pyerualjetwork 4.0.5__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pyerualjetwork/__init__.py +71 -0
- pyerualjetwork/activation_functions.py +367 -0
- pyerualjetwork/activation_functions_cuda.py +363 -0
- pyerualjetwork/data_operations.py +439 -0
- pyerualjetwork/data_operations_cuda.py +463 -0
- pyerualjetwork/help.py +16 -0
- pyerualjetwork/loss_functions.py +21 -0
- pyerualjetwork/loss_functions_cuda.py +21 -0
- pyerualjetwork/metrics.py +190 -0
- pyerualjetwork/metrics_cuda.py +165 -0
- pyerualjetwork/model_operations.py +408 -0
- pyerualjetwork/model_operations_cuda.py +414 -0
- pyerualjetwork/plan.py +681 -0
- pyerualjetwork/plan_cuda.py +677 -0
- pyerualjetwork/planeat.py +734 -0
- pyerualjetwork/planeat_cuda.py +736 -0
- pyerualjetwork/ui.py +22 -0
- pyerualjetwork/visualizations.py +799 -0
- pyerualjetwork/visualizations_cuda.py +799 -0
- pyerualjetwork-4.0.5.dist-info/METADATA +95 -0
- pyerualjetwork-4.0.5.dist-info/RECORD +23 -0
- pyerualjetwork-4.0.5.dist-info/WHEEL +5 -0
- pyerualjetwork-4.0.5.dist-info/top_level.txt +1 -0
@@ -0,0 +1,190 @@
|
|
1
|
+
import numpy as np
|
2
|
+
|
3
|
+
def metrics(y_ts, test_preds, average='weighted'):
|
4
|
+
"""
|
5
|
+
Calculates precision, recall and F1 score for a classification task.
|
6
|
+
|
7
|
+
Args:
|
8
|
+
y_ts (list or numpy.ndarray): True labels.
|
9
|
+
test_preds (list or numpy.ndarray): Predicted labels.
|
10
|
+
average (str): Type of averaging ('micro', 'macro', 'weighted').
|
11
|
+
|
12
|
+
Returns:
|
13
|
+
tuple: Precision, recall, F1 score.
|
14
|
+
"""
|
15
|
+
|
16
|
+
from .data_operations import decode_one_hot
|
17
|
+
|
18
|
+
y_test_d = decode_one_hot(y_ts)
|
19
|
+
y_test_d = np.array(y_test_d)
|
20
|
+
y_pred = np.array(test_preds)
|
21
|
+
|
22
|
+
if y_test_d.ndim > 1:
|
23
|
+
y_test_d = y_test_d.reshape(-1)
|
24
|
+
if y_pred.ndim > 1:
|
25
|
+
y_pred = y_pred.reshape(-1)
|
26
|
+
|
27
|
+
tp = {}
|
28
|
+
fp = {}
|
29
|
+
fn = {}
|
30
|
+
|
31
|
+
classes = np.unique(np.concatenate((y_test_d, y_pred)))
|
32
|
+
|
33
|
+
for c in classes:
|
34
|
+
tp[c] = 0
|
35
|
+
fp[c] = 0
|
36
|
+
fn[c] = 0
|
37
|
+
|
38
|
+
for c in classes:
|
39
|
+
for true, pred in zip(y_test_d, y_pred):
|
40
|
+
if true == c and pred == c:
|
41
|
+
tp[c] += 1
|
42
|
+
elif true != c and pred == c:
|
43
|
+
fp[c] += 1
|
44
|
+
elif true == c and pred != c:
|
45
|
+
fn[c] += 1
|
46
|
+
|
47
|
+
precision = {}
|
48
|
+
recall = {}
|
49
|
+
f1 = {}
|
50
|
+
|
51
|
+
for c in classes:
|
52
|
+
precision[c] = tp[c] / (tp[c] + fp[c]) if (tp[c] + fp[c]) > 0 else 0
|
53
|
+
recall[c] = tp[c] / (tp[c] + fn[c]) if (tp[c] + fn[c]) > 0 else 0
|
54
|
+
