pydra-core 0.0.1__py2.py3-none-any.whl → 0.0.3__py2.py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (368) hide show
  1. pydra_core/__init__.py +32 -32
  2. pydra_core/common/common.py +98 -98
  3. pydra_core/common/enum.py +63 -63
  4. pydra_core/common/interpolate.py +345 -345
  5. pydra_core/common/probability.py +293 -293
  6. pydra_core/core/calculation.py +51 -51
  7. pydra_core/core/datamodels/frequency_line.py +60 -60
  8. pydra_core/core/exceedance_frequency_line.py +224 -224
  9. pydra_core/core/exceedance_frequency_line_experimental.py +163 -163
  10. pydra_core/core/hbn.py +226 -226
  11. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017.txt +36 -36
  12. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017_metOnzHeid.txt +45 -45
  13. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_metOnzHeid_v02.txt +50 -50
  14. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_v02.txt +42 -42
  15. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_metOnzHeid_v02.txt +56 -56
  16. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_v02.txt +48 -48
  17. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_metOnzHeid_v02.txt +56 -56
  18. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_v02.txt +48 -48
  19. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_metOnzHeid_v02.txt +50 -50
  20. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_v02.txt +42 -42
  21. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_metOnzHeid_v02.txt +56 -56
  22. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_v02.txt +48 -48
  23. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_metOnzHeid_v02.txt +51 -51
  24. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_v02.txt +44 -44
  25. pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_Ref.txt +27 -27
  26. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017.txt +30 -30
  27. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017_metOnzHeid.txt +32 -32
  28. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015.txt +44 -44
  29. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015_metOnzHeid.txt +33 -33
  30. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050.txt +44 -44
  31. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050_metOnzHeid.txt +33 -33
  32. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100.txt +44 -44
  33. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100_metOnzHeid.txt +38 -38
  34. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015.txt +44 -44
  35. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015_metOnzHeid.txt +33 -33
  36. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050.txt +44 -44
  37. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050_metOnzHeid.txt +33 -33
  38. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100.txt +44 -44
  39. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100_metOnzHeid.txt +33 -33
  40. pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_Ref.txt +13 -13
  41. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017.txt +47 -47
  42. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017_metOnzHeid.txt +47 -47
  43. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015.txt +49 -49
  44. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +58 -58
  45. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050.txt +49 -49
  46. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +58 -58
  47. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100.txt +49 -49
  48. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +58 -58
  49. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015.txt +49 -49
  50. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +58 -58
  51. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050.txt +49 -49
  52. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +58 -58
  53. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100.txt +49 -49
  54. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +58 -58
  55. pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_Ref.txt +20 -20
  56. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017.txt +33 -33
  57. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017_metOnzHeid.txt +59 -59
  58. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015.txt +49 -49
  59. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_BenedenRijn.txt +49 -49
  60. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +62 -62
  61. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid_BenedenRijn.txt +65 -65
  62. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050.txt +49 -49
  63. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_BenedenRijn.txt +49 -49
  64. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +62 -62
  65. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid_BenedenRijn.txt +64 -64
  66. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100.txt +49 -49
  67. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_BenedenRijn.txt +49 -49
  68. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +62 -62
  69. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid_BenedenRijn.txt +64 -64
  70. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015.txt +50 -50
  71. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_BenedenRijn.txt +50 -50
  72. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +62 -62
  73. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid_BenedenRijn.txt +64 -64
  74. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050.txt +50 -50
  75. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_BenedenRijn.txt +50 -50
  76. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +62 -62
  77. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid_BenedenRijn.txt +64 -64
  78. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100.txt +50 -50
  79. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_BenedenRijn.txt +50 -50
  80. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +62 -62
  81. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid_BenedenRijn.txt +65 -65
  82. pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_Ref.txt +22 -22
  83. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017.txt +55 -55
  84. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017_metOnzHeid.txt +55 -55
  85. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015.txt +46 -46
  86. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015_metOnzHeid.txt +64 -64
  87. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050.txt +46 -46
  88. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050_metOnzHeid.txt +64 -64
  89. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100.txt +46 -46
  90. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100_metOnzHeid.txt +64 -64
  91. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015.txt +47 -47
  92. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015_metOnzHeid.txt +64 -64
  93. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050.txt +47 -47
  94. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050_metOnzHeid.txt +64 -64
  95. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100.txt +47 -47
  96. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100_metOnzHeid.txt +64 -64
  97. pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_Ref.txt +14 -14
  98. pydra_core/data/statistics/Golfvorm/Borgharen/Golfvormen_Borgharen.txt +76 -76
  99. pydra_core/data/statistics/Golfvorm/Dalfsen/Golfvormen_Dalfsen.txt +83 -83
