scikit-learn-intelex 2024.4.0__py310-none-win_amd64.whl → 2024.6.0__py310-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +8 -1
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +2 -4
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/conftest.py +11 -1
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +317 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +68 -13
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +6 -4
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +46 -1
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +114 -22
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +13 -3
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +5 -3
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +464 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +27 -9
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +13 -15
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +2 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +24 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +2 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +228 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +330 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +40 -4
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +31 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +40 -4
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +31 -2
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +70 -29
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +54 -0
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +290 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +4 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +22 -10
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +283 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +1 -1
- scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA +230 -230
- scikit_learn_intelex-2024.6.0.dist-info/RECORD +108 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -185
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -227
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- scikit_learn_intelex-2024.4.0.dist-info/RECORD +0 -101
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt +0 -0
|
@@ -1,428 +0,0 @@
|
|
|
1
|
-
# ===============================================================================
|
|
2
|
-
# Copyright 2020 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ===============================================================================
|
|
16
|
-
|
|
17
|
-
import random
|
|
18
|
-
|
|
19
|
-
import numpy as np
|
|
20
|
-
import pytest
|
|
21
|
-
|
|
22
|
-
import daal4py as d4p
|
|
23
|
-
from sklearnex import patch_sklearn
|
|
24
|
-
|
|
25
|
-
patch_sklearn()
|
|
26
|
-
|
|
27
|
-
from scipy import sparse
|
|
28
|
-
from sklearn.cluster import DBSCAN, KMeans
|
|
29
|
-
from sklearn.datasets import (
|
|
30
|
-
load_breast_cancer,
|
|
31
|
-
load_diabetes,
|
|
32
|
-
load_iris,
|
|
33
|
-
make_classification,
|
|
34
|
-
make_regression,
|
|
35
|
-
)
|
|
36
|
-
from sklearn.decomposition import PCA
|
|
37
|
-
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
|
38
|
-
from sklearn.linear_model import (
|
|
39
|
-
ElasticNet,
|
|
40
|
-
Lasso,
|
|
41
|
-
LinearRegression,
|
|
42
|
-
LogisticRegression,
|
|
43
|
-
LogisticRegressionCV,
|
|
44
|
-
Ridge,
|
|
45
|
-
)
|
|
46
|
-
from sklearn.manifold import TSNE
|
|
47
|
-
from sklearn.metrics import pairwise_distances, roc_auc_score
|
|
48
|
-
from sklearn.model_selection import train_test_split
|
|
49
|
-
from sklearn.neighbors import (
|
|
50
|
-
KNeighborsClassifier,
|
|
51
|
-
KNeighborsRegressor,
|
|
52
|
-
LocalOutlierFactor,
|
|
53
|
-
NearestNeighbors,
|
|
54
|
-
)
|
|
55
|
-
from sklearn.svm import SVC, SVR, NuSVC, NuSVR
