pydra-core 0.0.1__py2.py3-none-any.whl → 0.0.3__py2.py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (368) hide show
  1. pydra_core/__init__.py +32 -32
  2. pydra_core/common/common.py +98 -98
  3. pydra_core/common/enum.py +63 -63
  4. pydra_core/common/interpolate.py +345 -345
  5. pydra_core/common/probability.py +293 -293
  6. pydra_core/core/calculation.py +51 -51
  7. pydra_core/core/datamodels/frequency_line.py +60 -60
  8. pydra_core/core/exceedance_frequency_line.py +224 -224
  9. pydra_core/core/exceedance_frequency_line_experimental.py +163 -163
  10. pydra_core/core/hbn.py +226 -226
  11. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017.txt +36 -36
  12. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017_metOnzHeid.txt +45 -45
  13. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_metOnzHeid_v02.txt +50 -50
  14. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_v02.txt +42 -42
  15. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_metOnzHeid_v02.txt +56 -56
  16. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_v02.txt +48 -48
  17. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_metOnzHeid_v02.txt +56 -56
  18. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_v02.txt +48 -48
  19. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_metOnzHeid_v02.txt +50 -50
  20. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_v02.txt +42 -42
  21. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_metOnzHeid_v02.txt +56 -56
  22. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_v02.txt +48 -48
  23. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_metOnzHeid_v02.txt +51 -51
  24. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_v02.txt +44 -44
  25. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_Ref.txt +27 -27
  26. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017.txt +30 -30
  27. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017_metOnzHeid.txt +32 -32
  28. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015.txt +44 -44
  29. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015_metOnzHeid.txt +33 -33
  30. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050.txt +44 -44
  31. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050_metOnzHeid.txt +33 -33
  32. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100.txt +44 -44
  33. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100_metOnzHeid.txt +38 -38
  34. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015.txt +44 -44
  35. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015_metOnzHeid.txt +33 -33
  36. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050.txt +44 -44
  37. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050_metOnzHeid.txt +33 -33
  38. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100.txt +44 -44
  39. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100_metOnzHeid.txt +33 -33
  40. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_Ref.txt +13 -13
  41. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017.txt +47 -47
  42. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017_metOnzHeid.txt +47 -47
  43. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015.txt +49 -49
  44. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +58 -58
  45. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050.txt +49 -49
  46. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +58 -58
  47. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100.txt +49 -49
  48. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +58 -58
  49. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015.txt +49 -49
  50. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +58 -58
  51. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050.txt +49 -49
  52. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +58 -58
  53. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100.txt +49 -49
  54. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +58 -58
  55. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_Ref.txt +20 -20
  56. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017.txt +33 -33
  57. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017_metOnzHeid.txt +59 -59
  58. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015.txt +49 -49
  59. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_BenedenRijn.txt +49 -49
  60. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +62 -62
  61. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid_BenedenRijn.txt +65 -65
  62. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050.txt +49 -49
  63. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_BenedenRijn.txt +49 -49
  64. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +62 -62
  65. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid_BenedenRijn.txt +64 -64
  66. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100.txt +49 -49
  67. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_BenedenRijn.txt +49 -49
  68. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +62 -62
  69. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid_BenedenRijn.txt +64 -64
  70. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015.txt +50 -50
  71. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_BenedenRijn.txt +50 -50
  72. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +62 -62
  73. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid_BenedenRijn.txt +64 -64
  74. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050.txt +50 -50
  75. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_BenedenRijn.txt +50 -50
  76. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +62 -62
  77. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid_BenedenRijn.txt +64 -64
  78. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100.txt +50 -50
  79. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_BenedenRijn.txt +50 -50
  80. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +62 -62
  81. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid_BenedenRijn.txt +65 -65
  82. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_Ref.txt +22 -22
  83. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017.txt +55 -55
  84. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017_metOnzHeid.txt +55 -55
  85. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015.txt +46 -46
  86. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015_metOnzHeid.txt +64 -64
  87. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050.txt +46 -46
  88. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050_metOnzHeid.txt +64 -64
  89. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100.txt +46 -46
  90. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100_metOnzHeid.txt +64 -64
  91. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015.txt +47 -47
  92. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015_metOnzHeid.txt +64 -64
  93. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050.txt +47 -47
  94. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050_metOnzHeid.txt +64 -64
  95. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100.txt +47 -47
  96. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100_metOnzHeid.txt +64 -64
  97. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_Ref.txt +14 -14
  98. pydra_core/data/statistics/Golfvorm/Borgharen/Golfvormen_Borgharen.txt +76 -76
  99. pydra_core/data/statistics/Golfvorm/Dalfsen/Golfvormen_Dalfsen.txt +83 -83
  100. pydra_core/data/statistics/Golfvorm/Grevelingenmeer/Golfvormen_Grevelingenmeer.txt +33 -33
  101. pydra_core/data/statistics/Golfvorm/IJsselmeer/Golfvormen_IJsselmeer.txt +83 -83
  102. pydra_core/data/statistics/Golfvorm/Lith/Golfvormen_Lith.txt +76 -76
  103. pydra_core/data/statistics/Golfvorm/Lobith/Golfvormen_Lobith.txt +76 -76
  104. pydra_core/data/statistics/Golfvorm/Markermeer/Golfvormen_Markermeer.txt +139 -139
  105. pydra_core/data/statistics/Golfvorm/Olst/Golfvormen_Olst.txt +83 -83
  106. pydra_core/data/statistics/Golfvorm/Veerse Meer/Golfvormen_Veersemeer.txt +53 -53
  107. pydra_core/data/statistics/Golfvorm/Veluwerandmeer/Golfvormen_Veluwerandmeer.txt +139 -139
  108. pydra_core/data/statistics/Golfvorm/Volkerak-Zoommeer/Golfvormen_Volkerakzoommeer.txt +73 -73
  109. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017.txt +12 -12
  110. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017_metOnzHeid.txt +24 -24
  111. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_v01.txt +12 -12
  112. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017.txt +25 -25
