reflectorch 1.5.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (96) hide show
  1. reflectorch/__init__.py +17 -0
  2. reflectorch/data_generation/__init__.py +128 -0
  3. reflectorch/data_generation/dataset.py +216 -0
  4. reflectorch/data_generation/likelihoods.py +80 -0
  5. reflectorch/data_generation/noise.py +471 -0
  6. reflectorch/data_generation/priors/__init__.py +60 -0
  7. reflectorch/data_generation/priors/base.py +55 -0
  8. reflectorch/data_generation/priors/exp_subprior_sampler.py +298 -0
  9. reflectorch/data_generation/priors/independent_priors.py +195 -0
  10. reflectorch/data_generation/priors/multilayer_models.py +311 -0
  11. reflectorch/data_generation/priors/multilayer_structures.py +104 -0
  12. reflectorch/data_generation/priors/no_constraints.py +206 -0
  13. reflectorch/data_generation/priors/parametric_models.py +842 -0
  14. reflectorch/data_generation/priors/parametric_subpriors.py +369 -0
  15. reflectorch/data_generation/priors/params.py +252 -0
  16. reflectorch/data_generation/priors/sampler_strategies.py +370 -0
  17. reflectorch/data_generation/priors/scaler_mixin.py +65 -0
  18. reflectorch/data_generation/priors/subprior_sampler.py +371 -0
  19. reflectorch/data_generation/priors/utils.py +118 -0
  20. reflectorch/data_generation/process_data.py +41 -0
  21. reflectorch/data_generation/q_generator.py +280 -0
  22. reflectorch/data_generation/reflectivity/__init__.py +102 -0
  23. reflectorch/data_generation/reflectivity/abeles.py +97 -0
  24. reflectorch/data_generation/reflectivity/kinematical.py +71 -0
  25. reflectorch/data_generation/reflectivity/memory_eff.py +105 -0
  26. reflectorch/data_generation/reflectivity/numpy_implementations.py +120 -0
  27. reflectorch/data_generation/reflectivity/smearing.py +138 -0
  28. reflectorch/data_generation/reflectivity/smearing_pointwise.py +110 -0
  29. reflectorch/data_generation/scale_curves.py +112 -0
  30. reflectorch/data_generation/smearing.py +99 -0
  31. reflectorch/data_generation/utils.py +223 -0
  32. reflectorch/extensions/__init__.py +0 -0
  33. reflectorch/extensions/jupyter/__init__.py +11 -0
  34. reflectorch/extensions/jupyter/api.py +85 -0
  35. reflectorch/extensions/jupyter/callbacks.py +34 -0
  36. reflectorch/extensions/jupyter/components.py +758 -0
  37. reflectorch/extensions/jupyter/custom_select.py +268 -0
  38. reflectorch/extensions/jupyter/log_widget.py +241 -0
  39. reflectorch/extensions/jupyter/model_selection.py +495 -0
  40. reflectorch/extensions/jupyter/plotly_plot_manager.py +329 -0
  41. reflectorch/extensions/jupyter/widget.py +625 -0
  42. reflectorch/extensions/matplotlib/__init__.py +5 -0
  43. reflectorch/extensions/matplotlib/losses.py +32 -0
  44. reflectorch/extensions/refnx/refnx_conversion.py +77 -0
  45. reflectorch/inference/__init__.py +28 -0
  46. reflectorch/inference/inference_model.py +848 -0
  47. reflectorch/inference/input_interface.py +239 -0
  48. reflectorch/inference/loading_data.py +55 -0
  49. reflectorch/inference/multilayer_fitter.py +171 -0
  50. reflectorch/inference/multilayer_inference_model.py +193 -0
  51. reflectorch/inference/plotting.py +524 -0
  52. reflectorch/inference/preprocess_exp/__init__.py +7 -0
