pyerualjetwork 4.0.5__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pyerualjetwork/__init__.py +71 -0
- pyerualjetwork/activation_functions.py +367 -0
- pyerualjetwork/activation_functions_cuda.py +363 -0
- pyerualjetwork/data_operations.py +439 -0
- pyerualjetwork/data_operations_cuda.py +463 -0
- pyerualjetwork/help.py +16 -0
- pyerualjetwork/loss_functions.py +21 -0
- pyerualjetwork/loss_functions_cuda.py +21 -0
- pyerualjetwork/metrics.py +190 -0
- pyerualjetwork/metrics_cuda.py +165 -0
- pyerualjetwork/model_operations.py +408 -0
- pyerualjetwork/model_operations_cuda.py +414 -0
- pyerualjetwork/plan.py +681 -0
- pyerualjetwork/plan_cuda.py +677 -0
- pyerualjetwork/planeat.py +734 -0
- pyerualjetwork/planeat_cuda.py +736 -0
- pyerualjetwork/ui.py +22 -0
- pyerualjetwork/visualizations.py +799 -0
- pyerualjetwork/visualizations_cuda.py +799 -0
- pyerualjetwork-4.0.5.dist-info/METADATA +95 -0
- pyerualjetwork-4.0.5.dist-info/RECORD +23 -0
- pyerualjetwork-4.0.5.dist-info/WHEEL +5 -0
- pyerualjetwork-4.0.5.dist-info/top_level.txt +1 -0
@@ -0,0 +1,71 @@
|
|
1
|
+
|
2
|
+
import subprocess
|
3
|
+
subprocess.check_call(["pip", "install", 'setuptools==75.6.0'])
|
4
|
+
import pkg_resources
|
5
|
+
from datetime import datetime
|
6
|
+
|
7
|
+
print("Auto checking and installation dependencies for PyerualJetwork")
|
8
|
+
|
9
|
+
package_names = [
|
10
|
+
'scipy==1.13.1',
|
11
|
+
'tqdm==4.66.4',
|
12
|
+
'seaborn==0.13.2',
|
13
|
+
'pandas==2.2.2',
|
14
|
+
'networkx==3.3',
|
15
|
+
'numpy==1.26.4',
|
16
|
+
'matplotlib==3.9.0',
|
17
|
+
'colorama==0.4.6'
|
18
|
+
]
|
19
|
+
|
20
|
+
installed_packages = pkg_resources.working_set
|
21
|
+
installed = {pkg.key: pkg.version for pkg in installed_packages}
|
22
|
+
err = 0
|
23
|
+
|
24
|
+
for package_name in package_names:
|
25
|
+
package_name_only, required_version = package_name.split('==')
|
26
|
+
|
27
|
+
if package_name_only not in installed:
|
28
|
+
|
29
|
+
try:
|
30
|
+
print(f"{package_name} Installing...")
|
31
|
+
subprocess.check_call(["pip", "install", package_name])
|
32
|
+
except Exception as e:
|
33
|
+
err += 1
|
34
|
+
print(f"Error installing {package_name} library, installation continues: {e}")
|
35
|
+
else:
|
36
|
+
|
37
|
+
installed_version = installed[package_name_only]
|
38
|
+
if installed_version != required_version:
|
39
|
+
print(f"Updating {package_name_only} from version {installed_version} to {required_version}...")
|
40
|
+
try:
|
41
|
+
subprocess.check_call(["pip", "install", package_name])
|
42
|
+
except Exception as e:
|
43
|
+
err += 1
|
44
|
+
print(f"Error updating {package_name} library, installation continues: {e}")
|
45
|
+
else:
|
46
|
+
print(f"{package_name} ready.")
