reflectorch 1.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- reflectorch/__init__.py +17 -0
- reflectorch/data_generation/__init__.py +128 -0
- reflectorch/data_generation/dataset.py +216 -0
- reflectorch/data_generation/likelihoods.py +80 -0
- reflectorch/data_generation/noise.py +471 -0
- reflectorch/data_generation/priors/__init__.py +60 -0
- reflectorch/data_generation/priors/base.py +55 -0
- reflectorch/data_generation/priors/exp_subprior_sampler.py +298 -0
- reflectorch/data_generation/priors/independent_priors.py +195 -0
- reflectorch/data_generation/priors/multilayer_models.py +311 -0
- reflectorch/data_generation/priors/multilayer_structures.py +104 -0
- reflectorch/data_generation/priors/no_constraints.py +206 -0
- reflectorch/data_generation/priors/parametric_models.py +842 -0
- reflectorch/data_generation/priors/parametric_subpriors.py +369 -0
- reflectorch/data_generation/priors/params.py +252 -0
- reflectorch/data_generation/priors/sampler_strategies.py +370 -0
- reflectorch/data_generation/priors/scaler_mixin.py +65 -0
- reflectorch/data_generation/priors/subprior_sampler.py +371 -0
- reflectorch/data_generation/priors/utils.py +118 -0
- reflectorch/data_generation/process_data.py +41 -0
- reflectorch/data_generation/q_generator.py +280 -0
- reflectorch/data_generation/reflectivity/__init__.py +102 -0
- reflectorch/data_generation/reflectivity/abeles.py +97 -0
- reflectorch/data_generation/reflectivity/kinematical.py +71 -0
- reflectorch/data_generation/reflectivity/memory_eff.py +105 -0
- reflectorch/data_generation/reflectivity/numpy_implementations.py +120 -0
- reflectorch/data_generation/reflectivity/smearing.py +138 -0
- reflectorch/data_generation/reflectivity/smearing_pointwise.py +110 -0
- reflectorch/data_generation/scale_curves.py +112 -0
- reflectorch/data_generation/smearing.py +99 -0
- reflectorch/data_generation/utils.py +223 -0
- reflectorch/extensions/__init__.py +0 -0
- reflectorch/extensions/jupyter/__init__.py +11 -0
- reflectorch/extensions/jupyter/api.py +85 -0
- reflectorch/extensions/jupyter/callbacks.py +34 -0
- reflectorch/extensions/jupyter/components.py +758 -0
- reflectorch/extensions/jupyter/custom_select.py +268 -0
- reflectorch/extensions/jupyter/log_widget.py +241 -0
- reflectorch/extensions/jupyter/model_selection.py +495 -0
- reflectorch/extensions/jupyter/plotly_plot_manager.py +329 -0
- reflectorch/extensions/jupyter/widget.py +625 -0
- reflectorch/extensions/matplotlib/__init__.py +5 -0
- reflectorch/extensions/matplotlib/losses.py +32 -0
- reflectorch/extensions/refnx/refnx_conversion.py +77 -0
- reflectorch/inference/__init__.py +28 -0
- reflectorch/inference/inference_model.py +848 -0
- reflectorch/inference/input_interface.py +239 -0
- reflectorch/inference/loading_data.py +55 -0
- reflectorch/inference/multilayer_fitter.py +171 -0
- reflectorch/inference/multilayer_inference_model.py +193 -0
- reflectorch/inference/plotting.py +524 -0
- reflectorch/inference/preprocess_exp/__init__.py +7 -0
- reflectorch/inference/preprocess_exp/attenuation.py +36 -0
- reflectorch/inference/preprocess_exp/cut_with_q_ratio.py +31 -0
- reflectorch/inference/preprocess_exp/footprint.py +81 -0
- reflectorch/inference/preprocess_exp/interpolation.py +19 -0
- reflectorch/inference/preprocess_exp/normalize.py +21 -0
- reflectorch/inference/preprocess_exp/preprocess.py +121 -0
- reflectorch/inference/query_matcher.py +82 -0
- reflectorch/inference/record_time.py +43 -0
- reflectorch/inference/sampler_solution.py +56 -0
- reflectorch/inference/scipy_fitter.py +364 -0
- reflectorch/inference/torch_fitter.py +87 -0
- reflectorch/ml/__init__.py +32 -0
- reflectorch/ml/basic_trainer.py +292 -0
- reflectorch/ml/callbacks.py +81 -0
- reflectorch/ml/dataloaders.py +27 -0
- reflectorch/ml/loggers.py +56 -0
- reflectorch/ml/schedulers.py +356 -0
- reflectorch/ml/trainers.py +201 -0
- reflectorch/ml/utils.py +2 -0
- reflectorch/models/__init__.py +16 -0
- reflectorch/models/activations.py +50 -0
- reflectorch/models/encoders/__init__.py +19 -0
- reflectorch/models/encoders/conv_encoder.py +219 -0
- reflectorch/models/encoders/conv_res_net.py +115 -0
- reflectorch/models/encoders/fno.py +134 -0
- reflectorch/models/encoders/integral_kernel_embedding.py +390 -0
- reflectorch/models/networks/__init__.py +14 -0
- reflectorch/models/networks/mlp_networks.py +434 -0
- reflectorch/models/networks/residual_net.py +157 -0