  53. reflectorch/inference/preprocess_exp/attenuation.py +36 -0
  54. reflectorch/inference/preprocess_exp/cut_with_q_ratio.py +31 -0
  55. reflectorch/inference/preprocess_exp/footprint.py +81 -0
  56. reflectorch/inference/preprocess_exp/interpolation.py +19 -0
  57. reflectorch/inference/preprocess_exp/normalize.py +21 -0
  58. reflectorch/inference/preprocess_exp/preprocess.py +121 -0
  59. reflectorch/inference/query_matcher.py +82 -0
  60. reflectorch/inference/record_time.py +43 -0
  61. reflectorch/inference/sampler_solution.py +56 -0
  62. reflectorch/inference/scipy_fitter.py +364 -0
  63. reflectorch/inference/torch_fitter.py +87 -0
  64. reflectorch/ml/__init__.py +32 -0
  65. reflectorch/ml/basic_trainer.py +292 -0
  66. reflectorch/ml/callbacks.py +81 -0
  67. reflectorch/ml/dataloaders.py +27 -0
  68. reflectorch/ml/loggers.py +56 -0
  69. reflectorch/ml/schedulers.py +356 -0
  70. reflectorch/ml/trainers.py +201 -0
  71. reflectorch/ml/utils.py +2 -0
  72. reflectorch/models/__init__.py +16 -0
  73. reflectorch/models/activations.py +50 -0
  74. reflectorch/models/encoders/__init__.py +19 -0
  75. reflectorch/models/encoders/conv_encoder.py +219 -0
  76. reflectorch/models/encoders/conv_res_net.py +115 -0
  77. reflectorch/models/encoders/fno.py +134 -0
  78. reflectorch/models/encoders/integral_kernel_embedding.py +390 -0
  79. reflectorch/models/networks/__init__.py +14 -0
  80. reflectorch/models/networks/mlp_networks.py +434 -0
  81. reflectorch/models/networks/residual_net.py +157 -0
  82. reflectorch/paths.py +29 -0
  83. reflectorch/runs/__init__.py +31 -0
  84. reflectorch/runs/config.py +25 -0
  85. reflectorch/runs/slurm_utils.py +93 -0
  86. reflectorch/runs/train.py +78 -0
  87. reflectorch/runs/utils.py +405 -0
  88. reflectorch/test_config.py +4 -0
  89. reflectorch/train.py +4 -0
  90. reflectorch/train_on_cluster.py +4 -0
  91. reflectorch/utils.py +98 -0
  92. reflectorch-1.5.1.dist-info/METADATA +151 -0
  93. reflectorch-1.5.1.dist-info/RECORD +96 -0
  94. reflectorch-1.5.1.dist-info/WHEEL +5 -0
  95. reflectorch-1.5.1.dist-info/licenses/LICENSE.txt +21 -0
  96. reflectorch-1.5.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,219 @@
1
+ import logging
2
+ from pathlib import Path
3
+
4
+ import torch
5
+ from torch import nn, load
6
+
7
+ from reflectorch.models.activations import activation_by_name
8
+ from reflectorch.paths import SAVED_MODELS_DIR
9
+
10
+ __all__ = [
11
+ "ConvEncoder",
12
+ "ConvDecoder",
13
+ "ConvAutoencoder",
14
+ ]
15
+
16
+ logger = logging.getLogger(__name__)
17
+
18
+
19
+ class ConvEncoder(nn.Module):
20
+ """A 1D CNN encoder / embedding network
21
+
22
+ Args:
23
+ in_channels (int, optional): the number of input channels. Defaults to 1.
24
+ hidden_channels (tuple, optional): the number of intermediate channels of each convolutional layer. Defaults to (32, 64, 128, 256, 512).
25
+ dim_embedding (int, optional): the dimension of the output latent embedding. Defaults to 64.
26
+ dim_avpool (int, optional): the output size of the adaptive average pooling layer. Defaults to 1.
27
+ use_batch_norm (bool, optional): whether to use batch normalization. Defaults to True.
28
+ activation (str, optional): the type of activation function. Defaults to 'relu'.