  100. pydra_core/data/statistics/Golfvorm/Grevelingenmeer/Golfvormen_Grevelingenmeer.txt +33 -33
  101. pydra_core/data/statistics/Golfvorm/IJsselmeer/Golfvormen_IJsselmeer.txt +83 -83
  102. pydra_core/data/statistics/Golfvorm/Lith/Golfvormen_Lith.txt +76 -76
  103. pydra_core/data/statistics/Golfvorm/Lobith/Golfvormen_Lobith.txt +76 -76
  104. pydra_core/data/statistics/Golfvorm/Markermeer/Golfvormen_Markermeer.txt +139 -139
  105. pydra_core/data/statistics/Golfvorm/Olst/Golfvormen_Olst.txt +83 -83
  106. pydra_core/data/statistics/Golfvorm/Veerse Meer/Golfvormen_Veersemeer.txt +53 -53
  107. pydra_core/data/statistics/Golfvorm/Veluwerandmeer/Golfvormen_Veluwerandmeer.txt +139 -139
  108. pydra_core/data/statistics/Golfvorm/Volkerak-Zoommeer/Golfvormen_Volkerakzoommeer.txt +73 -73
  109. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017.txt +12 -12
  110. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017_metOnzHeid.txt +24 -24
  111. pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_v01.txt +12 -12
  112. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017.txt +25 -25
  113. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017_metOnzHeid.txt +39 -39
  114. pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_v01.txt +14 -14
  115. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017.txt +18 -18
  116. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017_metOnzHeid.txt +37 -37
  117. pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_v01.txt +10 -10
  118. pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_excl_peilverhoging.txt +13 -13
  119. pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_v01.txt +15 -15
  120. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017.txt +13 -13
  121. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017_metOnzHeid.txt +36 -36
  122. pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_v01.txt +13 -13
  123. pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM.txt +17 -17
  124. pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM_metOnzHeid.txt +42 -42
  125. pydra_core/data/statistics/Restant/Oosterschelde/BesliskansenOSKering.txt +524 -524
  126. pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_2023.txt +7 -7
  127. pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_OS.txt +13 -13
  128. pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS.txt +14 -14
  129. pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS_40_60_80uur_2023.txt +16 -16
  130. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2008.txt +23 -23
  131. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2013.txt +18 -18
  132. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2017.txt +18 -18
  133. pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2023.txt +13 -13
  134. pydra_core/data/statistics/Restant/Up2U/Up2U10.dat +59 -59
  135. pydra_core/data/statistics/Restant/Up2U/Up2Up.dat +59 -59
  136. pydra_core/data/statistics/Restant/Up2U/Up2Ustar.dat +59 -59
  137. pydra_core/data/statistics/Restant/hulpdijken.txt +59 -59
  138. pydra_core/data/statistics/Restant/hulpgolfhoogtes.txt +23 -23
  139. pydra_core/data/statistics/Restant/hulpgolfperiodes.txt +38 -38
  140. pydra_core/data/statistics/Restant/kansstormduur.txt +8 -8
  141. pydra_core/data/statistics/Restant/pwind_west.txt +33 -33
  142. pydra_core/data/statistics/Restant/pwind_west_met_Volkerfactor.txt +33 -33
  143. pydra_core/data/statistics/Restant/pwind_west_zonder_Volkerfactor.txt +33 -33
  144. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden.txt +18 -18
  145. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden_2017.txt +22 -22
  146. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord.txt +18 -18
  147. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord_2017.txt +22 -22
  148. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid.txt +18 -18
  149. pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid_2017.txt +22 -22
  150. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS.txt +21 -21
  151. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_16sectoren_2023.txt +23 -23
  152. pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_2017.txt +21 -21
  153. pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost.txt +18 -18
  154. pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost_2017.txt +22 -22
  155. pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west.txt +18 -18
  156. pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west_2017.txt +22 -22
  157. pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS.txt +18 -18
  158. pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS_2017.txt +22 -22
  159. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Maas 2017.csv +630 -630
  160. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Rijn 2017.csv +630 -630
  161. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Hollandsche IJsselkering.csv +757 -757
  162. pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Oosterscheldekering 2017.csv +55080 -55080
  163. pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_2017.txt +18 -18
  164. pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_v00.txt +14 -14
  165. pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_2017.txt +19 -19
  166. pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_v01.txt +15 -15
  167. pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_2017.txt +13 -13
  168. pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_v01.txt +13 -13
  169. pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_2017.txt +19 -19
  170. pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_v01.txt +14 -14
  171. pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_2017.txt +18 -18
  172. pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_v01.txt +17 -17
  173. pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_2017.txt +18 -18
  174. pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_v01.txt +16 -16
  175. pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_2017.txt +19 -19
  176. pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_v01.txt +11 -11
  177. pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_2017.txt +19 -19
  178. pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_v01.txt +15 -15
  179. pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_excl_peilverhoging.txt +12 -12
  180. pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_v01.txt +15 -15
  181. pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_2017.txt +11 -11
  182. pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_v01.txt +11 -11
  183. pydra_core/data/statistics/Topduur/Volkerak-Zoommeer/Topduur_Volkerakzoommeer_BER-VZM.txt +17 -17
  184. pydra_core/data/statistics/Windrichting/Deelen/Richtingskansen_Deelen_2017.txt +27 -27
  185. pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust.txt +16 -16
  186. pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust_2017.txt +23 -23
  187. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_16sectoren_OS_2023.txt +30 -30
  188. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS.txt +19 -19
  189. pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS_2017.txt +23 -23
  190. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren.txt +19 -19
  191. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren_2017.txt +19 -19
  192. pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_2017.txt +27 -27
  193. pydra_core/data/statistics/Windrichting/Schiphol/kanswindrichting_v01.txt +28 -28
  194. pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ.txt +16 -16