f1[c] = 2 * (precision[c] * recall[c]) / (precision[c] + recall[c]) if (precision[c] + recall[c]) > 0 else 0
|
55
|
+
|
56
|
+
if average == 'micro':
|
57
|
+
precision_val = np.sum(list(tp.values())) / (np.sum(list(tp.values())) + np.sum(list(fp.values()))) if (np.sum(list(tp.values())) + np.sum(list(fp.values()))) > 0 else 0
|
58
|
+
recall_val = np.sum(list(tp.values())) / (np.sum(list(tp.values())) + np.sum(list(fn.values()))) if (np.sum(list(tp.values())) + np.sum(list(fn.values()))) > 0 else 0
|
59
|
+
f1_val = 2 * (precision_val * recall_val) / (precision_val + recall_val) if (precision_val + recall_val) > 0 else 0
|
60
|
+
|
61
|
+
elif average == 'macro':
|
62
|
+
precision_val = np.mean(list(precision.values()))
|
63
|
+
recall_val = np.mean(list(recall.values()))
|
64
|
+
f1_val = np.mean(list(f1.values()))
|
65
|
+
|
66
|
+
elif average == 'weighted':
|
67
|
+
weights = np.array([np.sum(y_test_d == c) for c in classes])
|
68
|
+
weights = weights / np.sum(weights)
|
69
|
+
precision_val = np.sum([weights[i] * precision[classes[i]] for i in range(len(classes))])
|
70
|
+
recall_val = np.sum([weights[i] * recall[classes[i]] for i in range(len(classes))])
|
71
|
+
f1_val = np.sum([weights[i] * f1[classes[i]] for i in range(len(classes))])
|
72
|
+
|
73
|
+
else:
|
74
|
+
raise ValueError("Invalid value for 'average'. Choose from 'micro', 'macro', 'weighted'.")
|
75
|
+
|
76
|
+
return precision_val, recall_val, f1_val
|
77
|
+
|
78
|
+
|
79
|
+
def roc_curve(y_true, y_score):
|
80
|
+
"""
|
81
|
+
Compute Receiver Operating Characteristic (ROC) curve.
|
82
|
+
|
83
|
+
Parameters:
|
84
|
+
y_true : array, shape = [n_samples]
|
85
|
+
True binary labels in range {0, 1} or {-1, 1}.
|
86
|
+
y_score : array, shape = [n_samples]
|
87
|
+
Target scores, can either be probability estimates of the positive class,
|
88
|
+
confidence values, or non-thresholded measure of decisions (as returned
|
89
|
+
by decision_function on some classifiers).
|
90
|
+
|
91
|
+
Returns:
|
92
|
+
fpr : array, shape = [n]
|
93
|
+
Increasing false positive rates such that element i is the false positive rate
|
94
|
+
of predictions with score >= thresholds[i].
|
95
|
+
tpr : array, shape = [n]
|
96
|
+
Increasing true positive rates such that element i is the true positive rate
|
97
|
+
of predictions with score >= thresholds[i].
|
98
|
+
thresholds : array, shape = [n]
|
99
|
+
Decreasing thresholds on the decision function used to compute fpr and tpr.
|
100
|
+
"""
|
101
|
+
|
102
|
+
y_true = np.asarray(y_true)
|
103
|
+
y_score = np.asarray(y_score)
|
104
|
+
|
105
|
+
if len(np.unique(y_true)) != 2:
|
106
|
+
raise ValueError("Only binary classification is supported.")
