pydra-core 0.0.1__py2.py3-none-any.whl → 0.0.3__py2.py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pydra_core/__init__.py +32 -32
- pydra_core/common/common.py +98 -98
- pydra_core/common/enum.py +63 -63
- pydra_core/common/interpolate.py +345 -345
- pydra_core/common/probability.py +293 -293
- pydra_core/core/calculation.py +51 -51
- pydra_core/core/datamodels/frequency_line.py +60 -60
- pydra_core/core/exceedance_frequency_line.py +224 -224
- pydra_core/core/exceedance_frequency_line_experimental.py +163 -163
- pydra_core/core/hbn.py +226 -226
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017.txt +36 -36
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017_metOnzHeid.txt +45 -45
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_metOnzHeid_v02.txt +50 -50
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_v02.txt +42 -42
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_metOnzHeid_v02.txt +56 -56
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_v02.txt +48 -48
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_metOnzHeid_v02.txt +56 -56
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_v02.txt +48 -48
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_metOnzHeid_v02.txt +50 -50
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_v02.txt +42 -42
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_metOnzHeid_v02.txt +56 -56
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_v02.txt +48 -48
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_metOnzHeid_v02.txt +51 -51
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_v02.txt +44 -44
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_Ref.txt +27 -27
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017.txt +30 -30
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017_metOnzHeid.txt +32 -32
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100_metOnzHeid.txt +38 -38
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_Ref.txt +13 -13
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017.txt +47 -47
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017_metOnzHeid.txt +47 -47
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_Ref.txt +20 -20
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017.txt +33 -33
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017_metOnzHeid.txt +59 -59
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_BenedenRijn.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid_BenedenRijn.txt +65 -65
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_BenedenRijn.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_BenedenRijn.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_BenedenRijn.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_BenedenRijn.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_BenedenRijn.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid_BenedenRijn.txt +65 -65
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_Ref.txt +22 -22
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017.txt +55 -55
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017_metOnzHeid.txt +55 -55
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015.txt +46 -46
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050.txt +46 -46
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100.txt +46 -46
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015.txt +47 -47
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050.txt +47 -47
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100.txt +47 -47
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_Ref.txt +14 -14
- pydra_core/data/statistics/Golfvorm/Borgharen/Golfvormen_Borgharen.txt +76 -76
- pydra_core/data/statistics/Golfvorm/Dalfsen/Golfvormen_Dalfsen.txt +83 -83
- pydra_core/data/statistics/Golfvorm/Grevelingenmeer/Golfvormen_Grevelingenmeer.txt +33 -33
- pydra_core/data/statistics/Golfvorm/IJsselmeer/Golfvormen_IJsselmeer.txt +83 -83
- pydra_core/data/statistics/Golfvorm/Lith/Golfvormen_Lith.txt +76 -76
- pydra_core/data/statistics/Golfvorm/Lobith/Golfvormen_Lobith.txt +76 -76
- pydra_core/data/statistics/Golfvorm/Markermeer/Golfvormen_Markermeer.txt +139 -139
- pydra_core/data/statistics/Golfvorm/Olst/Golfvormen_Olst.txt +83 -83
- pydra_core/data/statistics/Golfvorm/Veerse Meer/Golfvormen_Veersemeer.txt +53 -53
- pydra_core/data/statistics/Golfvorm/Veluwerandmeer/Golfvormen_Veluwerandmeer.txt +139 -139
- pydra_core/data/statistics/Golfvorm/Volkerak-Zoommeer/Golfvormen_Volkerakzoommeer.txt +73 -73
- pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017.txt +12 -12
- pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017_metOnzHeid.txt +24 -24
- pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_v01.txt +12 -12
- pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017.txt +25 -25
- pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017_metOnzHeid.txt +39 -39
- pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_v01.txt +14 -14
- pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017.txt +18 -18
- pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017_metOnzHeid.txt +37 -37
- pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_v01.txt +10 -10
- pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_excl_peilverhoging.txt +13 -13
- pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_v01.txt +15 -15
- pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017.txt +13 -13
- pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017_metOnzHeid.txt +36 -36
- pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_v01.txt +13 -13
- pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM.txt +17 -17
- pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM_metOnzHeid.txt +42 -42
- pydra_core/data/statistics/Restant/Oosterschelde/BesliskansenOSKering.txt +524 -524
- pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_2023.txt +7 -7
- pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_OS.txt +13 -13
- pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS.txt +14 -14
- pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS_40_60_80uur_2023.txt +16 -16
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2008.txt +23 -23
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2013.txt +18 -18
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2017.txt +18 -18
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2023.txt +13 -13
- pydra_core/data/statistics/Restant/Up2U/Up2U10.dat +59 -59
- pydra_core/data/statistics/Restant/Up2U/Up2Up.dat +59 -59
- pydra_core/data/statistics/Restant/Up2U/Up2Ustar.dat +59 -59
- pydra_core/data/statistics/Restant/hulpdijken.txt +59 -59
- pydra_core/data/statistics/Restant/hulpgolfhoogtes.txt +23 -23
- pydra_core/data/statistics/Restant/hulpgolfperiodes.txt +38 -38
- pydra_core/data/statistics/Restant/kansstormduur.txt +8 -8
- pydra_core/data/statistics/Restant/pwind_west.txt +33 -33
- pydra_core/data/statistics/Restant/pwind_west_met_Volkerfactor.txt +33 -33
- pydra_core/data/statistics/Restant/pwind_west_zonder_Volkerfactor.txt +33 -33
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS.txt +21 -21
- pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_16sectoren_2023.txt +23 -23
- pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_2017.txt +21 -21
- pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS_2017.txt +22 -22
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Maas 2017.csv +630 -630
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Rijn 2017.csv +630 -630
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Hollandsche IJsselkering.csv +757 -757
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Oosterscheldekering 2017.csv +55080 -55080
- pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_2017.txt +18 -18
- pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_v00.txt +14 -14
- pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_v01.txt +15 -15
- pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_2017.txt +13 -13
- pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_v01.txt +13 -13
- pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_v01.txt +14 -14
- pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_2017.txt +18 -18
- pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_v01.txt +17 -17
- pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_2017.txt +18 -18
- pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_v01.txt +16 -16
- pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_v01.txt +11 -11
- pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_v01.txt +15 -15
- pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_excl_peilverhoging.txt +12 -12
- pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_v01.txt +15 -15
- pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_2017.txt +11 -11
- pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_v01.txt +11 -11
- pydra_core/data/statistics/Topduur/Volkerak-Zoommeer/Topduur_Volkerakzoommeer_BER-VZM.txt +17 -17
- pydra_core/data/statistics/Windrichting/Deelen/Richtingskansen_Deelen_2017.txt +27 -27
- pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust.txt +16 -16
- pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust_2017.txt +23 -23
- pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_16sectoren_OS_2023.txt +30 -30
- pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS.txt +19 -19
- pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS_2017.txt +23 -23
- pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren.txt +19 -19
- pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren_2017.txt +19 -19
- pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_2017.txt +27 -27
- pydra_core/data/statistics/Windrichting/Schiphol/kanswindrichting_v01.txt +28 -28
- pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ.txt +16 -16
- pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ_2017.txt +23 -23
- pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS.txt +16 -16
- pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS_2017.txt +23 -23
- pydra_core/data/statistics/Windsnelheid/De Kooy/OvkansWindsnelheid_Texel.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Hoek van Holland/OvkansWindsnelheid_Hoek van Holland.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/IJmuiden/OvkansWindsnelheid_IJmuiden.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren.txt +50 -50