  195. pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ_2017.txt +23 -23
  196. pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS.txt +16 -16
  197. pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS_2017.txt +23 -23
  198. pydra_core/data/statistics/Windsnelheid/De Kooy/OvkansWindsnelheid_Texel.txt +69 -69
  199. pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017.txt +91 -91
  200. pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017_metOnzHeid.txt +91 -91
  201. pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017.txt +90 -90
  202. pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017_metOnzHeid.txt +90 -90
  203. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/OvkansWindsnelheid_Hoek van Holland.txt +69 -69
  204. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017.txt +91 -91
  205. pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017_metOnzHeid.txt +91 -91
  206. pydra_core/data/statistics/Windsnelheid/IJmuiden/OvkansWindsnelheid_IJmuiden.txt +69 -69
  207. pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017.txt +91 -91
  208. pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017_metOnzHeid.txt +91 -91
  209. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren.txt +50 -50
  210. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017.txt +90 -90
  211. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metOnzHeid.txt +90 -90
  212. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag.txt +96 -96
  213. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
  214. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag.txt +96 -96
  215. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
  216. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017.txt +90 -90
  217. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017_metOnzHeid.txt +90 -90
  218. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017.txt +90 -90
  219. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017_metOnzHeid.txt +90 -90
  220. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol.txt +57 -57
  221. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_10%.txt +63 -63
  222. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_5%.txt +61 -61
  223. pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_B_met volker.txt +59 -59
  224. pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_OS.txt +66 -66
  225. pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_Vlissingen.txt +69 -69
  226. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023.txt +91 -91
  227. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023_metOnzHeid.txt +90 -90
  228. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017.txt +91 -91
  229. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metOnzHeid.txt +91 -91
  230. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag.txt +96 -96
  231. pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag_metOnzHeid.txt +96 -96
  232. pydra_core/data/statistics/Windsnelheid/West-Terschelling/OvkansWindsnelheid_West-Tersch.txt +69 -69
  233. pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017.txt +91 -91
  234. pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017_metOnzHeid.txt +91 -91
  235. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017.txt +81 -81
  236. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017_metOnzHeid.txt +81 -81
  237. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017.txt +81 -81
  238. pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017_metOnzHeid.txt +81 -81
  239. pydra_core/data/statistics/Zeewaterstand/Delfzijl/OvkansZee_Delfzijl.txt +70 -70
  240. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017.txt +89 -89
  241. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017_metOnzHeid.txt +89 -89
  242. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017.txt +88 -88
  243. pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017_metOnzHeid.txt +88 -88
  244. pydra_core/data/statistics/Zeewaterstand/Den Helder/OvkansZee_Den Helder.txt +70 -70
  245. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017.txt +88 -88
  246. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017_metOnzHeid.txt +88 -88
  247. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017.txt +87 -87
  248. pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017_metOnzHeid.txt +87 -87
  249. pydra_core/data/statistics/Zeewaterstand/Den Oever/OvkansZee_Den Oever.txt +70 -70
  250. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017.txt +71 -71
  251. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017_metOnzHeid.txt +71 -71
  252. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017.txt +70 -70
  253. pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017_metOnzHeid.txt +70 -70
  254. pydra_core/data/statistics/Zeewaterstand/Hansweert/OvkansZee_Hansweert.txt +70 -70
  255. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017.txt +85 -85
  256. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  257. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017.txt +84 -84
  258. pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017_metOnzHeid.txt +84 -84
  259. pydra_core/data/statistics/Zeewaterstand/Harlingen/OvkansZee_Harlingen.txt +70 -70
  260. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017.txt +84 -84
  261. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017_metOnzHeid.txt +84 -84
  262. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017.txt +83 -83
  263. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017_metOnzHeid.txt +83 -83
  264. pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/OvkansZee_Hoek van Holland.txt +70 -70
  265. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017.txt +86 -86
  266. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017_metOnzHeid.txt +86 -86
  267. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017.txt +85 -85
  268. pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  269. pydra_core/data/statistics/Zeewaterstand/Huibertgat/OvkansZee_Huibertgat.txt +70 -70
  270. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017.txt +85 -85
  271. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  272. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017.txt +85 -85
  273. pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  274. pydra_core/data/statistics/Zeewaterstand/IJmuiden/OvkansZee_IJmuiden.txt +70 -70
  275. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017.txt +85 -85
  276. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  277. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017.txt +85 -85
  278. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017_metOnzHeid.txt +85 -85
  279. pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/OvkansZee_IJmuiden_virtueel.txt +70 -70
  280. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017.txt +85 -85
  281. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
  282. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017.txt +84 -84
  283. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017_metOnzHeid.txt +84 -84
  284. pydra_core/data/statistics/Zeewaterstand/Lauwersoog/OvkansZee_Lauwersoog.txt +70 -70
  285. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2011.txt +88 -88
  286. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017.txt +88 -88
  287. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017_metOnzheid.txt +92 -92
  288. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017.txt +85 -85