|
107
|
+
|
108
|
+
|
109
|
+
desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1]
|
110
|
+
y_score = y_score[desc_score_indices]
|
111
|
+
y_true = y_true[desc_score_indices]
|
112
|
+
|
113
|
+
|
114
|
+
fpr = []
|
115
|
+
tpr = []
|
116
|
+
thresholds = []
|
117
|
+
n_pos = np.sum(y_true)
|
118
|
+
n_neg = len(y_true) - n_pos
|
119
|
+
|
120
|
+
tp = 0
|
121
|
+
fp = 0
|
122
|
+
prev_score = None
|
123
|
+
|
124
|
+
|
125
|
+
for i, score in enumerate(y_score):
|
126
|
+
if score != prev_score:
|
127
|
+
fpr.append(fp / n_neg)
|
128
|
+
tpr.append(tp / n_pos)
|
129
|
+
thresholds.append(score)
|
130
|
+
prev_score = score
|
131
|
+
|
132
|
+
if y_true[i] == 1:
|
133
|
+
tp += 1
|
134
|
+
else:
|
135
|
+
fp += 1
|
136
|
+
|
137
|
+
fpr.append(fp / n_neg)
|
138
|
+
tpr.append(tp / n_pos)
|
139
|
+
thresholds.append(score)
|
140
|
+
|
141
|
+
return np.array(fpr), np.array(tpr), np.array(thresholds)
|
142
|
+
|
143
|
+
|
144
|
+
def confusion_matrix(y_true, y_pred, class_count):
|
145
|
+
"""
|
146
|
+
Computes confusion matrix.
|
147
|
+
|
148
|
+
Args:
|
149
|
+
y_true (numpy.ndarray): True class labels (1D array).
|
150
|
+
y_pred (numpy.ndarray): Predicted class labels (1D array).
|
151
|
+
num_classes (int): Number of classes.
|
152
|
+
|
153
|
+
Returns:
|
154
|
+
numpy.ndarray: Confusion matrix of shape (num_classes, num_classes).
|
155
|
+
"""
|
156
|
+
confusion = np.zeros((class_count, class_count), dtype=int)
|
157
|
+
|
158
|
+
for i in range(len(y_true)):
|
159
|
+
true_label = y_true[i]
|
160
|
+
pred_label = y_pred[i]
|
161
|
+
confusion[true_label, pred_label] += 1
|
162
|
+
|
163
|
+
return confusion
|
164
|
+
|
165
|
+
|
166
|
+
def pca(X, n_components):
|
167
|
+
"""
|
168
|
+
|
169
|
+
Parameters:
|
170
|
+
X (numpy array): (n_samples, n_features)
|
171
|
+
n_components (int):
|
172
|
+
|
173
|
+
Returns:
|
174
|
+
X_reduced (numpy array): (n_samples, n_components)
|
175
|
+
"""
|
176
|
+
|
177
|
+
X_meaned = X - np.mean(X, axis=0)
|
178
|
+
|
179
|
+
covariance_matrix = np.cov(X_meaned, rowvar=False)
|
180
|
+
|
181
|
+
eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix)
|
182
|
+
|
183
|
+
sorted_index = np.argsort(eigenvalues)[::-1]
|
184
|
+
sorted_eigenvectors = eigenvectors[:, sorted_index]
|
185
|
+
|
186
|
+
eigenvectors_subset = sorted_eigenvectors[:, :n_components]
|
187
|
+
|
188
|
+
X_reduced = np.dot(X_meaned, eigenvectors_subset)
|
189
|
+
|
190
|
+
return X_reduced
|
@@ -0,0 +1,165 @@
|
|
1
|
+
import cupy as cp
|
2
|
+
from .data_operations_cuda import decode_one_hot
|
3
|
+
|
4
|
+
def metrics(y_ts, test_preds, average='weighted'):
|
5
|
+
y_test_d = cp.array(decode_one_hot(y_ts))
|
6
|
+
y_pred = cp.array(test_preds)
|
7
|
+
|
8
|
+
if y_test_d.ndim > 1:
