scikit-learn-intelex 2024.4.0__py310-none-win_amd64.whl → 2024.6.0__py310-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (113) hide show
  1. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +8 -1
  2. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +2 -4
  3. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -0
  4. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
  5. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/conftest.py +11 -1
  6. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +317 -0
  7. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
  8. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +68 -13
  9. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +6 -4
  10. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +46 -1
  11. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +114 -22
  12. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +13 -3
  13. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -2
  14. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +5 -3
  15. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +464 -0
  16. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +27 -9
  17. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +13 -15
  18. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
  19. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +2 -2
  20. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +24 -0
  21. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +2 -2
  22. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
  23. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
  24. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +228 -0
  25. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  26. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +330 -0
  27. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +40 -4
  28. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +31 -2
  29. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +40 -4
  30. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +31 -2
  31. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +70 -29
  32. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +54 -0
  33. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +290 -0
  34. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +4 -0
  35. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +22 -10
  36. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +283 -0
  37. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +1 -1
  38. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
  39. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA +230 -230
  40. scikit_learn_intelex-2024.6.0.dist-info/RECORD +108 -0
  41. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/WHEEL +1 -1
  42. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
  43. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -185
  44. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -227
  45. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
  46. scikit_learn_intelex-2024.4.0.dist-info/RECORD +0 -101
  47. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  48. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  49. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  50. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  51. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
  52. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  53. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
  54. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  55. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  56. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  57. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  58. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  59. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  60. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  61. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  62. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  63. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  64. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  65. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
  66. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  67. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  68. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  69. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  70. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  71. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  72. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  73. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  74. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  75. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  76. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  77. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +0 -0
  78. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
  79. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
  80. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
  81. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  83. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
  84. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
  86. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
  87. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
  89. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  90. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  91. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  92. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  93. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  94. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  95. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  96. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  97. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  98. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  99. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  100. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  101. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  102. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  103. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  104. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  105. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  106. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  107. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
  108. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  109. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  110. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  111. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  112. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt +0 -0
  113. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt +0 -0
@@ -1,130 +0,0 @@
1
- # ===============================================================================
2
- # Copyright 2024 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ===============================================================================
16
-
17
- import numpy as np
18
- from sklearn.utils import check_array, gen_batches
19
-
20
- from daal4py.sklearn._n_jobs_support import control_n_jobs
21
- from onedal._device_offload import support_usm_ndarray
22
- from onedal.covariance import (
23
- IncrementalEmpiricalCovariance as onedal_IncrementalEmpiricalCovariance,
24
- )
25
-
26
-
27
- @control_n_jobs(decorated_methods=["partial_fit"])
28
- class IncrementalEmpiricalCovariance:
29
- """
30
- Incremental estimator for covariance.
31
- Allows to compute empirical covariance estimated by maximum
32
- likelihood method if data are splitted into batches.
33
-
34
- Parameters
35
- ----------
36
- batch_size : int, default=None
37
- The number of samples to use for each batch. Only used when calling
38
- ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
39
- is inferred from the data and set to ``5 * n_features``, to provide a
40
- balance between approximation accuracy and memory consumption.
41
-
42
- Attributes
43
- ----------
44
- location_ : ndarray of shape (n_features,)
45
- Estimated location, i.e. the estimated mean.
46
-
47
- covariance_ : ndarray of shape (n_features, n_features)
48
- Estimated covariance matrix
49
- """
50
-
51
- _onedal_incremental_covariance = staticmethod(onedal_IncrementalEmpiricalCovariance)
52
-
53
- def __init__(self, batch_size=None):
54
- self._need_to_finalize = False # If True then finalize compute should
55
- # be called to obtain covariance_ or location_ from partial compute data
56
- self.batch_size = batch_size
57
-
58
- def _onedal_finalize_fit(self):
59
- assert hasattr(self, "_onedal_estimator")
60
- self._onedal_estimator.finalize_fit()
61
- self._need_to_finalize = False
62
-
63
- def _onedal_partial_fit(self, X, queue):
64
- onedal_params = {
65
- "method": "dense",
66
- "bias": True,
67
- }
68
- if not hasattr(self, "_onedal_estimator"):
69
- self._onedal_estimator = self._onedal_incremental_covariance(**onedal_params)
70
- self._onedal_estimator.partial_fit(X, queue)
71
- self._need_to_finalize = True
72
-
73
- @property
74
- def covariance_(self):
75
- if self._need_to_finalize:
76
- self._onedal_finalize_fit()
77
- return self._onedal_estimator.covariance_
78
-
79
- @property
80
- def location_(self):
81
- if self._need_to_finalize:
82
- self._onedal_finalize_fit()
83
- return self._onedal_estimator.location_
84
-
85
- @support_usm_ndarray()
86
- def partial_fit(self, X, queue=None):
87
- """
88
- Incremental fit with X. All of X is processed as a single batch.
