scikit-learn-intelex 2024.4.0__py310-none-win_amd64.whl → 2024.6.0__py310-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +8 -1
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +2 -4
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/conftest.py +11 -1
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +317 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +68 -13
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +6 -4
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +46 -1
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +114 -22
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +13 -3
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +5 -3
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +464 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +27 -9
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +13 -15
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +2 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +24 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +2 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +228 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +330 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +40 -4
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +31 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +40 -4
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +31 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +70 -29
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +54 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +290 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +4 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +22 -10
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +283 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +1 -1
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA +230 -230
- scikit_learn_intelex-2024.6.0.dist-info/RECORD +108 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -185
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -227
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- scikit_learn_intelex-2024.4.0.dist-info/RECORD +0 -101
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,200 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_as_numpy,
|
|
23
|
+
_convert_to_dataframe,
|
|
24
|
+
get_dataframes_and_queues,
|
|
25
|
+
)
|
|
26
|
+
from sklearnex.linear_model import IncrementalLinearRegression
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
30
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
31
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
32
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
33
|
+
def test_sklearnex_fit_on_gold_data(dataframe, queue, fit_intercept, macro_block, dtype):
|
|
34
|
+
X = np.array([[1], [2]])
|
|
35
|
+
X = X.astype(dtype=dtype)
|
|
36
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
37
|
+
y = np.array([1, 2])
|
|
38
|
+
y = y.astype(dtype=dtype)
|
|
39
|
+
y_df = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
40
|
+
|
|
41
|
+
inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
|
|
42
|
+
if macro_block is not None:
|
|
43
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
44
|
+
hparams.cpu_macro_block = macro_block
|
|
45
|
+
hparams.gpu_macro_block = macro_block
|
|
46
|
+
inclin.fit(X_df, y_df)
|
|
47
|
+
|
|
48
|
+
y_pred = inclin.predict(X_df)
|
|
49
|
+
|
|
50
|
+
tol = 2e-6 if y_pred.dtype == np.float32 else 1e-7
|
|
51
|
+
assert_allclose(inclin.coef_, [1], atol=tol)
|
|
52
|
+
