scikit-learn-intelex 2024.4.0__py310-none-win_amd64.whl → 2024.6.0__py310-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (113) hide show
  1. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +8 -1
  2. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +2 -4
  3. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -0
  4. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
  5. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/conftest.py +11 -1
  6. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +317 -0
  7. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
  8. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +68 -13
  9. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +6 -4
  10. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +46 -1
  11. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +114 -22
  12. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +13 -3
  13. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -2
  14. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +5 -3
  15. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +464 -0
  16. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +27 -9
  17. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +13 -15
  18. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
  19. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +2 -2
  20. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +24 -0
  21. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +2 -2
  22. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
  23. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
  24. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +228 -0
  25. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  26. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +330 -0
  27. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +40 -4
  28. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +31 -2
  29. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +40 -4
  30. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +31 -2
  31. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +70 -29
  32. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +54 -0
  33. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +290 -0
  34. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +4 -0
  35. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +22 -10
  36. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +283 -0
  37. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +1 -1
  38. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
  39. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA +230 -230
  40. scikit_learn_intelex-2024.6.0.dist-info/RECORD +108 -0
  41. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/WHEEL +1 -1
  42. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
  43. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -185
  44. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -227
  45. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
  46. scikit_learn_intelex-2024.4.0.dist-info/RECORD +0 -101
  47. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  48. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  49. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  50. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  51. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
  52. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  53. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
  54. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  55. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  56. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  57. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  58. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  59. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  60. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  61. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  62. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  63. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  64. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  65. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
  66. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  67. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  68. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  69. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  70. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  71. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  72. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  73. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  74. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  75. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  76. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  77. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +0 -0
  78. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
  79. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
  80. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
  81. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  83. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
  84. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
  86. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
  87. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
  89. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  90. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  91. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  92. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  93. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  94. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  95. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  96. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  97. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  98. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  99. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  100. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  101. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  102. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  103. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  104. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  105. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  106. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  107. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
  108. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  109. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  110. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  111. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  112. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt +0 -0
  113. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt +0 -0
@@ -22,6 +22,7 @@ import pytest
22
22
  from sklearn.base import BaseEstimator
23
23
  from sklearn.datasets import make_classification
24
24
 
25
+ from sklearnex.decomposition import PCA
25
26
  from sklearnex.dispatcher import get_patch_map
26
27
  from sklearnex.svm import SVC, NuSVC
27
28
 
@@ -73,6 +74,9 @@ def test_n_jobs_support(caplog, estimator_class, n_jobs):
73
74
  # by default, [Nu]SVC.predict_proba is restricted by @available_if decorator
74
75
  if estimator_class in [SVC, NuSVC]:
75
76
  estimator_kwargs["probability"] = True
77
+ # explicitly request oneDAL's PCA-Covariance algorithm
78
+ if estimator_class == PCA:
79
+ estimator_kwargs["svd_solver"] = "covariance_eigh"
76
80
  estimator_instance = estimator_class(**estimator_kwargs)
77
81
  # check `n_jobs` parameter doc entry
78
82
  check_estimator_doc(estimator_class)
@@ -61,12 +61,15 @@ def test_pairwise_distances_patching(caplog, dataframe, queue, dtype, metric):
61
61
  pytest.skip("pairwise_distances does not support GPU queues")
62
62
 
63
63
  rng = nprnd.default_rng()
64
- X = _convert_to_dataframe(
65
- rng.random(size=1000).reshape(1, -1),
66
- sycl_queue=queue,
67
- target_df=dataframe,
68
- dtype=dtype,
69
- )
64
+ if dataframe == "pandas":
65
+ X = _convert_to_dataframe(
66
+ rng.random(size=1000).astype(dtype).reshape(1, -1),
67
+ target_df=dataframe,
68
+ )
69
+ else:
70
+ X = _convert_to_dataframe(
71
+ rng.random(size=1000), sycl_queue=queue, target_df=dataframe, dtype=dtype
72
+ )[None, :]
70
73
 
