scikit-network 0.33.0__cp39-cp39-win_amd64.whl → 0.33.3__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (45) hide show
  1. scikit_network-0.33.3.dist-info/METADATA +122 -0
  2. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/RECORD +44 -44
  3. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/WHEEL +1 -1
  4. sknetwork/classification/diffusion.py +1 -1
  5. sknetwork/classification/knn.py +1 -1
  6. sknetwork/classification/metrics.py +3 -3
  7. sknetwork/classification/pagerank.py +1 -1
  8. sknetwork/classification/propagation.py +1 -1
  9. sknetwork/classification/vote.cp39-win_amd64.pyd +0 -0
  10. sknetwork/classification/vote.cpp +686 -679
  11. sknetwork/clustering/leiden_core.cp39-win_amd64.pyd +0 -0
  12. sknetwork/clustering/leiden_core.cpp +715 -704
  13. sknetwork/clustering/louvain.py +3 -3
  14. sknetwork/clustering/louvain_core.cp39-win_amd64.pyd +0 -0
  15. sknetwork/clustering/louvain_core.cpp +715 -704
  16. sknetwork/clustering/metrics.py +1 -1
  17. sknetwork/clustering/tests/test_louvain.py +6 -0
  18. sknetwork/gnn/base_activation.py +1 -0
  19. sknetwork/gnn/gnn_classifier.py +1 -1
  20. sknetwork/hierarchy/metrics.py +3 -3
  21. sknetwork/hierarchy/paris.cp39-win_amd64.pyd +0 -0
  22. sknetwork/hierarchy/paris.cpp +1777 -1155
  23. sknetwork/linalg/diteration.cp39-win_amd64.pyd +0 -0
  24. sknetwork/linalg/diteration.cpp +686 -679
  25. sknetwork/linalg/push.cp39-win_amd64.pyd +0 -0
  26. sknetwork/linalg/push.cpp +1771 -1155
  27. sknetwork/linalg/sparse_lowrank.py +1 -1
  28. sknetwork/ranking/betweenness.cp39-win_amd64.pyd +0 -0
  29. sknetwork/ranking/betweenness.cpp +565 -559
  30. sknetwork/topology/cliques.cp39-win_amd64.pyd +0 -0
  31. sknetwork/topology/cliques.cpp +1731 -1112
  32. sknetwork/topology/core.cp39-win_amd64.pyd +0 -0
  33. sknetwork/topology/core.cpp +1757 -1141
  34. sknetwork/topology/cycles.py +2 -2
  35. sknetwork/topology/minheap.cp39-win_amd64.pyd +0 -0
  36. sknetwork/topology/minheap.cpp +689 -679
  37. sknetwork/topology/triangles.cp39-win_amd64.pyd +0 -0
  38. sknetwork/topology/triangles.cpp +439 -434
  39. sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd +0 -0
  40. sknetwork/topology/weisfeiler_lehman_core.cpp +686 -679
  41. sknetwork/visualization/graphs.py +1 -1
  42. scikit_network-0.33.0.dist-info/METADATA +0 -517
  43. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/AUTHORS.rst +0 -0
  44. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info/licenses}/LICENSE +0 -0
  45. {scikit_network-0.33.0.dist-info → scikit_network-0.33.3.dist-info}/top_level.txt +0 -0
@@ -14,8 +14,8 @@ from scipy import sparse
14
14
  from sknetwork.clustering.base import BaseClustering
15
15
  from sknetwork.clustering.louvain_core import optimize_core
16
16
  from sknetwork.clustering.postprocess import reindex_labels
17
- from sknetwork.utils.check import check_random_state, get_probs
18
- from sknetwork.utils.format import check_format, get_adjacency, directed2undirected
17
+ from sknetwork.utils.check import check_format, check_random_state, get_probs
18
+ from sknetwork.utils.format import get_adjacency, directed2undirected
19
19
  from sknetwork.utils.membership import get_membership
20
20
  from sknetwork.log import Log
21
21
 
@@ -193,7 +193,6 @@ class Louvain(BaseClustering, Log):
193
193
  self._init_vars()
194
194
 
195
195
  # adjacency matrix
196
- input_matrix = check_format(input_matrix)
197
196
  force_directed = self.modularity == 'dugue'
198
197
  adjacency, self.bipartite = get_adjacency(input_matrix, force_directed=force_directed,
199
198
  force_bipartite=force_bipartite)
@@ -266,6 +265,7 @@ class Louvain(BaseClustering, Log):
266
265
  -------
267
266
  self : :class:`Louvain`
268
267
  """
268
+ input_matrix = check_format(input_matrix)
269
269
  adjacency, out_weights, in_weights, membership, index = self._pre_processing(input_matrix, force_bipartite)
270
270
  n = adjacency.shape[0]
271
271
  count = 0