dirichlet
323
- * Added parsers for adjacency list TSV and GraphML
324
- * Added shortest paths and distances
325
-
326
- 0.17.0 (2020-05-07)
327
- -------------------
328
-
329
- * Add clustering by label propagation
330
- * Add models
331
- * Add function to build graph from edge list
332
- * Change a parameter in SVG visualization functions
333
- * Minor corrections
334
-
335
- 0.16.0 (2020-04-30)
336
- -------------------
337
-
338
- * Refactor basics module into connectivity
339
- * Cython version for label propagation
340
- * Minor corrections
341
-
342
- 0.15.2 (2020-04-24)
343
- -------------------
344
-
345
- * Clarified requirements
346
- * Minor corrections
347
-
348
- 0.15.1 (2020-04-21)
349
- -------------------
350
-
351
- * Added OpenMP support for all platforms
352
-
353
- 0.15.0 (2020-04-20)
354
- -------------------
355
-
356
- * Updated ranking module : new pagerank solver, new HITS params, post-processing
357
- * Polynomes in linear algebra
358
- * Added meta.name attribute for Bunch
359
- * Minor corrections
360
-
361
- 0.14.0 (2020-04-17)
362
- -------------------
363
-
364
- * Added spring layout in embedding
365
- * Added label propagation in classification
366
- * Added save / load functions in data
367
- * Added display edges parameter in svg graph exports
368
- * Corrected typos in documentation
369
-
370
- 0.13.3 (2020-04-13)
371
- -------------------
372
-
373
- * Minor bug
374
-
375
- 0.13.2 (2020-04-13)
376
- -------------------
377
-
378
- * Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)
379
- * Documentation update (SVG dendrograms, tutorial updates)
380
-
381
- 0.13.1a (2020-04-09)
382
- --------------------
383
-
384
- * Minor bug
385
-
386
- 0.13.0a (2020-04-09)
387
- --------------------
388
-
389
- * Changed from Numba to Cython for better performance
390
- * Added visualization module
391
- * Added k-nearest neighbors classifier
392
- * Added Louvain hierarchy
393
- * Added predict method in embedding
394
- * Added soft clustering to clustering algorithms
395
- * Added soft classification to classification algorithms
396
- * Added graphs in data module
397
- * Various API change
398
-
399
- 0.12.1 (2020-01-20)
400
- -------------------
401
-
402
- * Added heat kernel based node classifier
403
- * Updated loaders for WikiLinks
404
- * Fixed file-related issues for Windows
405
-
406
- 0.12.0 (2019-12-10)
407
- -------------------
408
-
409
- * Added VerboseMixin for verbosity features
410
- * Added Loaders for WikiLinks & Konect databases
411
-
412
- 0.11.0 (2019-11-28)
413
- -------------------
414
-
415
- * sknetwork: new API for bipartite graphs
416
- * new module: Soft node classification
417
- * new module: Node classification
418
- * new module: data (merge toy graphs + loader)
419
- * clustering: Spectral Clustering
420
- * ranking: new algorithms
421
- * utils: K-neighbors
422
- * hierarchy: Spectral WardDense
423
- * data: loader (Vital Wikipedia)
424
-
425
- 0.10.1 (2019-08-26)
426
- -------------------
427
-
428
- * Minor bug
429
-
430
- 0.10.0 (2019-08-26)
431
- -------------------
432
-
433
- * Clustering (and related metrics) for directed and bipartite graphs
434
- * Hierarchical clustering (and related metrics) for directed and bipartite graphs
435
- * Fix bugs on embedding algorithms
436
-
437
-
438
- 0.9.0 (2019-07-24)
439
- ------------------
440
-
441
- * Change parser output
442
- * Fix bugs in ranking algorithms (zero-degree nodes)
443
- * Add notebooks
444
- * Import algorithms from scipy (shortest path, connected components, bfs/dfs)
445
- * Change SVD embedding (now in decreasing order of singular values)
446
-
447
- 0.8.2 (2019-07-19)
448
- ------------------
449
-
450
- * Minor bug
451
-
452
- 0.8.1 (2019-07-18)
453
- ------------------
454
-
455
- * Added diffusion ranking
456
- * Minor fixes
457
- * Minor doc tweaking
458
-
459
- 0.8.0 (2019-07-17)
460
- ------------------
461
-
462
- * Changed Louvain, BiLouvain, Paris and PageRank APIs
463
- * Changed PageRank method
464
- * Documentation overhaul
465
- * Improved Jupyter tutorials
466
-
467
- 0.7.1 (2019-07-04)
468
- ------------------
469
-
470
- * Added Algorithm class for nicer repr of some classes
471
- * Added Jupyter notebooks as tutorials in the docs
472
- * Minor fixes
473
-
474
- 0.7.0 (2019-06-24)
475
- ------------------
476
-
477
- * Updated PageRank
478
- * Added tests for Numba versioning
479
-
480
- 0.6.1 (2019-06-19)
481
- ------------------
482
-
483
- * Minor bug
484
-
485
- 0.6.0 (2019-06-19)
486
- ------------------
487
-
488
- * Largest connected component
489
- * Simplex projection
490
- * Sparse Low Rank Decomposition
491
- * Numba support for Paris
492
- * Various fixes and updates
493
-
494
- 0.5.0 (2019-04-18)
495
- ------------------
496
-
497
- * Unified Louvain.
498
-
499
- 0.4.0 (2019-04-03)
500
- ------------------
501
-
502
- * Added Louvain for directed graphs and ComboLouvain for bipartite graphs.
503
-
504
- 0.3.0 (2019-03-29)
505
- ------------------
506
-
507
- * Updated clustering module and documentation.
508
-
509
- 0.2.0 (2019-03-21)
510
- ------------------
511
-
512
- * First real release on PyPI.
513
-
514
- 0.1.1 (2018-05-29)
515
- ------------------
516
-
517
- * First release on PyPI.