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol.txt +57 -57
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_10%.txt +63 -63
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_5%.txt +61 -61
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_B_met volker.txt +59 -59
- pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_OS.txt +66 -66
- pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_Vlissingen.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag_metOnzHeid.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/West-Terschelling/OvkansWindsnelheid_West-Tersch.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017_metOnzHeid.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017_metOnzHeid.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/OvkansZee_Delfzijl.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017.txt +89 -89
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017_metOnzHeid.txt +89 -89
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017_metOnzHeid.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Helder/OvkansZee_Den Helder.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017_metOnzHeid.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017_metOnzHeid.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/Den Oever/OvkansZee_Den Oever.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017.txt +71 -71
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017_metOnzHeid.txt +71 -71
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017_metOnzHeid.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hansweert/OvkansZee_Hansweert.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017_metOnzHeid.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Harlingen/OvkansZee_Harlingen.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017_metOnzHeid.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017.txt +83 -83
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017_metOnzHeid.txt +83 -83
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/OvkansZee_Hoek van Holland.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017_metOnzHeid.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/OvkansZee_Huibertgat.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/OvkansZee_IJmuiden.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/OvkansZee_IJmuiden_virtueel.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017_metOnzHeid.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/OvkansZee_Lauwersoog.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2011.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017_metOnzheid.txt +92 -92
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017_metOnzheid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017_metOnzHeid.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017_metOnzHeid.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023_metOnzHeid.txt +73 -73
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZee_OS11.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZeewaterstand_OS.txt +71 -71
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/OvkansZee_Vlissingen.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/OvkansZee_Vlissingen_virtueel.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017_metOnzHeid.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017_metOnzHeid.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/OvkansZee_West-Terschelling.txt +70 -70
- pydra_core/hrdatabase/hrdatabase.py +177 -177
- pydra_core/io/database_hr.py +598 -598
- pydra_core/io/database_settings.py +183 -183
- pydra_core/io/file_hydranl.py +92 -92
- pydra_core/location/location.py +115 -115
- pydra_core/location/model/base_model.py +270 -270
- pydra_core/location/model/loading/loading.py +368 -368
- pydra_core/location/model/loading/loading_factory.py +89 -89
- pydra_core/location/model/loading/loading_model/loading_model.py +324 -324
- pydra_core/location/model/loading/other_systems/loading_wave_overtopping.py +122 -122
- pydra_core/location/model/loading/water_systems/loading_coast.py +54 -54
- pydra_core/location/model/loading/water_systems/loading_eastern_scheldt.py +169 -169
- pydra_core/location/model/loading/water_systems/loading_ijssel_vechtdelta.py +55 -55
- pydra_core/location/model/loading/water_systems/loading_lake.py +55 -55
- pydra_core/location/model/loading/water_systems/loading_lower_rivier.py +68 -68
- pydra_core/location/model/loading/water_systems/loading_upper_river.py +55 -55
- pydra_core/location/model/statistics/other_systems/statistics_wave_overtopping.py +72 -72
- pydra_core/location/model/statistics/statistics.py +171 -171
- pydra_core/location/model/statistics/statistics_factory.py +89 -89
- pydra_core/location/model/statistics/stochastics/barrier/barrier.py +43 -43
- pydra_core/location/model/statistics/stochastics/barrier/barrier_easternscheldt.py +147 -147
- pydra_core/location/model/statistics/stochastics/barrier/barrier_europoort.py +209 -209
- pydra_core/location/model/statistics/stochastics/barrier/barrier_ramspol.py +41 -41
