reflectorch 1.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- reflectorch/__init__.py +17 -0
- reflectorch/data_generation/__init__.py +128 -0
- reflectorch/data_generation/dataset.py +216 -0
- reflectorch/data_generation/likelihoods.py +80 -0
- reflectorch/data_generation/noise.py +471 -0
- reflectorch/data_generation/priors/__init__.py +60 -0
- reflectorch/data_generation/priors/base.py +55 -0
- reflectorch/data_generation/priors/exp_subprior_sampler.py +298 -0
- reflectorch/data_generation/priors/independent_priors.py +195 -0
- reflectorch/data_generation/priors/multilayer_models.py +311 -0
- reflectorch/data_generation/priors/multilayer_structures.py +104 -0
- reflectorch/data_generation/priors/no_constraints.py +206 -0
- reflectorch/data_generation/priors/parametric_models.py +842 -0
- reflectorch/data_generation/priors/parametric_subpriors.py +369 -0
- reflectorch/data_generation/priors/params.py +252 -0
- reflectorch/data_generation/priors/sampler_strategies.py +370 -0
- reflectorch/data_generation/priors/scaler_mixin.py +65 -0
- reflectorch/data_generation/priors/subprior_sampler.py +371 -0
- reflectorch/data_generation/priors/utils.py +118 -0
- reflectorch/data_generation/process_data.py +41 -0
- reflectorch/data_generation/q_generator.py +280 -0
- reflectorch/data_generation/reflectivity/__init__.py +102 -0
- reflectorch/data_generation/reflectivity/abeles.py +97 -0
- reflectorch/data_generation/reflectivity/kinematical.py +71 -0
- reflectorch/data_generation/reflectivity/memory_eff.py +105 -0
- reflectorch/data_generation/reflectivity/numpy_implementations.py +120 -0
- reflectorch/data_generation/reflectivity/smearing.py +138 -0
- reflectorch/data_generation/reflectivity/smearing_pointwise.py +110 -0
- reflectorch/data_generation/scale_curves.py +112 -0
- reflectorch/data_generation/smearing.py +99 -0
- reflectorch/data_generation/utils.py +223 -0
- reflectorch/extensions/__init__.py +0 -0
- reflectorch/extensions/jupyter/__init__.py +11 -0
- reflectorch/extensions/jupyter/api.py +85 -0
- reflectorch/extensions/jupyter/callbacks.py +34 -0
- reflectorch/extensions/jupyter/components.py +758 -0
- reflectorch/extensions/jupyter/custom_select.py +268 -0
- reflectorch/extensions/jupyter/log_widget.py +241 -0
- reflectorch/extensions/jupyter/model_selection.py +495 -0
- reflectorch/extensions/jupyter/plotly_plot_manager.py +329 -0
- reflectorch/extensions/jupyter/widget.py +625 -0
- reflectorch/extensions/matplotlib/__init__.py +5 -0
- reflectorch/extensions/matplotlib/losses.py +32 -0
- reflectorch/extensions/refnx/refnx_conversion.py +77 -0
- reflectorch/inference/__init__.py +28 -0
- reflectorch/inference/inference_model.py +848 -0
- reflectorch/inference/input_interface.py +239 -0
- reflectorch/inference/loading_data.py +55 -0
- reflectorch/inference/multilayer_fitter.py +171 -0
- reflectorch/inference/multilayer_inference_model.py +193 -0
- reflectorch/inference/plotting.py +524 -0
- reflectorch/inference/preprocess_exp/__init__.py +7 -0
- reflectorch/inference/preprocess_exp/attenuation.py +36 -0
- reflectorch/inference/preprocess_exp/cut_with_q_ratio.py +31 -0
- reflectorch/inference/preprocess_exp/footprint.py +81 -0
- reflectorch/inference/preprocess_exp/interpolation.py +19 -0
- reflectorch/inference/preprocess_exp/normalize.py +21 -0
- reflectorch/inference/preprocess_exp/preprocess.py +121 -0
- reflectorch/inference/query_matcher.py +82 -0
- reflectorch/inference/record_time.py +43 -0