|
|
56
|
-
|
|
57
|
-
from daal4py.sklearn._utils import daal_check_version
|
|
58
|
-
|
|
59
|
-
# to reproduce errors even in CI
|
|
60
|
-
d4p.daalinit(nthreads=100)
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
def get_class_name(x):
|
|
64
|
-
return x.__class__.__name__
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
def method_processing(X, clf, methods):
|
|
68
|
-
res = []
|
|
69
|
-
name = []
|
|
70
|
-
for i in methods:
|
|
71
|
-
if i == "predict":
|
|
72
|
-
res.append(clf.predict(X))
|
|
73
|
-
name.append(get_class_name(clf) + ".predict(X)")
|
|
74
|
-
elif i == "predict_proba":
|
|
75
|
-
res.append(clf.predict_proba(X))
|
|
76
|
-
name.append(get_class_name(clf) + ".predict_proba(X)")
|
|
77
|
-
elif i == "decision_function":
|
|
78
|
-
res.append(clf.decision_function(X))
|
|
79
|
-
name.append(get_class_name(clf) + ".decision_function(X)")
|
|
80
|
-
elif i == "kneighbors":
|
|
81
|
-
dist, idx = clf.kneighbors(X)
|
|
82
|
-
res.append(dist)
|
|
83
|
-
name.append("dist")
|
|
84
|
-
res.append(idx)
|
|
85
|
-
name.append("idx")
|
|
86
|
-
elif i == "fit_predict":
|
|
87
|
-
predict = clf.fit_predict(X)
|
|
88
|
-
res.append(predict)
|
|
89
|
-
name.append(get_class_name(clf) + ".fit_predict")
|
|
90
|
-
elif i == "fit_transform":
|
|
91
|
-
res.append(clf.fit_transform(X))
|
|
92
|
-
name.append(get_class_name(clf) + ".fit_transform")
|
|
93
|
-
elif i == "transform":
|
|
94
|
-
res.append(clf.transform(X))
|
|
95
|
-
name.append(get_class_name(clf) + ".transform(X)")
|
|
96
|
-
elif i == "get_covariance":
|
|
97
|
-
res.append(clf.get_covariance())
|
|
98
|
-
name.append(get_class_name(clf) + ".get_covariance()")
|
|
99
|
-
elif i == "get_precision":
|
|
100
|
-
res.append(clf.get_precision())
|
|
101
|
-
name.append(get_class_name(clf) + ".get_precision()")
|
|
102
|
-
elif i == "score_samples":
|
|
103
|
-
res.append(clf.score_samples(X))
|
|
104
|
-
name.append(get_class_name(clf) + ".score_samples(X)")
|
|
105
|
-
return res, name
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
def func(X, Y, clf, methods):
|
|
109
|
-
clf.fit(X, Y)
|
|
110
|
-
res, name = method_processing(X, clf, methods)
|
|
111
|
-
|
|
112
|
-
for i in clf.__dict__.keys():
|
|
113
|
-
ans = getattr(clf, i)
|
|
114
|
-
if isinstance(ans, (bool, float, int, np.ndarray, np.float64)):
|
|
115
|
-
if isinstance(ans, np.ndarray) and None in ans:
|
|
116
|
-
continue
|
|
117
|
-
res.append(ans)
|
|
118
|
-
name.append(get_class_name(clf) + "." + i)
|
|
119
|
-
return res, name
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
def _run_test(model, methods, dataset):
|
|
123
|
-
datasets = []
|
|
124
|
-
if dataset in ["blobs", "classifier", "sparse"]:
|
|
125
|
-
X1, y1 = load_iris(return_X_y=True)
|
|
126
|
-
if dataset == "sparse":
|
|
127
|
-
X1 = sparse.csr_matrix(X1)
|
|
128
|
-
datasets.append((X1, y1))
|
|
129
|
-
X2, y2 = load_breast_cancer(return_X_y=True)
|
|
130
|
-
if dataset == "sparse":
|
|
131
|
-
X2 = sparse.csr_matrix(X2)
|
|
132
|
-
datasets.append((X2, y2))
|
|
133
|
-
elif dataset == "regression":
|
|
134
|
-
X1, y1 = make_regression(
|
|
135
|
-
n_samples=500, n_features=10, noise=64.0, random_state=42
|
|
136
|
-
)
|
|
137
|
-
datasets.append((X1, y1))
|
|
138
|
-
X2, y2 = load_diabetes(return_X_y=True)
|
|
139
|
-
datasets.append((X2, y2))
|
|
140
|
-
else:
|
|
141
|
-
raise ValueError("Unknown dataset type")
|
|
142
|
-
|
|
143
|
-
for X, y in datasets:
|
|
144
|
-
baseline, name = func(X, y, model, methods)
|
|
145
|
-
for i in range(10):
|
|
146
|
-
res, _ = func(X, y, model, methods)
|
|
147
|
-
|
|
148
|
-
for a, b, n in zip(res, baseline, name):
|
|
149
|
-
np.testing.assert_allclose(
|
|
150
|
-