  289. pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017_metOnzheid.txt +85 -85
  290. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017.txt +79 -79
  291. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017_metOnzHeid.txt +79 -79
  292. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017.txt +79 -79
  293. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017_metOnzHeid.txt +79 -79
  294. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023.txt +74 -74
  295. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023_metOnzHeid.txt +73 -73
  296. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZee_OS11.txt +70 -70
  297. pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZeewaterstand_OS.txt +71 -71
  298. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017.txt +74 -74
  299. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
  300. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017.txt +74 -74
  301. pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017_metOnzHeid.txt +74 -74
  302. pydra_core/data/statistics/Zeewaterstand/Vlissingen/OvkansZee_Vlissingen.txt +70 -70
  303. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017.txt +74 -74
  304. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
  305. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017.txt +74 -74
  306. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017_metOnzHeid.txt +74 -74
  307. pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/OvkansZee_Vlissingen_virtueel.txt +70 -70
  308. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017.txt +87 -87
  309. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017_metOnzHeid.txt +87 -87
  310. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017.txt +86 -86
  311. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017_metOnzHeid.txt +86 -86
  312. pydra_core/data/statistics/Zeewaterstand/West-Terschelling/OvkansZee_West-Terschelling.txt +70 -70
  313. pydra_core/hrdatabase/hrdatabase.py +177 -177
  314. pydra_core/io/database_hr.py +598 -598
  315. pydra_core/io/database_settings.py +183 -183
  316. pydra_core/io/file_hydranl.py +92 -92
  317. pydra_core/location/location.py +115 -115
  318. pydra_core/location/model/base_model.py +270 -270
  319. pydra_core/location/model/loading/loading.py +368 -368
  320. pydra_core/location/model/loading/loading_factory.py +89 -89
  321. pydra_core/location/model/loading/loading_model/loading_model.py +324 -324
  322. pydra_core/location/model/loading/other_systems/loading_wave_overtopping.py +122 -122
  323. pydra_core/location/model/loading/water_systems/loading_coast.py +54 -54
  324. pydra_core/location/model/loading/water_systems/loading_eastern_scheldt.py +169 -169
  325. pydra_core/location/model/loading/water_systems/loading_ijssel_vechtdelta.py +55 -55
  326. pydra_core/location/model/loading/water_systems/loading_lake.py +55 -55
  327. pydra_core/location/model/loading/water_systems/loading_lower_rivier.py +68 -68
  328. pydra_core/location/model/loading/water_systems/loading_upper_river.py +55 -55
  329. pydra_core/location/model/statistics/other_systems/statistics_wave_overtopping.py +72 -72
  330. pydra_core/location/model/statistics/statistics.py +171 -171
  331. pydra_core/location/model/statistics/statistics_factory.py +89 -89
  332. pydra_core/location/model/statistics/stochastics/barrier/barrier.py +43 -43
  333. pydra_core/location/model/statistics/stochastics/barrier/barrier_easternscheldt.py +147 -147
  334. pydra_core/location/model/statistics/stochastics/barrier/barrier_europoort.py +209 -209
  335. pydra_core/location/model/statistics/stochastics/barrier/barrier_ramspol.py +41 -41
  336. pydra_core/location/model/statistics/stochastics/barrier/no_barrier.py +21 -21
  337. pydra_core/location/model/statistics/stochastics/discharge.py +108 -108
  338. pydra_core/location/model/statistics/stochastics/discrete_probability.py +55 -55
  339. pydra_core/location/model/statistics/stochastics/lake_level.py +158 -158
  340. pydra_core/location/model/statistics/stochastics/model_uncertainty.py +358 -358
  341. pydra_core/location/model/statistics/stochastics/sea_level/sea_level.py +53 -53
  342. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_lower_river.py +93 -93
  343. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_point.py +65 -65
  344. pydra_core/location/model/statistics/stochastics/sea_level/sea_level_triangular.py +158 -158
  345. pydra_core/location/model/statistics/stochastics/sigma_function.py +24 -24
  346. pydra_core/location/model/statistics/stochastics/wave_shape.py +624 -624
  347. pydra_core/location/model/statistics/stochastics/wind_speed.py +196 -196
  348. pydra_core/location/model/statistics/water_systems/statistics_coast.py +153 -153
  349. pydra_core/location/model/statistics/water_systems/statistics_eastern_scheldt.py +177 -177
  350. pydra_core/location/model/statistics/water_systems/statistics_ijssel_vechtdelta.py +229 -229
  351. pydra_core/location/model/statistics/water_systems/statistics_lake.py +86 -86
  352. pydra_core/location/model/statistics/water_systems/statistics_lower_river.py +321 -321
  353. pydra_core/location/model/statistics/water_systems/statistics_upper_river.py +86 -86
  354. pydra_core/location/model/water_system.py +249 -249
  355. pydra_core/location/model/wave_overtopping.py +25 -25
  356. pydra_core/location/profile/foreland.py +246 -246
  357. pydra_core/location/profile/lib/CombOverloopOverslag64.dll +0 -0
  358. pydra_core/location/profile/lib/DynamicLib-DaF.dll +0 -0
  359. pydra_core/location/profile/lib/README.MD +10 -10
  360. pydra_core/location/profile/lib/dllDikesOvertopping.dll +0 -0
  361. pydra_core/location/profile/lib/feedbackDLL.dll +0 -0
  362. pydra_core/location/profile/profile.py +971 -971
  363. pydra_core/location/profile/profile_loading.py +473 -473
  364. pydra_core/location/settings/settings.py +387 -387
  365. {pydra_core-0.0.1.dist-info → pydra_core-0.0.3.dist-info}/METADATA +25 -5
  366. pydra_core-0.0.3.dist-info/RECORD +393 -0
  367. pydra_core-0.0.1.dist-info/RECORD +0 -389
  368. {pydra_core-0.0.1.dist-info → pydra_core-0.0.3.dist-info}/WHEEL +0 -0
@@ -1,249 +1,249 @@
1
- import numpy as np
2
-
3
- from .base_model import BaseModel
4
- from .loading.loading_factory import LoadingFactory
5
- from .statistics.statistics_factory import StatisticsFactory
6
- from ..settings.settings import Settings
7
- from ...common.probability import ProbabilityFunctions
8
-
9
-
10
- class WaterSystem(BaseModel):
11
- def __init__(self, settings: Settings):
12
- """
13
- Water System model
14
- """
15
- # Inherit
16
- super().__init__(settings)
17
-
18
- # Statistics
19
- self.statistics = StatisticsFactory.get_statistics(self.settings)
20
-
21
- # Loading
22
- self.loading = LoadingFactory.get_loading(self.settings)
23
-
24
- def process_slow_stochastics(
25
- self, exceedance_probability: np.ndarray, axis: int = None
26
- ) -> np.ndarray:
27
- """
28
- Convert probabilities given a discharge to probabilities per duration.
29
-
30
- This function converts probabilities represented by a discharge to
31
- probabilities per specified duration based on the given stochastic
32
- variable ('stochastic'). The probabilities are computed for each
33
- duration (basisduur).
34
-
35
- Parameters
36
- ----------
37
- exceedance_probability : np.ndarray
38
- Numpy array with the discharge on the first dimension.
39
-
40
- Returns
41
- -------
42
- np.ndarray
43
- Probabilities per specified duration (basisduur).