29
+ """
30
+ def __init__(self,
31
+ in_channels: int = 1,
32
+ hidden_channels: tuple = (32, 64, 128, 256, 512),
33
+ kernel_size: int = 3,
34
+ dim_embedding: int = 64,
35
+ dim_avpool: int = 1,
36
+ use_batch_norm: bool = True,
37
+ use_se: bool = False,
38
+ activation: str = 'relu',
39
+ ):
40
+ super().__init__()
41
+
42
+ modules = []
43
+
44
+ activation = activation_by_name(activation)
45
+
46
+ for h in hidden_channels:
47
+ layers = [
48
+ nn.Conv1d(in_channels, out_channels=h, kernel_size=kernel_size, stride=2, padding=kernel_size // 2),
49
+ activation(),
50
+ ]
51
+
52
+ if use_batch_norm:
53
+ layers.insert(1, nn.BatchNorm1d(h))
54
+
55
+ if use_se:
56
+ layers.insert(2, SEBlock(h))
57
+
58
+ modules.append(nn.Sequential(*layers))
59
+ in_channels = h
60
+
61
+ self.core = nn.Sequential(*modules)
62
+ self.avpool = nn.AdaptiveAvgPool1d(dim_avpool)
63
+ self.fc = nn.Linear(hidden_channels[-1] * dim_avpool, dim_embedding)
64
+
65
+ def forward(self, x):
66
+ if len(x.shape) < 3:
67
+ x = x.unsqueeze(1)
68
+ x = self.core(x)
69
+ x = self.avpool(x).view(x.size(0), -1)
70
+ x = self.fc(x)
71
+ return x
72
+
73
+ def load_weights(self, path: str or Path = None, strict: bool = False):
74
+ if not path:
75
+ return
76
+
77
+ if isinstance(path, str):
78
+ if not path.endswith('.pt'):
79
+ path = path + '.pt'
80
+ path = SAVED_MODELS_DIR / path
81
+
82
+ if not path.is_file():
83
+ logger.error(f'File {str(path)} is not found.')
84
+ return
85
+ try:
86
+ state_dict = load(path)
87
+ self.load_state_dict(state_dict, strict=strict)
88
+ except Exception as err:
89
+ logger.exception(err)
90
+
91
+
92
+ class ConvDecoder(nn.Module):
93
+ """A 1D CNN decoder
94
+
95
+ Args:
96
+ hidden_dims (tuple, optional): the number of intermediate channels of each convolutional layer. Defaults to (512, 256, 128, 64, 32).
97
+ latent_dim (int, optional): the dimension of the input latent embedding. Defaults to 64.
98
+ in_size (int, optional): the initial size for upscaling. Defaults to 8.
99
+ use_batch_norm (bool, optional): whether to use batch normalization. Defaults to True.
100
+ activation (str, optional): the type of activation function. Defaults to 'relu'.
101
+ """
102
+ def __init__(self,
103
+ hidden_channels: tuple = (512, 256, 128, 64, 32),
104
+ dim_latent: int = 64,
105
+ in_size: int = 8,
106
+ kernel_size: int = 3,
107
+ use_batch_norm: bool = True,
108
+ activation: str = 'relu',
109
+ ):
110
+
111
+ super().__init__()
112
+
113
+ self.in_size = in_size
114
+ modules = []
115
+
116
+ self.decoder_input = nn.Linear(dim_latent, hidden_channels[0] * in_size)
117
+
118
+ activation = activation_by_name(activation)
119
+
120
+ for i in range(len(hidden_channels) - 1):
121
+ modules.append(
122
+ nn.Sequential(
123
+ nn.ConvTranspose1d(
124
+ hidden_channels[i],
125
+ hidden_channels[i + 1],
126
+ kernel_size=kernel_size, #3
127
+ stride=2,
128
+ padding=kernel_size // 2, #1
129
+ output_padding=1,
130
+ ),
131
+ nn.BatchNorm1d(hidden_channels[i + 1]) if use_batch_norm else nn.Identity(),
132
+ activation(),
133
+ )
134
+ )
135
+
136
+ self.decoder = nn.Sequential(*modules)
137
+
138
+ self.final_layer = nn.Sequential(
139
+ nn.ConvTranspose1d(hidden_channels[-1],
140
+ hidden_channels[-1],
141
+ kernel_size=kernel_size, #3
142
+ stride=2,
143