  113. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017_metOnzHeid.txt +39 -39
  114. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_v01.txt +14 -14
  115. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017.txt +18 -18
  116. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017_metOnzHeid.txt +37 -37
  117. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_v01.txt +10 -10
  118. pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_excl_peilverhoging.txt +13 -13
  119. pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_v01.txt +15 -15
  120. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017.txt +13 -13
  121. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017_metOnzHeid.txt +36 -36
  122. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_v01.txt +13 -13
  123. pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM.txt +17 -17
  124. pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM_metOnzHeid.txt +42 -42
  125. pydra_core/data/statistics/Restant/Oosterschelde/BesliskansenOSKering.txt +524 -524
  126. pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_2023.txt +7 -7
  127. pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_OS.txt +13 -13
  128. pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS.txt +14 -14
  129. pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS_40_60_80uur_2023.txt +16 -16
  130. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2008.txt +23 -23
  131. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2013.txt +18 -18
  132. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2017.txt +18 -18
  133. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2023.txt +13 -13
  134. pydra_core/data/statistics/Restant/Up2U/Up2U10.dat +59 -59
  135. pydra_core/data/statistics/Restant/Up2U/Up2Up.dat +59 -59
  136. pydra_core/data/statistics/Restant/Up2U/Up2Ustar.dat +59 -59
  137. pydra_core/data/statistics/Restant/hulpdijken.txt +59 -59
  138. pydra_core/data/statistics/Restant/hulpgolfhoogtes.txt +23 -23
  139. pydra_core/data/statistics/Restant/hulpgolfperiodes.txt +38 -38
  140. pydra_core/data/statistics/Restant/kansstormduur.txt +8 -8
  141. pydra_core/data/statistics/Restant/pwind_west.txt +33 -33
  142. pydra_core/data/statistics/Restant/pwind_west_met_Volkerfactor.txt +33 -33
  143. pydra_core/data/statistics/Restant/pwind_west_zonder_Volkerfactor.txt +33 -33
  144. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden.txt +18 -18
  145. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden_2017.txt +22 -22
  146. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord.txt +18 -18
  147. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord_2017.txt +22 -22
  148. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid.txt +18 -18
  149. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid_2017.txt +22 -22
  150. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS.txt +21 -21
  151. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_16sectoren_2023.txt +23 -23
  152. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_2017.txt +21 -21
  153. pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost.txt +18 -18
  154. pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost_2017.txt +22 -22
  155. pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west.txt +18 -18
  156. pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west_2017.txt +22 -22
  157. pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS.txt +18 -18
  158. pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS_2017.txt +22 -22
  159. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Maas 2017.csv +630 -630
  160. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Rijn 2017.csv +630 -630
  161. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Hollandsche IJsselkering.csv +757 -757
  162. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Oosterscheldekering 2017.csv +55080 -55080
  163. pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_2017.txt +18 -18
  164. pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_v00.txt +14 -14
  165. pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_2017.txt +19 -19
  166. pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_v01.txt +15 -15
  167. pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_2017.txt +13 -13
  168. pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_v01.txt +13 -13
  169. pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_2017.txt +19 -19
  170. pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_v01.txt +14 -14
  171. pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_2017.txt +18 -18
  172. pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_v01.txt +17 -17
  173. pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_2017.txt +18 -18
  174. pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_v01.txt +16 -16
  175. pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_2017.txt +19 -19
  176. pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_v01.txt +11 -11
  177. pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_2017.txt +19 -19
  178. pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_v01.txt +15 -15
  179. pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_excl_peilverhoging.txt +12 -12
  180. pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_v01.txt +15 -15
  181. pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_2017.txt +11 -11
  182. pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_v01.txt +11 -11
  183. pydra_core/data/statistics/Topduur/Volkerak-Zoommeer/Topduur_Volkerakzoommeer_BER-VZM.txt +17 -17
  184. pydra_core/data/statistics/Windrichting/Deelen/Richtingskansen_Deelen_2017.txt +27 -27
  185. pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust.txt +16 -16
  186. pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust_2017.txt +23 -23
  187. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_16sectoren_OS_2023.txt +30 -30
  188. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS.txt +19 -19
  189. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS_2017.txt +23 -23
  190. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren.txt +19 -19
  191. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren_2017.txt +19 -19
  192. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_2017.txt +27 -27
  193. pydra_core/data/statistics/Windrichting/Schiphol/kanswindrichting_v01.txt +28 -28
  194. pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ.txt +16 -16
  195. pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ_2017.txt +23 -23
  196. pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS.txt +16 -16
  197. pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS_2017.txt +23 -23
  198. pydra_core/data/statistics/Windsnelheid/De Kooy/OvkansWindsnelheid_Texel.txt +69 -69
  199. pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017.txt +91 -91
  200. pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017_metOnzHeid.txt +91 -91
  201. pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017.txt +90 -90
  202. pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017_metOnzHeid.txt +90 -90
  203. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/OvkansWindsnelheid_Hoek van Holland.txt +69 -69
  204. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017.txt +91 -91
  205. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017_metOnzHeid.txt +91 -91
  206. pydra_core/data/statistics/Windsnelheid/IJmuiden/OvkansWindsnelheid_IJmuiden.txt +69 -69
  207. pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017.txt +91 -91
  208. pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017_metOnzHeid.txt +91 -91
  209. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren.txt +50 -50
  210. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017.txt +90 -90
  211. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metOnzHeid.txt +90 -90
  212. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag.txt +96 -96
  213. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
  214. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag.txt +96 -96
  215. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
  216. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017.txt +90 -90
  217. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017_metOnzHeid.txt +90 -90
  218. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017.txt +90 -90
  219. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017_metOnzHeid.txt +90 -90
  220. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol.txt +57 -57
  221. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_10%.txt +63 -63