44
- """
45
- # Input stochastics
46
- statistics = self.get_statistics()
47
- slow_stochastics = list(statistics.stochastics_slow.keys())
48
- _axis = range(1, len(slow_stochastics) + 1) if axis is None else axis
49
-
50
- # Put slow variable on first axis if not already
51
- newpos = range(len(np.atleast_1d(_axis)))
52
- if newpos != _axis:
53
- ep_x = np.moveaxis(exceedance_probability, _axis, newpos)
54
- else:
55
- ep_x = exceedance_probability
56
-
57
- # Calculate exceedance frequencies per peak discharge / lake level
58
- ep_ks = self.process_wave_shape(ep_x)
59
-
60
- # Steps in probability density
61
- if len(slow_stochastics) == 1 and slow_stochastics[0] == "q":
62
- p_peak = ProbabilityFunctions.probability_density(
63
- statistics.discharge.qpeak, statistics.discharge.epqpeak
64
- ).probability
65
-
66
- elif len(slow_stochastics) == 1 and slow_stochastics[0] == "a":
67
- p_peak = ProbabilityFunctions.probability_density(
68
- statistics.lake_level.apeak, statistics.lake_level.epapeak
69
- ).probability
70
-
71
- elif len(slow_stochastics) == 2 and slow_stochastics == ["a", "q"]:
72
- dq = ProbabilityFunctions.probability_density(
73
- statistics.discharge.qblok, statistics.discharge.epqpeak
74
- ).delta
75
- dm = ProbabilityFunctions.probability_density(
76
- statistics.lake_level.ablok, statistics.lake_level.epapeak
77
- ).delta
78
- p_peak = statistics.density_aq_peak * dm[:, None] * dq[None, :]
79
-
80
- elif len(slow_stochastics) == 2 and slow_stochastics == ["q", "a"]:
81
- dq = ProbabilityFunctions.probability_density(
82
- statistics.discharge.qblok, statistics.discharge.epqpeak
83
- ).delta
84
- da = ProbabilityFunctions.probability_density(
85
- statistics.lake_level.ablok, statistics.lake_level.epapeak
86
- ).delta
87
- p_peak = statistics.density_aq_peak.T * dq[:, None] * da[None, :]
88
-
89
- # Reshape steps when multiplying to trapezoidal probs
90
- shp = p_peak.shape + (1,) * (ep_ks.ndim - p_peak.ndim)
91
-
92
- # Trapezoidal probability
93
- p_trapezoidal = (p_peak.reshape(shp) * ep_ks).sum(
94
- axis=tuple(range(p_peak.ndim))
95
- )
96
-
97
- return p_trapezoidal
98
-
99
- def process_wave_shape(self, exceedance_probability: np.ndarray) -> np.ndarray:
100
- """
101
- Process the discharge waveshapes into the exceedance probabilities
102
- conditioned on the discharge level. The discharge level is represented
103
- on the first axis, which has dimensions equal to the number of
104
- discharge steps in the statistics.
105
-
106
- Parameters
107
- ----------
108
- exceedance_probability : np.ndarray
109
- Numpy array containing the exceedance probabilities with the
110
- discharge on the first dimension.
111
-
112
- Returns
113
- -------
114
- blokondkans : np.ndarray
115
- Exceedance probabilities of the discharge per duration (basisduur).
116
- """
117
- # Input variables
118
- statistics = self.get_statistics()
119
- slow_stochastics = list(statistics.stochastics_slow.keys())
120
- fp = exceedance_probability
121
-
122
- # Result variables
123
- intidxs = []
124
- xs = []
125
- xps = []
126
-
127
- # Verzamel de interpolatieindices voor alle trage stochasten
128
- for i, _stochastic in enumerate(slow_stochastics):
129
- if _stochastic == "q":
130
- xp = statistics.discharge.qpeak
131
- x = statistics.discharge.get_wave_shape().get_wave_shapes()
132
- tijden = statistics.discharge.get_wave_shape().time
133
- elif _stochastic == "a":
134
- xp = statistics.lake_level.apeak
135
- x = statistics.lake_level.get_wave_shape().get_wave_shapes()
136
- tijden = statistics.lake_level.get_wave_shape().time
137
- else:
138
- raise ValueError(
139
- f"Eerste trage stochast is niet 'q' of 'm'/'a' (gegeven eerste trage stochast: {_stochastic})"
140
- )
141
-
142
- # Check if the length matches
143
- if exceedance_probability.shape[i] != x.shape[1]:
144
- raise ValueError(
145
- f"The number of elements in the stochast axis ({i}) should be {x.shape[1]} ({x.shape}), but is {exceedance_probability.shape[i]} ({exceedance_probability.shape})."
146
- )
147
-
148
- # Bepaal de interpolatie-indices, de xp-punten rondom x waartussen wordt geïnterpoleerd
149
- intidx = np.array(
150
- [(xp[None, :] <= ix[:, None]).sum(1) - 1 for ix in x], dtype=np.uint16
151
- )
152
- intidx = np.minimum(np.maximum(intidx, 0), len(xp) - 2)
153
-
154
- intidxs.append(intidx)
155
- xs.append(x)
156
- xps.append(xp)
157
-
158
- # Bepaal de tijdsduur van het eerste en het laatste blokje uit de golfvorm
159
- block_duration = tijden[1] - tijden[0]
160
- eindduur = tijden[-1] - tijden[-2]
161
-
162
- # Alloceer arrays. Het is sneller om in de loop de arrays over te schrijven dan om ze opnieuw aan te maken
163
- ondkanstot = np.ones(exceedance_probability.shape)
164
- blokondkans = np.zeros(exceedance_probability.shape)
165
- ovkansen = np.zeros(exceedance_probability.shape)
166
-
167
- nt = len(tijden)
168
-
169
- for it in range(nt - 1):
170
- # Interpoleer de overschrijdingskansen
171
- if len(slow_stochastics) == 1:
172
- # Bepaal de index van de interpolatiewaarden (afvoeren / meerpeil) voor de betreffende tijdstap
173
- iix = intidxs[0][it]
174
-
175
- # Bepaal de fracties van de fp waarden obv xp, die moet worden ingevuld voor f (obv x)
176
- fracs = (x[it] - xp[iix]) / (xp[iix + 1] - xp[iix])
177
-
178
- # Bepaal de vorm van de output array, dit is (Ntraag, Ntijd, Nderest1, Nderest2, ...)
179
- fracshp = fracs.shape + (1,) * (fp.ndim - 1)
180
-
181
- # Interpoleer alle overschrijdingskansen in één keer door de fracties met de resultaatwaarden (fp) te vermenigvuldigen
182
- ovkansen[:] = (1 - fracs.reshape(fracshp)) * fp[iix] + fp[
183
- iix + 1
184
- ] * fracs.reshape(fracshp)
185
-
186
- elif len(slow_stochastics) == 2:
187
- iix1 = intidxs[0][it]
188
- iix2 = intidxs[1][it]
189
-
190
- # Bepaal de fracties van de fp waarden obv xp, die moet worden ingevuld voor f (obv x)
191
- fracs1 = (xs[0][it] - xps[0][iix1]) / (xps[0][iix1 + 1] - xps[0][iix1])
192
- fracs2 = (xs[1][it] - xps[1][iix2]) / (xps[1][iix2 + 1] - xps[1][iix2])
193
-
194
- # Bepaal de vorm van de output array, dit is (Ntraag, Ntijd, Nderest1, Nderest2, ...)