- reflectorch/inference/sampler_solution.py +56 -0
- reflectorch/inference/scipy_fitter.py +364 -0
- reflectorch/inference/torch_fitter.py +87 -0
- reflectorch/ml/__init__.py +32 -0
- reflectorch/ml/basic_trainer.py +292 -0
- reflectorch/ml/callbacks.py +81 -0
- reflectorch/ml/dataloaders.py +27 -0
- reflectorch/ml/loggers.py +56 -0
- reflectorch/ml/schedulers.py +356 -0
- reflectorch/ml/trainers.py +201 -0
- reflectorch/ml/utils.py +2 -0
- reflectorch/models/__init__.py +16 -0
- reflectorch/models/activations.py +50 -0
- reflectorch/models/encoders/__init__.py +19 -0
- reflectorch/models/encoders/conv_encoder.py +219 -0
- reflectorch/models/encoders/conv_res_net.py +115 -0
- reflectorch/models/encoders/fno.py +134 -0
- reflectorch/models/encoders/integral_kernel_embedding.py +390 -0
- reflectorch/models/networks/__init__.py +14 -0
- reflectorch/models/networks/mlp_networks.py +434 -0
- reflectorch/models/networks/residual_net.py +157 -0
- reflectorch/paths.py +29 -0
- reflectorch/runs/__init__.py +31 -0
- reflectorch/runs/config.py +25 -0
- reflectorch/runs/slurm_utils.py +93 -0
- reflectorch/runs/train.py +78 -0
- reflectorch/runs/utils.py +405 -0
- reflectorch/test_config.py +4 -0
- reflectorch/train.py +4 -0
- reflectorch/train_on_cluster.py +4 -0
- reflectorch/utils.py +98 -0
- reflectorch-1.5.1.dist-info/METADATA +151 -0
- reflectorch-1.5.1.dist-info/RECORD +96 -0
- reflectorch-1.5.1.dist-info/WHEEL +5 -0
- reflectorch-1.5.1.dist-info/licenses/LICENSE.txt +21 -0
- reflectorch-1.5.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,151 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: reflectorch
|
|
3
|
+
Version: 1.5.1
|
|
4
|
+
Summary: A Pytorch-based package for the analysis of reflectometry data
|
|
5
|
+
Author-email: Vladimir Starostin <vladimir.starostin@uni-tuebingen.de>, Valentin Munteanu <valentin.munteanu@uni-tuebingen.de>
|
|
6
|
+
Maintainer-email: Valentin Munteanu <valentin.munteanu@uni-tuebingen.de>, Vladimir Starostin <vladimir.starostin@uni-tuebingen.de>, Alexander Hinderhofer <alexander.hinderhofer@uni-tuebingen.de>
|
|
7
|
+
License: MIT
|
|
8
|
+
Project-URL: Source, https://github.com/schreiber-lab/reflectorch/
|
|
9
|
+
Project-URL: Issues, https://github.com/schreiber-lab/reflectorch/issues
|
|
10
|
+
Project-URL: Documentation, https://schreiber-lab.github.io/reflectorch/
|
|
11
|
+
Keywords: reflectometry,machine learning
|
|
12
|
+
Classifier: Programming Language :: Python :: 3
|
|
13
|
+
Classifier: Operating System :: OS Independent
|
|
14
|
+
Classifier: Environment :: GPU :: NVIDIA CUDA
|
|
15
|
+
Classifier: Development Status :: 4 - Beta
|
|
16
|
+
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
17
|
+
Classifier: Intended Audience :: Science/Research
|
|
18
|
+
Requires-Python: >=3.7
|
|
19
|
+
Description-Content-Type: text/markdown
|
|
20
|
+
License-File: LICENSE.txt
|
|
21
|
+
Requires-Dist: numpy
|
|
22
|
+
Requires-Dist: torch>=1.8.1
|
|
23
|
+
Requires-Dist: scipy
|
|
24
|
+
Requires-Dist: tqdm
|
|
25
|
+
Requires-Dist: PyYAML
|
|
26
|
+
Requires-Dist: click
|
|
27
|
+
Requires-Dist: matplotlib
|
|
28
|
+
Requires-Dist: ipywidgets
|
|
29
|
+
Requires-Dist: plotly
|
|
30
|
+
Requires-Dist: huggingface_hub
|
|
31
|
+
Requires-Dist: safetensors
|
|
32
|
+
Requires-Dist: tensorboard
|
|
33
|
+
Requires-Dist: anywidget
|
|
34
|
+
Requires-Dist: joblib
|
|
35
|
+
Provides-Extra: tests
|
|
36
|
+
Requires-Dist: pytest; extra == "tests"
|
|
37
|
+