|
47
|
+
|
48
|
+
print(f"PyerualJetwork is ready to use with {err} errors")
|
49
|
+
|
50
|
+
__version__ = "4.0.5"
|
51
|
+
__update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
52
|
+
|
53
|
+
def print_version(__version__):
|
54
|
+
print(f"PyerualJetwork Version {__version__}" + '\n')
|
55
|
+
|
56
|
+
def print_update_notes(__update__):
|
57
|
+
print(f"Update Notes:\n{__update__}")
|
58
|
+
|
59
|
+
print_version(__version__)
|
60
|
+
print_update_notes(__update__)
|
61
|
+
|
62
|
+
from .plan import *
|
63
|
+
from .planeat import *
|
64
|
+
from .activation_functions import *
|
65
|
+
from .data_operations import *
|
66
|
+
from .loss_functions import *
|
67
|
+
from .metrics import *
|
68
|
+
from .model_operations import *
|
69
|
+
from .ui import *
|
70
|
+
from .visualizations import *
|
71
|
+
from .help import *
|
@@ -0,0 +1,367 @@
|
|
1
|
+
import numpy as np
|
2
|
+
from scipy.special import expit, softmax
|
3
|
+
|
4
|
+
# ACTIVATION FUNCTIONS -----
|
5
|
+
|
6
|
+
def all_activations():
|
7
|
+
|
8
|
+
activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'swish', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'softplus', 'elu', 'gelu', 'selu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'exsig', 'acos', 'gla', 'srelu', 'qelu', 'isra', 'waveakt', 'arctan', 'bent_identity', 'sech', 'softsign', 'pwl', 'cubic', 'gaussian', 'sine', 'tanh_square', 'mod_sigmoid', 'quartic', 'square_quartic', 'cubic_quadratic', 'exp_cubic', 'sine_square', 'logarithmic', 'scaled_cubic', 'sine_offset']
|
9
|
+
|
10
|
+
return activations_list
|
11
|
+
|
12
|
+
def spiral_activation(x):
|
13
|
+
|
14
|
+
r = np.sqrt(np.sum(x**2))
|
15
|
+
|
16
|
+
theta = np.arctan2(x[1:], x[:-1])
|
17
|
+
|
18
|
+
spiral_x = r * np.cos(theta + r)
|
19
|
+
spiral_y = r * np.sin(theta + r)
|
20
|
+
|
21
|
+
|
22
|
+
spiral_output = np.concatenate(([spiral_x[0]], spiral_y))
|
23
|
+
|
24
|
+
return spiral_output
|
25
|
+
|
26
|
+
|
27
|
+
def Softmax(
|
28
|
+
x # num: Input data to be transformed using softmax function.
|
29
|
+
):
|
30
|
+
"""
|
31
|
+
Applies the softmax function to the input data.
|
32
|
+
|
33
|
+
Args:
|
34
|
+
(num): Input data to be transformed using softmax function.
|
35
|
+
|
36
|
+
Returns:
|
37
|
+
(num): Transformed data after applying softmax function.
|
38
|
+
"""
|
39
|
+
|
40
|
+
return softmax(x)
|
41
|
+
|
42
|
+
|
43
|
+
def Sigmoid(
|
44
|
+
x # num: Input data to be transformed using sigmoid function.
|
45
|
+
):
|
46
|
+
"""
|
47
|
+
Applies the sigmoid function to the input data.
|
48
|
+
|
49
|
+
Args:
|
50
|
+
(num): Input data to be transformed using sigmoid function.
|
51
|
+
|
52
|
+
Returns:
|
53
|
+
(num): Transformed data after applying sigmoid function.
|
54
|
+
"""
|
55
|
+
return expit(x)
|
56
|
+
|
57
|
+
|
58
|
+
def Relu(
|
59
|
+
x # num: Input data to be transformed using ReLU function.
|
60
|
+
):
|
61
|
+
"""
|
62
|
+
Applies the Rectified Linear Unit (ReLU) function to the input data.
|
63
|
+
|
64
|
+
Args:
|
65
|
+
(num): Input data to be transformed using ReLU function.
|
66
|
+
|
67
|
+
Returns:
|
68
|
+
(num): Transformed data after applying ReLU function.