89
-
90
- Parameters
91
- ----------
92
- X : array-like of shape (n_samples, n_features)
93
- Training data, where `n_samples` is the number of samples and
94
- `n_features` is the number of features.
95
-
96
- Returns
97
- -------
98
- self : object
99
- Returns the instance itself.
100
- """
101
- X = check_array(X, dtype=[np.float64, np.float32])
102
- self._onedal_partial_fit(X, queue)
103
- return self
104
-
105
- def fit(self, X, queue=None):
106
- """
107
- Fit the model with X, using minibatches of size batch_size.
108
-
109
- Parameters
110
- ----------
111
- X : array-like of shape (n_samples, n_features)
112
- Training data, where `n_samples` is the number of samples and
113
- `n_features` is the number of features.
114
-
115
- Returns
116
- -------
117
- self : object
118
- Returns the instance itself.
119
- """
120
- n_samples, n_features = X.shape
121
- if self.batch_size is None:
122
- batch_size_ = 5 * n_features
123
- else:
124
- batch_size_ = self.batch_size
125
- for batch in gen_batches(n_samples, batch_size_):
126
- X_batch = X[batch]
127
- self.partial_fit(X_batch, queue=queue)
128
-
129
- self._onedal_finalize_fit()
130
- return self
@@ -1,185 +0,0 @@
1
- # ==============================================================================
2
- # Copyright 2021 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ==============================================================================
16
-
17
- from abc import ABC
18
-
19
- import numpy as np
20
- from sklearn.calibration import CalibratedClassifierCV
21
- from sklearn.model_selection import StratifiedKFold
22
- from sklearn.preprocessing import LabelEncoder
23
-
24
- from daal4py.sklearn._utils import sklearn_check_version
25
- from onedal.utils import _column_or_1d
26
-
27
- from .._utils import PatchingConditionsChain
28
-
29
-
30
- def get_dual_coef(self):
31
- return self.dual_coef_
32
-
33
-
34
- def set_dual_coef(self, value):
35
- self.dual_coef_ = value
36
- if hasattr(self, "_onedal_estimator"):
37
- self._onedal_estimator.dual_coef_ = value
38
- if not self._is_in_fit:
39
- del self._onedal_estimator._onedal_model
40
-
41
-
42
- def get_intercept(self):
43
- return self._intercept_
44
-
45
-
46
- def set_intercept(self, value):
47
- self._intercept_ = value
48
- if hasattr(self, "_onedal_estimator"):
49
- self._onedal_estimator.intercept_ = value
50
- if not self._is_in_fit:
51
- del self._onedal_estimator._onedal_model
52
-
53
-
54
- class BaseSVM(ABC):
55
- def _onedal_gpu_supported(self, method_name, *data):
56
- patching_status = PatchingConditionsChain(f"sklearn.{method_name}")
57
- patching_status.and_conditions([(False, "GPU offloading is not supported.")])
58
- return patching_status
59
-
60
- def _onedal_cpu_supported(self, method_name, *data):
61
- class_name = self.__class__.__name__
62
- patching_status = PatchingConditionsChain(
63
- f"sklearn.svm.{class_name}.{method_name}"
64
- )
65
- if method_name == "fit":
66
- patching_status.and_conditions(
67
- [
68
- (
69
- self.kernel in ["linear", "rbf", "poly", "sigmoid"],
70
- f'Kernel is "{self.kernel}" while '
71
- '"linear", "rbf", "poly" and "sigmoid" are only supported.',
72
- )
73
- ]
74
- )
75
- return patching_status
76
- inference_methods = (
77
- ["predict"]
78
- if class_name.endswith("R")
79
- else ["predict", "predict_proba", "decision_function", "score"]
80
- )
81
- if method_name in inference_methods:
82
- patching_status.and_conditions(
83
- [(hasattr(self, "_onedal_estimator"), "oneDAL model was not trained.")]
