pyerualjetwork 4.0.5__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pyerualjetwork/__init__.py +71 -0
- pyerualjetwork/activation_functions.py +367 -0
- pyerualjetwork/activation_functions_cuda.py +363 -0
- pyerualjetwork/data_operations.py +439 -0
- pyerualjetwork/data_operations_cuda.py +463 -0
- pyerualjetwork/help.py +16 -0
- pyerualjetwork/loss_functions.py +21 -0
- pyerualjetwork/loss_functions_cuda.py +21 -0
- pyerualjetwork/metrics.py +190 -0
- pyerualjetwork/metrics_cuda.py +165 -0
- pyerualjetwork/model_operations.py +408 -0
- pyerualjetwork/model_operations_cuda.py +414 -0
- pyerualjetwork/plan.py +681 -0
- pyerualjetwork/plan_cuda.py +677 -0
- pyerualjetwork/planeat.py +734 -0
- pyerualjetwork/planeat_cuda.py +736 -0
- pyerualjetwork/ui.py +22 -0
- pyerualjetwork/visualizations.py +799 -0
- pyerualjetwork/visualizations_cuda.py +799 -0
- pyerualjetwork-4.0.5.dist-info/METADATA +95 -0
- pyerualjetwork-4.0.5.dist-info/RECORD +23 -0
- pyerualjetwork-4.0.5.dist-info/WHEEL +5 -0
- pyerualjetwork-4.0.5.dist-info/top_level.txt +1 -0
@@ -0,0 +1,363 @@
|
|
1
|
+
import cupy as cp
|
2
|
+
|
3
|
+
# ACTIVATION FUNCTIONS ----
|
4
|
+
|
5
|
+
def all_activations():
|
6
|
+
|
7
|
+
activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'swish', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'softplus', 'elu', 'gelu', 'selu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'exsig', 'acos', 'gla', 'srelu', 'qelu', 'isra', 'waveakt', 'arctan', 'bent_identity', 'sech', 'softsign', 'pwl', 'cubic', 'gaussian', 'sine', 'tanh_square', 'mod_sigmoid', 'quartic', 'square_quartic', 'cubic_quadratic', 'exp_cubic', 'sine_square', 'logarithmic', 'scaled_cubic', 'sine_offset']
|
8
|
+
|
9
|
+
return activations_list
|
10
|
+
|
11
|
+
def spiral_activation(x):
|
12
|
+
if x.ndim == 1:
|
13
|
+
r = cp.sqrt(cp.sum(x**2))
|
14
|
+
theta = cp.arctan2(x[1], x[0])
|
15
|
+
|
16
|
+
spiral_x = r * cp.cos(theta + r)
|
17
|
+
spiral_y = r * cp.sin(theta + r)
|
18
|
+
|
19
|
+
spiral_output = cp.array([spiral_x, spiral_y])
|
20
|
+
else:
|
21
|
+
r = cp.sqrt(cp.sum(x**2, axis=-1))
|
22
|
+
theta = cp.arctan2(x[:, 1], x[:, 0])
|
23
|
+
|
24
|
+
spiral_x = r * cp.cos(theta + r)
|
25
|
+
spiral_y = r * cp.sin(theta + r)
|
26
|
+
|
27
|
+
spiral_output = cp.stack((spiral_x, spiral_y), axis=-1)
|
28
|
+
|
29
|
+
return spiral_output
|
30
|
+
|
31
|
+
|
32
|
+
def Softmax(x):
|
33
|
+
"""Optimized Softmax function"""
|
34
|
+
return cp.array(cp.exp(x - cp.max(x, axis=-1, keepdims=True)) / cp.sum(cp.exp(x - cp.max(x, axis=-1, keepdims=True)), axis=-1, keepdims=True))
|
35
|
+
|
36
|
+
def Sigmoid(x):
|
37
|
+
"""Optimized Sigmoid function"""
|
38
|
+
return 1 / (1 + cp.exp(-x))
|
39
|
+
|
40
|
+
def Relu(x):
|
41
|
+