- pydra_core/location/model/statistics/stochastics/barrier/no_barrier.py +21 -21
- pydra_core/location/model/statistics/stochastics/discharge.py +108 -108
- pydra_core/location/model/statistics/stochastics/discrete_probability.py +55 -55
- pydra_core/location/model/statistics/stochastics/lake_level.py +158 -158
- pydra_core/location/model/statistics/stochastics/model_uncertainty.py +358 -358
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level.py +53 -53
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level_lower_river.py +93 -93
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level_point.py +65 -65
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level_triangular.py +158 -158
- pydra_core/location/model/statistics/stochastics/sigma_function.py +24 -24
- pydra_core/location/model/statistics/stochastics/wave_shape.py +624 -624
- pydra_core/location/model/statistics/stochastics/wind_speed.py +196 -196
- pydra_core/location/model/statistics/water_systems/statistics_coast.py +153 -153
- pydra_core/location/model/statistics/water_systems/statistics_eastern_scheldt.py +177 -177
- pydra_core/location/model/statistics/water_systems/statistics_ijssel_vechtdelta.py +229 -229
- pydra_core/location/model/statistics/water_systems/statistics_lake.py +86 -86
- pydra_core/location/model/statistics/water_systems/statistics_lower_river.py +321 -321
- pydra_core/location/model/statistics/water_systems/statistics_upper_river.py +86 -86
- pydra_core/location/model/water_system.py +249 -249
- pydra_core/location/model/wave_overtopping.py +25 -25
- pydra_core/location/profile/foreland.py +246 -246
- pydra_core/location/profile/lib/CombOverloopOverslag64.dll +0 -0
- pydra_core/location/profile/lib/DynamicLib-DaF.dll +0 -0
- pydra_core/location/profile/lib/README.MD +10 -10
- pydra_core/location/profile/lib/dllDikesOvertopping.dll +0 -0
- pydra_core/location/profile/lib/feedbackDLL.dll +0 -0
- pydra_core/location/profile/profile.py +971 -971
- pydra_core/location/profile/profile_loading.py +473 -473
- pydra_core/location/settings/settings.py +387 -387
- {pydra_core-0.0.1.dist-info → pydra_core-0.0.3.dist-info}/METADATA +25 -5
- pydra_core-0.0.3.dist-info/RECORD +393 -0
- pydra_core-0.0.1.dist-info/RECORD +0 -389
- {pydra_core-0.0.1.dist-info → pydra_core-0.0.3.dist-info}/WHEEL +0 -0
@@ -1,153 +1,153 @@
|
|
1
|
-
import numpy as np
|
2
|
-
|
3
|
-
from scipy.stats import norm
|
4
|
-
|
5
|
-
from ..statistics import Statistics
|
6
|
-
from ..stochastics.discrete_probability import DiscreteProbability
|
7
|
-
from ..stochastics.model_uncertainty import ModelUncertainty
|
8
|
-
from ..stochastics.sea_level.sea_level_point import SeaLevelPoint
|
9
|
-
from ..stochastics.sea_level.sea_level_triangular import SeaLevelTriangular
|
10
|
-
from ..stochastics.sigma_function import SigmaFunction
|
11
|
-
from ..stochastics.wind_speed import WindSpeed
|
12
|
-
from ....settings.settings import Settings
|
13
|
-
from .....common.interpolate import Interpolate
|
14
|
-
from .....common.probability import ProbabilityFunctions
|
15
|
-
|
16
|
-
|
17
|
-
class StatisticsCoast(Statistics):
|
18
|
-
"""
|
19
|
-
Statistics class for the Coast
|
20
|
-
Water systems: Coast (North, Central, South), Waddensea (West, East) and Western scheldt
|
21
|
-
"""
|
22
|
-
|
23
|
-
def __init__(self, settings: Settings):
|
24
|
-
"""
|
25
|
-
Init the Statistics class
|
26
|
-
|
27
|
-
Parameters
|
28
|
-
----------
|
29
|
-
settings : Settings
|
30
|
-
The Settings object
|
31
|
-
"""
|
32
|
-
# Inherit initialisation method from parent
|
33
|
-
super().__init__(settings)
|
34
|
-
|
35
|
-
# Sea level (Most parts require triangular interpolation, some one point (Den Helder))
|
36
|
-
if settings.sea_level_probability is not None:
|
37
|
-
self.sea_level = SeaLevelPoint(settings)
|
38
|
-
else:
|
39
|
-
self.sea_level = SeaLevelTriangular(settings)
|
40
|
-
|
41
|
-
# Sigmafunctie
|
42
|
-
self.sigma_function = SigmaFunction(settings)
|
43
|
-
|
44
|
-
# Wind
|
45
|
-
self.wind_direction = DiscreteProbability(settings.wind_direction_probability)
|
46
|
-
self.wind_speed = WindSpeed(settings)
|
47
|
-
self.wind_speed.correct_with_sigma_function(
|
48
|
-
self.sigma_function, self.wind_direction
|
49
|
-
)
|
50
|
-
|
51
|
-
# Calculate the probability P(m, u, r)
|
52
|
-
self.__calculate_combined_probabilities()
|
53
|
-
|
54
|
-
# Model uncertainty
|
55
|
-
self.model_uncertainties = ModelUncertainty(settings)
|
56
|
-
|
57
|
-
# Discrete, slow, fast stochatics
|
58
|
-
# TODO: Replace with framework
|
59
|
-
self.stochastics_discrete = {
|
60
|
-
"r": self.wind_direction.get_discretisation(),
|
61
|
-
"k": [1],
|
62
|
-
}
|
63
|
-
self.stochastics_fast = {
|
64
|
-
"u": self.wind_speed.get_discretisation(),
|
65
|
-
"m": self.sea_level.get_discretisation(),
|
66
|
-
}
|
67
|
-
self.stochastics_slow = {}
|
68
|
-
|
69
|
-
def calculate_probability(
|
70
|
-
self, wind_direction: float, closing_situation: int = 1, given: list = []
|
71
|
-
):
|
72
|
-
"""
|
73
|
-
Calculate the probability of occurence for the discretisation given the wind direction.