  222. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_5%.txt +61 -61
  223. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_B_met volker.txt +59 -59
  224. pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_OS.txt +66 -66
  225. pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_Vlissingen.txt +69 -69
  226. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023.txt +91 -91
  227. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023_metOnzHeid.txt +90 -90
  228. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017.txt +91 -91
  229. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metOnzHeid.txt +91 -91
  230. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag.txt +96 -96
  231. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag_metOnzHeid.txt +96 -96
  232. pydra_core/data/statistics/Windsnelheid/West-Terschelling/OvkansWindsnelheid_West-Tersch.txt +69 -69
  233. pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017.txt +91 -91
  234. pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017_metOnzHeid.txt +91 -91
  235. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017.txt +81 -81
  236. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017_metOnzHeid.txt +81 -81
  237. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017.txt +81 -81
  238. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017_metOnzHeid.txt +81 -81
  239. pydra_core/data/statistics/Zeewaterstand/Delfzijl/OvkansZee_Delfzijl.txt +70 -70
  240. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017.txt +89 -89
  241. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017_metOnzHeid.txt +89 -89
  242. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017.txt +88 -88
  243. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017_metOnzHeid.txt +88 -88
  244. pydra_core/data/statistics/Zeewaterstand/Den Helder/OvkansZee_Den Helder.txt +70 -70
  245. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017.txt +88 -88
  246. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017_metOnzHeid.txt +88 -88
  247. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017.txt +87 -87
  248. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017_metOnzHeid.txt +87 -87
  249. pydra_core/data/statistics/Zeewaterstand/Den Oever/OvkansZee_Den Oever.txt +70 -70
  250. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017.txt +71 -71
  251. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017_metOnzHeid.txt +71 -71
  252. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017.txt +70 -70
  253. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017_metOnzHeid.txt +70 -70
  254. pydra_core/data/statistics/Zeewaterstand/Hansweert/OvkansZee_Hansweert.txt +70 -70
  255. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017.txt +85 -85
  256. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  257. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017.txt +84 -84
  258. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017_metOnzHeid.txt +84 -84
  259. pydra_core/data/statistics/Zeewaterstand/Harlingen/OvkansZee_Harlingen.txt +70 -70
  260. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017.txt +84 -84
  261. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017_metOnzHeid.txt +84 -84
  262. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017.txt +83 -83
  263. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017_metOnzHeid.txt +83 -83
  264. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/OvkansZee_Hoek van Holland.txt +70 -70
  265. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017.txt +86 -86
  266. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017_metOnzHeid.txt +86 -86
  267. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017.txt +85 -85
  268. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  269. pydra_core/data/statistics/Zeewaterstand/Huibertgat/OvkansZee_Huibertgat.txt +70 -70
  270. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017.txt +85 -85
  271. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  272. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017.txt +85 -85
  273. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  274. pydra_core/data/statistics/Zeewaterstand/IJmuiden/OvkansZee_IJmuiden.txt +70 -70
  275. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017.txt +85 -85
  276. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  277. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017.txt +85 -85
  278. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  279. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/OvkansZee_IJmuiden_virtueel.txt +70 -70
  280. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017.txt +85 -85
  281. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  282. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017.txt +84 -84
  283. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017_metOnzHeid.txt +84 -84
  284. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/OvkansZee_Lauwersoog.txt +70 -70
  285. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2011.txt +88 -88
  286. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017.txt +88 -88
  287. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017_metOnzheid.txt +92 -92
  288. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017.txt +85 -85
  289. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017_metOnzheid.txt +85 -85
  290. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017.txt +79 -79
  291. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017_metOnzHeid.txt +79 -79
  292. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017.txt +79 -79
  293. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017_metOnzHeid.txt +79 -79
  294. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023.txt +74 -74
  295. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023_metOnzHeid.txt +73 -73
  296. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZee_OS11.txt +70 -70
  297. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZeewaterstand_OS.txt +71 -71
  298. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017.txt +74 -74
  299. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
  300. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017.txt +74 -74
  301. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017_metOnzHeid.txt +74 -74
  302. pydra_core/data/statistics/Zeewaterstand/Vlissingen/OvkansZee_Vlissingen.txt +70 -70
  303. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017.txt +74 -74
  304. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
  305. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017.txt +74 -74
  306. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017_metOnzHeid.txt +74 -74
  307. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/OvkansZee_Vlissingen_virtueel.txt +70 -70
  308. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017.txt +87 -87
  309. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017_metOnzHeid.txt +87 -87
  310. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017.txt +86 -86
  311. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017_metOnzHeid.txt +86 -86
  312. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/OvkansZee_West-Terschelling.txt +70 -70
  313. pydra_core/hrdatabase/hrdatabase.py +177 -177
  314. pydra_core/io/database_hr.py +598 -598
  315. pydra_core/io/database_settings.py +183 -183
  316. pydra_core/io/file_hydranl.py +92 -92
  317. pydra_core/location/location.py +115 -115
  318. pydra_core/location/model/base_model.py +270 -270
  319. pydra_core/location/model/loading/loading.py +368 -368
  320. pydra_core/location/model/loading/loading_factory.py +89 -89
  321. pydra_core/location/model/loading/loading_model/loading_model.py +324 -324
  322. pydra_core/location/model/loading/other_systems/loading_wave_overtopping.py +122 -122
  323. pydra_core/location/model/loading/water_systems/loading_coast.py +54 -54
  324. pydra_core/location/model/loading/water_systems/loading_eastern_scheldt.py +169 -169
  325. pydra_core/location/model/loading/water_systems/loading_ijssel_vechtdelta.py +55 -55
  326. pydra_core/location/model/loading/water_systems/loading_lake.py +55 -55
  327. pydra_core/location/model/loading/water_systems/loading_lower_rivier.py +68 -68
  328. pydra_core/location/model/loading/water_systems/loading_upper_river.py +55 -55
  329. pydra_core/location/model/statistics/other_systems/statistics_wave_overtopping.py +72 -72
  330. pydra_core/location/model/statistics/statistics.py +171 -171
  331. pydra_core/location/model/statistics/statistics_factory.py +89 -89