"""Optimized ReLU function"""
|
42
|
+
return cp.maximum(0, x)
|
43
|
+
|
44
|
+
def tanh(x):
|
45
|
+
"""Optimized Tanh function"""
|
46
|
+
return cp.tanh(x)
|
47
|
+
|
48
|
+
def swish(x):
|
49
|
+
"""Optimized Swish function"""
|
50
|
+
return x * Sigmoid(x)
|
51
|
+
|
52
|
+
def sin_plus(x):
|
53
|
+
"""Optimized SinPlus function"""
|
54
|
+
return (cp.sin(x) + 1) / 2
|
55
|
+
|
56
|
+
def modular_circular_activation(x, period=2*cp.pi):
|
57
|
+
"""Optimized Modular Circular Activation function"""
|
58
|
+
return cp.mod(x, period) / period
|
59
|
+
|
60
|
+
def tanh_circular_activation(x):
|
61
|
+
"""Optimized Tanh Circular Activation function"""
|
62
|
+
return (cp.tanh(x) + 1) / 2
|
63
|
+
|
64
|
+
def leaky_relu(x, alpha=0.01):
|
65
|
+
"""Optimized Leaky ReLU function"""
|
66
|
+
return cp.where(x > 0, x, alpha * x)
|
67
|
+
|
68
|
+
def softplus(x):
|
69
|
+
"""Optimized Softplus function"""
|
70
|
+
return cp.log1p(cp.exp(x))
|
71
|
+
|
72
|
+
def elu(x, alpha=1.0):
|
73
|
+
"""Optimized ELU function"""
|
74
|
+
return cp.where(x > 0, x, alpha * (cp.exp(x) - 1))
|
75
|
+
|
76
|
+
def gelu(x):
|
77
|
+
"""Optimized GELU function"""
|
78
|
+
return 0.5 * x * (1 + cp.tanh(cp.sqrt(2 / cp.pi) * (x + 0.044715 * cp.power(x, 3))))
|
79
|
+
|
80
|
+
def selu(x, lambda_=1.0507, alpha=1.6733):
|
81
|
+
"""Optimized SELU function"""
|
82
|
+
return lambda_ * cp.where(x > 0, x, alpha * (cp.exp(x) - 1))
|
83
|
+
|
84
|
+
def sinakt(x):
|
85
|
+
"""Optimized SinAkt function"""
|
86
|
+
return cp.sin(x) + cp.cos(x)
|
87
|
+
|
88
|
+
def p_squared(x, alpha=1.0, beta=0.0):
|
89
|
+
"""Optimized P-squared function"""
|
90
|
+
return alpha * x**2 + beta * x
|
91
|
+
|
92
|
+
def sglu(x, alpha=1.0):
|
93
|
+
"""Optimized SGU function"""
|
94
|
+
return cp.array(cp.exp(alpha * x)) * x
|
95
|
+
|
96
|
+
def dlrelu(x):
|
97
|
+
"""Optimized Double Leaky ReLU (DLReLU) function"""
|
98
|
+
return cp.maximum(0.01 * x, x) + cp.minimum(0.01 * x, 0.1 * x)
|
99
|
+
|
100
|
+
def exsig(x):
|
101
|
+
"""Optimized Exponential Sigmoid (ExSig) function"""
|
102
|
+
return 1 / (1 + cp.exp(-x**2))
|
103
|
+
|
104
|
+
def acos(x, alpha=1.0, beta=0.0):
|
105
|
+
"""Optimized Adaptive Cosine Activation (ACos) function"""
|
106
|
+
return cp.cos(alpha * x + beta)
|
107
|
+
|
108
|
+
def gla(x, alpha=1.0, mu=0.0):
|
109
|
+
"""Optimized Gaussian-like Activation (GLA) function"""
|
110
|
+
return cp.exp(-alpha * (x - mu)**2)
|
111
|
+
|
112
|
+
def srelu(x):
|
113
|
+
"""Optimized Swish ReLU (SReLU) function"""
|
114
|
+
return x * (1 / (1 + cp.exp(-x))) + cp.maximum(0, x)
|
115
|
+
|
116
|
+
def qelu(x):
|
117
|
+
"""Optimized Quadratic Exponential Linear Unit (QELU) function"""
|
118
|
+
return x**2 * cp.exp(x) - 1
|
119
|
+
|
120
|
+