- reflectorch/paths.py +29 -0
- reflectorch/runs/__init__.py +31 -0
- reflectorch/runs/config.py +25 -0
- reflectorch/runs/slurm_utils.py +93 -0
- reflectorch/runs/train.py +78 -0
- reflectorch/runs/utils.py +405 -0
- reflectorch/test_config.py +4 -0
- reflectorch/train.py +4 -0
- reflectorch/train_on_cluster.py +4 -0
- reflectorch/utils.py +98 -0
- reflectorch-1.5.1.dist-info/METADATA +151 -0
- reflectorch-1.5.1.dist-info/RECORD +96 -0
- reflectorch-1.5.1.dist-info/WHEEL +5 -0
- reflectorch-1.5.1.dist-info/licenses/LICENSE.txt +21 -0
- reflectorch-1.5.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,280 @@
|
|
|
1
|
+
from typing import Tuple, Union
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
from torch import Tensor
|
|
7
|
+
|
|
8
|
+
from reflectorch.data_generation.utils import uniform_sampler
|
|
9
|
+
from reflectorch.data_generation.priors import BasicParams
|
|
10
|
+
from reflectorch.utils import angle_to_q
|
|
11
|
+
from reflectorch.data_generation.priors.no_constraints import DEFAULT_DEVICE, DEFAULT_DTYPE
|
|
12
|
+
|
|
13
|
+
__all__ = [
|
|
14
|
+
"QGenerator",
|
|
15
|
+
"ConstantQ",
|
|
16
|
+
"VariableQ",
|
|
17
|
+
"EquidistantQ",
|
|
18
|
+
"ConstantAngle",
|
|
19
|
+
"MaskedVariableQ",
|
|
20
|
+
]
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class QGenerator(object):
|
|
24
|
+
"""Base class for momentum transfer (q) generators"""
|
|
25
|
+
def get_batch(self, batch_size: int, context: dict = None) -> Tensor:
|
|
26
|
+
pass
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class ConstantQ(QGenerator):
|
|
30
|
+
"""Q generator for reflectivity curves with fixed discretization
|
|
31
|
+
|
|
32
|
+
Args:
|
|
33
|
+
q (Union[Tensor, Tuple[float, float, int]], optional): tuple (q_min, q_max, num_q) defining the minimum q value, maximum q value and the number of q points. Defaults to (0., 0.2, 128).
|
|
34
|
+
device (optional): the Pytorch device. Defaults to DEFAULT_DEVICE.
|
|
35
|
+
dtype (optional): the Pytorch data type. Defaults to DEFAULT_DTYPE.
|
|
36
|
+
remove_zero (bool, optional): do not include the upper end of the interval. Defaults to False.
|
|
37
|
+
fixed_zero (bool, optional): do not include the lower end of the interval. Defaults to False.
|
|
38
|
+
"""
|
|
39
|
+
|
|
40
|
+
def __init__(self,
|
|
41
|
+
q: Union[Tensor, Tuple[float, float, int]] = (0., 0.2, 128),
|
|
42
|
+
device=DEFAULT_DEVICE,
|
|
43
|
+
dtype=DEFAULT_DTYPE,
|
|
44
|
+
remove_zero: bool = False,
|
|
45
|
+
fixed_zero: bool = False,
|
|
46
|
+
):
|
|
47
|
+
if isinstance(q, (tuple, list)):
|
|
48
|
+
q = torch.linspace(*q, device=device, dtype=dtype)
|
|
49
|
+
if remove_zero:
|
|
50
|
+
if fixed_zero:
|
|
51
|
+
q = q[1:]
|
|
52
|
+
else:
|
|
53
|
+
q = q[:-1]
|
|
54
|
+
self.q_min = q.min().item()
|
|
55
|
+
self.q_max = q.max().item()
|
|
56
|
+
self.q = q
|
|
57
|
+
|
|
58
|
+
def get_batch(self, batch_size: int, context: dict = None) -> Tensor:
|
|
59
|
+
"""generate a batch of q values
|
|
60
|
+
|
|
61
|
+
Args:
|
|
62
|
+
batch_size (int): the batch size
|
|
63
|
+
|
|
64
|
+
Returns:
|
|
65
|
+
Tensor: generated batch of q values
|
|
66
|
+
"""
|
|
67
|
+
return self.q.clone()[None].expand(batch_size, self.q.shape[0])
|
|
68
|
+
|
|
69
|
+
def scale_q(self, q):
|
|
70
|
+
"""Scales the q values to the range [-1, 1].
|
|
71
|
+
|
|
72
|
+
Args:
|
|
73
|
+
q (Tensor): unscaled q values
|
|
74
|
+
|
|
75
|
+
Returns:
|
|
76
|
+
Tensor: scaled q values
|
|
77
|
+
"""
|
|
78
|
+
scaled_q_01 = (q - self.q_min) / (self.q_max - self.q_min)
|
|
79
|
+
return 2.0 * (scaled_q_01 - 0.5)
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
class VariableQ(QGenerator):
|
|
83
|
+
"""Q generator for reflectivity curves with variable discretization
|
|
84
|
+
|
|
85
|
+
Args:
|
|
86
|
+
q_min_range (list, optional): the range for sampling the minimum q value of the curves, q_min. Defaults to [0.01, 0.03].
|
|
87
|
+
q_max_range (list, optional): the range for sampling the maximum q value of the curves, q_max. Defaults to [0.1, 0.5].
|
|
88
|
+
n_q_range (list, optional): the range for the number of points in the curves (equidistantly sampled between q_min and q_max,
|
|
89
|
+
the number of points varies between batches but is constant within a batch). Defaults to [64, 256].
|
|
90
|
+
device (optional): the Pytorch device. Defaults to DEFAULT_DEVICE.
|
|
91
|
+
dtype (optional): the Pytorch data type. Defaults to DEFAULT_DTYPE.
