pyerualjetwork 4.0.5__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,463 @@
1
+ from tqdm import tqdm
2
+ import cupy as cp
3
+ from colorama import Fore, Style
4
+ import sys
5
+ import math
6
+ import numpy as np
7
+
8
+ def encode_one_hot(y_train, y_test=None, summary=False):
9
+ """
10
+ Performs one-hot encoding on y_train and y_test data.
11
+
12
+ Args:
13
+ y_train (cupy.ndarray): Train label data.
14
+ y_test (cupy.ndarray): Test label data. (optional).
15
+ summary (bool): If True, prints the class-to-index mapping. Default: False
16
+
17
+ Returns:
18
+ tuple: One-hot encoded y_train and (if given) y_test.
19
+ """
20
+
21
+ if len(y_train) < 256:
22
+ if y_train.dtype != cp.uint8:
23
+ y_train = cp.array(y_train, copy=False).astype(cp.uint8, copy=False)
24
+ elif len(y_train) <= 32767:
25
+ if y_train.dtype != cp.uint16:
26
+ y_train = cp.array(y_train, copy=False).astype(cp.uint16, copy=False)
27
+ else:
28
+ if y_train.dtype != cp.uint32:
29
+ y_train = cp.array(y_train, copy=False).astype(cp.uint32, copy=False)
30
+
31
+ if y_test is not None:
32
+ if len(y_test) < 256:
33
+ if y_test.dtype != cp.uint8:
34
+ y_test = cp.array(y_test, copy=False).astype(cp.uint8, copy=False)
35
+ elif len(y_test) <= 32767:
36
+ if y_test.dtype != cp.uint16:
37
+ y_test = cp.array(y_test, copy=False).astype(cp.uint16, copy=False)
38
+ else:
39
+ if y_test.dtype != cp.uint32:
40
+ y_test = cp.array(y_test, copy=False).astype(cp.uint32, copy=False)
41
+
42
+ y_train = y_train.get()
43
+ y_test = y_test.get()
44
+
45
+ classes = np.unique(y_train)
46
+ class_count = len(classes)
47
+
48
+ class_to_index = {cls: idx for idx, cls in enumerate(classes)}
49
+
50
+ if summary:
51
+ print("Class-to-index mapping:")
52
+ for cls, idx in class_to_index.items():
53
+ print(f" {idx}: {cls}")
54
+
55
+ y_train_encoded = np.zeros((y_train.shape[0], class_count))
56
+ for i, label in enumerate(y_train):
57
+ y_train_encoded[i, class_to_index[label]] = 1
58
+
59
+ if y_test is not None:
60
+ y_test_encoded = np.zeros((y_test.shape[0], class_count))
61
+ for i, label in enumerate(y_test):
62
+ y_test_encoded[i, class_to_index[label]] = 1
63
+ return cp.array(y_train_encoded), cp.array(y_test_encoded)
64
+
65
+ return cp.array(y_train_encoded)
66
+
67
+
68
+ def decode_one_hot(encoded_data):
69
+ """
70
+ Decodes one-hot encoded data to original categorical labels.
71
+
72
+ Args:
73
+ encoded_data (cupy.ndarray): One-hot encoded data with shape (n_samples, n_classes).
74
+
75
+ Returns:
76
+ cupy.ndarray: Decoded categorical labels with shape (n_samples,).
77
+ """
78
+
79
+ decoded_labels = cp.argmax(encoded_data, axis=1)
80
+
81
+ return decoded_labels
82
+
83
+
84
+ def split(X, y, test_size, random_state, dtype=cp.float32):
85
+ """
86
+ Splits the given X (features) and y (labels) data into training and testing subsets.
87
+
88
+ Args:
89
+ X (cupy.ndarray): Features data.
90
+ y (cupy.ndarray): Labels data.
91
+ test_size (float or int): Proportion or number of samples for the test subset.
92
+ random_state (int or None): Seed for random state.
93
+ dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
94
+
95
+ Returns:
96
+ tuple: x_train, x_test, y_train, y_test as ordered training and testing data subsets.