if fit_intercept:
|
|
53
|
+
assert_allclose(inclin.intercept_, [0], atol=tol)
|
|
54
|
+
assert_allclose(_as_numpy(y_pred), y, atol=tol)
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
58
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
59
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
60
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
61
|
+
def test_sklearnex_partial_fit_on_gold_data(
|
|
62
|
+
dataframe, queue, fit_intercept, macro_block, dtype
|
|
63
|
+
):
|
|
64
|
+
X = np.array([[1], [2], [3], [4]])
|
|
65
|
+
X = X.astype(dtype=dtype)
|
|
66
|
+
y = X + 3
|
|
67
|
+
y = y.astype(dtype=dtype)
|
|
68
|
+
X_split = np.array_split(X, 2)
|
|
69
|
+
y_split = np.array_split(y, 2)
|
|
70
|
+
|
|
71
|
+
inclin = IncrementalLinearRegression()
|
|
72
|
+
if macro_block is not None:
|
|
73
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
74
|
+
hparams.cpu_macro_block = macro_block
|
|
75
|
+
hparams.gpu_macro_block = macro_block
|
|
76
|
+
for i in range(2):
|
|
77
|
+
X_split_df = _convert_to_dataframe(
|
|
78
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
79
|
+
)
|
|
80
|
+
y_split_df = _convert_to_dataframe(
|
|
81
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
82
|
+
)
|
|
83
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
84
|
+
|
|
85
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
86
|
+
y_pred = inclin.predict(X_df)
|
|
87
|
+
|
|
88
|
+
assert inclin.n_features_in_ == 1
|
|
89
|
+
tol = 2e-6 if y_pred.dtype == np.float32 else 1e-7
|
|
90
|
+
assert_allclose(inclin.coef_, [[1]], atol=tol)
|
|
91
|
+
if fit_intercept:
|
|
92
|
+
assert_allclose(inclin.intercept_, 3, atol=tol)
|
|
93
|
+
|
|
94
|
+
assert_allclose(_as_numpy(y_pred), y, atol=tol)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
98
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
99
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
100
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
101
|
+
def test_sklearnex_partial_fit_multitarget_on_gold_data(
|
|
102
|
+
dataframe, queue, fit_intercept, macro_block, dtype
|
|
103
|
+
):
|
|
104
|
+
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
105
|
+
X = X.astype(dtype=dtype)
|
|
106
|
+
y = np.dot(X, [1, 2]) + 3
|
|
107
|
+
y = y.astype(dtype=dtype)
|
|
108
|
+
X_split = np.array_split(X, 2)
|
|
109
|
+
y_split = np.array_split(y, 2)
|
|
110
|
+
|
|
111
|
+
inclin = IncrementalLinearRegression()
|
|
112
|
+
if macro_block is not None:
|
|
113
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
114
|
+
hparams.cpu_macro_block = macro_block
|
|
115
|
+
hparams.gpu_macro_block = macro_block
|
|
116
|
+
for i in range(2):
|
|
117
|
+
X_split_df = _convert_to_dataframe(
|
|
118
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
119
|
+
)
|
|
120
|
+
y_split_df = _convert_to_dataframe(
|
|
121
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
122
|
+
)
|
|
123
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
124
|
+
|
|
125
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
126
|
+
y_pred = inclin.predict(X_df)
|
|
127
|
+
|
|
128
|
+
assert inclin.n_features_in_ == 2
|
|
129
|
+
tol = 7e-6 if y_pred.dtype == np.float32 else 1e-7
|
|
130
|
+
assert_allclose(inclin.coef_, [1.0, 2.0], atol=tol)
|
|
131
|
+
if fit_intercept:
|
|
132
|
+
assert_allclose(inclin.intercept_, 3.0, atol=tol)
|
|
133
|
+
|
|
134
|
+
assert_allclose(_as_numpy(y_pred), y, atol=tol)
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
138
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