|
|
92
|
+
"""
|
|
93
|
+
|
|
94
|
+
def __init__(self,
|
|
95
|
+
q_min_range: Tuple[float, float] = (0.01, 0.03),
|
|
96
|
+
q_max_range: Tuple[float, float] = (0.1, 0.5),
|
|
97
|
+
n_q_range: Tuple[int, int] = (64, 256),
|
|
98
|
+
mode: str = 'equidistant',
|
|
99
|
+
device=DEFAULT_DEVICE,
|
|
100
|
+
dtype=DEFAULT_DTYPE,
|
|
101
|
+
):
|
|
102
|
+
self.q_min_range = q_min_range
|
|
103
|
+
self.q_max_range = q_max_range
|
|
104
|
+
self.n_q_range = n_q_range
|
|
105
|
+
self.mode = mode
|
|
106
|
+
self.device = device
|
|
107
|
+
self.dtype = dtype
|
|
108
|
+
|
|
109
|
+
def get_batch(self, batch_size: int, context: dict = None) -> Tensor:
|
|
110
|
+
"""generate a batch of q values (the number of points varies between batches but is constant within a batch)
|
|
111
|
+
|
|
112
|
+
Args:
|
|
113
|
+
batch_size (int): the batch size
|
|
114
|
+
|
|
115
|
+
Returns:
|
|
116
|
+
Tensor: generated batch of q values
|
|
117
|
+
"""
|
|
118
|
+
|
|
119
|
+
q_min = torch.rand(batch_size, device=self.device, dtype=self.dtype) * (self.q_min_range[1] - self.q_min_range[0]) + self.q_min_range[0]
|
|
120
|
+
q_max = torch.rand(batch_size, device=self.device, dtype=self.dtype) * (self.q_max_range[1] - self.q_max_range[0]) + self.q_max_range[0]
|
|
121
|
+
|
|
122
|
+
n_q = torch.randint(self.n_q_range[0], self.n_q_range[1] + 1, (1,), device=self.device).item()
|
|
123
|
+
|
|
124
|
+
if self.mode == 'equidistant':
|
|
125
|
+
q = torch.linspace(0, 1, n_q, device=self.device, dtype=self.dtype)
|
|
126
|
+
elif self.mode == 'random':
|
|
127
|
+
q = torch.rand(n_q, device=self.device, dtype=self.dtype).sort().values
|
|
128
|
+
elif self.mode == 'logspace':
|
|
129
|
+
q = torch.logspace(
|
|
130
|
+
start=torch.log10(torch.tensor(1e-4, dtype=self.dtype, device=self.device)),
|
|
131
|
+
end=torch.log10(torch.tensor(1.0, dtype=self.dtype, device=self.device)),
|
|
132
|
+
steps=n_q, dtype=self.dtype, device=self.device)
|
|
133
|
+
|
|
134
|
+
q = q_min[:, None] + q * (q_max - q_min)[:, None]
|
|
135
|
+
|
|
136
|
+
return q
|
|
137
|
+
|
|
138
|
+
def scale_q(self, q):
|
|
139
|
+
"""scales the q values to the range [-1, 1]
|
|
140
|
+
|
|
141
|
+
Args:
|
|
142
|
+
q (Tensor): unscaled q values
|
|
143
|
+
|
|
144
|
+
Returns:
|
|
145
|
+
Tensor: scaled q values
|
|
146
|
+
"""
|
|
147
|
+
scaled_q_01 = (q - self.q_min_range[0]) / (self.q_max_range[1] - self.q_min_range[0])
|
|
148
|
+
|
|
149
|
+
return 2.0 * (scaled_q_01 - 0.5)
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
class ConstantAngle(QGenerator):
|
|
153
|
+
"""Q generator for reflectivity curves measured at equidistant angles
|
|
154
|
+
|
|
155
|
+
Args:
|
|
156
|
+
angle_range (Tuple[float, float, int], optional): the range of the incident angles. Defaults to (0., 0.2, 257).
|
|
157
|
+
wavelength (float, optional): the beam wavelength in units of angstroms. Defaults to 1.
|
|
158
|
+
device (optional): the Pytorch device. Defaults to DEFAULT_DEVICE.
|
|
159
|
+
dtype (optional): the Pytorch data type. Defaults to DEFAULT_DTYPE.
|
|
160
|
+
"""
|
|
161
|
+
def __init__(self,
|
|
162
|
+
angle_range: Tuple[float, float, int] = (0., 0.2, 257),
|
|
163
|
+
wavelength: float = 1.,
|
|
164
|
+
device=DEFAULT_DEVICE,
|
|
165
|
+
dtype=DEFAULT_DTYPE,
|
|
166
|
+
):
|
|
167
|
+
self.q = torch.from_numpy(angle_to_q(np.linspace(*angle_range), wavelength)).to(device).to(dtype)
|
|
168
|
+
|
|
169
|
+
def get_batch(self, batch_size: int, context: dict = None) -> Tensor:
|
|
170
|
+
"""generate a batch of q values
|
|
171
|
+
|
|
172
|
+
Args:
|
|
173
|
+
batch_size (int): the batch size
|
|
174
|
+
|
|
175
|
+
Returns:
|
|
176
|
+
Tensor: generated batch of q values
|
|
177
|
+
"""
|
|
178
|
+
return self.q.clone()[None].expand(batch_size, self.q.shape[0])
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
class EquidistantQ(QGenerator):
|
|
182
|
+
def __init__(self,
|
|
183
|
+
max_range: Tuple[float, float],
|
|
184
|
+
num_values: Union[int, Tuple[int, int]],
|
|
185