84
- )
85
- return patching_status
86
- raise RuntimeError(f"Unknown method {method_name} in {class_name}")
87
-
88
-
89
- class BaseSVC(BaseSVM):
90
- def _compute_balanced_class_weight(self, y):
91
- y_ = _column_or_1d(y)
92
- classes, _ = np.unique(y_, return_inverse=True)
93
-
94
- le = LabelEncoder()
95
- y_ind = le.fit_transform(y_)
96
- if not all(np.in1d(classes, le.classes_)):
97
- raise ValueError("classes should have valid labels that are in y")
98
-
99
- recip_freq = len(y_) / (len(le.classes_) * np.bincount(y_ind).astype(np.float64))
100
- return recip_freq[le.transform(classes)]
101
-
102
- def _fit_proba(self, X, y, sample_weight=None, queue=None):
103
- params = self.get_params()
104
- params["probability"] = False
105
- params["decision_function_shape"] = "ovr"
106
- clf_base = self.__class__(**params)
107
-
108
- try:
109
- n_splits = 5
110
- n_jobs = n_splits if queue is None or queue.sycl_device.is_cpu else 1
111
- cv = StratifiedKFold(
112
- n_splits=n_splits, shuffle=True, random_state=self.random_state
113
- )
114
- self.clf_prob = CalibratedClassifierCV(
115
- clf_base, ensemble=False, cv=cv, method="sigmoid", n_jobs=n_jobs
116
- )
117
- self.clf_prob.fit(X, y, sample_weight)
118
- except ValueError:
119
- clf_base = clf_base.fit(X, y, sample_weight)
120
- self.clf_prob = CalibratedClassifierCV(
121
- clf_base, cv="prefit", method="sigmoid"
122
- )
123
- self.clf_prob.fit(X, y, sample_weight)
124
-
125
- def _save_attributes(self):
126
- self.support_vectors_ = self._onedal_estimator.support_vectors_
127
- self.n_features_in_ = self._onedal_estimator.n_features_in_
128
- self.fit_status_ = 0
129
- self.dual_coef_ = self._onedal_estimator.dual_coef_
130
- self.shape_fit_ = self._onedal_estimator.class_weight_
131
- self.classes_ = self._onedal_estimator.classes_
132
- self.class_weight_ = self._onedal_estimator.class_weight_
133
- self.support_ = self._onedal_estimator.support_
134
-
135
- self._intercept_ = self._onedal_estimator.intercept_
136
- self._n_support = self._onedal_estimator._n_support
137
- self._sparse = False
138
- self._gamma = self._onedal_estimator._gamma
139
- if self.probability:
140
- length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
141
- self._probA = np.zeros(length)
142
- self._probB = np.zeros(length)
143
- else:
144
- self._probA = np.empty(0)
145
- self._probB = np.empty(0)
146
-
147
- self._dual_coef_ = property(get_dual_coef, set_dual_coef)
148
- self.intercept_ = property(get_intercept, set_intercept)
149
-
150
- self._is_in_fit = True
151
- self._dual_coef_ = self.dual_coef_
152
- self.intercept_ = self._intercept_
153
- self._is_in_fit = False
154
-
155
- if sklearn_check_version("1.1"):
156
- length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
157
- self.n_iter_ = np.full((length,), self._onedal_estimator.n_iter_)
158
-
159
-
160
- class BaseSVR(BaseSVM):
161
- def _save_attributes(self):
162
- self.support_vectors_ = self._onedal_estimator.support_vectors_
163
- self.n_features_in_ = self._onedal_estimator.n_features_in_
164
- self.fit_status_ = 0
165
- self.dual_coef_ = self._onedal_estimator.dual_coef_
166
- self.shape_fit_ = self._onedal_estimator.shape_fit_
167
- self.support_ = self._onedal_estimator.support_
168
-
169
- self._intercept_ = self._onedal_estimator.intercept_
170
- self._n_support = [self.support_vectors_.shape[0]]
171
- self._sparse = False
172
- self._gamma = self._onedal_estimator._gamma
173
- self._probA = None
174
- self._probB = None
175
-
176
- self._dual_coef_ = property(get_dual_coef, set_dual_coef)
177
- self.intercept_ = property(get_intercept, set_intercept)
178
-
179
- self._is_in_fit = True
180
