reflectorch 1.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- reflectorch/__init__.py +17 -0
- reflectorch/data_generation/__init__.py +128 -0
- reflectorch/data_generation/dataset.py +216 -0
- reflectorch/data_generation/likelihoods.py +80 -0
- reflectorch/data_generation/noise.py +471 -0
- reflectorch/data_generation/priors/__init__.py +60 -0
- reflectorch/data_generation/priors/base.py +55 -0
- reflectorch/data_generation/priors/exp_subprior_sampler.py +298 -0
- reflectorch/data_generation/priors/independent_priors.py +195 -0
- reflectorch/data_generation/priors/multilayer_models.py +311 -0
- reflectorch/data_generation/priors/multilayer_structures.py +104 -0
- reflectorch/data_generation/priors/no_constraints.py +206 -0
- reflectorch/data_generation/priors/parametric_models.py +842 -0
- reflectorch/data_generation/priors/parametric_subpriors.py +369 -0
- reflectorch/data_generation/priors/params.py +252 -0
- reflectorch/data_generation/priors/sampler_strategies.py +370 -0
- reflectorch/data_generation/priors/scaler_mixin.py +65 -0
- reflectorch/data_generation/priors/subprior_sampler.py +371 -0
- reflectorch/data_generation/priors/utils.py +118 -0
- reflectorch/data_generation/process_data.py +41 -0
- reflectorch/data_generation/q_generator.py +280 -0
- reflectorch/data_generation/reflectivity/__init__.py +102 -0
- reflectorch/data_generation/reflectivity/abeles.py +97 -0
- reflectorch/data_generation/reflectivity/kinematical.py +71 -0
- reflectorch/data_generation/reflectivity/memory_eff.py +105 -0
- reflectorch/data_generation/reflectivity/numpy_implementations.py +120 -0
- reflectorch/data_generation/reflectivity/smearing.py +138 -0
- reflectorch/data_generation/reflectivity/smearing_pointwise.py +110 -0
- reflectorch/data_generation/scale_curves.py +112 -0
- reflectorch/data_generation/smearing.py +99 -0
- reflectorch/data_generation/utils.py +223 -0
- reflectorch/extensions/__init__.py +0 -0
- reflectorch/extensions/jupyter/__init__.py +11 -0
- reflectorch/extensions/jupyter/api.py +85 -0
- reflectorch/extensions/jupyter/callbacks.py +34 -0
- reflectorch/extensions/jupyter/components.py +758 -0
- reflectorch/extensions/jupyter/custom_select.py +268 -0
- reflectorch/extensions/jupyter/log_widget.py +241 -0
- reflectorch/extensions/jupyter/model_selection.py +495 -0
- reflectorch/extensions/jupyter/plotly_plot_manager.py +329 -0
- reflectorch/extensions/jupyter/widget.py +625 -0
- reflectorch/extensions/matplotlib/__init__.py +5 -0
- reflectorch/extensions/matplotlib/losses.py +32 -0
- reflectorch/extensions/refnx/refnx_conversion.py +77 -0
- reflectorch/inference/__init__.py +28 -0
- reflectorch/inference/inference_model.py +848 -0
- reflectorch/inference/input_interface.py +239 -0
- reflectorch/inference/loading_data.py +55 -0