139
|
+
@pytest.mark.parametrize("num_samples", [100, 1000])
|
|
140
|
+
@pytest.mark.parametrize("num_features", [5, 10])
|
|
141
|
+
@pytest.mark.parametrize("num_targets", [1, 2])
|
|
142
|
+
@pytest.mark.parametrize("num_blocks", [1, 10])
|
|
143
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
144
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
145
|
+
def test_sklearnex_partial_fit_on_random_data(
|
|
146
|
+
dataframe,
|
|
147
|
+
queue,
|
|
148
|
+
fit_intercept,
|
|
149
|
+
num_samples,
|
|
150
|
+
num_features,
|
|
151
|
+
num_targets,
|
|
152
|
+
num_blocks,
|
|
153
|
+
macro_block,
|
|
154
|
+
dtype,
|
|
155
|
+
):
|
|
156
|
+
seed = 42
|
|
157
|
+
gen = np.random.default_rng(seed)
|
|
158
|
+
intercept = gen.random(size=num_targets, dtype=dtype)
|
|
159
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
160
|
+
|
|
161
|
+
X = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
162
|
+
if fit_intercept:
|
|
163
|
+
y = X @ coef + intercept[np.newaxis, :]
|
|
164
|
+
else:
|
|
165
|
+
y = X @ coef
|
|
166
|
+
|
|
167
|
+
X_split = np.array_split(X, num_blocks)
|
|
168
|
+
y_split = np.array_split(y, num_blocks)
|
|
169
|
+
|
|
170
|
+
inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
|
|
171
|
+
if macro_block is not None:
|
|
172
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
173
|
+
hparams.cpu_macro_block = macro_block
|
|
174
|
+
hparams.gpu_macro_block = macro_block
|
|
175
|
+
for i in range(num_blocks):
|
|
176
|
+
X_split_df = _convert_to_dataframe(
|
|
177
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
178
|
+
)
|
|
179
|
+
y_split_df = _convert_to_dataframe(
|
|
180
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
181
|
+
)
|
|
182
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
183
|
+
|
|
184
|
+
tol = 1e-4 if inclin.coef_.dtype == np.float32 else 1e-7
|
|
185
|
+
assert_allclose(coef, inclin.coef_.T, atol=tol)
|
|
186
|
+
|
|
187
|
+
if fit_intercept:
|
|
188
|
+
assert_allclose(intercept, inclin.intercept_, atol=tol)
|
|
189
|
+
|
|
190
|
+
X_test = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
191
|
+
if fit_intercept:
|
|
192
|
+
expected_y_pred = X_test @ coef + intercept[np.newaxis, :]
|
|
193
|
+
else:
|
|
194
|
+
expected_y_pred = X_test @ coef
|
|
195
|
+
|
|
196
|
+
X_test_df = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
197
|
+
|
|
198
|
+
y_pred = inclin.predict(X_test_df)
|
|
199
|
+
|
|
200
|
+
assert_allclose(expected_y_pred, _as_numpy(y_pred), atol=tol)
|
|
@@ -52,7 +52,7 @@ def test_sklearnex_import_linear(dataframe, queue, dtype, macro_block):
|
|
|
52
52
|
assert "sklearnex" in linreg.__module__
|
|
53
53
|
assert linreg.n_features_in_ == 2
|
|
54
54
|
|
|
55
|
-
tol = 1e-5 if
|
|
55
|
+
tol = 1e-5 if _as_numpy(linreg.coef_).dtype == np.float32 else 1e-7
|
|
56
56
|
assert_allclose(_as_numpy(linreg.intercept_), 3.0, rtol=tol)
|
|
57
57
|
assert_allclose(_as_numpy(linreg.coef_), [1.0, 2.0], rtol=tol)
|
|
58
58
|
|
|
@@ -113,5 +113,5 @@ def test_sklearnex_reconstruct_model(dataframe, queue, dtype):
|
|
|
113
113
|
|
|
114
114
|
y_pred = linreg.predict(X)
|
|
115
115
|
|
|
116
|
-
tol = 1e-5 if
|
|
116
|
+
tol = 1e-5 if _as_numpy(y_pred).dtype == np.float32 else 1e-7
|
|
117
117
|
assert_allclose(gtr, _as_numpy(y_pred), rtol=tol)
|
|
@@ -14,6 +14,7 @@
|
|
|
14
14
|
# limitations under the License.
|
|
15
15
|
# ==============================================================================
|
|
16
16
|
|
|
17
|
+