195
- frac2shp = fracs2.shape + (1,) * (fp.ndim - 2)
196
-
197
- # 2D interpolatie
198
- # Merk op dat dit via een loop gaat. Dit is sneller dan in enkele array-operaties, omdat
199
- # de arrays zo groot zijn dat fancy-indexing traag wordt
200
- for i, (ix, ixp1) in enumerate(zip(iix1, iix1 + 1)):
201
- # Interpoleer eerst over de eerste stochast
202
- fy1 = (1 - fracs1[i]) * fp[ix][iix2] + fp[ixp1][iix2] * fracs1[i]
203
- fy2 = (1 - fracs1[i]) * fp[ix][iix2 + 1] + fp[ixp1][
204
- iix2 + 1
205
- ] * fracs1[i]
206
-
207
- # Interpoleer de tweede stochast
208
- ovkansen[i] = fy1 + (fy2 - fy1) * fracs2.reshape(frac2shp)
209
-
210
- # fy1 = (1 - fracs1.reshape(frac1shp)) * fp[np.ix_(iix1, iix2 )] + fp[np.ix_(iix1+1, iix2 )] * fracs1.reshape(frac1shp)
211
- # fy2 = (1 - fracs1.reshape(frac1shp)) * fp[np.ix_(iix1, iix2+1)] + fp[np.ix_(iix1+1, iix2+1)] * fracs1.reshape(frac1shp)
212
-
213
- # Door het interpoleren kunnen overschrijdingskansen gecreëerd worden, die een fractie groter zijn dan 1.0
214
- ovkansen[:] = np.minimum(ovkansen, 1.0)
215
-
216
- # De berekende overschrijdingskansen gelden voor een blokje met de duur, die gelijk is
217
- # aan de door de gebruiker gekozen block_duration van de wind. Voor het discretiseren van de
218
- # golfvormen heeft de gebuiker een andere duur opgegeven. De bovenstaande overschrijdings-
219
- # kansen worden hiervoor gecorrigeerd
220
- if block_duration != statistics.wind_speed.block_duration_wind:
221
- ovkansen[:] = 1.0 - (1.0 - ovkansen) ** (
222
- block_duration / statistics.wind_speed.block_duration_wind
223
- )
224
-
225
- # Bereken de onderschrijdingskans voor de basisduur gebruikmakend van de overschrijdingskansen per blokje
226
- # Factoren zijn 1
227
- blokondkans[:] = 1.0 - ovkansen
228
-
229
- # Eerste blok is half
230
- if it == 0:
231
- blokondkans[:] **= 0.5
232
-
233
- # Neem het voorlaatste en laatste blok samen
234
- if it == (nt - 1):
235
- # Als de eindduur kleiner is dan een halve block_duration, dan is de factor kleiner dan 1
236
- if eindduur < (0.5 * block_duration):
237
- factor = ((0.5 * block_duration) + eindduur) / block_duration
238
- blokondkans[:] **= factor
239
-
240
- # Als de eindduur groter of even lang is als een halve block_duration
241
- else:
242
- # Vermenig de block_duration ook nog met het laatste blokje
243
- factor = (eindduur - (block_duration / 2.0)) / block_duration
244
- blokondkans[:] *= (1.0 - ovkansen[:, :]) ** factor
245
-
246
- ondkanstot *= blokondkans
247
-
248
- # Return
249
- return 1 - ondkanstot
1
+ import numpy as np
2
+
3
+ from .base_model import BaseModel
4
+ from .loading.loading_factory import LoadingFactory
5
+ from .statistics.statistics_factory import StatisticsFactory
6
+ from ..settings.settings import Settings
7
+ from ...common.probability import ProbabilityFunctions
8
+
9
+
10
+ class WaterSystem(BaseModel):
11
+ def __init__(self, settings: Settings):
12
+ """
13
+ Water System model
14
+ """
15
+ # Inherit
16
+ super().__init__(settings)
17
+
18
+ # Statistics
19
+ self.statistics = StatisticsFactory.get_statistics(self.settings)
20
+
21
+ # Loading
22
+ self.loading = LoadingFactory.get_loading(self.settings)
23
+
24
+ def process_slow_stochastics(
25
+ self, exceedance_probability: np.ndarray, axis: int = None
26
+ ) -> np.ndarray:
27
+ """
28
+ Convert probabilities given a discharge to probabilities per duration.
29
+
30
+ This function converts probabilities represented by a discharge to
31
+ probabilities per specified duration based on the given stochastic
32
+ variable ('stochastic'). The probabilities are computed for each
33
+ duration (basisduur).
34
+
35
+ Parameters
36
+ ----------
37
+ exceedance_probability : np.ndarray
38
+ Numpy array with the discharge on the first dimension.
39
+
40
+ Returns
41
+ -------
42
+ np.ndarray
43
+ Probabilities per specified duration (basisduur).