a, b, rtol=0.0, atol=0.0, err_msg=str(n + " is incorrect")
|
|
151
|
-
)
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
MODELS_INFO = [
|
|
155
|
-
{
|
|
156
|
-
"model": KNeighborsClassifier(
|
|
157
|
-
n_neighbors=10, algorithm="brute", weights="uniform"
|
|
158
|
-
),
|
|
159
|
-
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
160
|
-
"dataset": "classifier",
|
|
161
|
-
},
|
|
162
|
-
{
|
|
163
|
-
"model": KNeighborsClassifier(
|
|
164
|
-
n_neighbors=10, algorithm="brute", weights="distance"
|
|
165
|
-
),
|
|
166
|
-
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
167
|
-
"dataset": "classifier",
|
|
168
|
-
},
|
|
169
|
-
{
|
|
170
|
-
"model": KNeighborsClassifier(
|
|
171
|
-
n_neighbors=10, algorithm="kd_tree", weights="uniform"
|
|
172
|
-
),
|
|
173
|
-
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
174
|
-
"dataset": "classifier",
|
|
175
|
-
},
|
|
176
|
-
{
|
|
177
|
-
"model": KNeighborsClassifier(
|
|
178
|
-
n_neighbors=10, algorithm="kd_tree", weights="distance"
|
|
179
|
-
),
|
|
180
|
-
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
181
|
-
"dataset": "classifier",
|
|
182
|
-
},
|
|
183
|
-
{
|
|
184
|
-
"model": KNeighborsRegressor(
|
|
185
|
-
n_neighbors=10, algorithm="kd_tree", weights="distance"
|
|
186
|
-
),
|
|
187
|
-
"methods": ["predict", "kneighbors"],
|
|
188
|
-
"dataset": "regression",
|
|
189
|
-
},
|
|
190
|
-
{
|
|
191
|
-
"model": KNeighborsRegressor(
|
|
192
|
-
n_neighbors=10, algorithm="kd_tree", weights="uniform"
|
|
193
|
-
),
|
|
194
|
-
"methods": ["predict", "kneighbors"],
|
|
195
|
-
"dataset": "regression",
|
|
196
|
-
},
|
|
197
|
-
{
|
|
198
|
-
"model": KNeighborsRegressor(
|
|
199
|
-
n_neighbors=10, algorithm="brute", weights="distance"
|
|
200
|
-
),
|
|
201
|
-
"methods": ["predict", "kneighbors"],
|
|
202
|
-
"dataset": "regression",
|
|
203
|
-
},
|
|
204
|
-
{
|
|
205
|
-
"model": KNeighborsRegressor(
|
|
206
|
-
n_neighbors=10, algorithm="brute", weights="uniform"
|
|
207
|
-
),
|
|
208
|
-
"methods": ["predict", "kneighbors"],
|
|
209
|
-
"dataset": "regression",
|
|
210
|
-
},
|
|
211
|
-
{
|
|
212
|
-
"model": NearestNeighbors(n_neighbors=10, algorithm="brute"),
|
|
213
|
-
"methods": ["kneighbors"],
|
|
214
|
-
"dataset": "blobs",
|
|
215
|
-
},
|
|
216
|
-
{
|
|
217
|
-
"model": NearestNeighbors(n_neighbors=10, algorithm="kd_tree"),
|
|
218
|
-
"methods": ["kneighbors"],
|
|
219
|
-
"dataset": "blobs",
|
|
220
|
-
},
|
|
221
|
-
{
|
|
222
|
-
"model": LocalOutlierFactor(n_neighbors=10, novelty=False),
|
|
223
|
-
"methods": ["fit_predict"],
|
|
224
|
-
"dataset": "blobs",
|
|
225
|
-
},
|
|
226
|
-
{
|
|
227
|
-
"model": LocalOutlierFactor(n_neighbors=10, novelty=True),
|
|
228
|
-
"methods": ["predict"],
|
|
229
|
-
"dataset": "blobs",
|
|
230
|
-
},
|
|
231
|
-
{
|
|
232
|
-
"model": DBSCAN(algorithm="brute", n_jobs=-1),
|
|
233
|
-
"methods": [],
|
|
234
|
-
"dataset": "blobs",
|
|
235
|
-
},
|
|
236
|
-
{
|
|
237
|
-
"model": SVC(kernel="rbf"),
|
|
238
|
-
"methods": ["predict", "decision_function"],
|
|
239
|
-
"dataset": "classifier",
|
|
240
|
-
},
|
|
241
|
-
{
|
|
242
|
-
"model": SVC(kernel="rbf"),
|
|
243
|
-
"methods": ["predict", "decision_function"],
|
|
244
|
-
"dataset": "sparse",
|
|
245
|
-
},
|
|
246
|
-
{
|
|
247
|
-
"model": NuSVC(kernel="rbf"),
|
|
248
|
-
"methods": ["predict", "decision_function"],
|
|
249
|
-
"dataset": "classifier",
|
|
250
|
-
},
|
|
251
|
-
{
|
|
252
|
-
"model": SVR(kernel="rbf"),
|
|
253
|
-
"methods": ["predict"],
|
|
254
|
-
"dataset": "regression",
|
|
255
|
-
},
|
|
256
|
-
{
|
|
257
|
-
"model": NuSVR(kernel="rbf"),
|
|
258
|
-
"methods": ["predict"],
|
|
259
|
-
"dataset": "regression",
|
|
260
|
-
},
|
|
261
|
-
{
|
|
262
|