from sklearn.metrics import r2_score
|
|
17
18
|
from sklearn.neighbors._regression import (
|
|
18
19
|
KNeighborsRegressor as sklearn_KNeighborsRegressor,
|
|
19
20
|
)
|
|
@@ -117,6 +118,23 @@ class KNeighborsRegressor(sklearn_KNeighborsRegressor, KNeighborsDispatchingBase
|
|
|
117
118
|
X,
|
|
118
119
|
)
|
|
119
120
|
|
|
121
|
+
@wrap_output_data
|
|
122
|
+
def score(self, X, y, sample_weight=None):
|
|
123
|
+
check_is_fitted(self)
|
|
124
|
+
if sklearn_check_version("1.0"):
|
|
125
|
+
self._check_feature_names(X, reset=False)
|
|
126
|
+
return dispatch(
|
|
127
|
+
self,
|
|
128
|
+
"score",
|
|
129
|
+
{
|
|
130
|
+
"onedal": self.__class__._onedal_score,
|
|
131
|
+
"sklearn": sklearn_KNeighborsRegressor.score,
|
|
132
|
+
},
|
|
133
|
+
X,
|
|
134
|
+
y,
|
|
135
|
+
sample_weight=sample_weight,
|
|
136
|
+
)
|
|
137
|
+
|
|
120
138
|
@wrap_output_data
|
|
121
139
|
def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
|
|
122
140
|
check_is_fitted(self)
|
|
@@ -184,6 +202,11 @@ class KNeighborsRegressor(sklearn_KNeighborsRegressor, KNeighborsDispatchingBase
|
|
|
184
202
|
X, n_neighbors, return_distance, queue=queue
|
|
185
203
|
)
|
|
186
204
|
|
|
205
|
+
def _onedal_score(self, X, y, sample_weight=None, queue=None):
|
|
206
|
+
return r2_score(
|
|
207
|
+
y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
|
|
208
|
+
)
|
|
209
|
+
|
|
187
210
|
def _save_attributes(self):
|
|
188
211
|
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
189
212
|
self.n_samples_fit_ = self._onedal_estimator.n_samples_fit_
|
|
@@ -196,3 +219,4 @@ class KNeighborsRegressor(sklearn_KNeighborsRegressor, KNeighborsDispatchingBase
|
|
|
196
219
|
predict.__doc__ = sklearn_KNeighborsRegressor.predict.__doc__
|
|
197
220
|
kneighbors.__doc__ = sklearn_KNeighborsRegressor.kneighbors.__doc__
|
|
198
221
|
radius_neighbors.__doc__ = sklearn_NearestNeighbors.radius_neighbors.__doc__
|
|
222
|
+
score.__doc__ = sklearn_KNeighborsRegressor.score.__doc__
|
|
@@ -47,9 +47,9 @@ def test_sklearnex_import_knn_regression(dataframe, queue):
|
|
|
47
47
|
y = _convert_to_dataframe([0, 0, 1, 1], sycl_queue=queue, target_df=dataframe)
|
|
48
48
|
neigh = KNeighborsRegressor(n_neighbors=2).fit(X, y)
|
|
49
49
|
y_test = _convert_to_dataframe([[1.5]], sycl_queue=queue, target_df=dataframe)
|
|
50
|
-
pred = _as_numpy(neigh.predict(y_test))
|
|
50
|
+
pred = _as_numpy(neigh.predict(y_test)).squeeze()
|
|
51
51
|
assert "sklearnex" in neigh.__module__
|
|
52
|
-
assert_allclose(pred,
|
|
52
|
+
assert_allclose(pred, 0.5)
|
|
53
53
|
|
|
54
54
|
|
|
55
55
|
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from .incremental_pca import IncrementalPCA
|
|
18
|
+
|
|
19
|
+
__all__ = ["IncrementalPCA"]
|
|
@@ -0,0 +1,228 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
from sklearn.decomposition import IncrementalPCA as sklearn_IncrementalPCA
|
|
19
|
+
from sklearn.utils import check_array, gen_batches
|
|
20
|
+
|
|
21
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
22
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
23
|
+
from onedal.decomposition import IncrementalPCA as onedal_IncrementalPCA
|
|
24
|
+
|
|
25
|
+
from ..._device_offload import dispatch, wrap_output_data
|
|
26
|
+
from ..._utils import PatchingConditionsChain
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@control_n_jobs(
|
|
30
|
+
decorated_methods=["fit", "partial_fit", "transform", "_onedal_finalize_fit"]
|
|
31
|
+
)
|
|
32
|
+
class IncrementalPCA(sklearn_IncrementalPCA):