  332. pydra_core/location/model/statistics/stochastics/barrier/barrier.py +43 -43
  333. pydra_core/location/model/statistics/stochastics/barrier/barrier_easternscheldt.py +147 -147
  334. pydra_core/location/model/statistics/stochastics/barrier/barrier_europoort.py +209 -209
  335. pydra_core/location/model/statistics/stochastics/barrier/barrier_ramspol.py +41 -41
  336. pydra_core/location/model/statistics/stochastics/barrier/no_barrier.py +21 -21
  337. pydra_core/location/model/statistics/stochastics/discharge.py +108 -108
  338. pydra_core/location/model/statistics/stochastics/discrete_probability.py +55 -55
  339. pydra_core/location/model/statistics/stochastics/lake_level.py +158 -158
  340. pydra_core/location/model/statistics/stochastics/model_uncertainty.py +358 -358
  341. pydra_core/location/model/statistics/stochastics/sea_level/sea_level.py +53 -53
  342. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_lower_river.py +93 -93
  343. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_point.py +65 -65
  344. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_triangular.py +158 -158
  345. pydra_core/location/model/statistics/stochastics/sigma_function.py +24 -24
  346. pydra_core/location/model/statistics/stochastics/wave_shape.py +624 -624
  347. pydra_core/location/model/statistics/stochastics/wind_speed.py +196 -196
  348. pydra_core/location/model/statistics/water_systems/statistics_coast.py +153 -153
  349. pydra_core/location/model/statistics/water_systems/statistics_eastern_scheldt.py +177 -177
  350. pydra_core/location/model/statistics/water_systems/statistics_ijssel_vechtdelta.py +229 -229
  351. pydra_core/location/model/statistics/water_systems/statistics_lake.py +86 -86
  352. pydra_core/location/model/statistics/water_systems/statistics_lower_river.py +321 -321
  353. pydra_core/location/model/statistics/water_systems/statistics_upper_river.py +86 -86
  354. pydra_core/location/model/water_system.py +249 -249
  355. pydra_core/location/model/wave_overtopping.py +25 -25
  356. pydra_core/location/profile/foreland.py +246 -246
  357. pydra_core/location/profile/lib/CombOverloopOverslag64.dll +0 -0
  358. pydra_core/location/profile/lib/DynamicLib-DaF.dll +0 -0
  359. pydra_core/location/profile/lib/README.MD +10 -10
  360. pydra_core/location/profile/lib/dllDikesOvertopping.dll +0 -0
  361. pydra_core/location/profile/lib/feedbackDLL.dll +0 -0
  362. pydra_core/location/profile/profile.py +971 -971
  363. pydra_core/location/profile/profile_loading.py +473 -473
  364. pydra_core/location/settings/settings.py +387 -387
  365. {pydra_core-0.0.1.dist-info → pydra_core-0.0.3.dist-info}/METADATA +25 -5
  366. pydra_core-0.0.3.dist-info/RECORD +393 -0
  367. pydra_core-0.0.1.dist-info/RECORD +0 -389
  368. {pydra_core-0.0.1.dist-info → pydra_core-0.0.3.dist-info}/WHEEL +0 -0
@@ -1,598 +1,598 @@
1
- import os
2
- import pandas as pd
3
- import sqlite3
4
-
5
- from typing import List
6
- from typing import Union
7
-
8
- from .database_settings import DatabaseSettings
9
- from ..common.enum import WaterSystem
10
- from ..location.settings.settings import Settings
11
-
12
-
13
- class DatabaseHR:
14
- """
15
- HR database sqlite
16
- """
17
-
18
- def __init__(self, path_to_database: str) -> None:
19
- # Check if the path is valid
20
- if not os.path.exists(path_to_database):
21
- raise OSError(path_to_database)
22
-
23
- # Save the path
24
- self.path_to_database = path_to_database
25
- self.con = None
26
-
27
- def __enter__(self) -> "DatabaseHR":
28
- # Init the connection
29
- self.con = sqlite3.connect(self.path_to_database)
30
- return self
31
-
32
- def __exit__(self, exc_type, exc_val, exc_tb) -> None:
33
- # Close the connection
34
- self.con.close()
35
-
36
- def get_water_system(self) -> WaterSystem:
37
- """
38
- Obtain the water system from the .sqlite database
39
-
40
- Returns
41
- -------
42
- WaterSystem
43
- Corresponding water system
44
- """
45
- # Obtain the water system ID from the sqlite
46
- wsid = self.con.execute("SELECT GeneralId FROM General").fetchone()[0]
47
-
48
- # Return the WaterSystem
49
- return WaterSystem(wsid)
50
-
51
- def get_hrdlocations_names(self) -> List[str]:
52
- """
53
- Obtain a list with all names of the hrdlocations
54
-
55
- Returns
56
- -------
57
- list[str]
58
- A list with all names of hrdlocations
59
- """
60
- # Obtain the water system ID from the sqlite
61
- hrdlocations = self.con.execute("SELECT Name FROM HRDLocations").fetchall()
62
-
63
- # Convert the result to a list of strings
64
- names = [row[0] for row in hrdlocations]
65
-
66
- # Return names
67
- return names
68
-
69
- def get_hrdlocation_id(self, hrdlocation: Union[str, Settings]) -> int:
70
- """
71
- Returns the HRDLocationID
72
-
73
- Parameters
74
- ----------
75
- hrdlocation : Union[str, Settings]
76
- HRDLocation
77
-
78
- Returns
79
- -------
80
- int
81
- HRDLocationId
82
- """
83
- # Obtain the HRDLocationName from a Settings object
84
- if isinstance(hrdlocation, Settings):
85
- hrdlocation = hrdlocation.location
86
-
87
- # Obtain the water system ID from the sqlite
88
- hrdlocationid = self.con.execute(
89
- f"SELECT HRDLocationId FROM HRDLocations WHERE Name = '{hrdlocation}'"
90
- ).fetchone()[0]
91
-
92
- # Return HRDLocationId
93
- return hrdlocationid
94
-
95
- def get_hrdlocation_xy(
96
- self, hrdlocation: Union[str, Settings]
97
- ) -> Union[float, float]:
98
- """
99
- Returns the X and Y coordinate of the HRDLocation
100
-
101
- Parameters
102
- ----------
103
- hrdlocation : Union[str, Settings]
104
- HRDLocation
105
-
106
- Returns
107
- -------
108
- Union[float, float]
109
- X and Y coordinate
110
- """
111
- # Obtain the HRDLocationName from a Settings object
112
- if isinstance(hrdlocation, Settings):
113
- hrdlocation = hrdlocation.location
114
-
115
- # Obtain the water system ID from the sqlite
116
- hrdlocationid = self.con.execute(
117
- f"SELECT XCoordinate, YCoordinate FROM HRDLocations WHERE Name = '{hrdlocation}'"
118
- ).fetchone()
119
-
120
- # Return HRDLocationId
121
- return hrdlocationid
122
-
123
- def get_input_variables(self) -> list:
124
- """
125
- Return the input variables
126
-
127
- Returns
128
- -------
129
- list
130
- List with input variables
131
- """
132
- # Query
133
- sql = "SELECT InputVariableId FROM HRDInputVariables"
134
- data = self.con.execute(sql).fetchall()
135
-
136
- # Settings database
137
- with DatabaseSettings() as database:
138
- ivids = database.get_input_variable_ids()
139
- data = [ivids[i[0]] for i in data]
140
-
141
- # Shift wind speed in front
142
- if "u" in data:
143
- data.pop(data.index("u"))
144
- data.insert(0, "u")
145
-
146
- # Return results
147
- return data
148
-
149
- def get_result_variables(self) -> list:
150
- """
151
- Return the result variables
152
-
153
- Returns
154
- -------
155
- list
156
- List with result variables
157
- """
158
- # Query
159
- sql = "SELECT ResultVariableId FROM HRDResultVariables"
160
- data = self.con.execute(sql).fetchall()
161
-
162
- # Settings database
163
- with DatabaseSettings() as database:
164
- rvids = database.get_result_variable_ids()
165
- data = [rvids[i[0]] for i in data]
166
-
167
- # For the coast, if not defined, the local water level is equal to the sea level
168
- if self.get_water_system() in [
169
- WaterSystem.WADDEN_SEA_EAST,
170
- WaterSystem.WADDEN_SEA_WEST,
171
- WaterSystem.COAST_NORTH,
172
- WaterSystem.COAST_CENTRAL,
173
- WaterSystem.COAST_SOUTH,
174
- WaterSystem.WESTERN_SCHELDT,
175
- ]:
176
- if "h" not in rvids:
177
- data.insert(0, "h")
178
-
179
- # Return results
180
- return data
181
-
182
- def get_model_uncertainties(
183
- self, hrdlocation: Union[int, str, Settings]
184
- ) -> pd.DataFrame:
185
- """
186
- Return the model uncertainties
187
-
188
- Parameters
189
- ----------
190
- hrdlocation : Union[int, str, Settings]
191
- HRDLocation in form of HRDLocationId, HRDLocationName or Settings object
192
-
193
- Returns
194
- -------
195
- pd.DataFrame
196
- DataFrame with the distribution per closing situation
197
- """
198
- # Obtain the hrdlocationid
199
- if isinstance(hrdlocation, (str, Settings)):
200
- hrdlocation = self.get_hrdlocation_id(hrdlocation)
201
-
202
- # Obtain all model uncertainties from the database for the hrdlocation
203
- sql = f"""
204
- SELECT umf.HRDLocationId, umf.ClosingSituationId, hrv.ResultVariableId, umf.Mean, umf.Standarddeviation
205
- FROM UncertaintyModelFactor umf
206
- INNER JOIN HRDResultVariables hrv
207
- ON umf.HRDResultColumnId = hrv.HRDResultColumnId
208
- WHERE umf.HRDLocationId = {hrdlocation}