97
+ """
98
+ X = cp.array(X, copy=False).astype(dtype, copy=False)
99
+ if len(y) < 256:
100
+ if y.dtype != cp.uint8:
101
+ y = cp.array(y, copy=False).astype(cp.uint8, copy=False)
102
+ elif len(y) <= 32767:
103
+ if y.dtype != cp.uint16:
104
+ y = cp.array(y, copy=False).astype(cp.uint16, copy=False)
105
+ else:
106
+ if y.dtype != cp.uint32:
107
+ y = cp.array(y, copy=False).astype(cp.uint32, copy=False)
108
+
109
+
110
+ num_samples = X.shape[0]
111
+
112
+ if isinstance(test_size, float):
113
+ test_size = int(test_size * num_samples)
114
+ elif isinstance(test_size, int):
115
+ if test_size > num_samples:
116
+ raise ValueError(
117
+ "test_size cannot be larger than the number of samples.")
118
+ else:
119
+ raise ValueError("test_size should be float or int.")
120
+
121
+ if random_state is not None:
122
+ cp.random.seed(random_state)
123
+
124
+ indices = cp.arange(num_samples)
125
+ cp.random.shuffle(indices)
126
+
127
+ test_indices = indices[:test_size]
128
+ train_indices = indices[test_size:]
129
+
130
+ x_train, x_test = X[train_indices], X[test_indices]
131
+ y_train, y_test = y[train_indices], y[test_indices]
132
+
133
+ return x_train, x_test, y_train, y_test
134
+
135
+
136
+ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=cp.float32):
137
+ """
138
+ Generates synthetic examples to balance classes to the specified number of examples per class.
139
+
140
+ Arguments:
141
+ x_train -- Input dataset (examples) - cupy array format
142
+ y_train -- Class labels (one-hot encoded) - cupy array format
143
+ target_samples_per_class -- Desired number of samples per class
144
+ dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
145
+
146
+ Returns:
147
+ x_balanced -- Balanced input dataset (cupy array format)
148
+ y_balanced -- Balanced class labels (one-hot encoded, cupy array format)
149
+ """
150
+ from .ui import loading_bars
151
+
152
+ bar_format = loading_bars()[0]
153
+
154
+ x_train = cp.array(x_train, copy=False).astype(dtype, copy=False)
155
+
156
+ if len(y_train[0]) < 256:
157
+ if y_train.dtype != cp.uint8:
158
+ y_train = cp.array(y_train, copy=False).astype(cp.uint8, copy=False)
159
+ elif len(y_train[0]) <= 32767:
160
+ if y_train.dtype != cp.uint16:
161
+ y_train = cp.array(y_train, copy=False).astype(cp.uint16, copy=False)
162
+ else:
163
+ if y_train.dtype != cp.uint32:
164
+ y_train = cp.array(y_train, copy=False).astype(cp.uint32, copy=False)
165
+
166
+
167
+ classes = cp.arange(y_train.shape[1])
168
+ class_count = len(classes)
169
+
170
+ x_balanced = []
171
+ y_balanced = []
172
+
173
+ for class_label in tqdm(range(class_count),leave=False, ascii="▱▰",
174
+ bar_format=bar_format,desc='Augmenting Data',ncols= 52):
175
+ class_indices = cp.where(cp.argmax(y_train, axis=1) == class_label)[0]
176
+ num_samples = len(class_indices)
177
+
178
+ if num_samples > target_samples_per_class:
179
+
180
+ selected_indices = cp.random.choice(class_indices, target_samples_per_class, replace=False)
181
+ x_balanced.append(x_train[selected_indices])
182
+ y_balanced.append(y_train[selected_indices])
183
+
184
+ else:
185
+
186
+ x_balanced.append(x_train[class_indices])
187
+ y_balanced.append(y_train[class_indices])
188
+
189
+ if num_samples < target_samples_per_class:
190
+
191
+ samples_to_add = target_samples_per_class - num_samples
192
+ additional_samples = cp.zeros((samples_to_add, x_train.shape[1]))
193
+ additional_labels = cp.zeros((samples_to_add, y_train.shape[1]))
194
+
195
+ for i in range(samples_to_add):
196
+
197
+ random_indices = cp.random.choice(class_indices, 2, replace=False)
198
+ sample1 = x_train[random_indices[0]]
199
+ sample2 = x_train[random_indices[1]]
200
+
201
+
202
+ synthetic_sample = sample1 + (sample2 - sample1) * cp.random.rand()
203
+
204
+ additional_samples[i] = synthetic_sample
205
+ additional_labels[i] = y_train[class_indices[0]]
206
+
207
+
208
+ x_balanced.append(additional_samples)
209
+ y_balanced.append(additional_labels)
210
+
211
+ x_balanced = cp.vstack(x_balanced)
212
+ y_balanced = cp.vstack(y_balanced)
213
+
214
+ return x_balanced, y_balanced
215
+
216
+
217
+ def auto_balancer(x_train, y_train, dtype=cp.float32):
218
+
219
+ """
220
+ Function to balance the training data across different classes.