- reflectorch/inference/multilayer_fitter.py +171 -0
- reflectorch/inference/multilayer_inference_model.py +193 -0
- reflectorch/inference/plotting.py +524 -0
- reflectorch/inference/preprocess_exp/__init__.py +7 -0
- reflectorch/inference/preprocess_exp/attenuation.py +36 -0
- reflectorch/inference/preprocess_exp/cut_with_q_ratio.py +31 -0
- reflectorch/inference/preprocess_exp/footprint.py +81 -0
- reflectorch/inference/preprocess_exp/interpolation.py +19 -0
- reflectorch/inference/preprocess_exp/normalize.py +21 -0
- reflectorch/inference/preprocess_exp/preprocess.py +121 -0
- reflectorch/inference/query_matcher.py +82 -0
- reflectorch/inference/record_time.py +43 -0
- reflectorch/inference/sampler_solution.py +56 -0
- reflectorch/inference/scipy_fitter.py +364 -0
- reflectorch/inference/torch_fitter.py +87 -0
- reflectorch/ml/__init__.py +32 -0
- reflectorch/ml/basic_trainer.py +292 -0
- reflectorch/ml/callbacks.py +81 -0
- reflectorch/ml/dataloaders.py +27 -0
- reflectorch/ml/loggers.py +56 -0
- reflectorch/ml/schedulers.py +356 -0
- reflectorch/ml/trainers.py +201 -0
- reflectorch/ml/utils.py +2 -0
- reflectorch/models/__init__.py +16 -0
- reflectorch/models/activations.py +50 -0
- reflectorch/models/encoders/__init__.py +19 -0
- reflectorch/models/encoders/conv_encoder.py +219 -0
- reflectorch/models/encoders/conv_res_net.py +115 -0
- reflectorch/models/encoders/fno.py +134 -0
- reflectorch/models/encoders/integral_kernel_embedding.py +390 -0
- reflectorch/models/networks/__init__.py +14 -0
- reflectorch/models/networks/mlp_networks.py +434 -0
- reflectorch/models/networks/residual_net.py +157 -0
- reflectorch/paths.py +29 -0
- reflectorch/runs/__init__.py +31 -0
- reflectorch/runs/config.py +25 -0
- reflectorch/runs/slurm_utils.py +93 -0
- reflectorch/runs/train.py +78 -0
- reflectorch/runs/utils.py +405 -0
- reflectorch/test_config.py +4 -0
- reflectorch/train.py +4 -0
- reflectorch/train_on_cluster.py +4 -0
- reflectorch/utils.py +98 -0
- reflectorch-1.5.1.dist-info/METADATA +151 -0
- reflectorch-1.5.1.dist-info/RECORD +96 -0
- reflectorch-1.5.1.dist-info/WHEEL +5 -0
- reflectorch-1.5.1.dist-info/licenses/LICENSE.txt +21 -0
- reflectorch-1.5.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,390 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
from typing import Union
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from torch import nn, Tensor, stack, cat
|
|
6
|
+
from reflectorch.models.activations import activation_by_name
|
|
7
|
+
import reflectorch
|
|
8
|
+
|
|
9
|
+
###embedding network adapted from the PANPE repository
|
|
10
|
+
|
|
11
|
+
__all__ = [
|
|
12
|
+
"IntegralConvEmbedding",
|
|
13
|
+
]
|
|
14
|
+
|
|
15
|
+
class IntegralConvEmbedding(nn.Module):
|
|
16
|
+
def __init__(
|
|
17
|
+
self,
|
|