209
- """
210
- data = pd.read_sql(sql, self.con, index_col="HRDLocationId")
211
-
212
- # Adjust dataframe
213
- with DatabaseSettings() as database:
214
- rvids = database.get_result_variable_ids()
215
- data.rename(
216
- columns={
217
- "ClosingSituationId": "k",
218
- "ResultVariableId": "rvid",
219
- "Mean": "mean",
220
- "Standarddeviation": "stdev",
221
- },
222
- inplace=True,
223
- )
224
- data["rvid"].replace(rvids, inplace=True)
225
-
226
- # Return the model uncertainties
227
- return data
228
-
229
- def get_correlation_uncertainties(
230
- self, hrdlocation: Union[int, str, Settings]
231
- ) -> pd.DataFrame:
232
- """
233
- Return the correlation between model uncertainties
234
-
235
- Parameters
236
- ----------
237
- hrdlocation : Union[int, str, Settings]
238
- HRDLocation in form of HRDLocationId, HRDLocationName or Settings object
239
- """
240
- # Obtain the hrdlocationid
241
- if isinstance(hrdlocation, (str, Settings)):
242
- hrdlocation = self.get_hrdlocation_id(hrdlocation)
243
-
244
- # ResultVariableIds
245
- with DatabaseSettings() as database:
246
- rvids = database.get_result_variable_ids()
247
-
248
- # Data uit correlatie tabel
249
- try:
250
- sql = f"""
251
- SELECT ucf.HRDLocationId, ucf.ClosingSituationId, hrv.ResultVariableId, ucf.HRDResultColumnId2, ucf.Correlation
252
- FROM UncertaintyCorrelationFactor ucf
253
- INNER JOIN HRDResultVariables hrv
254
- ON ucf.HRDResultColumnId = hrv.HRDResultColumnId
255
- WHERE ucf.HRDLocationId = {hrdlocation}
256
- """
257
- data = pd.read_sql(sql, self.con, index_col="HRDLocationId")
258
-
259
- # Vertaal tabel naar HRDResultColumnId2
260
- # Zo niet, negeer en ga verder, neem aan dat de HRDResultColumnId2 heeft dezelfde Ids als HRDResultColumnId
261
- try:
262
- sql = """
263
- SELECT HRDResultColumnId2, ResultVariableId
264
- FROM HRDResultVariables2 hrv2
265
- INNER JOIN HRDResultVariables hrv ON hrv.HRDResultColumnId = hrv2.HRDResultColumnId
266
- """
267
- data_hrdid2 = self.con.execute(sql).fetchall()
268
- hrdid2_to_rvid = {_hrdid: _hrdid2 for _hrdid, _hrdid2 in data_hrdid2}
269
- data = data.replace({"HRDResultColumnId2": hrdid2_to_rvid})
270
- except Exception as e:
271
- print(f"ERROR: {e}, continuing without")
272
- pass
273
-
274
- # Geen correlaties aanwezig, return leeg dataframe
275
- except Exception as e:
276
- print(f"ERROR: {e}, continuing without correlation")
277
- data = pd.DataFrame(
278
- columns=[
279
- "HRDLocationId",
280
- "ClosingSituationId",
281
- "ResultVariableId",
282
- "HRDResultColumnId2",
283
- "Correlation",
284
- ]
285
- )
286
-
287
- # Replace column names
288
- data.rename(
289
- columns={
290
- "ClosingSituationId": "k",
291
- "ResultVariableId": "rvid",
292
- "HRDResultColumnId2": "rvid2",
293
- "Correlation": "rho",
294
- },
295
- inplace=True,
296
- )
297
-
298
- # Check of alle ResultVariableId(2) rvids zijn
299
- if not set(data["rvid"]).issubset(set(rvids)) or not set(
300
- data["rvid2"]
301
- ).issubset(set(rvids)):
302
- raise ValueError("ERROR")
303
-
304
- # Change ResultVariableId(2) to rvids
305
- data["rvid"].replace(rvids, inplace=True)
306
- data["rvid2"].replace(rvids, inplace=True)
307
-
308
- # Return the model uncertainties
309
- return data
310
-
311
- def get_wind_directions(self) -> dict:
312
- """
313
- Obtain a dictionary with HRDWindDirectionIds and Directions
314
-
315
- Returns
316
- -------
317
- dict
318
- A dictionary {HRDWindDirectionId : Direction}
319
- """
320
- # Wind directions
321
- results = self.con.execute("SELECT * FROM HRDWindDirections").fetchall()
322
-
323
- # Process wind directions such that {wind_id : wind_direction}
324
- wind_direction = {wid: wr for wid, wr in results}
325
-
326
- # Return wind direction dictionary
327
- return wind_direction
328
-
329
- def get_result_table(self, hrdlocation: Union[str, Settings]) -> pd.DataFrame:
330
- """
331
- Function to read the load combinations of a location to a pandas DataFrame
332
-
333
- Parameters
334
- ----------
335
- hrdlocation : Union[str, Settings]
336
- HRDLocation
337
-
338
- Returns
339
- -------
340
- pd.DataFrame
341
- A DataFrame with load combinations
342
- """
343
- # Obtain HRDLocationId
344
- hrdlocationid = self.get_hrdlocation_id(hrdlocation)
345
- with DatabaseSettings() as database:
346
- ivids = database.get_input_variable_ids()
347
- rvids = database.get_result_variable_ids()
348
-
349
- # Obtain all data from the HydroDynamicData table
350
- # (HydroDynamicDataId, HRDLocationId, ClosingSituationId, HRDWindDirectionID)
351
- query = f"SELECT * FROM HydroDynamicData WHERE HRDLocationId = {hrdlocationid}"
352
- hydrodynamicdata = pd.read_sql(query, self.con, index_col="HydroDynamicDataId")
353
-
354
- # Obtain all data from the HydroDynamicInputData table
355
- hydrodynamicdataids = ",".join(
356
- hydrodynamicdata.index.values.astype(str).tolist()
357
- )
358
- query = """
359
- SELECT ID.HydroDynamicDataId, IV.InputVariableId, ID.Value
360
- FROM HydroDynamicInputData ID
361
- INNER JOIN HRDInputVariables IV ON ID.HRDInputColumnId = IV.HRDInputColumnId
362
- WHERE HydroDynamicDataId IN ({});
363
- """.format(hydrodynamicdataids)
364
- hydrodynamicinputdata = pd.read_sql(
365
- query, self.con, index_col=["HydroDynamicDataId", "InputVariableId"]
366
- ).unstack()
367
- ivcols = [ivids[i] for i in hydrodynamicinputdata.columns.get_level_values(1)]
368
- hydrodynamicinputdata.columns = ivcols
369
-
370
- # Obtain all data from the HydroDynamicResultData table
371
- query = """
372
- SELECT RD.HydroDynamicDataId, RV.ResultVariableId, RD.Value
373
- FROM HydroDynamicResultData RD
374
- INNER JOIN HRDResultVariables RV ON RD.HRDResultColumnId = RV.HRDResultColumnId
375
- WHERE HydroDynamicDataId IN ({});
376
- """.format(hydrodynamicdataids)
377
- hydrodynamicresultdata = pd.read_sql(
378
- query, self.con, index_col=["HydroDynamicDataId", "ResultVariableId"]
379
- ).unstack()
380
- rvcols = [rvids[i] for i in hydrodynamicresultdata.columns.get_level_values(1)]
381
- hydrodynamicresultdata.columns = rvcols
382
-
383
- # Merge the three tables
384
- results = hydrodynamicdata.join(hydrodynamicinputdata).join(
385
- hydrodynamicresultdata
386
- )
387
-
388
- # Vervang windrichting
389
- windrdict = self.get_wind_directions()
390
- for wid, r in windrdict.items():
391
- if r == 0.0:
392
- windrdict[wid] = 360.0
393
- results["Wind direction"] = [
394
- windrdict[i] for i in results["HRDWindDirectionId"].array
395
- ]
396
- results.drop(["HRDLocationId", "HRDWindDirectionId"], axis=1, inplace=True)
397
-
398
- # Replace discrete stochasts
399
- results.rename(
400
- columns={"Wind direction": "r", "ClosingSituationId": "k"}, inplace=True
401
- )
402
-
403
- # Move r to the front
404
- results.insert(0, "r", results.pop("r"))
405
- results.sort_values(by=["k", "r"] + ivcols, inplace=True)
406
-
407
- # Return results
408
- return results
409
-
410
- def get_closing_levels_table_europoort(self) -> dict:
411
- """
412
- Read the closing levels for the Europoort barrier.
413
-
414
- Returns
415
- -------
416
- pd.DataFrame
417
- A Dataframe with the closing level at sea (m) given r, u, q
418
- """
419
-
420
- # If there is a table called 'Sluitfunctie Europoortkering', use it
421
- try:
422
- # Read the table
423
- table = pd.read_sql(
424
- "SELECT * FROM [Sluitfunctie Europoortkering]", con=self.con
425
- )
426
-
427
- # Otherwise use the default functions
428
- except Exception as e:
429
- print(f"{e}: Using default functions")
430
- PATH = os.path.join(
431
- os.path.split(os.path.dirname(__file__))[0],
432
- "data",
433
- "statistics",
434
- "Sluitpeilen",
435
- )
436
- if self.get_water_system() in [
437
- WaterSystem.RHINE_TIDAL,
438
- WaterSystem.EUROPOORT,
439
- ]:
440
- table = pd.read_csv(
441
- os.path.join(PATH, "Sluitfunctie Europoortkering Rijn 2017.csv"),
442
- delimiter=";",
443
- )
444
- elif self.get_water_system() == WaterSystem.MEUSE_TIDAL:
445
- table = pd.read_csv(
446
- os.path.join(PATH, "Sluitfunctie Europoortkering Maas 2017.csv"),
447
- delimiter=";",
448
- )
449
- else:
450
- raise (
451
- f"[ERROR] No closing levels for water system '{self.get_water_system().name}'."
452
- )
453
-
454
- # All columns to lower
455
- table.columns = table.columns.str.lower()
456
-
457
- # Rename
458
- table.rename(
459
- columns={
460
- "windrichting": "r",
461
- "afvoer": "q",
462
- "windsnelheid": "u",
463
- "zeewaterstand": "m",
464
- },
465
- inplace=True,
466
- )
467
-
468
- # Return table
469
- return table
470
-
471
- def get_closing_levels_table_eastern_scheldt(self):
472
- """
473
- Read the closing levels for the Eastern Scheldt barrier.