|
69
|
+
"""
|
70
|
+
|
71
|
+
return np.maximum(0, x)
|
72
|
+
|
73
|
+
|
74
|
+
def tanh(x):
|
75
|
+
return np.tanh(x)
|
76
|
+
|
77
|
+
def swish(x):
|
78
|
+
return x * (1 / (1 + np.exp(-x)))
|
79
|
+
|
80
|
+
def sin_plus(x):
|
81
|
+
return (np.sin(x) + 1) / 2
|
82
|
+
|
83
|
+
def modular_circular_activation(x, period=2*np.pi):
|
84
|
+
return np.mod(x, period) / period
|
85
|
+
|
86
|
+
def tanh_circular_activation(x):
|
87
|
+
return (np.tanh(x) + 1) / 2
|
88
|
+
|
89
|
+
def leaky_relu(x, alpha=0.01):
|
90
|
+
return np.where(x > 0, x, alpha * x)
|
91
|
+
|
92
|
+
def softplus(x):
|
93
|
+
return np.log(1 + np.exp(x))
|
94
|
+
|
95
|
+
def elu(x, alpha=1.0):
|
96
|
+
return np.where(x > 0, x, alpha * (np.exp(x) - 1))
|
97
|
+
|
98
|
+
def gelu(x):
|
99
|
+
return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
|
100
|
+
|
101
|
+
def selu(x, lambda_=1.0507, alpha=1.6733):
|
102
|
+
return lambda_ * np.where(x > 0, x, alpha * (np.exp(x) - 1))
|
103
|
+
|
104
|
+
def sinakt(x):
|
105
|
+
return np.sin(x) + np.cos(x)
|
106
|
+
|
107
|
+
def p_squared(x, alpha=1.0, beta=0.0):
|
108
|
+
return alpha * x**2 + beta * x
|
109
|
+
|
110
|
+
def sglu(x, alpha=1.0):
|
111
|
+
return softmax(alpha * x) * x
|
112
|
+
|
113
|
+
# 4. Double Leaky ReLU (DLReLU)
|
114
|
+
def dlrelu(x):
|
115
|
+
return np.maximum(0.01 * x, x) + np.minimum(0.01 * x, 0.1 * x)
|
116
|
+
|
117
|
+
# 5. Exponential Sigmoid (ExSig)
|
118
|
+
def exsig(x):
|
119
|
+
return 1 / (1 + np.exp(-x**2))
|
120
|
+
|
121
|
+
# 6. Adaptive Cosine Activation (ACos)
|
122
|
+
def acos(x, alpha=1.0, beta=0.0):
|
123
|
+
return np.cos(alpha * x + beta)
|
124
|
+
|
125
|
+
# 7. Gaussian-like Activation (GLA)
|
126
|
+
def gla(x, alpha=1.0, mu=0.0):
|
127
|
+
return np.exp(-alpha * (x - mu)**2)
|
128
|
+
|
129
|
+
# 8. Swish ReLU (SReLU)
|
130
|
+
def srelu(x):
|
131
|
+
return x * (1 / (1 + np.exp(-x))) + np.maximum(0, x)
|
132
|
+
|
133
|
+
# 9. Quadratic Exponential Linear Unit (QELU)
|
134
|
+
def qelu(x):
|
135
|
+
return x**2 * np.exp(x) - 1
|
136
|
+
|
137
|
+
# 10. Inverse Square Root Activation (ISRA)
|
138
|
+
def isra(x):
|
139
|
+
return x / np.sqrt(np.abs(x) + 1)
|
140
|
+
|
141
|
+
def waveakt(x, alpha=1.0, beta=2.0, gamma=3.0):
|
142
|
+
return np.sin(alpha * x) * np.cos(beta * x) * np.sin(gamma * x)
|
143
|
+
|
144
|
+
def arctan(x):
|
145
|
+
return np.arctan(x)
|
146
|
+
|
147
|
+
def bent_identity(x):
|
148
|
+
return (np.sqrt(x**2 + 1) - 1) / 2 + x
|
149
|
+
|
150
|
+
def circular_activation(x, scale=2.0, frequency=1.0, shift=0.0):
|
151
|
+
|
152
|
+
n_features = x.shape[0]
|
153
|
+
|
154
|
+
circular_output = np.zeros_like(x)
|
155
|
+
|
156
|
+
for i in range(n_features):
|
157
|
+
|
158
|
+
r = np.sqrt(np.sum(x**2))
|
159
|
+
theta = 2 * np.pi * (i / n_features) + shift
|
160
|
+
|
161
|
+
circular_x = r * np.cos(theta + frequency * r) * scale
|
162
|
+
circular_y = r * np.sin(theta + frequency * r) * scale
|
163
|
+
|
164
|
+
if i % 2 == 0:
|
165
|
+
circular_output[i] = circular_x
|
166
|
+
else:
|
167
|
+
circular_output[i] = circular_y
|
168
|
+
|
169
|
+
return circular_output
|
170
|
+
|
171
|
+
def sech(x):