+ padding=kernel_size // 2, #1
144
+ output_padding=1),
145
+ nn.BatchNorm1d(hidden_channels[-1]) if use_batch_norm else nn.Identity(),
146
+ activation(),
147
+ nn.Conv1d(hidden_channels[-1], out_channels=1,
148
+ kernel_size=3, padding=1)
149
+ )
150
+
151
+ def forward(self, x):
152
+ batch_size = x.shape[0]
153
+ x = self.decoder_input(x).view(batch_size, -1, self.in_size)
154
+ x = self.decoder(x)
155
+ x = self.final_layer(x).flatten(1)
156
+ return x
157
+
158
+
159
+ class ConvAutoencoder(nn.Module):
160
+ """A 1D convolutional denoising autoencoder"""
161
+ def __init__(self,
162
+ in_channels: int = 1,
163
+ encoder_hidden_channels: tuple = (32, 64, 128, 256, 512),
164
+ decoder_hidden_channels: tuple = (512, 256, 128, 64, 32),
165
+ dim_latent: int = 64,
166
+ dim_avpool: int = 1,
167
+ kernel_size: int = 3,
168
+ use_batch_norm: bool = True,
169
+ activation: str = 'relu',
170
+ decoder_in_size: int = 8,
171
+ **kwargs
172
+ ):
173
+ super().__init__()
174
+ self.encoder = ConvEncoder(
175
+ in_channels=in_channels,
176
+ hidden_channels=encoder_hidden_channels,
177
+ kernel_size=kernel_size,
178
+ dim_embedding=dim_latent,
179
+ dim_avpool=dim_avpool,
180
+ use_batch_norm=use_batch_norm,
181
+ activation=activation,
182
+ **kwargs)
183
+
184
+ self.decoder = ConvDecoder(
185
+ hidden_channels=decoder_hidden_channels,
186
+ dim_latent=dim_latent,
187
+ in_size=decoder_in_size,
188
+ kernel_size=kernel_size,
189
+ use_batch_norm=use_batch_norm,
190
+ activation=activation,
191
+ **kwargs)
192
+
193
+ def forward(self, x):
194
+ return self.decoder(self.encoder(x))
195
+
196
+ class SEBlock(nn.Module):
197
+ """Squeeze-and-excitation block (https://arxiv.org/abs/1709.01507) """
198
+ def __init__(self, in_channels, reduction=16):
199
+ super().__init__()
200
+ self.fc1 = nn.Linear(in_channels, in_channels // reduction, bias=False)
201
+ self.fc2 = nn.Linear(in_channels // reduction, in_channels, bias=False)
202
+ self.relu = nn.ReLU()
203
+ self.sigmoid = nn.Sigmoid()
204
+ self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
205
+
206
+ def forward(self, x):
207
+ batch_size, channels, _ = x.size()
208
+
209
+ #Squeeze
210
+ se = self.global_avg_pool(x).view(batch_size, channels)
211
+
212
+ #Excitation
213
+ se = self.fc1(se)
214
+ se = self.relu(se)
215
+ se = self.fc2(se)
216
+ se = self.sigmoid(se).view(batch_size, channels, 1)
217
+
218
+ #Scale the input feature maps (channel-wise attention)
219
+ return x * se
@@ -0,0 +1,115 @@
1
+
2
+
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+ from torch.nn import init
6
+
7
+ __all__ = [
8
+ 'ConvResidualNet1D',
9
+ ]
10
+
11
+
12
+ class ConvResidualBlock1D(nn.Module):
13
+ def __init__(
14
+ self,
15
+ channels,
16
+ activation=F.gelu,
17
+ dropout_probability=0.0,
18
+ use_batch_norm=False,
19
+ zero_initialization=True,
20
+ kernel_size: int = 3,
21
+ dilation: int = 1,
22
+ padding: int = 1,
23
+ ):
24
+ super().__init__()
25
+ self.activation = activation
26
+
27
+ self.use_batch_norm = use_batch_norm
28
+
29
+ if use_batch_norm:
30
+ self.batch_norm_layers = nn.ModuleList(
31
+ [nn.BatchNorm1d(channels, eps=1e-3) for _ in range(2)]
32
+ )
33
+ self.conv_layers = nn.ModuleList(
34
+ [nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding, dilation=dilation)
35
+ for _ in range(2)]
36
+ )
37