71
74
  _ = pairwise_distances(X, metric=metric)
72
75
  assert all(
@@ -90,14 +93,17 @@ def test_roc_auc_score_patching(caplog, dataframe, queue, dtype):
90
93
 
91
94
  with caplog.at_level(logging.WARNING, logger="sklearnex"):
92
95
  rng = nprnd.default_rng()
96
+ X = rng.integers(2, size=1000)
97
+ y = rng.integers(2, size=1000)
98
+
93
99
  X = _convert_to_dataframe(
94
- rng.integers(2, size=1000),
100
+ X,
95
101
  sycl_queue=queue,
96
102
  target_df=dataframe,
97
103
  dtype=dtype,
98
104
  )
99
105
  y = _convert_to_dataframe(
100
- rng.integers(2, size=1000),
106
+ y,
101
107
  sycl_queue=queue,
102
108
  target_df=dataframe,
103
109
  dtype=dtype,
@@ -142,10 +148,16 @@ def test_standard_estimator_patching(caplog, dataframe, queue, dtype, estimator,
142
148
  and dtype in [np.uint32, np.uint64]
143
149
  ):
144
150
  pytest.skip("Windows segmentation fault for Ridge.predict for unsigned ints")
151
+ elif estimator == "IncrementalLinearRegression" and np.issubdtype(
152
+ dtype, np.integer
153
+ ):
154
+ pytest.skip(
155
+ "IncrementalLinearRegression fails on oneDAL side with int types because dataset is filled by zeroes"
156
+ )
145
157
  elif method and not hasattr(est, method):
146
158
  pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
147
159
 
148
- X, y = gen_dataset(est, queue=queue, target_df=dataframe, dtype=dtype)
160
+ X, y = gen_dataset(est, queue=queue, target_df=dataframe, dtype=dtype)[0]
149
161
  est.fit(X, y)
150
162
 
151
163
  if method:
@@ -177,7 +189,7 @@ def test_special_estimator_patching(caplog, dataframe, queue, dtype, estimator,
177
189
  elif dtype == np.float64 and queue and not queue.sycl_device.has_aspect_fp64:
178
190
  pytest.skip("Hardware does not support fp64 SYCL testing")
179
191
 
180
- X, y = gen_dataset(est, queue=queue, target_df=dataframe, dtype=dtype)
192
+ X, y = gen_dataset(est, queue=queue, target_df=dataframe, dtype=dtype)[0]
181
193
  est.fit(X, y)
182
194
 