-
"model": TSNE(random_state=0),
|
|
263
|
-
"methods": ["fit_transform"],
|
|
264
|
-
"dataset": "classifier",
|
|
265
|
-
},
|
|
266
|
-
{
|
|
267
|
-
"model": KMeans(random_state=0, init="k-means++"),
|
|
268
|
-
"methods": ["predict"],
|
|
269
|
-
"dataset": "blobs",
|
|
270
|
-
},
|
|
271
|
-
{
|
|
272
|
-
"model": KMeans(random_state=0, init="random"),
|
|
273
|
-
"methods": ["predict"],
|
|
274
|
-
"dataset": "blobs",
|
|
275
|
-
},
|
|
276
|
-
{
|
|
277
|
-
"model": KMeans(random_state=0, init="k-means++"),
|
|
278
|
-
"methods": ["predict"],
|
|
279
|
-
"dataset": "sparse",
|
|
280
|
-
},
|
|
281
|
-
{
|
|
282
|
-
"model": KMeans(random_state=0, init="random"),
|
|
283
|
-
"methods": ["predict"],
|
|
284
|
-
"dataset": "sparse",
|
|
285
|
-
},
|
|
286
|
-
{
|
|
287
|
-
"model": ElasticNet(random_state=0),
|
|
288
|
-
"methods": ["predict"],
|
|
289
|
-
"dataset": "regression",
|
|
290
|
-
},
|
|
291
|
-
{
|
|
292
|
-
"model": Lasso(random_state=0),
|
|
293
|
-
"methods": ["predict"],
|
|
294
|
-
"dataset": "regression",
|
|
295
|
-
},
|
|
296
|
-
{
|
|
297
|
-
"model": PCA(n_components=0.5, svd_solver="full", random_state=0),
|
|
298
|
-
"methods": ["transform", "get_covariance", "get_precision", "score_samples"],
|
|
299
|
-
"dataset": "classifier",
|
|
300
|
-
},
|
|
301
|
-
{
|
|
302
|
-
"model": RandomForestClassifier(
|
|
303
|
-
random_state=0, oob_score=True, max_samples=0.5, max_features="sqrt"
|
|
304
|
-
),
|
|
305
|
-
"methods": ["predict", "predict_proba"],
|
|
306
|
-
"dataset": "classifier",
|
|
307
|
-
},
|
|
308
|
-
{
|
|
309
|
-
"model": LogisticRegression(random_state=0, solver="newton-cg", max_iter=1000),
|
|
310
|
-
"methods": ["predict", "predict_proba"],
|
|
311
|
-
"dataset": "classifier",
|
|
312
|
-
},
|
|
313
|
-
{
|
|
314
|
-
"model": LogisticRegression(random_state=0, solver="lbfgs", max_iter=1000),
|
|
315
|
-
"methods": ["predict", "predict_proba"],
|
|
316
|
-
"dataset": "classifier",
|
|
317
|
-
},
|
|
318
|
-
{
|
|
319
|
-
"model": LogisticRegressionCV(
|
|
320
|
-
random_state=0, solver="newton-cg", n_jobs=-1, max_iter=1000
|
|
321
|
-
),
|
|
322
|
-
"methods": ["predict", "predict_proba"],
|
|
323
|
-
"dataset": "classifier",
|
|
324
|
-
},
|
|
325
|
-
{
|
|
326
|
-
"model": LogisticRegressionCV(
|
|
327
|
-
random_state=0, solver="lbfgs", n_jobs=-1, max_iter=1000
|
|
328
|
-
),
|
|
329
|
-
"methods": ["predict", "predict_proba"],
|
|
330
|
-
"dataset": "classifier",
|
|
331
|
-
},
|
|
332
|
-
{
|
|
333
|
-
"model": RandomForestRegressor(
|
|
334
|
-
random_state=0, oob_score=True, max_samples=0.5, max_features="sqrt"
|
|
335
|
-
),
|
|
336
|
-
"methods": ["predict"],
|
|
337
|
-
"dataset": "regression",
|
|
338
|
-
},
|
|
339
|
-
{
|
|
340
|
-
"model": LinearRegression(),
|
|
341
|
-
"methods": ["predict"],
|
|
342
|
-
"dataset": "regression",
|
|
343
|
-
},
|
|
344
|
-
{
|
|
345
|
-
"model": Ridge(random_state=0),
|
|
346
|
-
"methods": ["predict"],
|
|
347
|
-
"dataset": "regression",
|
|
348
|
-
},
|
|
349
|
-
]
|
|
350
|
-
|
|
351
|
-
TO_SKIP = [
|
|
352
|
-
"TSNE", # Absolute diff is 1e-10, potential problem in KNN,
|
|
353
|
-
# will be fixed for next release. (UPD. KNN is fixed but there is a problem
|
|
354
|
-
# with stability of stock sklearn. It is already stable in master, so, we
|
|
355
|
-
# need to wait for the next sklearn release)
|
|
356
|
-
"LogisticRegression", # Absolute diff is 1e-8, will be fixed for next release
|
|
357
|
-
"LogisticRegressionCV", # Absolute diff is 1e-10, will be fixed for next release
|
|
358
|
-
"RandomForestRegressor", # Absolute diff is 1e-14 in OOB score,
|
|
359
|
-
# will be fixed for next release
|
|
360
|
-
]
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