18
|
+
z_num: Union[int, tuple[int, ...]],
|
|
19
|
+
z_range: tuple[float, float] = None,
|
|
20
|
+
in_dim: int = 2,
|
|
21
|
+
kernel_coef: int = 16,
|
|
22
|
+
dim_embedding: int = 256,
|
|
23
|
+
conv_dims: tuple[int, ...] = (32, 64, 128),
|
|
24
|
+
num_blocks: int = 4,
|
|
25
|
+
use_batch_norm: bool = False,
|
|
26
|
+
use_layer_norm: bool = True,
|
|
27
|
+
use_fft: bool = False,
|
|
28
|
+
activation: str = "gelu",
|
|
29
|
+
conv_activation: str = "lrelu",
|
|
30
|
+
resnet_activation: str = "relu",
|
|
31
|
+
) -> None:
|
|
32
|
+
super().__init__()
|
|
33
|
+
|
|
34
|
+
if isinstance(z_num, int):
|
|
35
|
+
z_num = (z_num,)
|
|
36
|
+
num_kernel = len(z_num)
|
|
37
|
+
|
|
38
|
+
if z_range is not None:
|
|
39
|
+
zs = [(z_range[0], z_range[1], nz) for nz in z_num]
|
|
40
|
+
else:
|
|
41
|
+
zs = z_num
|
|
42
|
+
|
|
43
|
+
self.in_dim = in_dim
|
|
44
|
+
|
|
45
|
+
self.kernels = nn.ModuleList(
|
|
46
|
+
[
|
|
47
|
+
IntegralKernelBlock(
|
|
48
|
+
z,
|
|
49
|
+
in_dim,
|
|
50
|
+
kernel_coef=kernel_coef,
|
|
51
|
+
latent_dim=dim_embedding,
|
|
52
|
+
conv_dims=conv_dims,
|
|
53
|
+
use_fft=use_fft,
|
|
54
|
+
activation=activation,
|
|
55
|
+
conv_activation=conv_activation,
|
|
56
|
+
)
|
|
57
|
+
for z in zs
|
|
58
|
+
]
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
self.fc = reflectorch.models.networks.residual_net.ResidualMLP(
|
|
62
|
+
dim_in=dim_embedding * num_kernel,
|
|
63
|
+
dim_out=dim_embedding,
|
|
64
|
+
layer_width=2 * dim_embedding,
|
|
65
|
+
num_blocks=num_blocks,
|
|
66
|
+
use_batch_norm=use_batch_norm,
|
|
67
|
+
use_layer_norm=use_layer_norm,
|
|
68
|
+
activation=resnet_activation,
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
def forward(self, q, y, drop_mask=None) -> Tensor:
|
|
72
|
+
x = cat([kernel(q, y, drop_mask=drop_mask) for kernel in self.kernels], dim=-1)
|
|
73
|
+
x = self.fc(x)
|
|
74
|
+
|
|
75
|
+
return x
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class IntegralKernelBlock(nn.Module):
|
|
79
|
+
"""
|
|
80
|
+
Examples:
|
|
81
|
+
>>> x = torch.rand(2, 100)
|
|
82
|
+
>>> y = torch.rand(2, 100, 3)
|
|
83
|
+
>>> block = IntegralKernelBlock((0, 1, 10), in_dim=3, latent_dim=32)
|
|
84
|
+
>>> output = block(x, y)
|
|
85
|
+
>>> output.shape
|
|
86
|
+
torch.Size([2, 32])
|
|
87
|
+
|
|
88
|
+
>>> block = IntegralKernelBlock(10, in_dim=3, latent_dim=32)
|
|
89
|
+
>>> output = block(x, y)
|
|
90
|
+
>>> output.shape
|
|
91
|
+
torch.Size([2, 32])
|
|
92
|
+
"""
|
|
93
|
+
|
|
94
|
+
def __init__(
|
|
95
|
+
self,
|
|
96
|
+
z: tuple[float, float, int] or int,
|
|
97
|
+
in_dim: int,
|
|
98
|
+
kernel_coef: int = 2,
|
|
99
|
+
latent_dim: int = 32,
|
|
100
|
+
conv_dims: tuple[int, ...] = (32, 64, 128),
|
|
101
|
+
use_fft: bool = False,
|
|
102
|
+