|
74
|
-
|
75
|
-
Parameters
|
76
|
-
----------
|
77
|
-
wind_direction : float
|
78
|
-
Wind direction
|
79
|
-
closing_situation : int
|
80
|
-
Closing situation, (irrelevant for Coast)
|
81
|
-
given : list
|
82
|
-
Given stochasts
|
83
|
-
"""
|
84
|
-
# Probability of wind direction
|
85
|
-
ir = self.wind_direction.get_discretisation().tolist().index(wind_direction)
|
86
|
-
kanswr = 1.0 if "r" in given else self.wind_direction.get_probability()[ir]
|
87
|
-
|
88
|
-
# Probability of a sea level and wind speed given a wind direction
|
89
|
-
kans_um_r = self.p_mur[:, :, ir]
|
90
|
-
|
91
|
-
# If given, calculate the conditional probabilities
|
92
|
-
if "u" in given:
|
93
|
-
kans_um_r[:] = ProbabilityFunctions.conditional_probability(
|
94
|
-
kans_um_r, axis=0
|
95
|
-
)
|
96
|
-
if "m" in given:
|
97
|
-
kans_um_r[:] = ProbabilityFunctions.conditional_probability(
|
98
|
-
kans_um_r, axis=1
|
99
|
-
)
|
100
|
-
|
101
|
-
# Combine all probabilities
|
102
|
-
probability = kans_um_r[:, :] * kanswr
|
103
|
-
|
104
|
-
# Return probability
|
105
|
-
return probability
|
106
|
-
|
107
|
-
def __calculate_combined_probabilities(self):
|
108
|
-
# Statistics
|
109
|
-
m = self.sea_level
|
110
|
-
s = self.sigma_function
|
111
|
-
r = self.wind_direction
|
112
|
-
u = self.wind_speed
|
113
|
-
|
114
|
-
# Initialize an empty matrix
|
115
|
-
self.p_mur = np.zeros((len(u), len(m), len(r)))
|
116
|
-
|
117
|
-
# Per wind direction
|
118
|
-
for ir in range(len(r)):
|
119
|
-
# Calculate the probability density of the sea level given the wind direction
|
120
|
-
pd_m = ProbabilityFunctions.probability_density(
|
121
|
-
m.get_discretisation(), m.get_exceedance_probability()[:, ir]
|
122
|
-
)
|
123
|
-
|
124
|
-
# If there is correlation (sigma > 0)
|
125
|
-
if s.correlation[ir]:
|
126
|
-
# Calculate sigma
|
127
|
-
sigma = Interpolate.inextrp1d(
|
128
|
-
x=m.get_discretisation(), xp=s.sigma_sea_level, fp=s.sigma[:, ir]
|
129
|
-
)
|
130
|
-
if np.min(sigma) < 0.0:
|
131
|
-
raise ValueError()
|
132
|
-
|
133
|
-
# Exceedance probability of the wind speed given the sea water level epm_r[Nwind, Nswl]
|
134
|
-
snorm = (u.k_u[:, ir][:, None] - m.epm_exp[:, ir][None, :]) / sigma[
|
135
|
-
None, :
|
136
|
-
]
|
137
|
-
epm_r = 1 - norm.cdf(snorm)
|
138
|
-
|
139
|
-
# Per sea level
|
140
|
-
for im in range(len(m)):
|
141
|
-
pd_u = ProbabilityFunctions.probability_density(
|
142
|
-
u.get_discretisation(), epm_r[:, im]
|
143
|
-
)
|
144
|
-
self.p_mur[:, im, ir] = pd_u.probability * pd_m.probability[im]
|
145
|
-
|
146
|
-
# If there is no correlation (sigma <= 0)
|
147
|
-
else:
|
148
|
-
pd_u = ProbabilityFunctions.probability_density(
|
149
|
-
u.get_discretisation(), u.get_exceedance_probability()[:, ir]
|
150
|
-
)
|
151
|
-
self.p_mur[:, :, ir] = (
|
152
|
-