@pytest.mark.parametrize("model_head", MODELS_INFO)
|
|
364
|
-
def test_models(model_head):
|
|
365
|
-
stable_algos = []
|
|
366
|
-
if get_class_name(model_head["model"]) in stable_algos and daal_check_version(
|
|
367
|
-
(2021, "P", 300)
|
|
368
|
-
):
|
|
369
|
-
try:
|
|
370
|
-
TO_SKIP.remove(get_class_name(model_head["model"]))
|
|
371
|
-
except ValueError:
|
|
372
|
-
pass
|
|
373
|
-
if get_class_name(model_head["model"]) in TO_SKIP:
|
|
374
|
-
pytest.skip("Unstable", allow_module_level=False)
|
|
375
|
-
_run_test(model_head["model"], model_head["methods"], model_head["dataset"])
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
@pytest.mark.parametrize("features", range(5, 10))
|
|
379
|
-
def test_train_test_split(features):
|
|
380
|
-
X, y = make_classification(
|
|
381
|
-
n_samples=4000,
|
|
382
|
-
n_features=features,
|
|
383
|
-
n_informative=features,
|
|
384
|
-
n_redundant=0,
|
|
385
|
-
n_clusters_per_class=8,
|
|
386
|
-
random_state=0,
|
|
387
|
-
)
|
|
388
|
-
(
|
|
389
|
-
baseline_X_train,
|
|
390
|
-
baseline_X_test,
|
|
391
|
-
baseline_y_train,
|
|
392
|
-
baseline_y_test,
|
|
393
|
-
) = train_test_split(X, y, test_size=0.33, random_state=0)
|
|
394
|
-
baseline = [baseline_X_train, baseline_X_test, baseline_y_train, baseline_y_test]
|
|
395
|
-
for _ in range(10):
|
|
396
|
-
X_train, X_test, y_train, y_test = train_test_split(
|
|
397
|
-
X, y, test_size=0.33, random_state=0
|
|
398
|
-
)
|
|
399
|
-
res = [X_train, X_test, y_train, y_test]
|
|
400
|
-
for a, b in zip(res, baseline):
|
|
401
|
-
np.testing.assert_allclose(
|
|
402
|
-
a, b, rtol=0.0, atol=0.0, err_msg=str("train_test_split is incorrect")
|
|
403
|
-
)
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
@pytest.mark.parametrize("metric", ["cosine", "correlation"])
|
|
407
|
-
def test_pairwise_distances(metric):
|
|
408
|
-
X = np.random.rand(1000)
|
|
409
|
-
X = np.array(X, dtype=np.float64)
|
|
410
|
-
baseline = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
411
|
-
for _ in range(5):
|
|
412
|
-
res = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
413
|
-
for a, b in zip(res, baseline):
|
|
414
|
-
np.testing.assert_allclose(
|
|
415
|
-
a, b, rtol=0.0, atol=0.0, err_msg=str("pairwise_distances is incorrect")
|
|
416
|
-
)
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
@pytest.mark.parametrize("array_size", [100, 1000, 10000])
|
|
420
|
-
def test_roc_auc(array_size):
|
|
421
|
-
a = [random.randint(0, 1) for i in range(array_size)]
|
|
422
|
-
b = [random.randint(0, 1) for i in range(array_size)]
|
|
423
|
-
baseline = roc_auc_score(a, b)
|
|
424
|
-
for _ in range(5):
|
|
425
|
-
res = roc_auc_score(a, b)
|
|
426
|
-
np.testing.assert_allclose(
|
|
427
|
-
baseline, res, rtol=0.0, atol=0.0, err_msg=str("roc_auc is incorrect")
|
|
428
|
-
)
|
|
@@ -1,101 +0,0 @@
|
|
|
1
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
|
|
2
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
|
|
3
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
|
|
4
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=EX9bRBV9tFxQBRf8mS9ntBEmB7tcIfql8sYnb9Zjlto,8639
|
|
5
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
|
|
6
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/conftest.py,sha256=ZvcfQljZNBa3zlE1iITvuacHblugVtK6X80LwNXrnWI,2130
|
|
7
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=Vpoy6kwOR0Y3ISfjpk0S1vEKhDZGLUKeMy-xwCBsCQs,14389
|
|
8
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
|
|
9
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
|
|
10
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=NNWF9zdxBz2jT7dzt5hL6HRvjQIGosvViQE3KJMF1L4,10048
|
|
11
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=GarYPjojsyhbOat5vOXF85AofyFa_VretX4Vntc01C8,14992