Requires-Dist: pytest-cov; extra == "tests"
|
|
38
|
+
Provides-Extra: docs
|
|
39
|
+
Requires-Dist: jupyter-book; extra == "docs"
|
|
40
|
+
Requires-Dist: sphinx; extra == "docs"
|
|
41
|
+
Provides-Extra: build
|
|
42
|
+
Requires-Dist: build; extra == "build"
|
|
43
|
+
Requires-Dist: twine; extra == "build"
|
|
44
|
+
Dynamic: license-file
|
|
45
|
+
|
|
46
|
+
# Reflectorch
|
|
47
|
+
|
|
48
|
+
[](https://pytorch.org/)
|
|
49
|
+
[](https://numpy.org/)
|
|
50
|
+
[](https://scipy.org/)
|
|
51
|
+
[](https://matplotlib.org/)
|
|
52
|
+
[](https://yaml.org/)
|
|
53
|
+
[](https://huggingface.co/valentinsingularity/reflectivity)
|
|
54
|
+
|
|
55
|
+
[](https://www.python.org/)
|
|
56
|
+

|
|
57
|
+

|
|
58
|
+
[](https://doi.org/10.21105/joss.08169)
|
|
59
|
+
<!-- [](https://www.codefactor.io/repository/github/schreiber-lab/reflectorch) -->
|
|
60
|
+
<!-- [](https://jupyterbook.org/) -->
|
|
61
|
+
[](https://schreiber-lab.github.io/reflectorch/)
|
|
62
|
+
<!-- [](https://github.com/astral-sh/ruff) -->
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
**Reflectorch** is a machine learning Python package for the analysis of X-ray and neutron reflectometry data, written by [Vladimir Starostin](https://github.com/StarostinV/) & [Valentin Munteanu](https://github.com/valentinsingularity) at the University of Tübingen. It provides functionality for the fast simulation of reflectometry curves on the GPU, customizable setup of the physical parameterization model and neural network architecture via YAML configuration files, and prior-aware training of neural networks as described in our paper [Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge](https://doi.org/10.1107/S1600576724002115).
|
|
66
|
+
|
|
67
|
+
## Installation
|
|
68
|
+
|
|
69
|
+
**Reflectorch** can be installed from [](https://pypi.org/project/reflectorch/) via ``pip``:
|
|
70
|
+
|
|
71
|
+
<!-- or from [](https://anaconda.org/conda-forge/reflectorch/) via ``conda``: -->
|
|
72
|
+
|
|
73
|
+
```bash
|
|
74
|
+
pip install reflectorch
|
|
75
|
+
```
|
|
76
|
+
|
|
77
|
+
<!-- or
|
|
78
|
+
|
|
79
|
+
```bash
|
|
80
|
+
conda install -c conda-forge reflectorch
|
|
81
|
+
``` -->
|
|
82
|
+
|
|
83
|
+
Alternatively, one can clone the entire Github repository and install the package in editable mode:
|
|
84
|
+
|
|
85
|
+
```bash
|
|
86
|
+
git clone https://github.com/schreiber-lab/reflectorch.git
|
|
87
|
+
pip install -e .
|
|
88
|
+
```
|
|
89
|
+
|
|
90
|
+
For development purposes, the package can be installed together with the optional dependencies for building the distribution, testing and documentation:
|
|
91
|
+
|
|
92
|
+
```bash
|
|
93
|
+
git clone https://github.com/schreiber-lab/reflectorch.git
|
|
94
|
+
pip install -e .[tests,docs,build]
|
|
95
|
+
```
|
|
96
|
+
|
|
97
|
+
Users with Nvidia **GPU**s need to additionally install **Pytorch with CUDA support** corresponding to their hardware and operating system according to the instructions from the [Pytorch website](https://pytorch.org/get-started/locally/)
|
|
98
|
+
|
|
99
|
+
## Get started
|
|
100
|
+
|
|
101
|
+
[](https://schreiber-lab.github.io/reflectorch/)
|
|
102
|
+
The full documentation of the package, containing tutorials and the API reference, was built with [Jupyter Book](https://jupyterbook.org/) and [Sphinx](https://www.sphinx-doc.org) and it is hosted at the address: [https://schreiber-lab.github.io/reflectorch/](https://schreiber-lab.github.io/reflectorch/).