474
-
475
- Returns
476
- -------
477
- pd.DataFrame
478
- A Dataframe with the closing level (h_rpb), given r, u, m, d, p
479
- """
480
- # Read the table from the ClosingCriterionsOSK
481
- table = pd.read_sql("SELECT * FROM ClosingCriterionsOSK", con=self.con)
482
-
483
- # Rename the entries
484
- table.rename(
485
- columns={
486
- "WindDirection": "r",
487
- "WindSpeed": "u",
488
- "WaterLevel": "m",
489
- "StormDuration": "d",
490
- "PhaseDifference": "p",
491
- "WaterLevelRPB": "h_rpb",
492
- },
493
- inplace=True,
494
- )
495
-
496
- # Return table
497
- return table
498
-
499
- def get_closing_situations_eastern_scheldt(self) -> dict:
500
- """
501
- Read the closing situations from the database (ClosingSituationId : (Description : FailingLocks)).
502
- e.g. 1 : ("Reguliere sluiting", 0)
503
-
504
- Only works for the Eastern Scheldt.
505
- """
506
- # Check watersystem
507
- if self.get_water_system() != WaterSystem.EASTERN_SCHELDT:
508
- raise ValueError(
509
- "[ERROR] Function can only be called for the Eastern Scheldt"
510
- )
511
-
512
- # Read table
513
- sql = """
514
- SELECT C.ClosingSituationId, T.Description, C.FailingLocks
515
- FROM ClosingSituations C
516
- INNER JOIN ClosingSituationTypes T ON C.ClosingSituationTypeId = T.ClosingSituationTypeId
517
- """
518
- results = self.con.execute(sql).fetchall()
519
-
520
- # Post processing into an dictionary
521
- results = {i[0]: (i[1], i[2]) for i in results}
522
-
523
- # Return
524
- return results
525
-
526
- def get_result_table_eastern_scheldt(
527
- self, hrdlocation: Union[str, Settings]
528
- ) -> pd.DataFrame:
529
- """
530
- Function to export the loadcombinations of a location to a pandas DataFrame
531
-
532
- Parameters
533
- ----------
534
- naam : str
535
- Locationname
536
- """
537
- # Obtain HRDLocationId
538
- hrdlocationid = self.get_hrdlocation_id(hrdlocation)
539
- with DatabaseSettings() as database:
540
- ivids = database.get_input_variable_ids()
541
- rvids = database.get_result_variable_ids()
542
-
543
- # First collect the dataids. Also replace wind direction ids with real ids
544
- SQL = """
545
- SELECT D.HydraulicLoadId, D.ClosingSituationId, W.Direction AS "Wind direction"
546
- FROM HydroDynamicData D
547
- INNER JOIN HRDWindDirections W ON D.HRDWindDirectionId=W.HRDWindDirectionId;"""
548
- dataids = pd.read_sql(SQL, self.con, index_col="HydraulicLoadId")
549
- dataids.rename(
550
- columns={"Wind direction": "r", "ClosingSituationId": "k"}, inplace=True
551
- )
552
-
553
- # Collect the result data. Replace HRDResultColumnId with variable id's
554
- SQL = """
555
- SELECT RD.HydraulicLoadId, RV.ResultVariableId, RD.Value
556
- FROM HydroDynamicResultData RD
557
- INNER JOIN HRDResultVariables RV ON RD.HRDResultColumnId = RV.HRDResultColumnId
558
- WHERE HRDLocationId = {};""".format(hrdlocationid)
559
- resultdata = pd.read_sql(
560
- SQL, self.con, index_col=["HydraulicLoadId", "ResultVariableId"]
561
- ).unstack()
562
-
563
- # Reduce columnindex to single level index (without 'Value')
564
- resultdata.columns = [
565
- rvids[rid] for rid in resultdata.columns.get_level_values(1)
566
- ]
567
-
568
- # Create dictionary for mapping HRDInputColumnId to InputVariableId
569
- SQL = """
570
- SELECT ID.HydraulicLoadId, IV.InputVariableId, ID.Value
571
- FROM HydroDynamicInputData ID
572
- INNER JOIN HRDInputVariables IV ON ID.HRDInputColumnId = IV.HRDInputColumnId"""
573
- inputdata = pd.read_sql(
574
- SQL, self.con, index_col=["HydraulicLoadId", "InputVariableId"]
575
- ).unstack()
576
-
577
- # Reduce columnindex to single level index (without 'Value')
578
- inputdata.columns = [
579
- ivids[ivid] for ivid in inputdata.columns.get_level_values(1)
580
- ]
581
-
582
- # Join data and sort values
583
- resultaat = (
584
- dataids.join(inputdata).join(resultdata).sort_values(by=["r", "u", "m"])
585
- )
586
-
587
- # In the WBI2023 the water levels and waves are in the same table, but have different input variables
588
- # Split the water levels and wave results
589
- idx = pd.isnull(resultaat["hs"])
590
-
591
- waterlevels = resultaat.loc[idx].dropna(how="all", axis=1)
592
- waveconditions = resultaat.loc[~idx].dropna(how="all", axis=1)
593
-
594
- # Replace m_os by m for the water level and m for h for the wave conditions
595
- waterlevels.rename(columns={"m_os": "m"}, inplace=True)
596
- waveconditions.rename(columns={"m": "h"}, inplace=True)
597
-
598
- return waterlevels, waveconditions
1
+ import os
2
+ import pandas as pd
3
+ import sqlite3
4
+
5
+ from typing import List
6
+ from typing import Union
7
+
8
+ from .database_settings import DatabaseSettings
9
+ from ..common.enum import WaterSystem
10
+ from ..location.settings.settings import Settings
11
+
12
+
13
+ class DatabaseHR:
14
+ """
15
+ HR database sqlite
16
+ """
17
+
18
+ def __init__(self, path_to_database: str) -> None:
19
+ # Check if the path is valid
20
+ if not os.path.exists(path_to_database):
21
+ raise OSError(path_to_database)
22
+
23
+ # Save the path
24
+ self.path_to_database = path_to_database
25
+ self.con = None
26
+
27
+ def __enter__(self) -> "DatabaseHR":
28
+ # Init the connection
29
+ self.con = sqlite3.connect(self.path_to_database)
30
+ return self
31
+
32
+ def __exit__(self, exc_type, exc_val, exc_tb) -> None:
33
+ # Close the connection
34
+ self.con.close()
35
+
36
+ def get_water_system(self) -> WaterSystem:
37
+ """
38
+ Obtain the water system from the .sqlite database
39
+
40
+ Returns
41
+ -------
42
+ WaterSystem
43
+ Corresponding water system
44
+ """
45
+ # Obtain the water system ID from the sqlite
46
+ wsid = self.con.execute("SELECT GeneralId FROM General").fetchone()[0]
47
+
48
+ # Return the WaterSystem
49
+ return WaterSystem(wsid)
50
+
51
+ def get_hrdlocations_names(self) -> List[str]:
52
+ """
53
+ Obtain a list with all names of the hrdlocations
54
+
55
+ Returns
56
+ -------
57
+ list[str]
58
+ A list with all names of hrdlocations
59
+ """
60
+ # Obtain the water system ID from the sqlite
61
+ hrdlocations = self.con.execute("SELECT Name FROM HRDLocations").fetchall()
62
+
63
+ # Convert the result to a list of strings
64
+ names = [row[0] for row in hrdlocations]
65
+
66
+ # Return names
67
+ return names
68
+
69
+ def get_hrdlocation_id(self, hrdlocation: Union[str, Settings]) -> int:
70
+ """
71
+ Returns the HRDLocationID
72
+
73
+ Parameters
74
+ ----------
75
+ hrdlocation : Union[str, Settings]
76
+ HRDLocation
77
+
78
+ Returns
79
+ -------
80
+ int
81
+ HRDLocationId
82
+ """
83
+ # Obtain the HRDLocationName from a Settings object
84
+ if isinstance(hrdlocation, Settings):
85
+ hrdlocation = hrdlocation.location
86
+
87
+ # Obtain the water system ID from the sqlite
88
+ hrdlocationid = self.con.execute(
89
+ f"SELECT HRDLocationId FROM HRDLocations WHERE Name = '{hrdlocation}'"
90
+ ).fetchone()[0]
91
+
92
+ # Return HRDLocationId
93
+ return hrdlocationid
94
+
95
+ def get_hrdlocation_xy(
96
+ self, hrdlocation: Union[str, Settings]
97
+ ) -> Union[float, float]:
98
+ """
99
+ Returns the X and Y coordinate of the HRDLocation
100
+
101
+ Parameters
102
+ ----------
103
+ hrdlocation : Union[str, Settings]
104
+ HRDLocation
105
+
106
+ Returns
107
+ -------
108
+ Union[float, float]
109
+ X and Y coordinate
110
+ """
111
+ # Obtain the HRDLocationName from a Settings object
112
+ if isinstance(hrdlocation, Settings):
113
+ hrdlocation = hrdlocation.location
114
+
115
+ # Obtain the water system ID from the sqlite
116
+ hrdlocationid = self.con.execute(
117
+ f"SELECT XCoordinate, YCoordinate FROM HRDLocations WHERE Name = '{hrdlocation}'"
118
+ ).fetchone()
119
+
120
+ # Return HRDLocationId
121
+ return hrdlocationid
122
+
123
+ def get_input_variables(self) -> list:
124
+ """
125
+ Return the input variables
126
+
127
+ Returns
128
+ -------
129
+ list
130
+ List with input variables
131
+ """
132
+ # Query
133
+ sql = "SELECT InputVariableId FROM HRDInputVariables"
134
+ data = self.con.execute(sql).fetchall()
135
+
136
+ # Settings database
137
+ with DatabaseSettings() as database:
138
+ ivids = database.get_input_variable_ids()
139
+ data = [ivids[i[0]] for i in data]
140
+
141
+ # Shift wind speed in front
142
+ if "u" in data:
143
+ data.pop(data.index("u"))
144
+ data.insert(0, "u")
145
+
146
+ # Return results
147
+ return data
148
+
149
+ def get_result_variables(self) -> list:
150
+ """
151
+ Return the result variables
152
+
153
+ Returns
154
+ -------
155
+ list
156
+ List with result variables
157
+ """
158
+ # Query
159
+ sql = "SELECT ResultVariableId FROM HRDResultVariables"
160
+ data = self.con.execute(sql).fetchall()