|
+
device=None,
|
|
186
|
+
dtype=torch.float64
|
|
187
|
+
):
|
|
188
|
+
self.max_range = max_range
|
|
189
|
+
self._num_values = num_values
|
|
190
|
+
self.device = device
|
|
191
|
+
self.dtype = dtype
|
|
192
|
+
|
|
193
|
+
@property
|
|
194
|
+
def num_values(self) -> int:
|
|
195
|
+
if isinstance(self._num_values, int):
|
|
196
|
+
return self._num_values
|
|
197
|
+
return np.random.randint(*self._num_values)
|
|
198
|
+
|
|
199
|
+
def get_batch(self, batch_size: int, context: dict = None) -> Tensor:
|
|
200
|
+
num_values = self.num_values
|
|
201
|
+
q_max = uniform_sampler(*self.max_range, batch_size, 1, device=self.device, dtype=self.dtype)
|
|
202
|
+
norm_qs = torch.linspace(0, 1, num_values + 1, device=self.device, dtype=self.dtype)[1:][None]
|
|
203
|
+
qs = norm_qs * q_max
|
|
204
|
+
return qs
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
class MaskedVariableQ:
|
|
208
|
+
def __init__(self,
|
|
209
|
+
q_min_range=(0.01, 0.03),
|
|
210
|
+
q_max_range=(0.1, 0.5),
|
|
211
|
+
n_q_range=(64, 256),
|
|
212
|
+
mode='equidistant',
|
|
213
|
+
shuffle_mask=False,
|
|
214
|
+
total_thickness_constraint=True,
|
|
215
|
+
min_points_per_fringe=4,
|
|
216
|
+
device=DEFAULT_DEVICE,
|
|
217
|
+
dtype=DEFAULT_DTYPE):
|
|
218
|
+
self.q_min_range = q_min_range
|
|
219
|
+
self.q_max_range = q_max_range
|
|
220
|
+
self.n_q_range = n_q_range
|
|
221
|
+
self.device = device
|
|
222
|
+
self.dtype = dtype
|
|
223
|
+
self.mode = mode
|
|
224
|
+
self.shuffle_mask = shuffle_mask
|
|
225
|
+
self.total_thickness_constraint = total_thickness_constraint
|
|
226
|
+
self.min_points_per_fringe = min_points_per_fringe
|
|
227
|
+
|
|
228
|
+
def get_batch(self, batch_size, context):
|
|
229
|
+
assert context is not None
|
|
230
|
+
|
|
231
|
+
q_min = torch.rand(batch_size, device=self.device, dtype=self.dtype) * (self.q_min_range[1] - self.q_min_range[0]) + self.q_min_range[0]
|
|
232
|
+
q_max = torch.rand(batch_size, device=self.device, dtype=self.dtype) * (self.q_max_range[1] - self.q_max_range[0]) + self.q_max_range[0]
|
|
233
|
+
|
|
234
|
+
max_n_q = self.n_q_range[1]
|
|
235
|
+
|
|
236
|
+
if self.mode == 'equidistant':
|
|
237
|
+
positions = torch.linspace(0, 1, max_n_q, device=self.device, dtype=self.dtype).expand(batch_size, max_n_q)
|
|
238
|
+
elif self.mode == 'random':
|
|
239
|
+
positions = torch.rand(batch_size, max_n_q, device=self.device, dtype=self.dtype)
|
|
240
|
+
positions, _ = positions.sort(dim=-1)
|
|
241
|
+
elif self.mode == 'mixed':
|
|
242
|
+
positions = torch.empty(batch_size, max_n_q, device=self.device, dtype=self.dtype)
|
|
243
|
+
|
|
244
|
+
half = batch_size // 2 # half batch gets equidistant
|
|
245
|
+
eq_pos = torch.linspace(0, 1, max_n_q, device=self.device, dtype=self.dtype).expand(half, max_n_q)
|
|
246
|
+
positions[:half] = eq_pos
|
|
247
|
+
|
|
248
|
+
rand_pos = torch.rand(batch_size - half, max_n_q, device=self.device, dtype=self.dtype) # other half gets sorted random
|
|
249
|
+
rand_pos, _ = rand_pos.sort(dim=-1)
|
|
250
|
+
positions[half:] = rand_pos
|
|
251
|
+
else:
|
|
252
|
+
raise ValueError(f"Unknown spacing mode: {self.mode}")
|
|
253
|
+
|
|
254
|
+
q = q_min[:, None] + positions * (q_max - q_min)[:, None]
|
|
255
|
+
|
|
256
|
+
n_qs = torch.randint(self.n_q_range[0], self.n_q_range[1] + 1, (batch_size,), device=self.device)
|
|
257
|
+
|
|
258
|
+
if 'params' in context and self.total_thickness_constraint: ### N_points > 1 + (Q_spread * total_thickness * min_np_per_kiessing_fringe) / (2*pi)
|
|
259
|
+
d_total = context['params'].thicknesses.sum(-1)
|
|
260
|
+
limit = 1 + ((q_max - q_min) * d_total * self.min_points_per_fringe) / (2*np.pi)
|
|
261
|
+
limit = limit.ceil().int()
|
|
262
|
+
n_qs = torch.maximum(n_qs, limit)
|
|
263
|
+
n_qs = torch.clamp(n_qs, max=self.n_q_range[1])
|
|
264
|
+
|
|
265
|
+
indices = torch.arange(max_n_q, device=self.device).expand(batch_size, max_n_q)
|
|
266
|
+
valid_mask = indices < n_qs[:, None] # right side padding