|
|
103
|
+
|
|
104
|
+
[](https://colab.research.google.com/drive/1rf_M8S_5kYvUoK0-9-AYal_fO3oFl7ck?usp=sharing)
|
|
105
|
+
We provide an interactive Google Colab notebook for exploring the basic functionality of the package: [](https://colab.research.google.com/drive/1rf_M8S_5kYvUoK0-9-AYal_fO3oFl7ck?usp=sharing)<br>
|
|
106
|
+
|
|
107
|
+
[](https://huggingface.co/valentinsingularity/reflectivity)
|
|
108
|
+
Pretrained models (network weights and their corresponding configuration files) are hosted on [Hugging Face](https://huggingface.co/). Two repositories are currently available:
|
|
109
|
+
|
|
110
|
+
| Repository | Description |
|
|
111
|
+
|-------------|--------------|
|
|
112
|
+
| [**valentinsingularity/reflectivity**](https://huggingface.co/valentinsingularity/reflectivity) | Research repository containing a large variety of XRR and NR models. |
|
|
113
|
+
| [**reflectorch-ILL**](https://huggingface.co/reflectorch-ILL) | Curated repository of selected, validated NR models. |
|
|
114
|
+
|
|
115
|
+
<!-- [](https://hub.docker.com/)
|
|
116
|
+
Docker images for reflectorch *will* be hosted on Dockerhub. -->
|
|
117
|
+
|
|
118
|
+
## Contributing
|
|
119
|
+
If you'd like to contribute to the package, please see our [Contributing Guidelines](CONTRIBUTING.md) for details.
|
|
120
|
+
|
|
121
|
+
## Citation
|
|
122
|
+
If you find our work useful in your research, please cite as follows:
|
|
123
|
+
|
|
124
|
+
```
|
|
125
|
+
@Article{Munteanu2025,
|
|
126
|
+
doi = {10.21105/joss.08169},
|
|
127
|
+
url = {https://doi.org/10.21105/joss.08169},
|
|
128
|
+
year = {2025},
|
|
129
|
+
publisher = {The Open Journal},
|
|
130
|
+
volume = {10},
|
|
131
|
+
number = {115},
|
|
132
|
+
pages = {8169},
|
|
133
|
+
author = {Munteanu, Valentin and Starostin, Vladimir and Hinderhofer, Alexander and Gerlach, Alexander and Lapkin, Dmitry and Schreiber, Frank},
|
|
134
|
+
title = {reflectorch: a deep learning package for X-ray and neutron reflectometry},
|
|
135
|
+
journal = {Journal of Open Source Software} }
|
|
136
|
+
```
|
|
137
|
+
|
|
138
|
+
```
|
|
139
|
+
@Article{Munteanu2024,
|
|
140
|
+
author = {Munteanu, Valentin and Starostin, Vladimir and Greco, Alessandro and Pithan, Linus and Gerlach, Alexander and Hinderhofer, Alexander and Kowarik, Stefan and Schreiber, Frank},
|
|
141
|
+
journal = {Journal of Applied Crystallography},
|
|
142
|
+
title = {Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge},
|
|
143
|
+
year = {2024},
|
|
144
|
+
issn = {1600-5767},
|
|
145
|
+
month = mar,
|
|
146
|
+
number = {2},
|
|
147
|
+
volume = {57},
|
|
148
|
+
doi = {10.1107/s1600576724002115},
|
|
149
|
+