def isra(x):
|
121
|
+
"""Optimized Inverse Square Root Activation (ISRA) function"""
|
122
|
+
return x / cp.sqrt(cp.abs(x) + 1)
|
123
|
+
|
124
|
+
def waveakt(x, alpha=1.0, beta=2.0, gamma=3.0):
|
125
|
+
"""Optimized Wave Activation function"""
|
126
|
+
return cp.sin(alpha * x) * cp.cos(beta * x) * cp.sin(gamma * x)
|
127
|
+
|
128
|
+
def arctan(x):
|
129
|
+
"""Optimized Arctan function"""
|
130
|
+
return cp.arctan(x)
|
131
|
+
|
132
|
+
def bent_identity(x):
|
133
|
+
"""Optimized Bent Identity function"""
|
134
|
+
return (cp.sqrt(x**2 + 1) - 1) / 2 + x
|
135
|
+
|
136
|
+
def circular_activation(x, scale=2.0, frequency=1.0, shift=0.0):
|
137
|
+
"""Optimized Circular Activation function"""
|
138
|
+
n_features = x.shape[0]
|
139
|
+
circular_output = cp.zeros_like(x)
|
140
|
+
|
141
|
+
r = cp.sqrt(cp.sum(x**2))
|
142
|
+
for i in range(n_features):
|
143
|
+
theta = 2 * cp.pi * (i / n_features) + shift
|
144
|
+
circular_x = r * cp.cos(theta + frequency * r) * scale
|
145
|
+
circular_y = r * cp.sin(theta + frequency * r) * scale
|
146
|
+
|
147
|
+
circular_output[i] = circular_x if i % 2 == 0 else circular_y
|
148
|
+
|
149
|
+
return circular_output
|
150
|
+
|
151
|
+
def sech(x):
|
152
|
+
"""Optimized Sech function"""
|
153
|
+
return 2 / (cp.exp(x) + cp.exp(-x))
|
154
|
+
|
155
|
+
def softsign(x):
|
156
|
+
"""Optimized Softsign function"""
|
157
|
+
return x / (1 + cp.abs(x))
|
158
|
+
|
159
|
+
def pwl(x, alpha=0.5, beta=1.5):
|
160
|
+
"""Optimized Piecewise Linear function (PWL)"""
|
161
|
+
return cp.where(x <= 0, alpha * x, beta * x)
|
162
|
+
|
163
|
+
def cubic(x):
|
164
|
+
"""Optimized Cubic function"""
|
165
|
+
return x**3
|
166
|
+
|
167
|
+
def gaussian(x, alpha=1.0, mu=0.0):
|
168
|
+
"""Optimized Gaussian function"""
|
169
|
+
return cp.exp(-alpha * (x - mu)**2)
|
170
|
+
|
171
|
+
def sine(x, alpha=1.0):
|
172
|
+
"""Optimized Sine function"""
|
173
|
+
return cp.sin(alpha * x)
|
174
|
+
|
175
|
+
def tanh_square(x):
|
176
|
+
"""Optimized Tanh Square function"""
|
177
|
+
return cp.tanh(x)**2
|
178
|
+
|
179
|
+
def mod_sigmoid(x, alpha=1.0, beta=0.0):
|
180
|
+
"""Optimized Modified Sigmoid function"""
|
181
|
+
return 1 / (1 + cp.exp(-alpha * x + beta))
|
182
|
+
|
183
|
+
def quartic(x):
|
184
|
+
"""Optimized Quartic function"""
|
185
|
+
return x**4
|
186
|
+
|
187
|
+
def square_quartic(x):
|
188
|
+
"""Optimized Square Quartic function"""
|
189
|
+
return (x**2)**2
|
190
|
+
|
191
|
+
def cubic_quadratic(x):
|
192
|
+
"""Optimized Cubic Quadratic function"""
|
193
|
+
return x**3 * (x**2)
|
194
|
+
|
195
|
+
def exp_cubic(x):
|
196
|
+
"""Optimized Exponential Cubic function"""
|
197
|
+
return cp.exp(x**3)
|
198
|
+
|
199
|
+
def sine_square(x):
|
200
|
+