+ self.dropout = nn.Dropout(p=dropout_probability)
38
+
39
+ if zero_initialization:
40
+ init.uniform_(self.conv_layers[-1].weight, -1e-3, 1e-3)
41
+ init.uniform_(self.conv_layers[-1].bias, -1e-3, 1e-3)
42
+
43
+ def forward(self, inputs):
44
+ temps = inputs
45
+ if self.use_batch_norm:
46
+ temps = self.batch_norm_layers[0](temps)
47
+ temps = self.activation(temps)
48
+ temps = self.conv_layers[0](temps)
49
+ if self.use_batch_norm:
50
+ temps = self.batch_norm_layers[1](temps)
51
+
52
+ temps = self.activation(temps)
53
+ temps = self.dropout(temps)
54
+ temps = self.conv_layers[1](temps)
55
+
56
+ return inputs + temps
57
+
58
+
59
+ class ConvResidualNet1D(nn.Module):
60
+ def __init__(
61
+ self,
62
+ in_channels: int = 1,
63
+ out_channels: int = 64,
64
+ hidden_channels: int = 128,
65
+ num_blocks=5,
66
+ activation=F.gelu,
67
+ dropout_probability=0.0,
68
+ use_batch_norm=True,
69
+ kernel_size: int = 3,
70
+ dilation: int = 1,
71
+ padding: int = 1,
72
+ avpool: int = 8,
73
+
74
+ ):
75
+ super().__init__()
76
+
77
+ self.hidden_channels = hidden_channels
78
+
79
+ self.initial_layer = nn.Conv1d(
80
+ in_channels=in_channels,
81
+ out_channels=hidden_channels,
82
+ kernel_size=1,
83
+ padding=0,
84
+ )
85
+ self.blocks = nn.ModuleList(
86
+ [
87
+ ConvResidualBlock1D(
88
+ channels=hidden_channels,
89
+ activation=activation,
90
+ dropout_probability=dropout_probability,
91
+ use_batch_norm=use_batch_norm,
92
+ kernel_size=kernel_size,
93
+ dilation=dilation,
94
+ padding=padding,
95
+ )
96
+ for _ in range(num_blocks)
97
+ ]
98
+ )
99
+
100
+ self.avpool = nn.AdaptiveAvgPool1d(avpool)
101
+
102
+ self.final_layer = nn.Linear(
103
+ hidden_channels * avpool, out_channels
104
+ )
105
+
106
+ def forward(self, x):
107
+ temps = self.initial_layer(x.unsqueeze(1))
108
+
109
+ for block in self.blocks:
110
+ temps = block(temps)
111
+
112
+ temps = self.avpool(temps).view(temps.size(0), -1)
113
+ outputs = self.final_layer(temps)
114
+
115
+ return outputs
@@ -0,0 +1,134 @@
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from reflectorch.models.activations import activation_by_name
6
+
7
+ class SpectralConv1d(nn.Module):
8
+ def __init__(self, in_channels, out_channels, modes):
9
+ super().__init__()
10
+
11
+ """
12
+ 1D Fourier layer. It does FFT, linear transform, and Inverse FFT.
13
+ """
14
+
15
+ self.in_channels = in_channels
16
+ self.out_channels = out_channels
17
+ self.modes = modes #Number of Fourier modes to multiply, at most floor(N/2) + 1
18
+
19
+ self.scale = (1 / (in_channels*out_channels))
20
+ self.weights1 = nn.Parameter(self.scale * torch.rand(in_channels, out_channels, modes, dtype=torch.cfloat))
21
+
22
+ # Complex multiplication
23
+ def compl_mul1d(self, input, weights):
24
+ # (batch, in_channel, x ), (in_channel, out_channel, x) -> (batch, out_channel, x)
25
+ return torch.einsum("bix,iox->box", input, weights)
26
+
27
+ def forward(self, x):
28
+ batchsize = x.shape[0]
29
+ #Compute Fourier coeffcients up to factor of e^(- something constant)
30
+ x_ft = torch.fft.rfft(x)
31
+
32
+ # Multiply relevant Fourier modes
33
+ out_ft = torch.zeros(batchsize, self.out_channels, x.size(-1)//2 + 1, device=x.device, dtype=torch.cfloat)
34
+ out_ft[:, :, :self.modes] = self.compl_mul1d(x_ft[:, :, :self.modes], self.weights1)
35
+
36