publisher = {International Union of Crystallography (IUCr)},
|
|
150
|
+
}
|
|
151
|
+
```
|
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
reflectorch/__init__.py,sha256=ToKb_CG_NaXEefe5S-8fFbcqMIdm_rBhVuO-u3JyxJw,719
|
|
2
|
+
reflectorch/paths.py,sha256=EzoTP9DaX0GGeyEURob-jskcmCa6CSDX9KVN8Jy8NmQ,850
|
|
3
|
+
reflectorch/test_config.py,sha256=PMZZ63xfJqam-sYqo8upPhzKopIN5WoixJIC96TfoF8,95
|
|
4
|
+
reflectorch/train.py,sha256=uXdkotviIvwlAoPBzuxh1iyVc9NA0By1QYRN6UQnFcM,83
|
|
5
|
+
reflectorch/train_on_cluster.py,sha256=shX30us8rHGiR6eA0hMQMiGxw3MUi_U02_7_u6TLVXo,105
|
|
6
|
+
reflectorch/utils.py,sha256=LotOZiQKtNKnrpvQjbbIbLyxI9Y4JgAFrWf4xrD-QTE,2934
|
|
7
|
+
reflectorch/data_generation/__init__.py,sha256=-lPv-ZOy8qxyLT74fT-LuC1B72TuWMssIG6BKyDAk-I,3337
|
|
8
|
+
reflectorch/data_generation/dataset.py,sha256=1hS7TmbZYEUGXNRyAPQCr9NzTES7joubLAllXqCmELo,8414
|
|
9
|
+
reflectorch/data_generation/likelihoods.py,sha256=--D2YKszG5-RdV4l0SURx9l-CJjpF_Rk3xdhFG9vyag,2782
|
|
10
|
+
reflectorch/data_generation/noise.py,sha256=5eMFwr4DqLt-Sshjw-OO3iDfvuxPa0tLV1b5Se2dGio,21620
|
|
11
|
+
reflectorch/data_generation/process_data.py,sha256=t8FLv0GDjjFqaxYoj1QdrxW6vUZNRqcepZZT5smGysM,1139
|
|
12
|
+
reflectorch/data_generation/q_generator.py,sha256=HTEY46_snGM_Sbt4wMNqmuI4cEpvZr_i9jgiT0OhYwY,11235
|
|
13
|
+
reflectorch/data_generation/scale_curves.py,sha256=7ikSw9kRVgB-SwVEAiyfQ-rvYFifLMQ-2S7mBylbI5g,3972
|
|
14
|
+
reflectorch/data_generation/smearing.py,sha256=gZLud3PH31c6kjyvJm6b4mwqQq0et0Clp7M5roHfDOM,4440
|
|
15
|
+
reflectorch/data_generation/utils.py,sha256=TGpc9Nwzj4KDDIoiqvwzPDG22UFK1gF3s2yY46YbS6o,8325
|
|
16
|
+
reflectorch/data_generation/priors/__init__.py,sha256=7FhuQfhGhF4C0ufeBbk-XmFTs15yIjl2ciDIWrOFxZg,1881
|
|
17
|
+
reflectorch/data_generation/priors/base.py,sha256=GTbGKO7Ia_X0jDHlDkUVfA-tTtCreHVEiizUJP_3eeQ,1650
|
|
18
|
+
reflectorch/data_generation/priors/exp_subprior_sampler.py,sha256=nb0XFlTOulOWaVlohnfWrl-N06KcQZqlMZ-8qOiiijU,11253
|
|
19
|
+
reflectorch/data_generation/priors/independent_priors.py,sha256=-p5xJBc6_yA329kqLU5eAcuAXUqAycEeALwdqVDMrcY,7046
|
|
20
|
+
reflectorch/data_generation/priors/multilayer_models.py,sha256=V2hIMQCStCf5dYypJI_ooC9j8wRf42tx62fm802mqTA,7452
|
|
21
|
+
reflectorch/data_generation/priors/multilayer_structures.py,sha256=-orvgXlCphDIPKcNJ_ZsNFGzBTiAl7WdpXwckgTpsw0,3589
|
|
22
|
+
reflectorch/data_generation/priors/no_constraints.py,sha256=j_iP3btlZf3OWPFFaa4-a7DgOBYDTUiy1ccfipbHSIE,7086
|
|
23
|
+
reflectorch/data_generation/priors/parametric_models.py,sha256=BueD8uEcHI2a4v7pJAwTD0Ef6qIJijk6rzLCgPUJjWg,28489
|
|
24
|
+