221
+
222
+ Arguments:
223
+ x_train (list): Input data for training.
224
+
225
+ y_train (list): Labels corresponding to the input data.
226
+
227
+ dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
228
+
229
+ Returns:
230
+ tuple: A tuple containing balanced input data and labels.
231
+ """
232
+ from .ui import loading_bars
233
+
234
+ x_train = cp.array(x_train, copy=False).astype(dtype, copy=False)
235
+
236
+ if len(y_train[0]) < 256:
237
+ if y_train.dtype != cp.uint8:
238
+ y_train = cp.array(y_train, copy=False).astype(cp.uint8, copy=False)
239
+ elif len(y_train[0]) <= 32767:
240
+ if y_train.dtype != cp.uint16:
241
+ y_train = cp.array(y_train, copy=False).astype(cp.uint16, copy=False)
242
+ else:
243
+ if y_train.dtype != cp.uint32:
244
+ y_train = cp.array(y_train, copy=False).astype(cp.uint32, copy=False)
245
+
246
+ bar_format = loading_bars()[0]
247
+
248
+ classes = cp.arange(y_train.shape[1])
249
+ class_count = len(classes)
250
+
251
+ try:
252
+ ClassIndices = {i: cp.where(cp.array(y_train)[:, i] == 1)[
253
+ 0] for i in range(class_count)}
254
+ classes = [len(ClassIndices[i]) for i in range(class_count)]
255
+
256
+ if len(set(classes)) == 1:
257
+ print(Fore.WHITE + "INFO: Data have already balanced. from: auto_balancer" + Style.RESET_ALL)
258
+ return x_train, y_train
259
+
260
+ MinCount = min(classes)
261
+
262
+ BalancedIndices = []
263
+ for i in tqdm(range(class_count),leave=False, ascii="▱▰",
264
+ bar_format= bar_format, desc='Balancing Data',ncols=70):
265
+ if len(ClassIndices[i]) > MinCount:
266
+ SelectedIndices = cp.random.choice(
267
+ ClassIndices[i], MinCount, replace=False)
268
+ else:
269
+ SelectedIndices = ClassIndices[i]
270
+ BalancedIndices.extend(SelectedIndices)
271
+
272
+ BalancedInputs = [x_train[idx] for idx in BalancedIndices]
273
+ BalancedLabels = [y_train[idx] for idx in BalancedIndices]
274
+
275
+ permutation = cp.random.permutation(len(BalancedInputs))
276
+ BalancedInputs = cp.array(BalancedInputs)[permutation]
277
+ BalancedLabels = cp.array(BalancedLabels)[permutation]
278
+
279
+ print(Fore.GREEN + "Data Succesfully Balanced from: " + str(len(x_train)
280
+ ) + " to: " + str(len(BalancedInputs)) + ". from: auto_balancer " + Style.RESET_ALL)
281
+ except:
282
+ print(Fore.RED + "ERROR: Inputs and labels must be same length check parameters")
283
+ sys.exit()
284
+
285
+ return BalancedInputs, BalancedLabels
286
+
287
+
288
+ def synthetic_augmentation(x_train, y_train, dtype=cp.float32):
289
+ """
290
+ Generates synthetic examples to balance classes with fewer examples using CuPy.