pd_u.probability[:, None] * pd_m.probability[None, :]
|
153
|
-
)
|
1
|
+
import numpy as np
|
2
|
+
|
3
|
+
from scipy.stats import norm
|
4
|
+
|
5
|
+
from ..statistics import Statistics
|
6
|
+
from ..stochastics.discrete_probability import DiscreteProbability
|
7
|
+
from ..stochastics.model_uncertainty import ModelUncertainty
|
8
|
+
from ..stochastics.sea_level.sea_level_point import SeaLevelPoint
|
9
|
+
from ..stochastics.sea_level.sea_level_triangular import SeaLevelTriangular
|
10
|
+
from ..stochastics.sigma_function import SigmaFunction
|
11
|
+
from ..stochastics.wind_speed import WindSpeed
|
12
|
+
from ....settings.settings import Settings
|
13
|
+
from .....common.interpolate import Interpolate
|
14
|
+
from .....common.probability import ProbabilityFunctions
|
15
|
+
|
16
|
+
|
17
|
+
class StatisticsCoast(Statistics):
|
18
|
+
"""
|
19
|
+
Statistics class for the Coast
|
20
|
+
Water systems: Coast (North, Central, South), Waddensea (West, East) and Western scheldt
|
21
|
+
"""
|
22
|
+
|
23
|
+
def __init__(self, settings: Settings):
|
24
|
+
"""
|
25
|
+
Init the Statistics class
|
26
|
+
|
27
|
+
Parameters
|
28
|
+
----------
|
29
|
+
settings : Settings
|
30
|
+
The Settings object
|
31
|
+
"""
|
32
|
+
# Inherit initialisation method from parent
|
33
|
+
super().__init__(settings)
|
34
|
+
|
35
|
+
# Sea level (Most parts require triangular interpolation, some one point (Den Helder))
|
36
|
+
if settings.sea_level_probability is not None:
|
37
|
+
self.sea_level = SeaLevelPoint(settings)
|
38
|
+
else:
|
39
|
+
self.sea_level = SeaLevelTriangular(settings)
|
40
|
+
|
41
|
+
# Sigmafunctie
|
42
|
+
self.sigma_function = SigmaFunction(settings)
|
43
|
+
|
44
|
+
# Wind
|
45
|
+
self.wind_direction = DiscreteProbability(settings.wind_direction_probability)
|
46
|
+
self.wind_speed = WindSpeed(settings)
|
47
|
+
self.wind_speed.correct_with_sigma_function(
|
48
|
+
self.sigma_function, self.wind_direction
|
49
|
+
)
|
50
|
+
|
51
|
+
# Calculate the probability P(m, u, r)
|
52
|
+
self.__calculate_combined_probabilities()
|
53
|
+
|
54
|
+
# Model uncertainty
|
55
|
+
self.model_uncertainties = ModelUncertainty(settings)
|
56
|
+
|
57
|
+
# Discrete, slow, fast stochatics
|
58
|
+
# TODO: Replace with framework
|
59
|
+
self.stochastics_discrete = {
|
60
|
+
"r": self.wind_direction.get_discretisation(),
|
61
|
+
"k": [1],
|
62
|
+
}
|
63
|
+
self.stochastics_fast = {
|
64
|
+
"u": self.wind_speed.get_discretisation(),
|
65
|
+
"m": self.sea_level.get_discretisation(),
|
66
|
+
}
|
67
|
+
self.stochastics_slow = {}
|
68
|
+
|
69
|
+
def calculate_probability(
|
70
|
+
self, wind_direction: float, closing_situation: int = 1, given: list = []
|
71
|
+
):
|
72
|
+
"""
|
73
|
+
Calculate the probability of occurence for the discretisation given the wind direction.