- self._dual_coef_ = self.dual_coef_
181
- self.intercept_ = self._intercept_
182
- self._is_in_fit = False
183
-
184
- if sklearn_check_version("1.1"):
185
- self.n_iter_ = self._onedal_estimator.n_iter_
@@ -1,227 +0,0 @@
1
- # ==============================================================================
2
- # Copyright 2021 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ==============================================================================
16
-
17
-
18
- import gc
19
- import logging
20
- import tracemalloc
21
- import types
22
-
23
- import numpy as np
24
- import pandas as pd
25
- import pytest
26
- from scipy.stats import pearsonr
27
- from sklearn.base import BaseEstimator
28
- from sklearn.datasets import make_classification
29
- from sklearn.model_selection import KFold
30
-
31
- from sklearnex import get_patch_map
32
- from sklearnex.metrics import pairwise_distances, roc_auc_score
33
- from sklearnex.model_selection import train_test_split
34
- from sklearnex.utils import _assert_all_finite
35
-
36
-
37
- class TrainTestSplitEstimator:
38
- def __init__(self):
39
- pass
40
-
41
- def fit(self, x, y):
42
- train_test_split(x, y)
43
-
44
-
45
- class FiniteCheckEstimator:
46
- def __init__(self):
47
- pass
48
-
49
- def fit(self, x, y):
50
- _assert_all_finite(x)
51
- _assert_all_finite(y)
52
-
53
-
54
- class PairwiseDistancesEstimator:
55
- def fit(self, x, y):
56
- pairwise_distances(x, metric=self.metric)
57
-
58
-
59
- class CosineDistancesEstimator(PairwiseDistancesEstimator):
60
- def __init__(self):
61
- self.metric = "cosine"
62
-
63
-
64
- class CorrelationDistancesEstimator(PairwiseDistancesEstimator):
65
- def __init__(self):
66
- self.metric = "correlation"
67
-
68
-
69
- class RocAucEstimator:
70
- def __init__(self):
71
- pass
72
-
73
- def fit(self, x, y):
74
- print(roc_auc_score(y, np.zeros(shape=y.shape, dtype=np.int32)))
75
-
76
-
77
- # add all daal4py estimators enabled in patching (except banned)
78
-
79
-
80
- def get_patched_estimators(ban_list, output_list):
81
- patched_estimators = get_patch_map().values()
82
- for listing in patched_estimators:
83
- estimator, name = listing[0][0][2], listing[0][0][1]
84
- if not isinstance(estimator, types.FunctionType):
85
- if name not in ban_list:
86
- if issubclass(estimator, BaseEstimator):
87
- if hasattr(estimator, "fit"):
88
- output_list.append(estimator)
89
-
90
-
91
- def remove_duplicated_estimators(estimators_list):
92
- estimators_map = {}
93
- for estimator in estimators_list:
94
- full_name = f"{estimator.__module__}.{estimator.__name__}"
95
- estimators_map[full_name] = estimator
96
- return estimators_map.values()
97
-
98
-
99
- BANNED_ESTIMATORS = ("TSNE",) # too slow for using in testing on common data size
100
- estimators = [
101
- TrainTestSplitEstimator,
102
- FiniteCheckEstimator,
103
- CosineDistancesEstimator,
104
- CorrelationDistancesEstimator,
105
- RocAucEstimator,
106
- ]
107
- get_patched_estimators(BANNED_ESTIMATORS, estimators)
108
- estimators = remove_duplicated_estimators(estimators)
109
-
110
-
111
- def ndarray_c(x, y):
112
- return np.ascontiguousarray(x), y
113
-
114
-
115
- def ndarray_f(x, y):
116
- return np.asfortranarray(x), y
117
-
118
-
119
- def dataframe_c(x, y):
120
- return pd.DataFrame(np.ascontiguousarray(x)), pd.Series(y)
121
-
122
-
123
- def dataframe_f(x, y):
124
- return pd.DataFrame(np.asfortranarray(x)), pd.Series(y)
125
-
126
-
127
- data_transforms = [ndarray_c, ndarray_f, dataframe_c, dataframe_f]
128
-
129
- data_shapes = [(1000, 100), (2000, 50)]
130
-
131
- EXTRA_MEMORY_THRESHOLD = 0.15
132
- N_SPLITS = 10
133
-
134
-
135
- def gen_clsf_data(n_samples, n_features):
136