|
172
|
+
return 2 / (np.exp(x) + np.exp(-x))
|
173
|
+
|
174
|
+
def softsign(x):
|
175
|
+
return x / (1 + np.abs(x))
|
176
|
+
|
177
|
+
def pwl(x, alpha=0.5, beta=1.5):
|
178
|
+
return np.where(x <= 0, alpha * x, beta * x)
|
179
|
+
|
180
|
+
def cubic(x):
|
181
|
+
return x**3
|
182
|
+
|
183
|
+
def gaussian(x, alpha=1.0, mu=0.0):
|
184
|
+
return np.exp(-alpha * (x - mu)**2)
|
185
|
+
|
186
|
+
def sine(x, alpha=1.0):
|
187
|
+
return np.sin(alpha * x)
|
188
|
+
|
189
|
+
def tanh_square(x):
|
190
|
+
return np.tanh(x)**2
|
191
|
+
|
192
|
+
def mod_sigmoid(x, alpha=1.0, beta=0.0):
|
193
|
+
return 1 / (1 + np.exp(-alpha * x + beta))
|
194
|
+
|
195
|
+
def quartic(x):
|
196
|
+
return x**4
|
197
|
+
|
198
|
+
def square_quartic(x):
|
199
|
+
return (x**2)**2
|
200
|
+
|
201
|
+
def cubic_quadratic(x):
|
202
|
+
return x**3 * (x**2)
|
203
|
+
|
204
|
+
def exp_cubic(x):
|
205
|
+
return np.exp(x**3)
|
206
|
+
|
207
|
+
def sine_square(x):
|
208
|
+
return np.sin(x)**2
|
209
|
+
|
210
|
+
def logarithmic(x):
|
211
|
+
return np.log(x**2 + 1)
|
212
|
+
|
213
|
+
def scaled_cubic(x, alpha=1.0):
|
214
|
+
return alpha * x**3
|
215
|
+
|
216
|
+
def sine_offset(x, beta=0.0):
|
217
|
+
return np.sin(x + beta)
|
218
|
+
|
219
|
+
def apply_activation(Input, activation_list):
|
220
|
+
"""
|
221
|
+
Applies a sequence of activation functions to the input.
|
222
|
+
|
223
|
+
Args:
|
224
|
+
Input (numpy.ndarray): The input to apply activations to.
|
225
|
+
activation_list (list): A list of activation function names to apply.
|
226
|
+
|
227
|
+
Returns:
|
228
|
+
numpy.ndarray: The input after all activations have been applied.
|
229
|
+
"""
|
230
|
+
|
231
|
+
origin_input = np.copy(Input)
|
232
|
+
|
233
|
+
for i in range(len(activation_list)):
|
234
|
+
|
235
|
+
if activation_list[i] == 'sigmoid':
|
236
|
+
Input += Sigmoid(origin_input)
|
237
|
+
|
238
|
+
elif activation_list[i] == 'swish':
|
239
|
+
Input += swish(origin_input)
|
240
|
+
|
241
|
+
elif activation_list[i] == 'mod_circular':
|
242
|
+
Input += modular_circular_activation(origin_input)
|
243
|
+
|
244
|
+
elif activation_list[i] == 'tanh_circular':
|
245
|
+
Input += tanh_circular_activation(origin_input)
|
246
|
+
|
247
|
+
elif activation_list[i] == 'leaky_relu':
|
248
|
+
Input += leaky_relu(origin_input)
|
249
|
+
|
250
|
+
elif activation_list[i] == 'relu':
|
251
|
+
Input += Relu(origin_input)
|
252
|
+
|
253
|
+
elif activation_list[i] == 'softplus':
|
254
|
+
Input += softplus(origin_input)
|
255
|
+
|
256
|
+
elif activation_list[i] == 'elu':
|
257
|
+
Input += elu(origin_input)
|
258
|
+
|
259
|
+
elif activation_list[i] == 'gelu':
|
260
|
+
Input += gelu(origin_input)
|
261
|
+
|
262
|
+
elif activation_list[i] == 'selu':
|
263
|
+
Input += selu(origin_input)
|
264
|
+
|
265
|
+
elif activation_list[i] == 'tanh':
|
266
|
+
Input += tanh(origin_input)
|
267
|
+
|
268
|
+
elif activation_list[i] == 'sinakt':
|
269
|
+
Input += sinakt(origin_input)
|
270
|
+
|
271
|
+
elif activation_list[i] == 'p_squared':
|
272
|
+
Input += p_squared(origin_input)
|
273
|
+
|
274
|
+
elif activation_list[i] == 'sglu':
|