161
+
162
+ # Settings database
163
+ with DatabaseSettings() as database:
164
+ rvids = database.get_result_variable_ids()
165
+ data = [rvids[i[0]] for i in data]
166
+
167
+ # For the coast, if not defined, the local water level is equal to the sea level
168
+ if self.get_water_system() in [
169
+ WaterSystem.WADDEN_SEA_EAST,
170
+ WaterSystem.WADDEN_SEA_WEST,
171
+ WaterSystem.COAST_NORTH,
172
+ WaterSystem.COAST_CENTRAL,
173
+ WaterSystem.COAST_SOUTH,
174
+ WaterSystem.WESTERN_SCHELDT,
175
+ ]:
176
+ if "h" not in rvids:
177
+ data.insert(0, "h")
178
+
179
+ # Return results
180
+ return data
181
+
182
+ def get_model_uncertainties(
183
+ self, hrdlocation: Union[int, str, Settings]
184
+ ) -> pd.DataFrame:
185
+ """
186
+ Return the model uncertainties
187
+
188
+ Parameters
189
+ ----------
190
+ hrdlocation : Union[int, str, Settings]
191
+ HRDLocation in form of HRDLocationId, HRDLocationName or Settings object
192
+
193
+ Returns
194
+ -------
195
+ pd.DataFrame
196
+ DataFrame with the distribution per closing situation
197
+ """
198
+ # Obtain the hrdlocationid
199
+ if isinstance(hrdlocation, (str, Settings)):
200
+ hrdlocation = self.get_hrdlocation_id(hrdlocation)
201
+
202
+ # Obtain all model uncertainties from the database for the hrdlocation
203
+ sql = f"""
204
+ SELECT umf.HRDLocationId, umf.ClosingSituationId, hrv.ResultVariableId, umf.Mean, umf.Standarddeviation
205
+ FROM UncertaintyModelFactor umf
206
+ INNER JOIN HRDResultVariables hrv
207
+ ON umf.HRDResultColumnId = hrv.HRDResultColumnId
208
+ WHERE umf.HRDLocationId = {hrdlocation}
209
+ """
210
+ data = pd.read_sql(sql, self.con, index_col="HRDLocationId")
211
+
212
+ # Adjust dataframe
213
+ with DatabaseSettings() as database:
214
+ rvids = database.get_result_variable_ids()
215
+ data.rename(
216
+ columns={
217
+ "ClosingSituationId": "k",
218
+ "ResultVariableId": "rvid",
219
+ "Mean": "mean",
220
+ "Standarddeviation": "stdev",
221
+ },
222
+ inplace=True,
223
+ )
224
+ data["rvid"].replace(rvids, inplace=True)
225
+
226
+ # Return the model uncertainties
227
+ return data
228
+
229
+ def get_correlation_uncertainties(
230
+ self, hrdlocation: Union[int, str, Settings]
231
+ ) -> pd.DataFrame:
232
+ """
233
+ Return the correlation between model uncertainties
234
+
235
+ Parameters
236
+ ----------
237
+ hrdlocation : Union[int, str, Settings]
238
+ HRDLocation in form of HRDLocationId, HRDLocationName or Settings object
239
+ """
240
+ # Obtain the hrdlocationid
241
+ if isinstance(hrdlocation, (str, Settings)):
242
+ hrdlocation = self.get_hrdlocation_id(hrdlocation)
243
+
244
+ # ResultVariableIds
245
+ with DatabaseSettings() as database:
246
+ rvids = database.get_result_variable_ids()
247
+
248
+ # Data uit correlatie tabel
249
+ try:
250
+ sql = f"""
251
+ SELECT ucf.HRDLocationId, ucf.ClosingSituationId, hrv.ResultVariableId, ucf.HRDResultColumnId2, ucf.Correlation
252
+ FROM UncertaintyCorrelationFactor ucf
253
+ INNER JOIN HRDResultVariables hrv
254
+ ON ucf.HRDResultColumnId = hrv.HRDResultColumnId
255
+ WHERE ucf.HRDLocationId = {hrdlocation}
256
+ """
257
+ data = pd.read_sql(sql, self.con, index_col="HRDLocationId")
258
+
259
+ # Vertaal tabel naar HRDResultColumnId2
260
+ # Zo niet, negeer en ga verder, neem aan dat de HRDResultColumnId2 heeft dezelfde Ids als HRDResultColumnId
261
+ try:
262
+ sql = """
263
+ SELECT HRDResultColumnId2, ResultVariableId
264
+ FROM HRDResultVariables2 hrv2
265
+ INNER JOIN HRDResultVariables hrv ON hrv.HRDResultColumnId = hrv2.HRDResultColumnId
266
+ """
267
+ data_hrdid2 = self.con.execute(sql).fetchall()
268
+ hrdid2_to_rvid = {_hrdid: _hrdid2 for _hrdid, _hrdid2 in data_hrdid2}
269
+ data = data.replace({"HRDResultColumnId2": hrdid2_to_rvid})
270
+ except Exception as e:
271
+ print(f"ERROR: {e}, continuing without")
272
+ pass
273
+
274
+ # Geen correlaties aanwezig, return leeg dataframe
275
+ except Exception as e:
276
+ print(f"ERROR: {e}, continuing without correlation")
277
+ data = pd.DataFrame(
278
+ columns=[
279
+ "HRDLocationId",
280
+ "ClosingSituationId",
281
+ "ResultVariableId",
282
+ "HRDResultColumnId2",
283
+ "Correlation",
284
+ ]
285
+ )
286
+
287
+ # Replace column names
288
+ data.rename(
289
+ columns={
290
+ "ClosingSituationId": "k",
291
+ "ResultVariableId": "rvid",
292
+ "HRDResultColumnId2": "rvid2",
293
+ "Correlation": "rho",
294
+ },
295
+ inplace=True,
296
+ )
297
+
298
+ # Check of alle ResultVariableId(2) rvids zijn
299
+ if not set(data["rvid"]).issubset(set(rvids)) or not set(
300
+ data["rvid2"]
301
+ ).issubset(set(rvids)):
302
+ raise ValueError("ERROR")
303
+
304
+ # Change ResultVariableId(2) to rvids
305
+ data["rvid"].replace(rvids, inplace=True)
306
+ data["rvid2"].replace(rvids, inplace=True)
307
+
308
+ # Return the model uncertainties
309
+ return data
310
+
311
+ def get_wind_directions(self) -> dict:
312
+ """
313
+ Obtain a dictionary with HRDWindDirectionIds and Directions
314
+
315
+ Returns
316
+ -------
317
+ dict
318
+ A dictionary {HRDWindDirectionId : Direction}
319
+ """
320
+ # Wind directions
321
+ results = self.con.execute("SELECT * FROM HRDWindDirections").fetchall()
322
+
323
+ # Process wind directions such that {wind_id : wind_direction}
324
+ wind_direction = {wid: wr for wid, wr in results}
325
+
326
+ # Return wind direction dictionary
327
+ return wind_direction
328
+
329
+ def get_result_table(self, hrdlocation: Union[str, Settings]) -> pd.DataFrame:
330
+ """
331
+ Function to read the load combinations of a location to a pandas DataFrame
332
+
333
+ Parameters
334
+ ----------
335
+ hrdlocation : Union[str, Settings]
336
+ HRDLocation
337
+
338
+ Returns
339
+ -------
340
+ pd.DataFrame
341
+ A DataFrame with load combinations
342
+ """
343
+ # Obtain HRDLocationId
344
+ hrdlocationid = self.get_hrdlocation_id(hrdlocation)
345
+ with DatabaseSettings() as database:
346
+ ivids = database.get_input_variable_ids()
347
+ rvids = database.get_result_variable_ids()
348
+
349
+ # Obtain all data from the HydroDynamicData table
350
+ # (HydroDynamicDataId, HRDLocationId, ClosingSituationId, HRDWindDirectionID)
351
+ query = f"SELECT * FROM HydroDynamicData WHERE HRDLocationId = {hrdlocationid}"
352
+ hydrodynamicdata = pd.read_sql(query, self.con, index_col="HydroDynamicDataId")
353
+
354
+ # Obtain all data from the HydroDynamicInputData table
355
+ hydrodynamicdataids = ",".join(
356
+ hydrodynamicdata.index.values.astype(str).tolist()
357
+ )
358
+ query = """
359
+ SELECT ID.HydroDynamicDataId, IV.InputVariableId, ID.Value
360
+ FROM HydroDynamicInputData ID
361
+ INNER JOIN HRDInputVariables IV ON ID.HRDInputColumnId = IV.HRDInputColumnId
362
+ WHERE HydroDynamicDataId IN ({});
363
+ """.format(hydrodynamicdataids)
364
+ hydrodynamicinputdata = pd.read_sql(
365
+ query, self.con, index_col=["HydroDynamicDataId", "InputVariableId"]
366
+ ).unstack()
367
+ ivcols = [ivids[i] for i in hydrodynamicinputdata.columns.get_level_values(1)]
368
+ hydrodynamicinputdata.columns = ivcols
369
+
370
+ # Obtain all data from the HydroDynamicResultData table
371
+ query = """
372
+ SELECT RD.HydroDynamicDataId, RV.ResultVariableId, RD.Value
373
+ FROM HydroDynamicResultData RD
374
+ INNER JOIN HRDResultVariables RV ON RD.HRDResultColumnId = RV.HRDResultColumnId
375
+ WHERE HydroDynamicDataId IN ({});
376
+ """.format(hydrodynamicdataids)
377
+ hydrodynamicresultdata = pd.read_sql(
378
+ query, self.con, index_col=["HydroDynamicDataId", "ResultVariableId"]
379
+ ).unstack()
380
+ rvcols = [rvids[i] for i in hydrodynamicresultdata.columns.get_level_values(1)]
381
+ hydrodynamicresultdata.columns = rvcols
382
+
383
+ # Merge the three tables
384
+ results = hydrodynamicdata.join(hydrodynamicinputdata).join(
385
+ hydrodynamicresultdata
386
+ )
387
+
388
+ # Vervang windrichting
389
+ windrdict = self.get_wind_directions()
390
+ for wid, r in windrdict.items():
391
+ if r == 0.0:
392
+ windrdict[wid] = 360.0
393
+ results["Wind direction"] = [
394
+ windrdict[i] for i in results["HRDWindDirectionId"].array
395
+ ]
396
+ results.drop(["HRDLocationId", "HRDWindDirectionId"], axis=1, inplace=True)
397
+
398
+ # Replace discrete stochasts
399
+ results.rename(
400
+ columns={"Wind direction": "r", "ClosingSituationId": "k"}, inplace=True
401
+ )
402
+
403
+ # Move r to the front
404
+ results.insert(0, "r", results.pop("r"))
405
+ results.sort_values(by=["k", "r"] + ivcols, inplace=True)
406
+
407
+ # Return results
408
+ return results
409
+
410
+ def get_closing_levels_table_europoort(self) -> dict:
411
+ """
412
+ Read the closing levels for the Europoort barrier.