|
|
267
|
+
|
|
268
|
+
if self.shuffle_mask: # shuffle valid positions (inter-spread padding)
|
|
269
|
+
perm = torch.argsort(torch.rand(batch_size, max_n_q, device=self.device), dim=-1)
|
|
270
|
+
valid_mask = torch.gather(valid_mask, dim=1, index=perm)
|
|
271
|
+
|
|
272
|
+
context['key_padding_mask'] = valid_mask
|
|
273
|
+
context['n_points'] = valid_mask.sum(dim=-1)
|
|
274
|
+
|
|
275
|
+
return q
|
|
276
|
+
|
|
277
|
+
def scale_q(self, q):
|
|
278
|
+
scaled_q_01 = (q - self.q_min_range[0]) / (self.q_max_range[1] - self.q_min_range[0])
|
|
279
|
+
|
|
280
|
+
return 2.0 * (scaled_q_01 - 0.5)
|
|
@@ -0,0 +1,102 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch import Tensor
|
|
5
|
+
|
|
6
|
+
from reflectorch.data_generation.reflectivity.abeles import abeles_compiled, abeles
|
|
7
|
+
from reflectorch.data_generation.reflectivity.memory_eff import abeles_memory_eff
|
|
8
|
+
from reflectorch.data_generation.reflectivity.numpy_implementations import (
|
|
9
|
+
kinematical_approximation_np,
|
|
10
|
+
abeles_np,
|
|
11
|
+
)
|
|
12
|
+
from reflectorch.data_generation.reflectivity.smearing import abeles_constant_smearing
|
|
13
|
+
from reflectorch.data_generation.reflectivity.smearing_pointwise import abeles_pointwise_smearing
|
|
14
|
+
from reflectorch.data_generation.reflectivity.kinematical import kinematical_approximation
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def reflectivity(
|
|
18
|
+
q: Tensor,
|
|
19
|
+
thickness: Tensor,
|
|
20
|
+
roughness: Tensor,
|
|
21
|
+
sld: Tensor,
|
|
22
|
+
dq: Tensor = None,
|
|
23
|
+
gauss_num: int = 51,
|
|
24
|
+
constant_dq: bool = False,
|
|
25
|
+
log: bool = False,
|
|
26
|
+
q_shift: Tensor = 0.0,
|
|
27
|
+
r_scale: Tensor = 1.0,
|
|
28
|
+
background: Tensor = 0.0,
|
|
29
|
+
solvent_vf = None,
|
|
30
|
+
solvent_mode = 'fronting',
|
|
31
|
+
abeles_func = None,
|
|
32
|
+
**abeles_kwargs
|
|
33
|
+
):
|
|
34
|
+
"""Function which computes the reflectivity curves from thin film parameters.
|
|
35
|
+
By default it uses the fast implementation of the Abeles matrix formalism.
|
|
36
|
+
|
|
37
|
+
Args:
|
|
38
|
+
q (Tensor): tensor of momentum transfer (q) values with shape [batch_size, n_points] or [n_points]
|
|
39
|
+
thickness (Tensor): tensor containing the layer thicknesses (ordered from top to bottom) with shape [batch_size, n_layers]
|
|
40
|
+
roughness (Tensor): tensor containing the interlayer roughnesses (ordered from top to bottom) with shape [batch_size, n_layers + 1]
|
|
41
|
+
sld (Tensor): tensor containing the layer SLDs (real or complex; ordered from top to bottom) with shape
|
|
42
|
+
[batch_size, n_layers + 1] (excluding ambient SLD which is assumed to be 0) or [batch_size, n_layers + 2] (including ambient SLD; only for the default ``abeles_func='abeles'``)
|
|
43
|
+
dq (Tensor, optional): tensor of resolutions used for curve smearing with shape [batch_size, 1].
|
|
44
|
+
Either dq if ``constant_dq`` is ``True`` or dq/q if ``constant_dq`` is ``False``. Defaults to None.
|
|
45
|
+
gauss_num (int, optional): the number of gaussians for curve smearing. Defaults to 51.
|
|
46
|
+
constant_dq (bool, optional): if ``True`` the smearing is constant (constant dq at each point in the curve)
|
|
47
|
+
otherwise the smearing is linear (constant dq/q at each point in the curve). Defaults to False.
|
|
48
|
+
log (bool, optional): if True the base 10 logarithm of the reflectivity curves is returned. Defaults to False.
|
|
49
|
+
q_shift (float or Tensor, optional): misalignment in q.
|
|
50
|
+
r_scale (float or Tensor, optional): normalization factor (scales reflectivity).
|
|
51
|
+
background (float or Tensor, optional): background intensity.
|
|
52
|
+
abeles_func (Callable, optional): a function implementing the simulation of the reflectivity curves, if different than the default Abeles matrix implementation ('abeles'). Defaults to None.
|
|
53
|
+
abeles_kwargs: Additional arguments specific to the chosen `abeles_func`.