183
195
  if method and not hasattr(est, method):
@@ -0,0 +1,283 @@
1
+ # ===============================================================================
2
+ # Copyright 2020 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import random
18
+ from collections.abc import Iterable
19
+ from functools import partial
20
+ from numbers import Number
21
+
22
+ import numpy as np
23
+ import pytest
24
+ from _utils import (
25
+ PATCHED_MODELS,
26
+ SPECIAL_INSTANCES,
27
+ _sklearn_clone_dict,
28
+ gen_dataset,
29
+ gen_models_info,
30
+ )
31
+ from numpy.testing import assert_allclose
32
+ from scipy import sparse
33
+ from sklearn.datasets import (
34
+ load_breast_cancer,
35
+ load_diabetes,
36
+ load_iris,
37
+ make_classification,
38
+ make_regression,
39
+ )
40
+
41
+ import daal4py as d4p
42
+ from onedal.tests.utils._dataframes_support import _as_numpy, get_dataframes_and_queues
43
+ from sklearnex.cluster import DBSCAN, KMeans
44
+ from sklearnex.decomposition import PCA
45
+ from sklearnex.metrics import pairwise_distances, roc_auc_score
46
+ from sklearnex.model_selection import train_test_split
47
+ from sklearnex.neighbors import (
48
+ KNeighborsClassifier,
49
+ KNeighborsRegressor,
50
+ NearestNeighbors,
51
+ )
52
+ from sklearnex.svm import SVC
53
+
54
+ # to reproduce errors even in CI
55
+ d4p.daalinit(nthreads=100)
56
+
57
+ _dataset_dict = {
58
+ "classification": [
59
+ partial(load_iris, return_X_y=True),
60
+ partial(load_breast_cancer, return_X_y=True),
61
+ ],
62
+ "regression": [
63
+ partial(load_diabetes, return_X_y=True),
64
+ partial(
65
+ make_regression, n_samples=500, n_features=10, noise=64.0, random_state=42
66
+ ),
67
+ ],
68
+ }
69
+
70
+
71
+ def eval_method(X, y, est, method):
72
+ res = []
73
+ est.fit(X, y)
74
+
75
+ if method:
76
+ if method != "score":
77
+ res = getattr(est, method)(X)
78
+ else:
79
+ res = est.score(X, y)
80
+
81
+ if not isinstance(res, Iterable):
82
+ res = [res]
83
+
84
+ # if estimator follows sklearn design rules, then set attributes should have a
85
+ # trailing underscore
86
+ attributes = [
87
+ i
88
+ for i in dir(est)
89
+ if hasattr(est, i) and not i.startswith("_") and i.endswith("_")
90
+ ]
91
+ results = [getattr(est, i) for i in attributes] + [_as_numpy(i) for i in res]
92
+ attributes += [method for i in res]
93
+ return results, attributes
94
+
95
+
96
+ def _run_test(estimator, method, datasets):
97
+
98
+ for X, y in datasets:
99
+ baseline, attributes = eval_method(X, y, estimator, method)
100
+
101
+ for i in range(10):
102
+ res, _ = eval_method(X, y, estimator, method)
103
+
104
+ for r, b, n in zip(res, baseline, attributes):
105
+ if (
106
+ isinstance(b, Number)
107
+ or hasattr(b, "__array__")
108
+ or hasattr(b, "__array_namespace__")
109
+ or hasattr(b, "__sycl_usm_ndarray__")
110
+ ):
111
+ assert_allclose(
112
+ r, b, rtol=0.0, atol=0.0, err_msg=str(n + " is incorrect")
113
+ )
114
+
115
+
116
+ SPARSE_INSTANCES = _sklearn_clone_dict(
117
+ {
118
+ str(i): i
119
+ for i in [
120
+ SVC(),
121
+ KMeans(),
122
+ KMeans(init="random"),
123
+ ]
124
+ }
125
+ )
126
+
127
+ STABILITY_INSTANCES = _sklearn_clone_dict(
128
+ {
129
+ str(i): i
130
+ for i in [
131
+ KNeighborsClassifier(algorithm="brute", weights="distance"),
132
+ KNeighborsClassifier(algorithm="kd_tree", weights="distance"),
133
+ KNeighborsClassifier(algorithm="kd_tree"),
134
+ KNeighborsRegressor(algorithm="brute", weights="distance"),
135
+ KNeighborsRegressor(algorithm="kd_tree", weights="distance"),
136
+ KNeighborsRegressor(algorithm="kd_tree"),
137
+ NearestNeighbors(algorithm="kd_tree"),
138
+ DBSCAN(algorithm="brute"),
139
+ PCA(n_components=0.5, svd_solver="covariance_eigh"),
140
+ KMeans(init="random"),
141
+ ]
142
+ }
143
+ )
144
+
145
+
146
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
147
+ @pytest.mark.parametrize("estimator, method", gen_models_info(PATCHED_MODELS))