275
|
+
Input += sglu(origin_input, alpha=1.0)
|
276
|
+
|
277
|
+
elif activation_list[i] == 'dlrelu':
|
278
|
+
Input += dlrelu(origin_input)
|
279
|
+
|
280
|
+
elif activation_list[i] == 'exsig':
|
281
|
+
Input += exsig(origin_input)
|
282
|
+
|
283
|
+
elif activation_list[i] == 'sin_plus':
|
284
|
+
Input += sin_plus(origin_input)
|
285
|
+
|
286
|
+
elif activation_list[i] == 'acos':
|
287
|
+
Input += acos(origin_input, alpha=1.0, beta=0.0)
|
288
|
+
|
289
|
+
elif activation_list[i] == 'gla':
|
290
|
+
Input += gla(origin_input, alpha=1.0, mu=0.0)
|
291
|
+
|
292
|
+
elif activation_list[i] == 'srelu':
|
293
|
+
Input += srelu(origin_input)
|
294
|
+
|
295
|
+
elif activation_list[i] == 'qelu':
|
296
|
+
Input += qelu(origin_input)
|
297
|
+
|
298
|
+
elif activation_list[i] == 'isra':
|
299
|
+
Input += isra(origin_input)
|
300
|
+
|
301
|
+
elif activation_list[i] == 'waveakt':
|
302
|
+
Input += waveakt(origin_input)
|
303
|
+
|
304
|
+
elif activation_list[i] == 'arctan':
|
305
|
+
Input += arctan(origin_input)
|
306
|
+
|
307
|
+
elif activation_list[i] == 'bent_identity':
|
308
|
+
Input += bent_identity(origin_input)
|
309
|
+
|
310
|
+
elif activation_list[i] == 'sech':
|
311
|
+
Input += sech(origin_input)
|
312
|
+
|
313
|
+
elif activation_list[i] == 'softsign':
|
314
|
+
Input += softsign(origin_input)
|
315
|
+
|
316
|
+
elif activation_list[i] == 'pwl':
|
317
|
+
Input += pwl(origin_input)
|
318
|
+
|
319
|
+
elif activation_list[i] == 'cubic':
|
320
|
+
Input += cubic(origin_input)
|
321
|
+
|
322
|
+
elif activation_list[i] == 'gaussian':
|
323
|
+
Input += gaussian(origin_input)
|
324
|
+
|
325
|
+
elif activation_list[i] == 'sine':
|
326
|
+
Input += sine(origin_input)
|
327
|
+
|
328
|
+
elif activation_list[i] == 'tanh_square':
|
329
|
+
Input += tanh_square(origin_input)
|
330
|
+
|
331
|
+
elif activation_list[i] == 'mod_sigmoid':
|
332
|
+
Input += mod_sigmoid(origin_input)
|
333
|
+
|
334
|
+
elif activation_list[i] == 'linear':
|
335
|
+
Input += origin_input
|
336
|
+
|
337
|
+
elif activation_list[i] == 'quartic':
|
338
|
+
Input += quartic(origin_input)
|
339
|
+
|
340
|
+
elif activation_list[i] == 'square_quartic':
|
341
|
+
Input += square_quartic(origin_input)
|
342
|
+
|
343
|
+
elif activation_list[i] == 'cubic_quadratic':
|
344
|
+
Input += cubic_quadratic(origin_input)
|
345
|
+
|
346
|
+
elif activation_list[i] == 'exp_cubic':
|
347
|
+
Input += exp_cubic(origin_input)
|
348
|
+
|
349
|
+
elif activation_list[i] == 'sine_square':
|
350
|
+
Input += sine_square(origin_input)
|
351
|
+
|
352
|
+
elif activation_list[i] == 'logarithmic':
|
353
|
+
Input += logarithmic(origin_input)
|
354
|
+
|
355
|
+
elif activation_list[i] == 'scaled_cubic':
|
356
|
+
Input += scaled_cubic(origin_input, 1.0)
|
357
|
+
|
358
|
+
elif activation_list[i] == 'sine_offset':
|
359
|
+
Input += sine_offset(origin_input, 1.0)
|
360
|
+
|
361
|
+
elif activation_list[i] == 'spiral':
|
362
|
+
Input += spiral_activation(origin_input)
|
363
|
+
|
364
|
+
elif activation_list[i] == 'circular':
|
365
|
+
Input += circular_activation(origin_input)
|
366
|
+
|
367
|
+
return Input
|