|
|
54
|
+
Returns:
|
|
55
|
+
Tensor: the computed reflectivity curves
|
|
56
|
+
"""
|
|
57
|
+
abeles_func = abeles_func or abeles
|
|
58
|
+
q = torch.atleast_2d(q) + q_shift
|
|
59
|
+
q = torch.clamp(q, min=0.0)
|
|
60
|
+
|
|
61
|
+
if solvent_vf is not None:
|
|
62
|
+
num_layers = thickness.shape[-1]
|
|
63
|
+
if solvent_mode == 'fronting':
|
|
64
|
+
assert sld.shape[-1] == num_layers + 2
|
|
65
|
+
assert solvent_vf.shape[-1] == num_layers
|
|
66
|
+
solvent_sld = sld[..., [0]]
|
|
67
|
+
idx = slice(1, num_layers)
|
|
68
|
+
sld[..., idx] = solvent_vf * solvent_sld + (1.0 - solvent_vf) * sld[..., idx]
|
|
69
|
+
elif solvent_mode == 'backing':
|
|
70
|
+
solvent_sld = sld[..., [-1]]
|
|
71
|
+
idx = slice(1, num_layers) if sld.shape[-1] == num_layers + 2 else slice(0, num_layers)
|
|
72
|
+
sld[..., idx] = solvent_vf * solvent_sld + (1.0 - solvent_vf) * sld[..., idx]
|
|
73
|
+
else:
|
|
74
|
+
raise NotImplementedError
|
|
75
|
+
|
|
76
|
+
if dq is None:
|
|
77
|
+
reflectivity_curves = abeles_func(q, thickness, roughness, sld, **abeles_kwargs)
|
|
78
|
+
else:
|
|
79
|
+
if dq.shape[-1] > 1:
|
|
80
|
+
reflectivity_curves = abeles_pointwise_smearing(
|
|
81
|
+
q=q, dq=dq, thickness=thickness, roughness=roughness, sld=sld,
|
|
82
|
+
abeles_func=abeles_func, gauss_num=gauss_num,
|
|
83
|
+
**abeles_kwargs,
|
|
84
|
+
)
|
|
85
|
+
else:
|
|
86
|
+
reflectivity_curves = abeles_constant_smearing(
|
|
87
|
+
q, thickness, roughness, sld,
|
|
88
|
+
dq=dq, gauss_num=gauss_num, constant_dq=constant_dq, abeles_func=abeles_func,
|
|
89
|
+
**abeles_kwargs,
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
if isinstance(r_scale, Tensor):
|
|
93
|
+
r_scale = r_scale.view(-1, *[1] * (reflectivity_curves.dim() - 1))
|
|
94
|
+
if isinstance(background, Tensor):
|
|
95
|
+
background = background.view(-1, *[1] * (reflectivity_curves.dim() - 1))
|
|
96
|
+
|
|
97
|
+
reflectivity_curves = reflectivity_curves * r_scale + background
|
|
98
|
+
|
|
99
|
+
if log:
|
|
100
|
+
reflectivity_curves = torch.log10(reflectivity_curves)
|
|
101
|
+
|
|
102
|
+
return reflectivity_curves
|
|
@@ -0,0 +1,97 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
import math
|
|
3
|
+
from functools import reduce
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
from torch import Tensor
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def abeles(
|
|
10
|
+
q: Tensor,
|
|
11
|
+
thickness: Tensor,
|
|
12
|
+
roughness: Tensor,
|
|
13
|
+
sld: Tensor,
|
|
14
|
+
):
|
|
15
|
+
"""Simulates reflectivity curves for SLD profiles with box model parameterization using the Abeles matrix method
|
|
16
|
+
|
|
17
|
+
Args:
|
|
18
|
+
q (Tensor): tensor of momentum transfer (q) values with shape [batch_size, n_points] or [n_points]
|
|
19
|
+
thickness (Tensor): tensor containing the layer thicknesses (ordered from top to bottom) with shape [batch_size, n_layers]
|
|
20
|
+
roughness (Tensor): tensor containing the interlayer roughnesses (ordered from top to bottom) with shape [batch_size, n_layers + 1]
|
|
21
|
+
sld (Tensor): tensor containing the layer SLDs (real or complex; ordered from top to bottom). The tensor shape should be one of the following:
|
|
22
|
+
- [batch_size, n_layers + 1]: in this case, the ambient SLD is not included but assumed to be 0
|
|
23
|
+
- [batch_size, n_layers + 2]: this shape includes the ambient SLD as the first element in the tensor
|
|
24
|
+
|
|
25
|
+
Returns:
|
|
26
|
+
Tensor: tensor containing the simulated reflectivity curves with shape [batch_size, n_points]
|
|
27
|
+
"""
|
|
28
|
+
c_dtype = torch.complex128 if q.dtype is torch.float64 else torch.complex64
|
|
29
|
+
|
|
30
|
+
batch_size, num_layers = thickness.shape
|
|
31
|
+
|
|
32
|
+
if sld.shape[-1] == num_layers + 1:
|
|
33
|
+
# add zero ambient sld
|
|
34
|
+
sld = torch.cat([torch.zeros(batch_size, 1).to(sld), sld], -1)
|
|
35
|
+
if sld.shape[-1] != num_layers + 2:
|
|
36
|
+
raise ValueError(
|
|
37
|
+
"Number of SLD values does not equal to num_layers + 2 (substrate + ambient)."
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
sld = sld[:, None]
|
|
41
|
+
|
|
42
|
+
# add zero thickness for ambient layer:
|
|
43
|
+
thickness = torch.cat([torch.zeros(batch_size, 1).to(thickness), thickness], -1)[
|
|
44
|
+
:, None
|
|
45
|
+
]
|
|
46
|
+
|
|
47
|
+
roughness = roughness[:, None] ** 2
|
|
48
|
+
|
|
49
|
+
sld = (sld - sld[..., :1]) * 1e-6 + 1e-36j
|
|
50
|
+
|
|
51
|
+
k_z0 = (q / 2).to(c_dtype)
|
|
52
|
+
|
|
53
|
+
if k_z0.dim() == 1:
|
|
54
|
+
k_z0.unsqueeze_(0)
|
|
55
|
+
|
|
56
|
+
if k_z0.dim() == 2:
|
|
57
|
+
k_z0.unsqueeze_(-1)
|
|
58
|
+
|
|
59
|
+
k_n = torch.sqrt(k_z0**2 - 4 * math.pi * sld)
|
|
60
|
+
|
|
61
|
+
# k_n.shape - (batch, q, layers)
|