291
+ Arguments:
292
+
293
+ x_train -- Input dataset (examples) - cupy array format
294
+
295
+ y_train -- Class labels (one-hot encoded) - cupy array format
296
+
297
+ dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
298
+
299
+ Returns:
300
+ x_train_balanced -- Balanced input dataset (cupy array format)
301
+ y_train_balanced -- Balanced class labels (one-hot encoded, cupy array format)
302
+ """
303
+ from .ui import loading_bars
304
+
305
+ bar_format = loading_bars()[0]
306
+
307
+ x = x_train.astype(dtype, copy=False)
308
+
309
+ if len(y_train[0]) < 256:
310
+ if y_train.dtype != cp.uint8:
311
+ y_train = cp.array(y_train, copy=False).astype(cp.uint8, copy=False)
312
+ elif len(y_train[0]) <= 32767:
313
+ if y_train.dtype != cp.uint16:
314
+ y_train = cp.array(y_train, copy=False).astype(cp.uint16, copy=False)
315
+ else:
316
+ if y_train.dtype != cp.uint32:
317
+ y_train = cp.array(y_train, copy=False).astype(cp.uint32, copy=False)
318
+
319
+ y = y_train
320
+
321
+ classes = cp.arange(y_train.shape[1])
322
+ class_count = len(classes)
323
+ class_distribution = {i: 0 for i in range(class_count)}
324
+
325
+ y_cpu = cp.asnumpy(y) if isinstance(y, cp.ndarray) else y
326
+ for label in y_cpu:
327
+ class_distribution[cp.argmax(label).item()] += 1
328
+
329
+ max_class_count = max(class_distribution.values())
330
+ x_balanced = list(x)
331
+ y_balanced = list(y)
332
+
333
+ for class_label in tqdm(range(class_count), leave=False, ascii="▱▰",
334
+ bar_format=bar_format, desc='Augmenting Data', ncols=52):
335
+ class_indices = [i for i, label in enumerate(y) if cp.argmax(label) == class_label]
336
+ num_samples = len(class_indices)
337
+
338
+ if num_samples < max_class_count:
339
+ while num_samples < max_class_count:
340
+ random_indices = cp.random.choice(
341
+ cp.array(class_indices), 2, replace=False)
342
+ sample1 = x[random_indices[0]]
343
+ sample2 = x[random_indices[1]]
344
+
345
+ synthetic_sample = sample1 + \
346
+ (sample2 - sample1) * cp.random.rand()
347
+
348
+ x_balanced.append(synthetic_sample)
349
+ y_balanced.append(y[class_indices[0]])
350
+ num_samples += 1
351
+
352
+ x_balanced = cp.array(x_balanced)
353
+ y_balanced = cp.array(y_balanced)
354
+
355
+ return x_balanced, y_balanced
356
+
357
+ def standard_scaler(x_train=None, x_test=None, scaler_params=None, dtype=cp.float32):
358
+ """
359
+ Standardizes training and test datasets. x_test may be None.
360
+
361
+ Args:
362
+ x_train: cupy.ndarray
363
+
364
+ x_test: cupy.ndarray (optional)
365
+
366
+ scaler_params (optional for using model)
367
+
368
+ dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
369
+
370
+ Returns:
371
+ list:
372
+ Scaler parameters: mean and std
373
+ tuple
374
+ Standardized training and test datasets
375
+ """
376
+ if x_train is not None and scaler_params is None and x_test is not None:
377
+ x_train = x_train.astype(dtype, copy=False)
378
+ x_test = x_test.astype(dtype, copy=False)
379
+
380
+ mean = cp.mean(x_train, axis=0)
381
+ std = cp.std(x_train, axis=0)
382
+
383
+ train_data_scaled = (x_train - mean) / std
384
+ test_data_scaled = (x_test - mean) / std
385
+
386
+ train_data_scaled = cp.nan_to_num(train_data_scaled, nan=0)
387
+ test_data_scaled = cp.nan_to_num(test_data_scaled, nan=0)
388
+
389
+ scaler_params = [mean, std]
390
+
391
+ return scaler_params, train_data_scaled, test_data_scaled
392
+
393
+ if scaler_params is None and x_train is None and x_test is not None:
394
+ return x_test.astype(dtype, copy=False) # sample data not scaled
395
+
396
+ if scaler_params is not None:
397
+ x_test = x_test.astype(dtype, copy=False)
398
+ scaled_data = (x_test - scaler_params[0]) / scaler_params[1]
399
+ scaled_data = cp.nan_to_num(scaled_data, nan=0)
400
+
401
+ return scaled_data # sample data scaled
402
+
403
+
404
+ def normalization(
405
+ Input, # num: Input data to be normalized.
406
+ dtype=cp.float32
407
+ ):
408
+ """
409
+ Normalizes the input data using maximum absolute scaling.
410
+
411
+ Args:
412
+ Input (num): Input data to be normalized.
413
+
414
+ dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
415
+
416
+ Returns:
417
+ (num) Scaled input data after normalization.