reflectorch/data_generation/priors/parametric_subpriors.py,sha256=8ZedTWkuMq0D-W3DXcVkgeWBXq7cg-qhBxigT4sIwD0,14795
|
|
25
|
+
reflectorch/data_generation/priors/params.py,sha256=JmGmpXbbTxeL7BGenSkP7Adv1SEylK43BbDFcEQbFPI,7986
|
|
26
|
+
reflectorch/data_generation/priors/sampler_strategies.py,sha256=jKQDmkD0uR2ssiLSWroHgvVwJW0QG5qt69mBqO3vAVo,15422
|
|
27
|
+
reflectorch/data_generation/priors/scaler_mixin.py,sha256=fADYX2d2V4VJsBd135D-GokPeahmvFVpLBjdg8ioIHM,2583
|
|
28
|
+
reflectorch/data_generation/priors/subprior_sampler.py,sha256=ZH8BuuefidlNhJCPi-ZzEddhXfP8itnG_sjbJrB7trM,14398
|
|
29
|
+
reflectorch/data_generation/priors/utils.py,sha256=mBlPj6JI1TKfZdgKJe4QEoDp57BcAImp_brqAJAi6J4,3718
|
|
30
|
+
reflectorch/data_generation/reflectivity/__init__.py,sha256=JgHSMswGNJhW4mgKbFjfxzj014dhOSGUa7YMWOf5IBA,5107
|
|
31
|
+
reflectorch/data_generation/reflectivity/abeles.py,sha256=wmYbDCcKFLnXcGO45vv-Ti_7HuudG5n3nC9k5EX665o,3000
|
|
32
|
+
reflectorch/data_generation/reflectivity/kinematical.py,sha256=flHC2KcTGcvrb3OweJTDV3p5jCeBqBQSPLkAHpBAy6w,2569
|
|
33
|
+
reflectorch/data_generation/reflectivity/memory_eff.py,sha256=q-B-eSM0c7EqqGYY1pjanG-ms-YuWGlGAHNWP8lgufU,3918
|
|
34
|
+
reflectorch/data_generation/reflectivity/numpy_implementations.py,sha256=s-ISJ-KmxAMEWLfnzmBC7cAEoO6sO6nhB--sgLJbq90,3057
|
|
35
|
+
reflectorch/data_generation/reflectivity/smearing.py,sha256=5IOvVHwb1e47xhVFruJTHH2UQ8pePm2A18y1bcg52rU,4257
|
|
36
|
+
reflectorch/data_generation/reflectivity/smearing_pointwise.py,sha256=pKgpCWmR58u0huxCFo8TG1jXODSe4CUjiytF6obk5LA,3579
|
|
37
|
+
reflectorch/extensions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
38
|
+
reflectorch/extensions/jupyter/__init__.py,sha256=6DduXHy70uDMppuy0-GcfYl3npOdydnORKMn0eZl-sA,272
|
|
39
|
+
reflectorch/extensions/jupyter/api.py,sha256=5Ul3bVA0IG7xMaF2dGB8VDycWaPZ33sxzXOZP23syLQ,2785
|
|
40
|
+
reflectorch/extensions/jupyter/callbacks.py,sha256=5UVWzM4SVtl9MtbbQrtyCzqP7lskzt35Nb2SuOgaD5U,1040
|
|
41
|
+
reflectorch/extensions/jupyter/components.py,sha256=hJZZ0i5stJ2GupRlNQ0wK4IYS0FWkJpvX4hMCZsJeek,32739
|
|
42
|
+
reflectorch/extensions/jupyter/custom_select.py,sha256=7OgXOfM1yLQ27a49TL_Ad0ARu3HIUJmuA1OxrLfS4Ag,9384
|
|
43
|
+
reflectorch/extensions/jupyter/log_widget.py,sha256=dVhhbe3IMMH4YGj_CyzkWtCew_bF8Ae9xyckUtg9eFE,7103
|
|
44
|
+
reflectorch/extensions/jupyter/model_selection.py,sha256=N2es1v7UhcwRSqpswNx-wkwnKs1flstwX6WD-Q0kyXQ,20985
|
|
45
|
+
reflectorch/extensions/jupyter/plotly_plot_manager.py,sha256=LPyxWFApT8GVR8mrO9jMLv3I57BwIecfYxhOMU1R28Y,10451
|
|
46
|
+
reflectorch/extensions/jupyter/widget.py,sha256=UHfE8cz75ydZosVwhlFIrJYmZcu-uoBSpj1z0jTBQfA,27559
|
|
47
|
+