|
62
|
+
|
|
63
|
+
k_n, k_np1 = k_n[..., :-1], k_n[..., 1:]
|
|
64
|
+
|
|
65
|
+
beta = 1j * thickness * k_n
|
|
66
|
+
|
|
67
|
+
exp_beta = torch.exp(beta)
|
|
68
|
+
exp_m_beta = torch.exp(-beta)
|
|
69
|
+
|
|
70
|
+
rn = (k_n - k_np1) / (k_n + k_np1) * torch.exp(-2 * k_n * k_np1 * roughness)
|
|
71
|
+
|
|
72
|
+
c_matrices = torch.stack(
|
|
73
|
+
[
|
|
74
|
+
torch.stack([exp_beta, rn * exp_m_beta], -1),
|
|
75
|
+
torch.stack([rn * exp_beta, exp_m_beta], -1),
|
|
76
|
+
],
|
|
77
|
+
-1,
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
c_matrices = [c.squeeze(-3) for c in c_matrices.split(1, -3)]
|
|
81
|
+
|
|
82
|
+
m = reduce(torch.matmul, c_matrices)
|
|
83
|
+
|
|
84
|
+
r = (m[..., 1, 0] / m[..., 0, 0]).abs() ** 2
|
|
85
|
+
r = torch.clamp_max_(r, 1.0)
|
|
86
|
+
|
|
87
|
+
return r
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
# @torch.jit.script # commented so far due to complex numbers issue
|
|
91
|
+
def abeles_compiled(
|
|
92
|
+
q: Tensor,
|
|
93
|
+
thickness: Tensor,
|
|
94
|
+
roughness: Tensor,
|
|
95
|
+
sld: Tensor,
|
|
96
|
+
):
|
|
97
|
+
return abeles(q, thickness, roughness, sld)
|
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch import Tensor
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def kinematical_approximation(
|
|
8
|
+
q: Tensor,
|
|
9
|
+
thickness: Tensor,
|
|
10
|
+
roughness: Tensor,
|
|
11
|
+
sld: Tensor,
|
|
12
|
+
*,
|
|
13
|
+
apply_fresnel: bool = True,
|
|
14
|
+
log: bool = False,
|
|
15
|
+
):
|
|
16
|
+
"""Simulates reflectivity curves for SLD profiles with box model parameterization using the kinematical approximation
|
|
17
|
+
|
|
18
|
+
Args:
|
|
19
|
+
q (Tensor): tensor of momentum transfer (q) values with shape [batch_size, n_points] or [n_points]
|
|
20
|
+
thickness (Tensor): tensor containing the layer thicknesses (ordered from top to bottom) with shape [batch_size, n_layers]
|
|
21
|
+
roughness (Tensor): tensor containing the interlayer roughnesses (ordered from top to bottom) with shape [batch_size, n_layers + 1]
|
|
22
|
+
sld (Tensor): tensor containing the layer SLDs (real or complex; ordered from top to bottom) with shape [batch_size, n_layers + 1].
|
|
23
|
+
It includes the substrate but excludes the ambient medium which is assumed to have an SLD of 0.
|
|
24
|
+
apply_fresnel (bool, optional): whether to use the Fresnel coefficient in the computation. Defaults to ``True``.
|
|
25
|
+
log (bool, optional): if True the base 10 logarithm of the reflectivity curves is returned. Defaults to ``False``.
|
|
26
|
+
|
|
27
|
+
Returns:
|
|
28
|
+
Tensor: tensor containing the simulated reflectivity curves with shape [batch_size, n_points]
|
|
29
|
+
"""
|
|
30
|
+
c_dtype = torch.complex128 if q.dtype is torch.float64 else torch.complex64
|
|
31
|
+
|
|
32
|
+
batch_size, num_layers = thickness.shape
|
|
33
|
+
|
|
34
|
+
q = q.to(c_dtype)
|
|
35
|
+
|
|
36
|
+
if q.dim() == 1:
|
|
37
|
+
q.unsqueeze_(0)
|
|
38
|
+
|
|
39
|
+
if q.dim() == 2:
|
|
40
|
+
q.unsqueeze_(-1)
|
|
41
|
+
|
|
42
|
+
sld = sld * 1e-6 + 1e-30j
|
|
43
|
+
|
|
44
|
+
drho = torch.cat([sld[..., 0][..., None], sld[..., 1:] - sld[..., :-1]], -1)[:, None]
|
|
45
|
+
thickness = torch.cumsum(torch.cat([torch.zeros(batch_size, 1).to(thickness), thickness], -1), -1)[:, None]
|
|
46
|
+
roughness = roughness[:, None]
|
|
47
|
+
|
|
48
|
+
r = (drho * torch.exp(- (roughness * q) ** 2 / 2 + 1j * (q * thickness))).sum(-1).abs().float() ** 2
|
|
49
|
+
|
|
50
|
+
if apply_fresnel:
|
|
51
|
+
|
|
52
|
+
substrate_sld = sld[:, -1:]
|
|
53
|
+
|
|
54
|
+
rf = _get_fresnel_reflectivity(q, substrate_sld[:, None])
|
|
55
|
+
|
|
56
|
+
r = torch.clamp_max_(r * rf / substrate_sld.real ** 2, 1.)
|
|
57
|
+
|
|
58
|
+
if log:
|
|
59
|
+
r = torch.log10(r)
|
|
60
|
+
|
|
61
|
+
return r
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def _get_fresnel_reflectivity(q, substrate_slds):
|
|
65
|
+
_RE_CONST = 0.28174103675406496 # 2/sqrt(16*pi)
|
|
66
|
+
|
|
67
|
+
q_c = torch.sqrt(substrate_slds + 0j) / _RE_CONST * 2
|
|
68
|
+
q_prime = torch.sqrt(q ** 2 - q_c ** 2 + 0j)
|
|
69
|
+
r_f = ((q - q_prime) / (q + q_prime)).abs().float() ** 2
|
|
70
|
+
|
|
71
|
+
return r_f.squeeze(-1)
|
|
@@ -0,0 +1,105 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
|
|
3
|
+
from math import pi
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
from torch import Tensor
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def abeles_memory_eff(
|
|
10
|
+
q: Tensor,
|
|
11
|
+
thickness: Tensor,
|
|
12
|
+
roughness: Tensor,
|
|
13
|
+
sld: Tensor,
|
|
14
|
+
):
|
|
15
|
+
"""Simulates reflectivity curves for SLD profiles with box model parameterization using a memory-efficient implementation the Abeles matrix method.