|
|
12
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
|
|
13
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=JJaNVhV4dVK0xte9xzQpCAka80xVu3M7_SzmvD3k-EY,6736
|
|
14
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
|
|
15
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=AgFoKwXFVyLKLvEtJVs0qlbBs1Ci3PcRft7f-6_ENOU,1464
|
|
16
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
|
|
17
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
|
|
18
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=3s9gmLP48DPhlhnFcg2JB7RQ2sliSZdNroJkv8-1sIA,4526
|
|
19
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=JIa4p-1_RYvU2ZVLx27iz0OKp0Nwrl9sYCsT0Dlyi2I,5402
|
|
20
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
|
|
21
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=ffR22wH2n5R8SYflEmOPDPc-QpTomiAMOegV0IMbslg,12654
|
|
22
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=FJYMosxpQpdOo71QD0jVx47oWEhvVNdut_5EOxTyT_0,2201
|
|
23
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
|
|
24
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
|
|
25
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=OHxqhYhkdjzhhEeWLlE0_IXBrWmKCUJoP_B1gQcmTQM,70002
|
|
26
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=r1GSPQuVVuWYoNB3ZLiGKfMSwq3lp5i6k-Rgr7InonQ,4456
|
|
27
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
|
|
28
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=IEEPhAOCVzC2JDFvYtijbiPAbaUY5RrCAhFLRjMMe1w,3018
|
|
29
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=5XZDZh8R0SmT8D8ZtSjW7-MKRO7l1jOZ8CUnt_OzHe4,1047
|
|
30
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
|
|
31
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=0A2kCTpsGZK8IVkbIhYoAXqMAxHOyY7dO5JLxbNWmLw,11159
|
|
32
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
|
|
33
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=6TRaDJ8nIHxjofIfUvmeJOP9_EwmUgVKKK1sxe9vS5A,14171
|
|
34
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
|
|
35
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=kLoOcP9p0iCK2PhU438tGuPGuuBekF37FkA-YBcBMpM,4319
|
|
36
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=mUYDwTDUekERlzxjnVeOeCUcNv4KJAXdTIiELZNSaDc,3283
|
|
37
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
|
|
38
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
|
|
39
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
|
|
40
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
|
|
41
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
|
|
42
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
|
|
43
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
|
|
44
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
|
|
45
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
|
|
46
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
|
|
47
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
|
|
48
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=5MPkWIb6FS55Q8xWzgc22Ec_PsouuN94SPovt-vsBGE,8648
|
|
49
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=8DxDoYtXtEM4RNoMCimpTVSDOOxUIJlNVOQvBXBhkd4,10875
|
|
50
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=ONoBbtwb5xoVLcpg5COpRNu1ZBOQ2EDh03RzbWDy5yo,8537
|
|
51
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=YBjvh6h56OaJHSZNGq8ZV8lsB-XpSWduEcVeHRuPorQ,6692
|
|
52
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=qkj-hSEq8QetYsWlofnik3PpFvo1iBUbIOhywo8wFWk,5362
|
|
53
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=gcJeJwDoT7wvyvk423k9TDGTGfbXUSTQETUT-VYQ74U,3409
|
|
54
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=OXC_k2kudA13rVesXb5ZlEC7_mKUS7uUra_BR-Tin30,780
|
|
55
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