|
9
|
+
y_test_d = y_test_d.ravel()
|
10
|
+
if y_pred.ndim > 1:
|
11
|
+
y_pred = y_pred.ravel()
|
12
|
+
|
13
|
+
classes = cp.unique(cp.concatenate((y_test_d, y_pred)))
|
14
|
+
tp = cp.zeros(len(classes), dtype=cp.int32)
|
15
|
+
fp = cp.zeros(len(classes), dtype=cp.int32)
|
16
|
+
fn = cp.zeros(len(classes), dtype=cp.int32)
|
17
|
+
|
18
|
+
for i, c in enumerate(classes):
|
19
|
+
tp[i] = cp.sum((y_test_d == c) & (y_pred == c))
|
20
|
+
fp[i] = cp.sum((y_test_d != c) & (y_pred == c))
|
21
|
+
fn[i] = cp.sum((y_test_d == c) & (y_pred != c))
|
22
|
+
|
23
|
+
precision = tp / (tp + fp + 1e-10)
|
24
|
+
recall = tp / (tp + fn + 1e-10)
|
25
|
+
f1 = 2 * (precision * recall) / (precision + recall + 1e-10)
|
26
|
+
|
27
|
+
if average == 'micro':
|
28
|
+
tp_sum = cp.sum(tp)
|
29
|
+
fp_sum = cp.sum(fp)
|
30
|
+
fn_sum = cp.sum(fn)
|
31
|
+
precision_val = tp_sum / (tp_sum + fp_sum + 1e-10)
|
32
|
+
recall_val = tp_sum / (tp_sum + fn_sum + 1e-10)
|
33
|
+
f1_val = 2 * (precision_val * recall_val) / (precision_val + recall_val + 1e-10)
|
34
|
+
|
35
|
+
elif average == 'macro':
|
36
|
+
precision_val = cp.mean(precision)
|
37
|
+
recall_val = cp.mean(recall)
|
38
|
+
f1_val = cp.mean(f1)
|
39
|
+
|
40
|
+
elif average == 'weighted':
|
41
|
+
weights = cp.array([cp.sum(y_test_d == c) for c in classes])
|
42
|
+
weights = weights / cp.sum(weights)
|
43
|
+
precision_val = cp.sum(weights * precision)
|
44
|
+
recall_val = cp.sum(weights * recall)
|
45
|
+
f1_val = cp.sum(weights * f1)
|
46
|
+
|
47
|
+
else:
|
48
|
+
raise ValueError("Invalid value for 'average'. Choose from 'micro', 'macro', 'weighted'.")
|
49
|
+
|
50
|
+
return precision_val.item(), recall_val.item(), f1_val.item()
|
51
|
+
|
52
|
+
|
53
|
+
|
54
|
+
def roc_curve(y_true, y_score):
|
55
|
+
"""
|
56
|
+
Compute Receiver Operating Characteristic (ROC) curve.
|
57
|
+
|
58
|
+
Parameters:
|
59
|
+
y_true : array, shape = [n_samples]
|
60
|
+
True binary labels in range {0, 1} or {-1, 1}.
|
61
|
+
y_score : array, shape = [n_samples]
|
62
|
+
Target scores, can either be probability estimates of the positive class,
|
63
|
+
confidence values, or non-thresholded measure of decisions (as returned
|
64
|
+
by decision_function on some classifiers).
|
65
|
+
|
66
|
+
Returns:
|
67
|
+
fpr : array, shape = [n]
|
68
|
+
Increasing false positive rates such that element i is the false positive rate
|
69
|
+
of predictions with score >= thresholds[i].
|
70
|
+
tpr : array, shape = [n]
|
71
|
+
Increasing true positive rates such that element i is the true positive rate
|
72
|
+
of predictions with score >= thresholds[i].
|
73
|
+
thresholds : array, shape = [n]
|
74
|
+
Decreasing thresholds on the decision function used to compute fpr and tpr.