44
+ """
45
+ # Input stochastics
46
+ statistics = self.get_statistics()
47
+ slow_stochastics = list(statistics.stochastics_slow.keys())
48
+ _axis = range(1, len(slow_stochastics) + 1) if axis is None else axis
49
+
50
+ # Put slow variable on first axis if not already
51
+ newpos = range(len(np.atleast_1d(_axis)))
52
+ if newpos != _axis:
53
+ ep_x = np.moveaxis(exceedance_probability, _axis, newpos)
54
+ else:
55
+ ep_x = exceedance_probability
56
+
57
+ # Calculate exceedance frequencies per peak discharge / lake level
58
+ ep_ks = self.process_wave_shape(ep_x)
59
+
60
+ # Steps in probability density
61
+ if len(slow_stochastics) == 1 and slow_stochastics[0] == "q":
62
+ p_peak = ProbabilityFunctions.probability_density(
63
+ statistics.discharge.qpeak, statistics.discharge.epqpeak
64
+ ).probability
65
+
66
+ elif len(slow_stochastics) == 1 and slow_stochastics[0] == "a":
67
+ p_peak = ProbabilityFunctions.probability_density(
68
+ statistics.lake_level.apeak, statistics.lake_level.epapeak
69
+ ).probability
70
+
71
+ elif len(slow_stochastics) == 2 and slow_stochastics == ["a", "q"]:
72
+ dq = ProbabilityFunctions.probability_density(
73
+ statistics.discharge.qblok, statistics.discharge.epqpeak
74
+ ).delta
75
+ dm = ProbabilityFunctions.probability_density(
76
+ statistics.lake_level.ablok, statistics.lake_level.epapeak
77
+ ).delta
78
+ p_peak = statistics.density_aq_peak * dm[:, None] * dq[None, :]
79
+
80
+ elif len(slow_stochastics) == 2 and slow_stochastics == ["q", "a"]:
81
+ dq = ProbabilityFunctions.probability_density(
82
+ statistics.discharge.qblok, statistics.discharge.epqpeak
83
+ ).delta
84
+ da = ProbabilityFunctions.probability_density(
85
+ statistics.lake_level.ablok, statistics.lake_level.epapeak
86
+ ).delta
87
+ p_peak = statistics.density_aq_peak.T * dq[:, None] * da[None, :]
88
+
89
+ # Reshape steps when multiplying to trapezoidal probs
90
+ shp = p_peak.shape + (1,) * (ep_ks.ndim - p_peak.ndim)
91
+
92
+ # Trapezoidal probability
93
+ p_trapezoidal = (p_peak.reshape(shp) * ep_ks).sum(
94
+ axis=tuple(range(p_peak.ndim))
95
+ )
96
+
97
+ return p_trapezoidal
98
+
99
+ def process_wave_shape(self, exceedance_probability: np.ndarray) -> np.ndarray:
100
+ """
101
+ Process the discharge waveshapes into the exceedance probabilities
102
+ conditioned on the discharge level. The discharge level is represented
103
+ on the first axis, which has dimensions equal to the number of
104
+ discharge steps in the statistics.
105
+
106
+ Parameters
107
+ ----------
108
+ exceedance_probability : np.ndarray
109
+ Numpy array containing the exceedance probabilities with the
110
+ discharge on the first dimension.
111
+
112
+ Returns
113
+ -------
114
+ blokondkans : np.ndarray
115
+ Exceedance probabilities of the discharge per duration (basisduur).
116
+ """
117
+ # Input variables
118
+ statistics = self.get_statistics()
119
+ slow_stochastics = list(statistics.stochastics_slow.keys())
120
+ fp = exceedance_probability
121
+
122
+ # Result variables
123
+ intidxs = []
124
+ xs = []
125
+ xps = []
126
+
127
+ # Verzamel de interpolatieindices voor alle trage stochasten
128
+ for i, _stochastic in enumerate(slow_stochastics):
129
+ if _stochastic == "q":
130
+ xp = statistics.discharge.qpeak
131
+ x = statistics.discharge.get_wave_shape().get_wave_shapes()
132
+ tijden = statistics.discharge.get_wave_shape().time
133
+ elif _stochastic == "a":
134
+ xp = statistics.lake_level.apeak
135
+ x = statistics.lake_level.get_wave_shape().get_wave_shapes()
136
+ tijden = statistics.lake_level.get_wave_shape().time
137
+ else:
138
+ raise ValueError(
139
+ f"Eerste trage stochast is niet 'q' of 'm'/'a' (gegeven eerste trage stochast: {_stochastic})"
140
+ )
141
+
142
+ # Check if the length matches
143
+ if exceedance_probability.shape[i] != x.shape[1]:
144
+ raise ValueError(
145
+ f"The number of elements in the stochast axis ({i}) should be {x.shape[1]} ({x.shape}), but is {exceedance_probability.shape[i]} ({exceedance_probability.shape})."
146
+ )
147
+
148
+ # Bepaal de interpolatie-indices, de xp-punten rondom x waartussen wordt geïnterpoleerd
149
+ intidx = np.array(
150
+ [(xp[None, :] <= ix[:, None]).sum(1) - 1 for ix in x], dtype=np.uint16
151
+ )
152
+ intidx = np.minimum(np.maximum(intidx, 0), len(xp) - 2)
153
+
154
+ intidxs.append(intidx)
155
+ xs.append(x)
156
+ xps.append(xp)
157
+
158
+ # Bepaal de tijdsduur van het eerste en het laatste blokje uit de golfvorm
159
+ block_duration = tijden[1] - tijden[0]
160
+ eindduur = tijden[-1] - tijden[-2]
161
+
162
+ # Alloceer arrays. Het is sneller om in de loop de arrays over te schrijven dan om ze opnieuw aan te maken
163
+ ondkanstot = np.ones(exceedance_probability.shape)
164
+ blokondkans = np.zeros(exceedance_probability.shape)
165
+ ovkansen = np.zeros(exceedance_probability.shape)
166
+
167
+ nt = len(tijden)
168
+
169
+ for it in range(nt - 1):
170
+ # Interpoleer de overschrijdingskansen
171
+ if len(slow_stochastics) == 1:
172
+ # Bepaal de index van de interpolatiewaarden (afvoeren / meerpeil) voor de betreffende tijdstap
173
+ iix = intidxs[0][it]
174
+
175
+ # Bepaal de fracties van de fp waarden obv xp, die moet worden ingevuld voor f (obv x)
176
+ fracs = (x[it] - xp[iix]) / (xp[iix + 1] - xp[iix])
177
+
178
+ # Bepaal de vorm van de output array, dit is (Ntraag, Ntijd, Nderest1, Nderest2, ...)