413
+
414
+ Returns
415
+ -------
416
+ pd.DataFrame
417
+ A Dataframe with the closing level at sea (m) given r, u, q
418
+ """
419
+
420
+ # If there is a table called 'Sluitfunctie Europoortkering', use it
421
+ try:
422
+ # Read the table
423
+ table = pd.read_sql(
424
+ "SELECT * FROM [Sluitfunctie Europoortkering]", con=self.con
425
+ )
426
+
427
+ # Otherwise use the default functions
428
+ except Exception as e:
429
+ print(f"{e}: Using default functions")
430
+ PATH = os.path.join(
431
+ os.path.split(os.path.dirname(__file__))[0],
432
+ "data",
433
+ "statistics",
434
+ "Sluitpeilen",
435
+ )
436
+ if self.get_water_system() in [
437
+ WaterSystem.RHINE_TIDAL,
438
+ WaterSystem.EUROPOORT,
439
+ ]:
440
+ table = pd.read_csv(
441
+ os.path.join(PATH, "Sluitfunctie Europoortkering Rijn 2017.csv"),
442
+ delimiter=";",
443
+ )
444
+ elif self.get_water_system() == WaterSystem.MEUSE_TIDAL:
445
+ table = pd.read_csv(
446
+ os.path.join(PATH, "Sluitfunctie Europoortkering Maas 2017.csv"),
447
+ delimiter=";",
448
+ )
449
+ else:
450
+ raise (
451
+ f"[ERROR] No closing levels for water system '{self.get_water_system().name}'."
452
+ )
453
+
454
+ # All columns to lower
455
+ table.columns = table.columns.str.lower()
456
+
457
+ # Rename
458
+ table.rename(
459
+ columns={
460
+ "windrichting": "r",
461
+ "afvoer": "q",
462
+ "windsnelheid": "u",
463
+ "zeewaterstand": "m",
464
+ },
465
+ inplace=True,
466
+ )
467
+
468
+ # Return table
469
+ return table
470
+
471
+ def get_closing_levels_table_eastern_scheldt(self):
472
+ """
473
+ Read the closing levels for the Eastern Scheldt barrier.
474
+
475
+ Returns
476
+ -------
477
+ pd.DataFrame
478
+ A Dataframe with the closing level (h_rpb), given r, u, m, d, p
479
+ """
480
+ # Read the table from the ClosingCriterionsOSK
481
+ table = pd.read_sql("SELECT * FROM ClosingCriterionsOSK", con=self.con)
482
+
483
+ # Rename the entries
484
+ table.rename(
485
+ columns={
486
+ "WindDirection": "r",
487
+ "WindSpeed": "u",
488
+ "WaterLevel": "m",
489
+ "StormDuration": "d",
490
+ "PhaseDifference": "p",
491
+ "WaterLevelRPB": "h_rpb",
492
+ },
493
+ inplace=True,
494
+ )
495
+
496
+ # Return table
497
+ return table
498
+
499
+ def get_closing_situations_eastern_scheldt(self) -> dict:
500
+ """
501
+ Read the closing situations from the database (ClosingSituationId : (Description : FailingLocks)).
502
+ e.g. 1 : ("Reguliere sluiting", 0)
503
+
504
+ Only works for the Eastern Scheldt.
505
+ """
506
+ # Check watersystem
507
+ if self.get_water_system() != WaterSystem.EASTERN_SCHELDT:
508
+ raise ValueError(
509
+ "[ERROR] Function can only be called for the Eastern Scheldt"
510
+ )
511
+
512
+ # Read table
513
+ sql = """
514
+ SELECT C.ClosingSituationId, T.Description, C.FailingLocks
515
+ FROM ClosingSituations C
516
+ INNER JOIN ClosingSituationTypes T ON C.ClosingSituationTypeId = T.ClosingSituationTypeId
517
+ """
518
+ results = self.con.execute(sql).fetchall()
519
+
520
+ # Post processing into an dictionary
521
+ results = {i[0]: (i[1], i[2]) for i in results}
522
+
523
+ # Return
524
+ return results
525
+
526
+ def get_result_table_eastern_scheldt(
527
+ self, hrdlocation: Union[str, Settings]
528
+ ) -> pd.DataFrame:
529
+ """
530
+ Function to export the loadcombinations of a location to a pandas DataFrame
531
+
532
+ Parameters
533
+ ----------
534
+ naam : str
535
+ Locationname
536
+ """
537
+ # Obtain HRDLocationId
538
+ hrdlocationid = self.get_hrdlocation_id(hrdlocation)
539
+ with DatabaseSettings() as database:
540
+ ivids = database.get_input_variable_ids()
541
+ rvids = database.get_result_variable_ids()
542
+
543
+ # First collect the dataids. Also replace wind direction ids with real ids
544
+ SQL = """
545
+ SELECT D.HydraulicLoadId, D.ClosingSituationId, W.Direction AS "Wind direction"
546
+ FROM HydroDynamicData D
547
+ INNER JOIN HRDWindDirections W ON D.HRDWindDirectionId=W.HRDWindDirectionId;"""
548
+ dataids = pd.read_sql(SQL, self.con, index_col="HydraulicLoadId")
549
+ dataids.rename(
550
+ columns={"Wind direction": "r", "ClosingSituationId": "k"}, inplace=True
551
+ )
552
+
553
+ # Collect the result data. Replace HRDResultColumnId with variable id's
554
+ SQL = """
555
+ SELECT RD.HydraulicLoadId, RV.ResultVariableId, RD.Value
556
+ FROM HydroDynamicResultData RD
557
+ INNER JOIN HRDResultVariables RV ON RD.HRDResultColumnId = RV.HRDResultColumnId
558
+ WHERE HRDLocationId = {};""".format(hrdlocationid)
559
+ resultdata = pd.read_sql(
560
+ SQL, self.con, index_col=["HydraulicLoadId", "ResultVariableId"]
561
+ ).unstack()
562
+
563
+ # Reduce columnindex to single level index (without 'Value')
564
+ resultdata.columns = [
565
+ rvids[rid] for rid in resultdata.columns.get_level_values(1)
566
+ ]
567
+
568
+ # Create dictionary for mapping HRDInputColumnId to InputVariableId
569
+ SQL = """
570
+ SELECT ID.HydraulicLoadId, IV.InputVariableId, ID.Value
571
+ FROM HydroDynamicInputData ID
572
+ INNER JOIN HRDInputVariables IV ON ID.HRDInputColumnId = IV.HRDInputColumnId"""
573
+ inputdata = pd.read_sql(
574
+ SQL, self.con, index_col=["HydraulicLoadId", "InputVariableId"]
575
+ ).unstack()
576
+
577
+ # Reduce columnindex to single level index (without 'Value')
578
+ inputdata.columns = [
579
+ ivids[ivid] for ivid in inputdata.columns.get_level_values(1)
580
+ ]
581
+
582
+ # Join data and sort values
583
+ resultaat = (
584
+ dataids.join(inputdata).join(resultdata).sort_values(by=["r", "u", "m"])
585
+ )
586
+
587
+ # In the WBI2023 the water levels and waves are in the same table, but have different input variables
588
+ # Split the water levels and wave results
589
+ idx = pd.isnull(resultaat["hs"])
590
+
591
+ waterlevels = resultaat.loc[idx].dropna(how="all", axis=1)
592
+ waveconditions = resultaat.loc[~idx].dropna(how="all", axis=1)
593
+
594
+ # Replace m_os by m for the water level and m for h for the wave conditions
595
+ waterlevels.rename(columns={"m_os": "m"}, inplace=True)
596
+ waveconditions.rename(columns={"m": "h"}, inplace=True)
597
+
598
+ return waterlevels, waveconditions