+ #Return to physical space
37
+ x = torch.fft.irfft(out_ft, n=x.size(-1))
38
+ return x
39
+
40
+
41
+ class FnoEncoder(nn.Module):
42
+ """An embedding network based on the Fourier Neural Operator (FNO) architecture
43
+
44
+ .. image:: ../documentation/fig_reflectometry_embedding_networks.png
45
+ :width: 400px
46
+ :align: center
47
+
48
+ Args:
49
+ in_channels (int): number of input channels
50
+ dim_embedding (int): dimension of the output embedding
51
+ modes (int): number of Fourier modes
52
+ width_fno (int): number of channels of the intermediate representations
53
+ n_fno_blocks (int): number of FNO blocks
54
+ activation (str): the activation function
55
+ fusion_self_attention (bool): whether to use fusion self attention for merging the tokens (instead of mean)
56
+ fsa_activation (str): the activation function of the fusion self attention block
57
+ """
58
+ def __init__(
59
+ self,
60
+ in_channels: int = 2,
61
+ dim_embedding: int = 128,
62
+ modes: int = 32,
63
+ width_fno: int = 64,
64
+ n_fno_blocks: int = 6,
65
+ activation: str = 'gelu',
66
+ fusion_self_attention: bool = False,
67
+ fsa_activation: str = 'tanh',
68
+ ):
69
+ super().__init__()
70
+
71
+
72
+ self.in_channels = in_channels
73
+ self.dim_embedding = dim_embedding
74
+
75
+ self.modes = modes
76
+ self.width_fno = width_fno
77
+ self.n_fno_blocks = n_fno_blocks
78
+ self.activation = activation_by_name(activation)()
79
+ self.fusion_self_attention = fusion_self_attention
80
+
81
+
82
+ self.fc0 = nn.Linear(in_channels, width_fno) #(r(q), q)
83
+ self.spectral_convs = nn.ModuleList([
84
+ SpectralConv1d(in_channels=width_fno, out_channels=width_fno, modes=modes) for _ in range(n_fno_blocks)
85
+ ])
86
+ self.w_convs = nn.ModuleList([
87
+ nn.Conv1d(in_channels=width_fno, out_channels=width_fno, kernel_size=1) for _ in range(n_fno_blocks)
88
+ ])
89
+ self.fc_out = nn.Linear(width_fno, dim_embedding)
90
+
91
+ if fusion_self_attention:
92
+ self.fusion = FusionSelfAttention(embed_dim=width_fno, hidden_dim=2*width_fno, activation=fsa_activation)
93
+
94
+ def forward(self, x):
95
+ """"""
96
+
97
+ x = x.permute(0, 2, 1) #(B, D, S) -> (B, S, D)
98
+ x = self.fc0(x)
99
+ x = x.permute(0, 2, 1) #(B, S, D) -> (B, D, S)
100
+
101
+ for i in range(self.n_fno_blocks):
102
+ x1 = self.spectral_convs[i](x)
103
+ x2 = self.w_convs[i](x)
104
+
105
+ x = x1 + x2
106
+ x = self.activation(x)
107
+
108
+ if self.fusion_self_attention:
109
+ x = x.permute(0, 2, 1)
110
+ x = self.fusion(x)
111
+ else:
112
+ x = x.mean(dim=-1)
113
+
114
+ x = self.fc_out(x)
115
+
116
+ return x
117
+
118
+
119
+ class FusionSelfAttention(nn.Module):
120
+ def __init__(self, embed_dim: int = 64, hidden_dim: int = 64, activation: str = 'gelu'):
121
+ super().__init__()
122
+ activation = activation_by_name(activation)()
123
+ self.fuser = nn.Sequential(nn.Linear(embed_dim, hidden_dim),
124
+ activation,
125
+ nn.Linear(hidden_dim, 1, bias=False))
126
+
127
+ def forward(self,
128
+ c: torch.Tensor, # (batch_size x seq_len x embed_dim)
129
+ mask: torch.Tensor = None, # (batch_size x seq_len)
130
+ ):
131
+ a = self.fuser(c)
132
+ alpha = torch.exp(a)*mask.unsqueeze(-1) if mask is not None else torch.exp(a)
133
+ alpha = alpha/alpha.sum(dim=1, keepdim=True)
134
+ return (alpha*c).sum(dim=1) # (batch_size x embed_dim)