418
+ """
419
+
420
+ MaxAbs = cp.max(cp.abs(Input.astype(dtype, copy=False)))
421
+ return (Input / MaxAbs)
422
+
423
+
424
+ def find_closest_factors(a):
425
+
426
+ root = int(math.sqrt(a))
427
+
428
+ for i in range(root, 0, -1):
429
+ if a % i == 0:
430
+ j = a // i
431
+ return i, j
432
+
433
+
434
+ def batcher(x_test, y_test, batch_size=1):
435
+ y_labels = cp.argmax(y_test, axis=1) # Sınıf etiketlerini belirle
436
+
437
+ unique_labels = cp.unique(y_labels) # Tüm sınıfları bul
438
+ total_samples = sum(
439
+ int(cp.sum(y_labels == class_label) * batch_size) for class_label in unique_labels
440
+ )
441
+
442
+ sampled_x = cp.empty((total_samples, x_test.shape[1]), dtype=x_test.dtype)
443
+ sampled_y = cp.empty((total_samples, y_test.shape[1]), dtype=y_test.dtype)
444
+
445
+ offset = 0
446
+ for class_label in unique_labels:
447
+ # Sınıfa ait indeksleri bulun
448
+ class_indices = cp.where(y_labels == class_label)[0]
449
+
450
+ # Örnek sayısını belirle
451
+ num_samples = int(len(class_indices) * batch_size)
452
+
453
+ # Rastgele örnek seç
454
+ sampled_indices = cp.random.choice(class_indices, num_samples, replace=False)
455
+
456
+ # Veriyi sampled dizilerine yaz
457
+ sampled_x[offset:offset + num_samples] = x_test[sampled_indices]
458
+ sampled_y[offset:offset + num_samples] = y_test[sampled_indices]
459
+
460
+ # Kaydırmayı güncelle
461
+ offset += num_samples
462
+
463
+ return sampled_x, sampled_y
pyerualjetwork/help.py ADDED
@@ -0,0 +1,16 @@
1
+ from .activation_functions import all_activations
2
+
3
+ def activation_potentiation():
4
+
5
+ activations_list = all_activations()
6
+
7
+ print('All available activations: ', activations_list, "\n\nYOU CAN COMBINE EVERY ACTIVATION. EXAMPLE: ['linear', 'tanh'] or ['waveakt', 'linear', 'sine'].")
8
+
9
+ return activations_list
10
+
11
+ def docs_and_examples():
12
+
13
+ print('PLAN document: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PLAN\n')
14
+ print('PLAN examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes\n')
15
+ print('PLANEAT examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes/PLANEAT\n')
16
+ print('PyerualJetwork document and examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork')
@@ -0,0 +1,21 @@
1
+
2
+ import numpy as np
3
+
4
+ def categorical_crossentropy(y_true_batch, y_pred_batch):
5
+ epsilon = 1e-7
6
+ y_pred_batch = np.clip(y_pred_batch, epsilon, 1. - epsilon)
7
+
8
+ losses = -np.sum(y_true_batch * np.log(y_pred_batch), axis=1)
9
+
10
+ mean_loss = np.mean(losses)
11
+ return mean_loss
12
+
13
+
14
+ def binary_crossentropy(y_true_batch, y_pred_batch):
15
+ epsilon = 1e-7
16
+ y_pred_batch = np.clip(y_pred_batch, epsilon, 1. - epsilon)
17
+
18
+ losses = -np.mean(y_true_batch * np.log(y_pred_batch) + (1 - y_true_batch) * np.log(1 - y_pred_batch), axis=1)
19
+
20
+ mean_loss = np.mean(losses)
21
+ return mean_loss
@@ -0,0 +1,21 @@
1
+
2
+ import cupy as cp
3
+
4
+ def categorical_crossentropy(y_true_batch, y_pred_batch):
5
+ epsilon = 1e-7
6
+ y_pred_batch = cp.clip(y_pred_batch, epsilon, 1. - epsilon)
7
+
8
+ losses = -cp.sum(y_true_batch * cp.log(y_pred_batch), axis=1)
9
+
10
+ mean_loss = cp.mean(losses)
11
+ return mean_loss
12
+
13
+
14
+ def binary_crossentropy(y_true_batch, y_pred_batch):
15
+ epsilon = 1e-7
16
+ y_pred_batch = cp.clip(y_pred_batch, epsilon, 1. - epsilon)
17
+
18
+ losses = -cp.mean(y_true_batch * cp.log(y_pred_batch) + (1 - y_true_batch) * cp.log(1 - y_pred_batch), axis=1)
19
+
20
+ mean_loss = cp.mean(losses)
21
+ return mean_loss