reflectorch/extensions/matplotlib/__init__.py,sha256=8fZ6o75GkIGboNSZtchT20kXv-7X8Ms7vU5nFLbfSuE,99
|
|
48
|
+
reflectorch/extensions/matplotlib/losses.py,sha256=bHUHiJz191lDbh2bT15IGN0UY0c6Cis74xm-iqjv8aU,654
|
|
49
|
+
reflectorch/extensions/refnx/refnx_conversion.py,sha256=Wmw8lUnl_g_0yWyOl_xb55oSC7b6Ynt7a1h20PmiAAQ,3374
|
|
50
|
+
reflectorch/inference/__init__.py,sha256=BJ8pckpDg2UEJlwim6sM36mAo2vAwAKu99r8lW7kglQ,931
|
|
51
|
+
reflectorch/inference/inference_model.py,sha256=bNTg23mA6g5qEdMDoAr-xM0W079_HDGdd4OFNyOyu9U,48951
|
|
52
|
+
reflectorch/inference/input_interface.py,sha256=u-8MnZzypnG6tkiKAXe8B3ASq8pkCzKSMg6FVbv5ZhI,15017
|
|
53
|
+
reflectorch/inference/loading_data.py,sha256=k00CJQMGqPk6Y_QH6KB-hvMqtk_zqoR158TzktoW5-E,1490
|
|
54
|
+
reflectorch/inference/multilayer_fitter.py,sha256=JijcK7xi-Tvg3ci_eJSnTk3Q0sZChw3BLPDVNmVFE9g,5339
|
|
55
|
+
reflectorch/inference/multilayer_inference_model.py,sha256=OYkPMy_h8kD_GSy_Rh1VL6xZA287i1c91ViYzX8_648,7382
|
|
56
|
+
reflectorch/inference/plotting.py,sha256=nU9ZO4_d8LkXxesnr0s-ilZmdcgvKvYQTpn_dlaX_Go,18548
|
|
57
|
+
reflectorch/inference/query_matcher.py,sha256=JZSROkxufCQXEYP8ud9jY8NIRqENQW3vSVMvqkOIv0Q,3306
|
|
58
|
+
reflectorch/inference/record_time.py,sha256=JZuro9cA01bkf_O--LUtlPuJaQNHmcR0zn5UGCSHTlU,1097
|
|
59
|
+
reflectorch/inference/sampler_solution.py,sha256=2j6ySoJmBHNmm5FfePcoG0JmnhALsduGccJ5KA0GjIM,2232
|
|
60
|
+
reflectorch/inference/scipy_fitter.py,sha256=Fq5nIlhuyzDpFjsx4k7-CfIZ7mdRDv-TOb8ycHwBd5I,12420
|
|
61
|
+
reflectorch/inference/torch_fitter.py,sha256=CvU9Ar-_K2_tOJ6t2p2tfhpJYi3dH3Sm__DIk4xmuiM,3304
|
|
62
|
+
reflectorch/inference/preprocess_exp/__init__.py,sha256=AVt2NLx48iciKJZ_yb7Gsyse1Y-VTzZMsaZ4p0x9SPU,377
|
|
63
|
+
reflectorch/inference/preprocess_exp/attenuation.py,sha256=3F1PmaUbknUrvE0CoE-3WMNN1Qi1SlYsgjJ0-uhuE2o,1482
|
|
64
|
+
reflectorch/inference/preprocess_exp/cut_with_q_ratio.py,sha256=SWDhzfqAm76PEYwkR5T4Zf-UMHMD39QeCiyAXiHAVRg,1118
|
|
65
|
+
reflectorch/inference/preprocess_exp/footprint.py,sha256=onky-083gJBYg_U7K7jnAW3V81E66NSHznCEHhTEtUc,2544
|
|
66
|
+
reflectorch/inference/preprocess_exp/interpolation.py,sha256=TCKD_OeZ1KWgN5Z3YiZvO3nHiKb-XToZMMiLAnJTfQs,846
|
|
67
|
+
reflectorch/inference/preprocess_exp/normalize.py,sha256=DIYMf-njaVy2rE1ss26yuX2ieKZz49LB8_ZhxJhS_gw,674
|
|
68
|
+
reflectorch/inference/preprocess_exp/preprocess.py,sha256=9CaTVfUrK-znB1ITrMQskgBInPnVHbTAdPxj_XchPJk,4990
|
|
69
|
+
reflectorch/ml/__init__.py,sha256=nhc8hixolD4XcWXTcihrGDvE-zWLuA3itkvdxXuWmH8,758
|
|
70
|
+
reflectorch/ml/basic_trainer.py,sha256=MvMUbffRGOLfijGdm2zq_D77PrY-oqJA5sU-ooGQwpk,9781
|
|
71
|
+
reflectorch/ml/callbacks.py,sha256=C0UPq0U3XOP2XkG1beUX2iRyIti5oM3POR34wQ1O5Kg,2721