148
+ def test_standard_estimator_stability(estimator, method, dataframe, queue):
149
+ if estimator in ["LogisticRegression", "TSNE"]:
150
+ pytest.skip(f"stability not guaranteed for {estimator}")
151
+ if estimator in ["KMeans", "PCA"] and method == "score" and queue == None:
152
+ pytest.skip(f"variation observed in {estimator}.score")
153
+
154
+ est = PATCHED_MODELS[estimator]()
155
+
156
+ if method and not hasattr(est, method):
157
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
158
+
159
+ params = est.get_params().copy()
160
+ if "random_state" in params:
161
+ params["random_state"] = 0
162
+ est.set_params(**params)
163
+
164
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
165
+ _run_test(est, method, datasets)
166
+
167
+
168
+ @pytest.mark.allow_sklearn_fallback
169
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
170
+ @pytest.mark.parametrize("estimator, method", gen_models_info(SPECIAL_INSTANCES))
171
+ def test_special_estimator_stability(estimator, method, dataframe, queue):
172
+ if queue is None and estimator in ["LogisticRegression(solver='newton-cg')"]:
173
+ pytest.skip(f"stability not guaranteed for {estimator}")
174
+ if "KMeans" in estimator and method == "score" and queue == None:
175
+ pytest.skip(f"variation observed in KMeans.score")
176
+
177
+ est = SPECIAL_INSTANCES[estimator]
178
+
179
+ if method and not hasattr(est, method):
180
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
181
+
182
+ params = est.get_params().copy()
183
+ if "random_state" in params:
184
+ params["random_state"] = 0
185
+ est.set_params(**params)
186
+
187
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
188
+ _run_test(est, method, datasets)
189
+
190
+
191
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
192
+ @pytest.mark.parametrize("estimator, method", gen_models_info(SPARSE_INSTANCES))
193
+ def test_sparse_estimator_stability(estimator, method, dataframe, queue):
194
+ if "KMeans" in estimator and method == "score" and queue == None:
195
+ pytest.skip(f"variation observed in KMeans.score")
196
+
197
+ est = SPARSE_INSTANCES[estimator]
198
+
199
+ if method and not hasattr(est, method):
200
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
201
+
202
+ params = est.get_params().copy()
203
+ if "random_state" in params:
204
+ params["random_state"] = 0
205
+ est.set_params(**params)
206
+
207
+ datasets = gen_dataset(
208
+ est, sparse=True, datasets=_dataset_dict, queue=queue, target_df=dataframe
209
+ )
210
+ _run_test(est, method, datasets)
211
+
212
+
213
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy"))
214
+ @pytest.mark.parametrize("estimator, method", gen_models_info(STABILITY_INSTANCES))
215
+ def test_other_estimator_stability(estimator, method, dataframe, queue):
216
+ if "KMeans" in estimator and method == "score" and queue == None:
217
+ pytest.skip(f"variation observed in KMeans.score")
218
+
219
+ est = STABILITY_INSTANCES[estimator]
220
+
221
+ if method and not hasattr(est, method):
222
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
223
+
224
+ params = est.get_params().copy()
225
+ if "random_state" in params:
226
+ params["random_state"] = 0
227
+ est.set_params(**params)
228
+
229
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
230
+ _run_test(est, method, datasets)
231
+
232
+
233
+ @pytest.mark.parametrize("features", range(5, 10))
234
+ def test_train_test_split(features):
235
+ X, y = make_classification(
236
+ n_samples=4000,
237
+ n_features=features,
238
+ n_informative=features,
239
+ n_redundant=0,
240
+ n_clusters_per_class=8,
241
+ random_state=0,
242
+ )
243
+ (
244
+ baseline_X_train,
245
+ baseline_X_test,
246
+ baseline_y_train,
247
+ baseline_y_test,
248
+ ) = train_test_split(X, y, test_size=0.33, random_state=0)
249
+ baseline = [baseline_X_train, baseline_X_test, baseline_y_train, baseline_y_test]