|
|
16
|
+
It is computationally slower compared to the implementation in the 'abeles' function.
|
|
17
|
+
|
|
18
|
+
Args:
|
|
19
|
+
q (Tensor): tensor of momentum transfer (q) values with shape [batch_size, n_points] or [n_points]
|
|
20
|
+
thickness (Tensor): tensor containing the layer thicknesses (ordered from top to bottom) with shape [batch_size, n_layers]
|
|
21
|
+
roughness (Tensor): tensor containing the interlayer roughnesses (ordered from top to bottom) with shape [batch_size, n_layers + 1]
|
|
22
|
+
sld (Tensor): tensor containing the layer SLDs (real or complex; ordered from top to bottom) with shape [batch_size, n_layers + 1].
|
|
23
|
+
It includes the substrate but excludes the ambient medium which is assumed to have an SLD of 0.
|
|
24
|
+
|
|
25
|
+
Returns:
|
|
26
|
+
Tensor: tensor containing the simulated reflectivity curves with shape [batch_size, n_points]
|
|
27
|
+
"""
|
|
28
|
+
c_dtype = torch.complex128 if q.dtype is torch.float64 else torch.complex64
|
|
29
|
+
|
|
30
|
+
batch_size, num_layers = thickness.shape
|
|
31
|
+
|
|
32
|
+
sld = sld * 1e-6 + 1e-30j
|
|
33
|
+
|
|
34
|
+
num_interfaces = num_layers + 1
|
|
35
|
+
|
|
36
|
+
k_z0 = (q / 2).to(c_dtype)
|
|
37
|
+
|
|
38
|
+
if len(k_z0.shape) == 1:
|
|
39
|
+
k_z0.unsqueeze_(0)
|
|
40
|
+
|
|
41
|
+
thickness_prev_layer = 1. # ambient
|
|
42
|
+
|
|
43
|
+
for interface_num in range(num_interfaces):
|
|
44
|
+
|
|
45
|
+
prev_layer_idx = interface_num - 1
|
|
46
|
+
next_layer_idx = interface_num
|
|
47
|
+
|
|
48
|
+
if interface_num == 0:
|
|
49
|
+
k_z_previous_layer = _get_relative_k_z(k_z0, torch.zeros(batch_size, 1).to(sld))
|
|
50
|
+
else:
|
|
51
|
+
thickness_prev_layer = thickness[:, prev_layer_idx].unsqueeze(1)
|
|
52
|
+
k_z_previous_layer = _get_relative_k_z(k_z0, sld[:, prev_layer_idx].unsqueeze(1))
|
|
53
|
+
|
|
54
|
+
k_z_next_layer = _get_relative_k_z(k_z0, sld[:, next_layer_idx].unsqueeze(1)) # (batch_num, q_num)
|
|
55
|
+
|
|
56
|
+
reflection_matrix = _make_reflection_matrix(
|
|
57
|
+
k_z_previous_layer, k_z_next_layer, roughness[:, interface_num].unsqueeze(1)
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
if interface_num == 0:
|
|
61
|
+
total_reflectivity_matrix = reflection_matrix
|
|
62
|
+
else:
|
|
63
|
+
translation_matrix = _make_translation_matrix(k_z_previous_layer, thickness_prev_layer)
|
|
64
|
+
|
|
65
|
+
total_reflectivity_matrix = torch.einsum(
|
|
66
|
+
'bnmr, bmlr, bljr -> bnjr', total_reflectivity_matrix, translation_matrix, reflection_matrix
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
r = total_reflectivity_matrix[:, 0, 1] / total_reflectivity_matrix[:, 1, 1]
|
|
70
|
+
|
|
71
|
+
reflectivity = torch.clamp_max_(torch.abs(r) ** 2, 1.).flatten(1)
|
|
72
|
+
|
|
73
|
+
return reflectivity
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def _get_relative_k_z(k_z0, scattering_length_density):
|
|
77
|
+
return torch.sqrt(k_z0 ** 2 - 4 * pi * scattering_length_density)
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
def _make_reflection_matrix(k_z_previous_layer, k_z_next_layer, interface_roughness):
|
|
81
|
+
p = _safe_div((k_z_previous_layer + k_z_next_layer), (2 * k_z_previous_layer)) * \
|
|
82
|
+
torch.exp(-(k_z_previous_layer - k_z_next_layer) ** 2 * 0.5 * interface_roughness ** 2)
|
|
83
|
+
|
|
84
|
+
m = _safe_div((k_z_previous_layer - k_z_next_layer), (2 * k_z_previous_layer)) * \
|
|
85
|
+
torch.exp(-(k_z_previous_layer + k_z_next_layer) ** 2 * 0.5 * interface_roughness ** 2)
|
|
86
|
+
|
|
87
|
+
return _stack_mtx(p, m, m, p)
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
def _stack_mtx(a11, a12, a21, a22):
|
|
91
|
+
return torch.stack([
|
|
92
|
+
torch.stack([a11, a12], dim=1),
|
|
93
|
+
torch.stack([a21, a22], dim=1),
|
|
94
|
+
], dim=1)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def _make_translation_matrix(k_z, thickness):
|
|
98
|
+
return _stack_mtx(
|
|
99
|
+
torch.exp(-1j * k_z * thickness), torch.zeros_like(k_z),
|
|
100
|
+
torch.zeros_like(k_z), torch.exp(1j * k_z * thickness)
|
|
101
|
+
)
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
def _safe_div(numerator, denominator):
|
|
105
|
+
return torch.where(denominator == 0, numerator, torch.divide(numerator, denominator))
|