activation: str = "gelu",
|
|
103
|
+
conv_activation: str = "lrelu",
|
|
104
|
+
):
|
|
105
|
+
super().__init__()
|
|
106
|
+
|
|
107
|
+
if isinstance(z, int):
|
|
108
|
+
z_num = z
|
|
109
|
+
kernel = FullIntegralKernel(z_num, in_dim=in_dim, kernel_coef=kernel_coef)
|
|
110
|
+
else:
|
|
111
|
+
kernel = FastIntegralKernel(
|
|
112
|
+
z, in_dim=in_dim, kernel_coef=kernel_coef, activation=activation
|
|
113
|
+
)
|
|
114
|
+
z_num = z[-1]
|
|
115
|
+
|
|
116
|
+
assert z_num % 2 == 0, "z_num should be even"
|
|
117
|
+
|
|
118
|
+
self.kernel = kernel
|
|
119
|
+
self.z_num = z_num
|
|
120
|
+
self.in_dim = in_dim
|
|
121
|
+
self.latent_dim = latent_dim
|
|
122
|
+
self.use_fft = use_fft
|
|
123
|
+
|
|
124
|
+
self.fc_in_dim = self.latent_dim + self.in_dim * self.z_num
|
|
125
|
+
if self.use_fft:
|
|
126
|
+
self.fc_in_dim += self.in_dim * 2 + self.in_dim * self.z_num
|
|
127
|
+
|
|
128
|
+
self.conv = reflectorch.models.encoders.conv_encoder.ConvEncoder(
|
|
129
|
+
dim_avpool=8,
|
|
130
|
+
hidden_channels=conv_dims,
|
|
131
|
+
in_channels=in_dim,
|
|
132
|
+
dim_embedding=latent_dim,
|
|
133
|
+
activation=conv_activation,
|
|
134
|
+
)
|
|
135
|
+
self.fc = FCBlock(
|
|
136
|
+
in_dim=self.fc_in_dim, hid_dim=self.latent_dim * 2, out_dim=self.latent_dim
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
def forward(self, x: Tensor, y: Tensor, drop_mask: Tensor = None) -> Tensor:
|
|
140
|
+
x = self.kernel(x, y, drop_mask=drop_mask)
|
|
141
|
+
|
|
142
|
+
assert x.shape == (x.shape[0], self.in_dim, self.z_num)
|
|
143
|
+
|
|
144
|
+
xc = self.conv(x) # (batch, latent_dim)
|
|
145
|
+
|
|
146
|
+
assert xc.shape == (x.shape[0], self.latent_dim)
|
|
147
|
+
|
|
148
|
+
if self.use_fft:
|
|
149
|
+
fft_x = torch.fft.rfft(x, dim=-1, norm="ortho") # (batch, in_dim, z_num)
|
|
150
|
+
|
|
151
|
+
fft_x = torch.cat(
|
|
152
|
+
[fft_x.real, fft_x.imag], -1
|
|
153
|
+
) # (batch, in_dim, 2 * z_num)
|
|
154
|
+
|
|
155
|
+
assert fft_x.shape == (x.shape[0], x.shape[1], self.z_num + 2)
|
|
156
|
+
|
|
157
|
+
fft_x = fft_x.flatten(1) # (batch, in_dim * (z_num + 2))
|
|
158
|
+
|
|
159
|
+
x = torch.cat(
|
|
160
|
+
[x.flatten(1), fft_x, xc], -1
|
|
161
|
+
) # (batch, in_dim * z_num * 3 + latent_dim)
|
|
162
|
+
else:
|
|
163
|
+
x = torch.cat([x.flatten(1), xc], -1)
|
|
164
|
+
|
|
165
|
+
assert (
|
|
166
|
+
x.shape[1] == self.fc_in_dim
|
|
167
|
+
), f"Expected dim {self.fc_in_dim}, got {x.shape[1]}"
|
|
168
|
+
|
|
169
|
+
x = self.fc(x) # (batch, latent_dim)
|
|
170
|
+
|
|
171
|
+
return x
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
class FastIntegralKernel(nn.Module):
|
|
175
|
+
def __init__(
|
|
176
|
+
self,
|
|
177
|
+
z: tuple[float, float, int],
|
|
178
|
+
kernel_coef: int = 16,
|
|
179
|
+
in_dim: int = 1,
|
|
180
|