250
+ for _ in range(10):
251
+ X_train, X_test, y_train, y_test = train_test_split(
252
+ X, y, test_size=0.33, random_state=0
253
+ )
254
+ res = [X_train, X_test, y_train, y_test]
255
+ for a, b in zip(res, baseline):
256
+ np.testing.assert_allclose(
257
+ a, b, rtol=0.0, atol=0.0, err_msg=str("train_test_split is incorrect")
258
+ )
259
+
260
+
261
+ @pytest.mark.parametrize("metric", ["cosine", "correlation"])
262
+ def test_pairwise_distances(metric):
263
+ X = np.random.rand(1000)
264
+ X = np.array(X, dtype=np.float64)
265
+ baseline = pairwise_distances(X.reshape(1, -1), metric=metric)
266
+ for _ in range(5):
267
+ res = pairwise_distances(X.reshape(1, -1), metric=metric)
268
+ for a, b in zip(res, baseline):
269
+ np.testing.assert_allclose(
270
+ a, b, rtol=0.0, atol=0.0, err_msg=str("pairwise_distances is incorrect")
271
+ )
272
+
273
+
274
+ @pytest.mark.parametrize("array_size", [100, 1000, 10000])
275
+ def test_roc_auc(array_size):
276
+ a = [random.randint(0, 1) for i in range(array_size)]
277
+ b = [random.randint(0, 1) for i in range(array_size)]
278
+ baseline = roc_auc_score(a, b)
279
+ for _ in range(5):
280
+ res = roc_auc_score(a, b)
281
+ np.testing.assert_allclose(
282
+ baseline, res, rtol=0.0, atol=0.0, err_msg=str("roc_auc is incorrect")
283
+ )
@@ -94,4 +94,4 @@ def get_namespace(*arrays):
94
94
  elif sklearn_check_version("1.2"):
95
95
  return sklearn_get_namespace(*arrays)
96
96
  else:
97
- return np, True
97
+ return np, False
@@ -0,0 +1,89 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import time
18
+
19
+ import numpy as np
20
+ import numpy.random as rand
21
+ import pytest
22
+ from numpy.testing import assert_raises
23
+
24
+ from sklearnex.utils import _assert_all_finite
25
+
26
+
27
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
28
+ @pytest.mark.parametrize(
29
+ "shape",
30
+ [
31
+ [16, 2048],
32
+ [
33
+ 2**16 + 3,
34
+ ],
35
+ [1000, 1000],
36
+ ],
37
+ )
38
+ @pytest.mark.parametrize("allow_nan", [False, True])
39
+ def test_sum_infinite_actually_finite(dtype, shape, allow_nan):
40
+ X = np.array(shape, dtype=dtype)
41
+ X.fill(np.finfo(dtype).max)
42
+ _assert_all_finite(X, allow_nan=allow_nan)
43
+
44
+
45
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
46
+ @pytest.mark.parametrize(
47
+ "shape",
48
+ [
49
+ [16, 2048],
50
+ [
51
+ 2**16 + 3,
52
+ ],
53
+ [1000, 1000],
54
+ ],
55
+ )
56
+ @pytest.mark.parametrize("allow_nan", [False, True])
57
+ @pytest.mark.parametrize("check", ["inf", "NaN", None])
58
+ @pytest.mark.parametrize("seed", [0, int(time.time())])
59
+ def test_assert_finite_random_location(dtype, shape, allow_nan, check, seed):
60
+ rand.seed(seed)
61
+ X = rand.uniform(high=np.finfo(dtype).max, size=shape).astype(dtype)
62
+
63
+ if check:
64
+ loc = rand.randint(0, X.size - 1)
65
+ X.reshape((-1,))[loc] = float(check)
66
+
67
+ if check is None or (allow_nan and check == "NaN"):
68
+ _assert_all_finite(X, allow_nan=allow_nan)
69
+ else:
70
+ assert_raises(ValueError, _assert_all_finite, X, allow_nan=allow_nan)
71
+
72
+
73
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
74
+ @pytest.mark.parametrize("allow_nan", [False, True])
75
+ @pytest.mark.parametrize("check", ["inf", "NaN", None])
76
+ @pytest.mark.parametrize("seed", [0, int(time.time())])
77
+ def test_assert_finite_random_shape_and_location(dtype, allow_nan, check, seed):
78
+ lb, ub = 32768, 1048576 # lb is a patching condition, ub 2^20
79
+ rand.seed(seed)
80
+ X = rand.uniform(high=np.finfo(dtype).max, size=rand.randint(lb, ub)).astype(dtype)
81
+
82
+ if check:
83
+ loc = rand.randint(0, X.size - 1)
84
+ X[loc] = float(check)
85
+
86
+ if check is None or (allow_nan and check == "NaN"):
87
+ _assert_all_finite(X, allow_nan=allow_nan)
88
+ else:
89
+ assert_raises(ValueError, _assert_all_finite, X, allow_nan=allow_nan)