|
|
33
|
+
|
|
34
|
+
def __init__(self, n_components=None, *, whiten=False, copy=True, batch_size=None):
|
|
35
|
+
super().__init__(
|
|
36
|
+
n_components=n_components, whiten=whiten, copy=copy, batch_size=batch_size
|
|
37
|
+
)
|
|
38
|
+
self._need_to_finalize = False
|
|
39
|
+
self._need_to_finalize_attrs = {
|
|
40
|
+
"mean_",
|
|
41
|
+
"explained_variance_",
|
|
42
|
+
"explained_variance_ratio_",
|
|
43
|
+
"n_components_",
|
|
44
|
+
"components_",
|
|
45
|
+
"noise_variance_",
|
|
46
|
+
"singular_values_",
|
|
47
|
+
"var_",
|
|
48
|
+
}
|
|
49
|
+
|
|
50
|
+
_onedal_incremental_pca = staticmethod(onedal_IncrementalPCA)
|
|
51
|
+
|
|
52
|
+
def _onedal_transform(self, X, queue=None):
|
|
53
|
+
assert hasattr(self, "_onedal_estimator")
|
|
54
|
+
if self._need_to_finalize:
|
|
55
|
+
self._onedal_finalize_fit()
|
|
56
|
+
X = check_array(X, dtype=[np.float64, np.float32])
|
|
57
|
+
return self._onedal_estimator.predict(X, queue)
|
|
58
|
+
|
|
59
|
+
def _onedal_fit_transform(self, X, queue=None):
|
|
60
|
+
self._onedal_fit(X, queue)
|
|
61
|
+
return self._onedal_transform(X, queue)
|
|
62
|
+
|
|
63
|
+
def _onedal_partial_fit(self, X, check_input=True, queue=None):
|
|
64
|
+
first_pass = not hasattr(self, "components_")
|
|
65
|
+
|
|
66
|
+
if check_input:
|
|
67
|
+
if sklearn_check_version("1.0"):
|
|
68
|
+
X = self._validate_data(
|
|
69
|
+
X, dtype=[np.float64, np.float32], reset=first_pass
|
|
70
|
+
)
|
|
71
|
+
else:
|
|
72
|
+
X = check_array(
|
|
73
|
+
X,
|
|
74
|
+
dtype=[np.float64, np.float32],
|
|
75
|
+
copy=self.copy,
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
n_samples, n_features = X.shape
|
|
79
|
+
|
|
80
|
+
if self.n_components is None:
|
|
81
|
+
if not hasattr(self, "components_"):
|
|
82
|
+
self.n_components_ = min(n_samples, n_features)
|
|
83
|
+
else:
|
|
84
|
+
self.n_components_ = self.components_.shape[0]
|
|
85
|
+
elif not self.n_components <= n_features:
|
|
86
|
+
raise ValueError(
|
|
87
|
+
"n_components=%r invalid for n_features=%d, need "
|
|
88
|
+
"more rows than columns for IncrementalPCA "
|
|
89
|
+
"processing" % (self.n_components, n_features)
|
|
90
|
+
)
|
|
91
|
+
elif not self.n_components <= n_samples:
|
|
92
|
+
raise ValueError(
|
|
93
|
+
"n_components=%r must be less or equal to "
|
|
94
|
+
"the batch number of samples "
|
|
95
|
+
"%d." % (self.n_components, n_samples)
|
|
96
|
+
)
|
|
97
|
+
else:
|
|
98
|
+
self.n_components_ = self.n_components
|
|
99
|
+
|
|
100
|
+
if not hasattr(self, "n_samples_seen_"):
|
|
101
|
+
self.n_samples_seen_ = n_samples
|
|
102
|
+
else:
|
|
103
|
+
self.n_samples_seen_ += n_samples
|
|
104
|
+
|
|
105
|
+
onedal_params = {"n_components": self.n_components_, "whiten": self.whiten}
|
|
106
|
+
|
|
107
|
+
if not hasattr(self, "_onedal_estimator"):
|
|
108
|
+
self._onedal_estimator = self._onedal_incremental_pca(**onedal_params)
|
|
109
|
+
self._onedal_estimator.partial_fit(X, queue)
|
|
110
|
+
self._need_to_finalize = True
|
|
111
|
+
|
|
112
|
+
def _onedal_finalize_fit(self):
|
|
113
|
+
assert hasattr(self, "_onedal_estimator")
|
|
114
|
+
self._onedal_estimator.finalize_fit()
|
|
115
|
+
self._need_to_finalize = False
|
|
116
|
+
|
|
117
|
+
def _onedal_fit(self, X, queue=None):
|
|
118
|
+
if sklearn_check_version("1.2"):
|
|
119
|
+
self._validate_params()
|
|
120
|
+
|
|
121
|
+
if sklearn_check_version("1.0"):
|
|
122
|
+
X = self._validate_data(X, dtype=[np.float64, np.float32], copy=self.copy)
|
|
123