- data, label = make_classification(
137
- n_classes=2, n_samples=n_samples, n_features=n_features, random_state=777
138
- )
139
- return (
140
- data,
141
- label,
142
- data.size * data.dtype.itemsize + label.size * label.dtype.itemsize,
143
- )
144
-
145
-
146
- def split_train_inference(kf, x, y, estimator):
147
- mem_tracks = []
148
- for train_index, test_index in kf.split(x):
149
- if isinstance(x, np.ndarray):
150
- x_train, x_test = x[train_index], x[test_index]
151
- y_train, y_test = y[train_index], y[test_index]
152
- elif isinstance(x, pd.core.frame.DataFrame):
153
- x_train, x_test = x.iloc[train_index], x.iloc[test_index]
154
- y_train, y_test = y.iloc[train_index], y.iloc[test_index]
155
- # TODO: add parameters for all estimators to prevent
156
- # fallback to stock scikit-learn with default parameters
157
-
158
- alg = estimator()
159
- alg.fit(x_train, y_train)
160
- if hasattr(alg, "predict"):
161
- alg.predict(x_test)
162
- elif hasattr(alg, "transform"):
163
- alg.transform(x_test)
164
- elif hasattr(alg, "kneighbors"):
165
- alg.kneighbors(x_test)
166
- del alg, x_train, x_test, y_train, y_test
167
- mem_tracks.append(tracemalloc.get_traced_memory()[0])
168
- return mem_tracks
169
-
170
-
171
- def _kfold_function_template(estimator, data_transform_function, data_shape):
172
- tracemalloc.start()
173
-
174
- n_samples, n_features = data_shape
175
- x, y, data_memory_size = gen_clsf_data(n_samples, n_features)
176
- kf = KFold(n_splits=N_SPLITS)
177
- x, y = data_transform_function(x, y)
178
-
179
- mem_before, _ = tracemalloc.get_traced_memory()
180
- mem_tracks = split_train_inference(kf, x, y, estimator)
181
- mem_iter_diffs = np.array(mem_tracks[1:]) - np.array(mem_tracks[:-1])
182
- mem_incr_mean, mem_incr_std = mem_iter_diffs.mean(), mem_iter_diffs.std()
183
- mem_incr_mean, mem_incr_std = round(mem_incr_mean), round(mem_incr_std)
184
- mem_iter_corr, _ = pearsonr(mem_tracks, list(range(len(mem_tracks))))
185
- if mem_iter_corr > 0.95:
186
- logging.warning(
187
- "Memory usage is steadily increasing with iterations "
188
- "(Pearson correlation coefficient between "
189
- f"memory tracks and iterations is {mem_iter_corr})\n"
190
- "Memory usage increase per iteration: "
191
- f"{mem_incr_mean}±{mem_incr_std} bytes"
192
- )
193
- mem_before_gc, _ = tracemalloc.get_traced_memory()
194
- mem_diff = mem_before_gc - mem_before
195
- message = (
196
- "Size of extra allocated memory {} using garbage collector "
197
- f"is greater than {EXTRA_MEMORY_THRESHOLD * 100}% of input data"
198
- f"\n\tAlgorithm: {estimator.__name__}"
199
- f"\n\tInput data size: {data_memory_size} bytes"
200
- "\n\tExtra allocated memory size: {} bytes"
201
- " / {} %"
202
- )
203
- if mem_diff >= EXTRA_MEMORY_THRESHOLD * data_memory_size:
204
- logging.warning(
205
- message.format(
206
- "before", mem_diff, round((mem_diff) / data_memory_size * 100, 2)
207
- )
208
- )
209
- gc.collect()
210
- mem_after, _ = tracemalloc.get_traced_memory()
211
- tracemalloc.stop()
212
- mem_diff = mem_after - mem_before
213
-
214
- assert mem_diff < EXTRA_MEMORY_THRESHOLD * data_memory_size, message.format(
215
- "after", mem_diff, round((mem_diff) / data_memory_size * 100, 2)
216
- )
217
-
218
-
219
- # disable fallback check as logging impacts memory use
220
-
221
-
222
- @pytest.mark.allow_sklearn_fallback
223
- @pytest.mark.parametrize("data_transform_function", data_transforms)
224
- @pytest.mark.parametrize("estimator", estimators)
225
- @pytest.mark.parametrize("data_shape", data_shapes)
226
- def test_memory_leaks(estimator, data_transform_function, data_shape):
227
- _kfold_function_template(estimator, data_transform_function, data_shape)