|
75
|
+
"""
|
76
|
+
|
77
|
+
y_true = cp.asarray(y_true)
|
78
|
+
y_score = cp.asarray(y_score)
|
79
|
+
|
80
|
+
if len(cp.unique(y_true)) != 2:
|
81
|
+
raise ValueError("Only binary classification is supported.")
|
82
|
+
|
83
|
+
|
84
|
+
desc_score_indices = cp.argsort(y_score, kind="mergesort")[::-1]
|
85
|
+
y_score = y_score[desc_score_indices]
|
86
|
+
y_true = y_true[desc_score_indices]
|
87
|
+
|
88
|
+
|
89
|
+
fpr = []
|
90
|
+
tpr = []
|
91
|
+
thresholds = []
|
92
|
+
n_pos = cp.sum(y_true)
|
93
|
+
n_neg = len(y_true) - n_pos
|
94
|
+
|
95
|
+
tp = 0
|
96
|
+
fp = 0
|
97
|
+
prev_score = None
|
98
|
+
|
99
|
+
|
100
|
+
for i, score in enumerate(y_score):
|
101
|
+
if score != prev_score:
|
102
|
+
fpr.append(fp / n_neg)
|
103
|
+
tpr.append(tp / n_pos)
|
104
|
+
thresholds.append(score)
|
105
|
+
prev_score = score
|
106
|
+
|
107
|
+
if y_true[i] == 1:
|
108
|
+
tp += 1
|
109
|
+
else:
|
110
|
+
fp += 1
|
111
|
+
|
112
|
+
fpr.append(fp / n_neg)
|
113
|
+
tpr.append(tp / n_pos)
|
114
|
+
thresholds.append(score)
|
115
|
+
|
116
|
+
return cp.array(fpr), cp.array(tpr), cp.array(thresholds)
|
117
|
+
|
118
|
+
|
119
|
+
def confusion_matrix(y_true, y_pred, class_count):
|
120
|
+
"""
|
121
|
+
Computes confusion matrix.
|
122
|
+
|
123
|
+
Args:
|
124
|
+
y_true (numpy.ndarray): True class labels (1D array).
|
125
|
+
y_pred (numpy.ndarray): Predicted class labels (1D array).
|
126
|
+
num_classes (int): Number of classes.
|
127
|
+
|
128
|
+
Returns:
|
129
|
+
numpy.ndarray: Confusion matrix of shape (num_classes, num_classes).
|
130
|
+
"""
|
131
|
+
confusion = cp.zeros((class_count, class_count), dtype=int)
|
132
|
+
|
133
|
+
for i in range(len(y_true)):
|
134
|
+
true_label = y_true[i]
|
135
|
+
pred_label = y_pred[i]
|
136
|
+
confusion[true_label, pred_label] += 1
|
137
|
+
|
138
|
+
return confusion
|
139
|
+
|
140
|
+
|
141
|
+
def pca(X, n_components):
|
142
|
+
"""
|
143
|
+
|
144
|
+
Parameters:
|
145
|
+
X (numpy array): (n_samples, n_features)
|
146
|
+
n_components (int):
|
147
|
+
|
148
|
+
Returns:
|
149
|
+
X_reduced (numpy array): (n_samples, n_components)
|
150
|
+
"""
|
151
|
+
|
152
|
+
X_meaned = X - cp.mean(X, axis=0)
|
153
|
+
|
154
|
+
covariance_matrix = cp.cov(X_meaned, rowvar=False)
|
155
|
+
|
156
|
+
eigenvalues, eigenvectors = cp.linalg.eigh(covariance_matrix)
|
157
|
+
|
158
|
+
sorted_index = cp.argsort(eigenvalues)[::-1]
|
159
|
+
sorted_eigenvectors = eigenvectors[:, sorted_index]
|
160
|
+
|
161
|
+
eigenvectors_subset = sorted_eigenvectors[:, :n_components]
|
162
|
+
|
163
|
+
X_reduced = cp.dot(X_meaned, eigenvectors_subset)
|
164
|
+
|
165
|
+
return X_reduced
|