|
|
56
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
|
|
57
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=RdF9mwgvZ1xgyeLhCQA2WaPvPsS1ndktXXcaNj6S460,10464
|
|
58
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
|
|
59
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=NjRTWLie7UbpfN16wGSxJSRHRhUnvTn03cPPc8PpPd8,5131
|
|
60
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
|
|
61
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
|
|
62
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
|
|
63
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
|
|
64
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
|
|
65
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
|
|
66
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
|
|
67
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
|
|
68
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
|
|
69
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
|
|
70
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
|
|
71
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
|
|
72
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
|
|
73
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
|
|
74
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
|
|
75
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
|
|
76
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
|
|
77
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
|
|
78
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
|
|
79
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=52csEWTYWEVgUVWUm3RjX1VD_5VyyawXBvc7lBBp5qY,7010
|
|
80
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=J4F_Tm9oYC-WK1Nf_CNqSnvuYEEZZ9xa3VY-x0G_2cw,9871
|
|
81
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=ZFBnQzMgD4aRSk3BRIxwKfwErVyDJnNoR7vrIMm5WLk,3655
|
|
82
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=u9wQ8dsvQvO4XP_3JSfYFBNJcuDyv3HVG5NY6jZqhZk,11125
|
|
83
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=ldNWehrU4vgqX_0T8splmBjPsQln7w_h8L4XNpIgP6A,3655
|
|
84
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
|
|
85
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py,sha256=hc3LxZDhlncONCGxqvWajQE7iVnSnt98Q9bem-KJDGI,5386
|
|
86
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
|
|
87
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=LwIuUgG7CUZ2kOk1XlxyaK7O3OlyoVwx40TgljaYs5Q,7327
|
|
88
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=_9s_4jFvbttOf8uCuBrS4rn_AzQdFlKyRlthnGacUcU,9669
|
|
89
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=fNGlQz882qAJoJ56ymbID0hpIsO_7PHLmXxSew2JA_k,4124
|
|
90
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
|
|
91
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=Gc4MChHY6lVUFkm3sgPF4RDd1uOqHQFfh9ac60d4vfQ,14299
|
|
92
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
|
|
93
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=FFlM8zc2qnSdPYpLjSt4Ma_9FjC8qk8wXJa-5B8hCs0,898
|
|
94
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py,sha256=lWzvzcObxq350A-Ms8JyTbaQStR8rgH4DgQYhWruHL4,3166
|
|
95
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
|
|
96
|
-
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
|
|
97
|
-
scikit_learn_intelex-2024.4.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
|
|
98
|
-
scikit_learn_intelex-2024.4.0.dist-info/METADATA,sha256=o67KC09tI-M1vRew0u70i6UExD3Vnzu3dYRrbLFSTAo,12448
|
|
99
|
-
scikit_learn_intelex-2024.4.0.dist-info/WHEEL,sha256=XoKki0KLAVNudIEzWXw23yrSNzEQs-OWXWdxw5aEl88,100
|
|
100
|
-
scikit_learn_intelex-2024.4.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
101
|
-
scikit_learn_intelex-2024.4.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|