|
|
72
|
+
reflectorch/ml/dataloaders.py,sha256=E-YEA98MjuG6zYelBSBbresIxIiS89QmMXFyKtOvaIs,1047
|
|
73
|
+
reflectorch/ml/loggers.py,sha256=8o8or4rk7N2EJzwBUvZorPI-_9R5MBI1s-uJXBiWU3U,1423
|
|
74
|
+
reflectorch/ml/schedulers.py,sha256=rzNul6RxNVx6SI3ilR_m4vBIDcNrQkOn_gfX4Hirahc,13872
|
|
75
|
+
reflectorch/ml/trainers.py,sha256=kvzc9rNCUcN2ekX2vIIbaARubGGM34y3qUfefDuw0nQ,8433
|
|
76
|
+
reflectorch/ml/utils.py,sha256=ZW-5n5Gowcjeb-s7NBL9vFPEhwpjQ8s2ZmpxQILJeNA,69
|
|
77
|
+
reflectorch/models/__init__.py,sha256=3y9MKJwFNCu5mR0IodwhLQVHitHZMGqaJvk88HTp_wk,360
|
|
78
|
+
reflectorch/models/activations.py,sha256=5rmzcQuRTQLOeNDrogZ04gZHM5leKF8NGkAeU0lfC1I,1381
|
|
79
|
+
reflectorch/models/encoders/__init__.py,sha256=r2CyjLOFyH_2upcdOB1wQRLFbaVu7nHYGiv0TmHcwSQ,513
|
|
80
|
+
reflectorch/models/encoders/conv_encoder.py,sha256=UaeW06h6Ix3vyO0CAYA_boqb45p9jHANZPS3sdXSS5w,7692
|
|
81
|
+
reflectorch/models/encoders/conv_res_net.py,sha256=-Rh9qw73UdsO4l9pHuZ8V_dJAy0WFJDk6ZVE7mQc4s0,3228
|
|
82
|
+
reflectorch/models/encoders/fno.py,sha256=9EHKxQPGzECFbjIukatPexMWSIEq3r5x-CR-pBXoMOw,4982
|
|
83
|
+
reflectorch/models/encoders/integral_kernel_embedding.py,sha256=EIMqLV5U0fj5tvTNAV1-SwbJ1S-ZZ5Qfmx1y75q4snw,12139
|
|
84
|
+
reflectorch/models/networks/__init__.py,sha256=QgBZvT_OmPG2TAqs0f7MEGVWLvUb1AY6rLSFiW4vxTI,327
|
|
85
|
+
reflectorch/models/networks/mlp_networks.py,sha256=KmPJ2ej5Z7gFBTODD71ac1DuRYBMGfkqlYRcB46DBMQ,20561
|
|
86
|
+
reflectorch/models/networks/residual_net.py,sha256=ycFwHfuhzvBxfOFuhdVw3-QGFJ6NmkdhcK-4rdfc7fE,5487
|
|
87
|
+
reflectorch/runs/__init__.py,sha256=ajeKxZS9GSaDJ_xsec2cWckU0sJ2q1vus5ADt0WxiIY,692
|
|
88
|
+
reflectorch/runs/config.py,sha256=IqbPcy0TI6sYnS8xzHV_9PykaBv6j0jM4MHxPbotCtM,779
|
|
89
|
+
reflectorch/runs/slurm_utils.py,sha256=mHSYG-ach89KfJkJA12RP5X4qVClO7cwEmVF-4Yyzig,2507
|
|
90
|
+
reflectorch/runs/train.py,sha256=-2J7WciYoT_VQht2spLCuj-wr1fmai8FjRZ6L5uiiYM,2425
|
|
91
|
+
reflectorch/runs/utils.py,sha256=NxIuk5NKVdy48n4SiKS6k-6yTrmz0Hf3dJ95csH2DoM,13761
|
|
92
|
+
reflectorch-1.5.1.dist-info/licenses/LICENSE.txt,sha256=15ifhAJdVMTuFJJF2BYPSr-2ZiyeoZnxZurpz9twZQc,1078
|
|
93
|
+
reflectorch-1.5.1.dist-info/METADATA,sha256=XBUt2tKwZOtWy_Os3EU62MdTCDKRtR45wEY083O3zHM,8781
|
|
94
|
+
reflectorch-1.5.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
95
|
+
reflectorch-1.5.1.dist-info/top_level.txt,sha256=2EyIWrt4SeZ3hNadLXvEVpPFhyoZ4An7YflP4y_E3Fc,12
|
|
96
|
+
reflectorch-1.5.1.dist-info/RECORD,,
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2024 Reflectorch Developers
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
reflectorch
|