+
activation: str = "gelu",
|
|
181
|
+
):
|
|
182
|
+
super().__init__()
|
|
183
|
+
|
|
184
|
+
z = torch.linspace(*z)
|
|
185
|
+
|
|
186
|
+
self.kernel = FCBlock(
|
|
187
|
+
in_dim + 2, kernel_coef * in_dim, in_dim, activation=activation
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
self.register_buffer("z", z)
|
|
191
|
+
|
|
192
|
+
def _get_z(self, x: Tensor):
|
|
193
|
+
# x.shape == (batch_size, num_x)
|
|
194
|
+
dz = self.z[1] - self.z[0]
|
|
195
|
+
indices = torch.ceil((x - self.z[0] - dz / 2) / dz).to(torch.int64)
|
|
196
|
+
|
|
197
|
+
z = torch.index_select(self.z, 0, indices.flatten()).view(*x.shape)
|
|
198
|
+
|
|
199
|
+
return z, indices
|
|
200
|
+
|
|
201
|
+
def forward(self, x: Tensor, y: Tensor, drop_mask=None):
|
|
202
|
+
z, indices = self._get_z(x)
|
|
203
|
+
xz = torch.stack([x, z], -1)
|
|
204
|
+
kernel_input = torch.cat([xz, y], -1)
|
|
205
|
+
output = self.kernel(kernel_input) # (batch, x_num, in_dim)
|
|
206
|
+
|
|
207
|
+
output = compute_means(
|
|
208
|
+
output * y, indices, self.z.shape[-1], drop_mask=drop_mask
|
|
209
|
+
) # (batch, z_num, in_dim)
|
|
210
|
+
|
|
211
|
+
output = output.swapaxes(1, 2) # (batch, in_dim, z_num)
|
|
212
|
+
|
|
213
|
+
return output
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
class FullIntegralKernel(nn.Module):
|
|
217
|
+
def __init__(
|
|
218
|
+
self,
|
|
219
|
+
z_num: int,
|
|
220
|
+
kernel_coef: int = 1,
|
|
221
|
+
in_dim: int = 1,
|
|
222
|
+
):
|
|
223
|
+
super().__init__()
|
|
224
|
+
|
|
225
|
+
self.z_num = z_num
|
|
226
|
+
self.in_dim = in_dim
|
|
227
|
+
|
|
228
|
+
self.kernel = nn.Sequential(
|
|
229
|
+
nn.Linear(in_dim + 1, z_num * kernel_coef),
|
|
230
|
+
nn.LayerNorm(z_num * kernel_coef),
|
|
231
|
+
nn.ReLU(),
|
|
232
|
+
nn.Linear(z_num * kernel_coef, z_num * in_dim),
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
def forward(self, x: Tensor, y: Tensor, drop_mask=None):
|
|
236
|
+
# x.shape == (batch_size, num_x)
|
|
237
|
+
# y.shape == (batch_size, num_x, in_dim)
|
|
238
|
+
# drop_mask.shape == (batch_size, num_x)
|
|
239
|
+
|
|
240
|
+
batch_size, num_x = x.shape
|
|
241
|
+
|
|
242
|
+
kernel_input = torch.cat([x.unsqueeze(-1), y], -1) # (batch, x_num, in_dim + 1)
|
|
243
|
+
x = self.kernel(kernel_input) # (batch, x_num, z_num * in_dim)
|
|
244
|
+
x = x.reshape(
|
|
245
|
+
*x.shape[:-1], self.z_num, self.in_dim
|
|
246
|
+
) # (batch, x_num, z_num, in_dim)
|
|
247
|
+
# permute to get (batch, z_num, x_num, in_dim)
|
|
248
|
+
x = x.permute(0, 2, 1, 3)
|
|
249
|
+
|
|
250
|
+
y = y.unsqueeze(1) # (batch, 1, x_num, in_dim)
|
|
251
|
+
|
|
252
|
+
assert x.shape == (
|
|
253
|
+
batch_size,
|
|
254
|
+
self.z_num,
|
|
255
|
+
num_x,
|
|
256
|
+
self.in_dim,
|
|
257
|
+
) # (batch, z_num, in_dim, x_num)
|