|
+
else:
|
|
124
|
+
X = check_array(
|
|
125
|
+
X,
|
|
126
|
+
dtype=[np.float64, np.float32],
|
|
127
|
+
copy=self.copy,
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
n_samples, n_features = X.shape
|
|
131
|
+
|
|
132
|
+
if self.batch_size is None:
|
|
133
|
+
self.batch_size_ = 5 * n_features
|
|
134
|
+
else:
|
|
135
|
+
self.batch_size_ = self.batch_size
|
|
136
|
+
|
|
137
|
+
self.n_samples_seen_ = 0
|
|
138
|
+
if hasattr(self, "_onedal_estimator"):
|
|
139
|
+
self._onedal_estimator._reset()
|
|
140
|
+
|
|
141
|
+
for batch in gen_batches(n_samples, self.batch_size_):
|
|
142
|
+
X_batch = X[batch]
|
|
143
|
+
self._onedal_partial_fit(X_batch, queue=queue)
|
|
144
|
+
|
|
145
|
+
self._onedal_finalize_fit()
|
|
146
|
+
|
|
147
|
+
return self
|
|
148
|
+
|
|
149
|
+
def _onedal_supported(self, method_name, *data):
|
|
150
|
+
patching_status = PatchingConditionsChain(
|
|
151
|
+
f"sklearn.decomposition.{self.__class__.__name__}.{method_name}"
|
|
152
|
+
)
|
|
153
|
+
return patching_status
|
|
154
|
+
|
|
155
|
+
_onedal_cpu_supported = _onedal_supported
|
|
156
|
+
_onedal_gpu_supported = _onedal_supported
|
|
157
|
+
|
|
158
|
+
def __getattr__(self, attr):
|
|
159
|
+
if attr in self._need_to_finalize_attrs:
|
|
160
|
+
if hasattr(self, "_onedal_estimator"):
|
|
161
|
+
if self._need_to_finalize:
|
|
162
|
+
self._onedal_finalize_fit()
|
|
163
|
+
return getattr(self._onedal_estimator, attr)
|
|
164
|
+
else:
|
|
165
|
+
raise AttributeError(
|
|
166
|
+
f"'{self.__class__.__name__}' object has no attribute '{attr}'"
|
|
167
|
+
)
|
|
168
|
+
if attr in self.__dict__:
|
|
169
|
+
return self.__dict__[attr]
|
|
170
|
+
|
|
171
|
+
raise AttributeError(
|
|
172
|
+
f"'{self.__class__.__name__}' object has no attribute '{attr}'"
|
|
173
|
+
)
|
|
174
|
+
|
|
175
|
+
def partial_fit(self, X, y=None, check_input=True):
|
|
176
|
+
dispatch(
|
|
177
|
+
self,
|
|
178
|
+
"partial_fit",
|
|
179
|
+
{
|
|
180
|
+
"onedal": self.__class__._onedal_partial_fit,
|
|
181
|
+
"sklearn": sklearn_IncrementalPCA.partial_fit,
|
|
182
|
+
},
|
|
183
|
+
X,
|
|
184
|
+
check_input=check_input,
|
|
185
|
+
)
|
|
186
|
+
return self
|
|
187
|
+
|
|
188
|
+
def fit(self, X, y=None):
|
|
189
|
+
dispatch(
|
|
190
|
+
self,
|
|
191
|
+
"fit",
|
|
192
|
+
{
|
|
193
|
+
"onedal": self.__class__._onedal_fit,
|
|
194
|
+
"sklearn": sklearn_IncrementalPCA.fit,
|
|
195
|
+
},
|
|
196
|
+
X,
|
|
197
|
+
)
|
|
198
|
+
return self
|
|
199
|
+
|
|
200
|
+
@wrap_output_data
|
|
201
|
+
def transform(self, X):
|
|
202
|
+
return dispatch(
|
|
203
|
+
self,
|
|
204
|
+
"transform",
|
|
205
|
+
{
|
|
206
|
+
"onedal": self.__class__._onedal_transform,
|
|
207
|
+
"sklearn": sklearn_IncrementalPCA.transform,
|
|
208
|
+
},
|
|
209
|
+
X,
|
|
210
|
+
)
|
|
211
|
+
|
|
212
|
+
@wrap_output_data
|
|
213
|
+
def fit_transform(self, X, y=None, **fit_params):
|
|
214
|
+
return dispatch(
|
|
215
|
+
self,
|
|
216
|
+
"fit_transform",
|
|
217
|
+
{
|
|
218
|
+
"onedal": self.__class__._onedal_fit_transform,
|
|
219
|
+
"sklearn": sklearn_IncrementalPCA.fit_transform,
|
|
220
|
+
},
|
|
221
|
+
X,
|
|
222
|
+
)
|
|
223
|
+
|
|
224
|
+
__doc__ = sklearn_IncrementalPCA.__doc__
|
|
225
|
+
fit.__doc__ = sklearn_IncrementalPCA.fit.__doc__
|
|
226
|
+
fit_transform.__doc__ = sklearn_IncrementalPCA.fit_transform.__doc__
|
|
227
|
+
transform.__doc__ = sklearn_IncrementalPCA.transform.__doc__
|
|
228
|
+
partial_fit.__doc__ = sklearn_IncrementalPCA.partial_fit.__doc__
|