179
+ fracshp = fracs.shape + (1,) * (fp.ndim - 1)
180
+
181
+ # Interpoleer alle overschrijdingskansen in één keer door de fracties met de resultaatwaarden (fp) te vermenigvuldigen
182
+ ovkansen[:] = (1 - fracs.reshape(fracshp)) * fp[iix] + fp[
183
+ iix + 1
184
+ ] * fracs.reshape(fracshp)
185
+
186
+ elif len(slow_stochastics) == 2:
187
+ iix1 = intidxs[0][it]
188
+ iix2 = intidxs[1][it]
189
+
190
+ # Bepaal de fracties van de fp waarden obv xp, die moet worden ingevuld voor f (obv x)
191
+ fracs1 = (xs[0][it] - xps[0][iix1]) / (xps[0][iix1 + 1] - xps[0][iix1])
192
+ fracs2 = (xs[1][it] - xps[1][iix2]) / (xps[1][iix2 + 1] - xps[1][iix2])
193
+
194
+ # Bepaal de vorm van de output array, dit is (Ntraag, Ntijd, Nderest1, Nderest2, ...)
195
+ frac2shp = fracs2.shape + (1,) * (fp.ndim - 2)
196
+
197
+ # 2D interpolatie
198
+ # Merk op dat dit via een loop gaat. Dit is sneller dan in enkele array-operaties, omdat
199
+ # de arrays zo groot zijn dat fancy-indexing traag wordt
200
+ for i, (ix, ixp1) in enumerate(zip(iix1, iix1 + 1)):
201
+ # Interpoleer eerst over de eerste stochast
202
+ fy1 = (1 - fracs1[i]) * fp[ix][iix2] + fp[ixp1][iix2] * fracs1[i]
203
+ fy2 = (1 - fracs1[i]) * fp[ix][iix2 + 1] + fp[ixp1][
204
+ iix2 + 1
205
+ ] * fracs1[i]
206
+
207
+ # Interpoleer de tweede stochast
208
+ ovkansen[i] = fy1 + (fy2 - fy1) * fracs2.reshape(frac2shp)
209
+
210
+ # fy1 = (1 - fracs1.reshape(frac1shp)) * fp[np.ix_(iix1, iix2 )] + fp[np.ix_(iix1+1, iix2 )] * fracs1.reshape(frac1shp)
211
+ # fy2 = (1 - fracs1.reshape(frac1shp)) * fp[np.ix_(iix1, iix2+1)] + fp[np.ix_(iix1+1, iix2+1)] * fracs1.reshape(frac1shp)
212
+
213
+ # Door het interpoleren kunnen overschrijdingskansen gecreëerd worden, die een fractie groter zijn dan 1.0
214
+ ovkansen[:] = np.minimum(ovkansen, 1.0)
215
+
216
+ # De berekende overschrijdingskansen gelden voor een blokje met de duur, die gelijk is
217
+ # aan de door de gebruiker gekozen block_duration van de wind. Voor het discretiseren van de
218
+ # golfvormen heeft de gebuiker een andere duur opgegeven. De bovenstaande overschrijdings-
219
+ # kansen worden hiervoor gecorrigeerd
220
+ if block_duration != statistics.wind_speed.block_duration_wind:
221
+ ovkansen[:] = 1.0 - (1.0 - ovkansen) ** (
222
+ block_duration / statistics.wind_speed.block_duration_wind
223
+ )
224
+
225
+ # Bereken de onderschrijdingskans voor de basisduur gebruikmakend van de overschrijdingskansen per blokje
226
+ # Factoren zijn 1
227
+ blokondkans[:] = 1.0 - ovkansen
228
+
229
+ # Eerste blok is half
230
+ if it == 0:
231
+ blokondkans[:] **= 0.5
232
+
233
+ # Neem het voorlaatste en laatste blok samen
234
+ if it == (nt - 1):
235
+ # Als de eindduur kleiner is dan een halve block_duration, dan is de factor kleiner dan 1
236
+ if eindduur < (0.5 * block_duration):
237
+ factor = ((0.5 * block_duration) + eindduur) / block_duration
238
+ blokondkans[:] **= factor
239
+
240
+ # Als de eindduur groter of even lang is als een halve block_duration
241
+ else:
242
+ # Vermenig de block_duration ook nog met het laatste blokje
243
+ factor = (eindduur - (block_duration / 2.0)) / block_duration
244
+ blokondkans[:] *= (1.0 - ovkansen[:, :]) ** factor
245
+
246
+ ondkanstot *= blokondkans
247
+
248
+ # Return
249
+ return 1 - ondkanstot
@@ -1,25 +1,25 @@
1
- import numpy as np
2
-
3
- from .base_model import BaseModel
4
- from .loading.other_systems.loading_wave_overtopping import LoadingWaveOvertopping
5
- from .statistics.other_systems.statistics_wave_overtopping import (
6
- StatisticsWaveOvertopping,
7
- )
8
- from ..location import Location
9
-
10
-
11
- class WaveOvertopping(BaseModel):
12
- def __init__(
13
- self, location: Location, water_levels: np.ndarray, probability: np.ndarray
14
- ):
15
- """
16
- Wave Overtopping model
17
- """
18
- # Inherit
19
- super().__init__(location.get_settings())
20
-
21
- # Init statistics
22
- self.statistics = StatisticsWaveOvertopping(location, water_levels, probability)
23
-
24
- # Init loading
25
- self.loading = LoadingWaveOvertopping(location, water_levels)
1
+ import numpy as np
2
+
3
+ from .base_model import BaseModel
4
+ from .loading.other_systems.loading_wave_overtopping import LoadingWaveOvertopping
5
+ from .statistics.other_systems.statistics_wave_overtopping import (
6
+ StatisticsWaveOvertopping,
7
+ )
8
+ from ..location import Location
9
+
10
+
11
+ class WaveOvertopping(BaseModel):
12
+ def __init__(
13
+ self, location: Location, water_levels: np.ndarray, probability: np.ndarray
14
+ ):
15
+ """
16
+ Wave Overtopping model
17
+ """
18
+ # Inherit
19
+ super().__init__(location.get_settings())
20
+
21
+ # Init statistics
22
+ self.statistics = StatisticsWaveOvertopping(location, water_levels, probability)
23
+
24
+ # Init loading
25
+ self.loading = LoadingWaveOvertopping(location, water_levels)