|
258
|
+
assert y.shape == (
|
|
259
|
+
batch_size,
|
|
260
|
+
1,
|
|
261
|
+
num_x,
|
|
262
|
+
self.in_dim,
|
|
263
|
+
) # (batch, 1, x_num, in_dim)
|
|
264
|
+
|
|
265
|
+
if drop_mask is not None:
|
|
266
|
+
x = x * y
|
|
267
|
+
x = x.permute(0, 2, 1, 3) # (batch, x_num, z_num, in_dim)
|
|
268
|
+
x = masked_mean(x, drop_mask)
|
|
269
|
+
else:
|
|
270
|
+
x = (x * y).mean(-2) # (batch, z_num, in_dim)
|
|
271
|
+
|
|
272
|
+
assert x.shape == (batch_size, self.z_num, self.in_dim), f"{x.shape}"
|
|
273
|
+
|
|
274
|
+
x = x.swapaxes(1, 2) # (batch, in_dim, z_num)
|
|
275
|
+
|
|
276
|
+
return x
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
class FCBlock(nn.Module):
|
|
280
|
+
def __init__(
|
|
281
|
+
self,
|
|
282
|
+
in_dim: int = 2,
|
|
283
|
+
hid_dim: int = 16,
|
|
284
|
+
out_dim: int = 16,
|
|
285
|
+
activation: str = "gelu",
|
|
286
|
+
):
|
|
287
|
+
super().__init__()
|
|
288
|
+
|
|
289
|
+
self.fc1 = nn.Linear(in_dim, hid_dim)
|
|
290
|
+
self.layer_norm = nn.LayerNorm(hid_dim)
|
|
291
|
+
self.activation = activation_by_name(activation)()
|
|
292
|
+
self.fc2 = nn.Linear(hid_dim, out_dim)
|
|
293
|
+
|
|
294
|
+
def forward(self, x: Tensor) -> Tensor:
|
|
295
|
+
x = self.fc1(x)
|
|
296
|
+
x = self.layer_norm(x)
|
|
297
|
+
x = self.activation(x)
|
|
298
|
+
x = self.fc2(x)
|
|
299
|
+
return x
|
|
300
|
+
# return self.kernel(x)
|
|
301
|
+
|
|
302
|
+
|
|
303
|
+
def compute_means(x, indices, z: int, drop_mask: Tensor = None):
|
|
304
|
+
"""
|
|
305
|
+
Compute the mean values of tensor 'x' for each unique index in 'indices' across each batch.
|
|
306
|
+
|
|
307
|
+
This function calculates the mean of elements in 'x' that correspond to each unique index in 'indices'.
|
|
308
|
+
The computation is performed for each batch separately, and the function is optimized to avoid Python loops
|
|
309
|
+
by using advanced PyTorch operations.
|
|
310
|
+
|
|
311
|
+
Parameters:
|
|
312
|
+
x (torch.Tensor): A tensor of shape (batch_size, n, d) containing the values to be averaged.
|
|
313
|
+
'x' should be a floating-point tensor.
|
|
314
|
+
indices (torch.Tensor): An integer tensor of shape (batch_size, n) containing the indices.
|
|
315
|
+
The values in 'indices' should be in the range [0, z-1].
|
|
316
|
+
z (int): The number of unique indices. This determines the second dimension of the output tensor.
|
|
317
|
+
drop_mask (torch.Tensor): A boolean tensor of shape (batch_size, n) containing a mask for the indices to drop.
|
|
318
|
+
If None, all indices are used.
|
|
319
|
+
|
|
320
|
+
Returns:
|
|
321
|
+
torch.Tensor: A tensor of shape (batch_size, z, d) containing the mean values for each index in each batch.
|
|
322
|
+
If an index does not appear in a batch, its corresponding mean values are zeros.