"""Optimized Sine Square function"""
|
201
|
+
return cp.sin(x)**2
|
202
|
+
|
203
|
+
def logarithmic(x):
|
204
|
+
"""Optimized Logarithmic function"""
|
205
|
+
return cp.log(x**2 + 1)
|
206
|
+
|
207
|
+
def scaled_cubic(x, alpha=1.0):
|
208
|
+
"""Optimized Scaled Cubic function"""
|
209
|
+
return alpha * x**3
|
210
|
+
|
211
|
+
def sine_offset(x, beta=0.0):
|
212
|
+
"""Optimized Sine Offset function"""
|
213
|
+
return cp.sin(x + beta)
|
214
|
+
|
215
|
+
def apply_activation(Input, activation_list):
|
216
|
+
"""
|
217
|
+
Applies a sequence of activation functions to the input.
|
218
|
+
|
219
|
+
Args:
|
220
|
+
Input (numpy.ndarray): The input to apply activations to.
|
221
|
+
activation_list (list): A list of activation function names to apply.
|
222
|
+
|
223
|
+
Returns:
|
224
|
+
numpy.ndarray: The input after all activations have been applied.
|
225
|
+
"""
|
226
|
+
|
227
|
+
origin_input = cp.copy(Input)
|
228
|
+
|
229
|
+
for i in range(len(activation_list)):
|
230
|
+
|
231
|
+
if activation_list[i] == 'sigmoid':
|
232
|
+
Input += Sigmoid(origin_input)
|
233
|
+
|
234
|
+
elif activation_list[i] == 'swish':
|
235
|
+
Input += swish(origin_input)
|
236
|
+
|
237
|
+
elif activation_list[i] == 'mod_circular':
|
238
|
+
Input += modular_circular_activation(origin_input)
|
239
|
+
|
240
|
+
elif activation_list[i] == 'tanh_circular':
|
241
|
+
Input += tanh_circular_activation(origin_input)
|
242
|
+
|
243
|
+
elif activation_list[i] == 'leaky_relu':
|
244
|
+
Input += leaky_relu(origin_input)
|
245
|
+
|
246
|
+
elif activation_list[i] == 'relu':
|
247
|
+
Input += Relu(origin_input)
|
248
|
+
|
249
|
+
elif activation_list[i] == 'softplus':
|
250
|
+
Input += softplus(origin_input)
|
251
|
+
|
252
|
+
elif activation_list[i] == 'elu':
|
253
|
+
Input += elu(origin_input)
|
254
|
+
|
255
|
+
elif activation_list[i] == 'gelu':
|
256
|
+
Input += gelu(origin_input)
|
257
|
+
|
258
|
+
elif activation_list[i] == 'selu':
|
259
|
+
Input += selu(origin_input)
|
260
|
+
|
261
|
+
elif activation_list[i] == 'tanh':
|
262
|
+
Input += tanh(origin_input)
|
263
|
+
|
264
|
+
elif activation_list[i] == 'sinakt':
|
265
|
+
Input += sinakt(origin_input)
|
266
|
+
|
267
|
+
elif activation_list[i] == 'p_squared':
|
268
|
+
Input += p_squared(origin_input)
|
269
|
+
|
270
|
+
elif activation_list[i] == 'sglu':
|
271
|
+
Input += sglu(origin_input, alpha=1.0)
|
272
|
+
|
273
|
+
elif activation_list[i] == 'dlrelu':
|
274
|
+
Input += dlrelu(origin_input)
|
275
|
+
|
276
|
+
elif activation_list[i] == 'exsig':
|
277
|
+
Input += exsig(origin_input)
|
278
|
+
|
279
|
+
elif activation_list[i] == 'sin_plus':
|
280
|
+
Input += sin_plus(origin_input)
|
281
|
+
|
282
|
+
elif activation_list[i] == 'acos':
|
283