|
|
323
|
+
|
|
324
|
+
Example:
|
|
325
|
+
>>> batch_size, n, d, z = 3, 4, 5, 6
|
|
326
|
+
>>> indices = torch.randint(0, z, (batch_size, n))
|
|
327
|
+
>>> x = torch.randn(batch_size, n, d)
|
|
328
|
+
>>> y = compute_means(x, indices, z)
|
|
329
|
+
>>> print(y.shape)
|
|
330
|
+
torch.Size([3, 6, 5])
|
|
331
|
+
"""
|
|
332
|
+
|
|
333
|
+
batch_size, n, d = x.shape
|
|
334
|
+
device = x.device
|
|
335
|
+
|
|
336
|
+
drop = drop_mask is not None
|
|
337
|
+
|
|
338
|
+
# Initialize tensors to hold sums and counts
|
|
339
|
+
sums = torch.zeros(batch_size, z + int(drop), d, device=device)
|
|
340
|
+
counts = torch.zeros(batch_size, z + int(drop), device=device)
|
|
341
|
+
|
|
342
|
+
if drop_mask is not None:
|
|
343
|
+
# Set the values of the indices to drop to z
|
|
344
|
+
indices = indices.masked_fill(~drop_mask, z)
|
|
345
|
+
|
|
346
|
+
indices_expanded = indices.unsqueeze(-1).expand_as(x)
|
|
347
|
+
sums.scatter_add_(1, indices_expanded, x)
|
|
348
|
+
counts.scatter_add_(1, indices, torch.ones_like(indices, dtype=x.dtype))
|
|
349
|
+
|
|
350
|
+
if drop:
|
|
351
|
+
# Remove the z values from the sums and counts
|
|
352
|
+
sums = sums[:, :-1]
|
|
353
|
+
counts = counts[:, :-1]
|
|
354
|
+
|
|
355
|
+
# Compute the mean and handle division by zero
|
|
356
|
+
mean = sums / counts.unsqueeze(-1).clamp(min=1)
|
|
357
|
+
|
|
358
|
+
return mean
|
|
359
|
+
|
|
360
|
+
|
|
361
|
+
def masked_mean(x, mask):
|
|
362
|
+
"""
|
|
363
|
+
Computes the mean of tensor x along the x_size dimension,
|
|
364
|
+
while masking out elements where the corresponding value in the mask is False.
|
|
365
|
+
|
|
366
|
+
Args:
|
|
367
|
+
x (torch.Tensor): A tensor of shape (batch, x_size, z, d).
|
|
368
|
+
mask (torch.Tensor): A boolean mask of shape (batch, x_size).
|
|
369
|
+
|
|
370
|
+
Returns:
|
|
371
|
+
torch.Tensor: The result tensor of shape (batch, z, d) after applying the mask and computing the mean.
|
|
372
|
+
"""
|
|
373
|
+
if not mask.dtype == torch.bool:
|
|
374
|
+
raise TypeError("Mask must be a boolean tensor.")
|
|
375
|
+
|
|
376
|
+
# Ensure the mask is broadcastable to the shape of x
|
|
377
|
+
mask = mask.unsqueeze(-1).unsqueeze(-1)
|
|
378
|
+
masked_x = x * mask
|
|
379
|
+
|
|
380
|
+
# Compute the sum and the count of valid (unmasked) elements along the x_size dimension
|
|
381
|
+
sum_x = masked_x.sum(dim=1)
|
|
382
|
+
count_x = mask.sum(dim=1)
|
|
383
|
+
|
|
384
|
+
# Avoid division by zero
|
|
385
|
+
count_x[count_x == 0] = 1
|
|
386
|
+
|
|
387
|
+
# Compute the mean
|
|
388
|
+
mean_x = sum_x / count_x
|
|
389
|
+
|
|
390
|
+
return mean_x
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
from reflectorch.models.networks.mlp_networks import (
|
|
2
|
+
NetworkWithPriors,
|
|
3
|
+
NetworkWithPriorsConvEmb,
|
|
4
|
+
NetworkWithPriorsFnoEmb,
|
|
5
|
+
)
|
|
6
|
+
from reflectorch.models.networks.residual_net import ResidualMLP
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
__all__ = [
|
|
10
|
+
"ResidualMLP",
|
|
11
|
+
"NetworkWithPriors",
|
|
12
|
+
"NetworkWithPriorsConvEmb",
|
|
13
|
+
"NetworkWithPriorsFnoEmb",
|
|
14
|
+
]
|