|
+
Input += acos(origin_input, alpha=1.0, beta=0.0)
|
284
|
+
|
285
|
+
elif activation_list[i] == 'gla':
|
286
|
+
Input += gla(origin_input, alpha=1.0, mu=0.0)
|
287
|
+
|
288
|
+
elif activation_list[i] == 'srelu':
|
289
|
+
Input += srelu(origin_input)
|
290
|
+
|
291
|
+
elif activation_list[i] == 'qelu':
|
292
|
+
Input += qelu(origin_input)
|
293
|
+
|
294
|
+
elif activation_list[i] == 'isra':
|
295
|
+
Input += isra(origin_input)
|
296
|
+
|
297
|
+
elif activation_list[i] == 'waveakt':
|
298
|
+
Input += waveakt(origin_input)
|
299
|
+
|
300
|
+
elif activation_list[i] == 'arctan':
|
301
|
+
Input += arctan(origin_input)
|
302
|
+
|
303
|
+
elif activation_list[i] == 'bent_identity':
|
304
|
+
Input += bent_identity(origin_input)
|
305
|
+
|
306
|
+
elif activation_list[i] == 'sech':
|
307
|
+
Input += sech(origin_input)
|
308
|
+
|
309
|
+
elif activation_list[i] == 'softsign':
|
310
|
+
Input += softsign(origin_input)
|
311
|
+
|
312
|
+
elif activation_list[i] == 'pwl':
|
313
|
+
Input += pwl(origin_input)
|
314
|
+
|
315
|
+
elif activation_list[i] == 'cubic':
|
316
|
+
Input += cubic(origin_input)
|
317
|
+
|
318
|
+
elif activation_list[i] == 'gaussian':
|
319
|
+
Input += gaussian(origin_input)
|
320
|
+
|
321
|
+
elif activation_list[i] == 'sine':
|
322
|
+
Input += sine(origin_input)
|
323
|
+
|
324
|
+
elif activation_list[i] == 'tanh_square':
|
325
|
+
Input += tanh_square(origin_input)
|
326
|
+
|
327
|
+
elif activation_list[i] == 'mod_sigmoid':
|
328
|
+
Input += mod_sigmoid(origin_input)
|
329
|
+
|
330
|
+
elif activation_list[i] == 'linear':
|
331
|
+
Input += origin_input
|
332
|
+
|
333
|
+
elif activation_list[i] == 'quartic':
|
334
|
+
Input += quartic(origin_input)
|
335
|
+
|
336
|
+
elif activation_list[i] == 'square_quartic':
|
337
|
+
Input += square_quartic(origin_input)
|
338
|
+
|
339
|
+
elif activation_list[i] == 'cubic_quadratic':
|
340
|
+
Input += cubic_quadratic(origin_input)
|
341
|
+
|
342
|
+
elif activation_list[i] == 'exp_cubic':
|
343
|
+
Input += exp_cubic(origin_input)
|
344
|
+
|
345
|
+
elif activation_list[i] == 'sine_square':
|
346
|
+
Input += sine_square(origin_input)
|
347
|
+
|
348
|
+
elif activation_list[i] == 'logarithmic':
|
349
|
+
Input += logarithmic(origin_input)
|
350
|
+
|
351
|
+
elif activation_list[i] == 'scaled_cubic':
|
352
|
+
Input += scaled_cubic(origin_input, 1.0)
|
353
|
+
|
354
|
+
elif activation_list[i] == 'sine_offset':
|
355
|
+
Input += sine_offset(origin_input, 1.0)
|
356
|
+
|
357
|
+
elif activation_list[i] == 'spiral':
|
358
|
+
Input += spiral_activation(origin_input)
|
359
|
+
|
360
|
+
elif activation_list[i] == 'circular':
|
361
|
+
Input += circular_activation(origin_input)
|
362
|
+
|
363
|
+
return Input
|