|
74
|
+
|
75
|
+
Parameters
|
76
|
+
----------
|
77
|
+
wind_direction : float
|
78
|
+
Wind direction
|
79
|
+
closing_situation : int
|
80
|
+
Closing situation, (irrelevant for Coast)
|
81
|
+
given : list
|
82
|
+
Given stochasts
|
83
|
+
"""
|
84
|
+
# Probability of wind direction
|
85
|
+
ir = self.wind_direction.get_discretisation().tolist().index(wind_direction)
|
86
|
+
kanswr = 1.0 if "r" in given else self.wind_direction.get_probability()[ir]
|
87
|
+
|
88
|
+
# Probability of a sea level and wind speed given a wind direction
|
89
|
+
kans_um_r = self.p_mur[:, :, ir]
|
90
|
+
|
91
|
+
# If given, calculate the conditional probabilities
|
92
|
+
if "u" in given:
|
93
|
+
kans_um_r[:] = ProbabilityFunctions.conditional_probability(
|
94
|
+
kans_um_r, axis=0
|
95
|
+
)
|
96
|
+
if "m" in given:
|
97
|
+
kans_um_r[:] = ProbabilityFunctions.conditional_probability(
|
98
|
+
kans_um_r, axis=1
|
99
|
+
)
|
100
|
+
|
101
|
+
# Combine all probabilities
|
102
|
+
probability = kans_um_r[:, :] * kanswr
|
103
|
+
|
104
|
+
# Return probability
|
105
|
+
return probability
|
106
|
+
|
107
|
+
def __calculate_combined_probabilities(self):
|
108
|
+
# Statistics
|
109
|
+
m = self.sea_level
|
110
|
+
s = self.sigma_function
|
111
|
+
r = self.wind_direction
|
112
|
+
u = self.wind_speed
|
113
|
+
|
114
|
+
# Initialize an empty matrix
|
115
|
+
self.p_mur = np.zeros((len(u), len(m), len(r)))
|
116
|
+
|
117
|
+
# Per wind direction
|
118
|
+
for ir in range(len(r)):
|
119
|
+
# Calculate the probability density of the sea level given the wind direction
|
120
|
+
pd_m = ProbabilityFunctions.probability_density(
|
121
|
+
m.get_discretisation(), m.get_exceedance_probability()[:, ir]
|
122
|
+
)
|
123
|
+
|
124
|
+
# If there is correlation (sigma > 0)
|
125
|
+
if s.correlation[ir]:
|
126
|
+
# Calculate sigma
|
127
|
+
sigma = Interpolate.inextrp1d(
|
128
|
+
x=m.get_discretisation(), xp=s.sigma_sea_level, fp=s.sigma[:, ir]
|
129
|
+
)
|
130
|
+
if np.min(sigma) < 0.0:
|
131
|
+
raise ValueError()
|
132
|
+
|
133
|
+
# Exceedance probability of the wind speed given the sea water level epm_r[Nwind, Nswl]
|
134
|
+
snorm = (u.k_u[:, ir][:, None] - m.epm_exp[:, ir][None, :]) / sigma[
|
135
|
+
None, :
|
136
|
+
]
|
137
|
+
epm_r = 1 - norm.cdf(snorm)
|
138
|
+
|
139
|
+
# Per sea level
|
140
|
+
for im in range(len(m)):
|
141
|
+
pd_u = ProbabilityFunctions.probability_density(
|
142
|
+
u.get_discretisation(), epm_r[:, im]
|
143
|
+
)
|
144
|
+
self.p_mur[:, im, ir] = pd_u.probability * pd_m.probability[im]
|
145
|
+
|
146
|
+
# If there is no correlation (sigma <= 0)
|
147
|
+
else:
|
148
|
+
pd_u = ProbabilityFunctions.probability_density(
|
149
|
+
u.get_discretisation(), u.get_exceedance_probability()[:, ir]
|
150
|
+
)
|
151
|
+
self.p_mur[:, :, ir] = (
|
152
|
+
pd_u.probability[:, None] * pd_m.probability[None, :]
|
153
|
+
)
|
@@ -1,177 +1,177 @@
|
|
1
|
-
import numpy as np
|
2
|
-
|
3
|
-
from scipy.stats import norm
|
4
|
-
|
5
|
-
from ..statistics import Statistics
|
6
|
-
from ..stochastics.barrier.barrier_easternscheldt import BarrierEasternScheldt
|
7
|
-
from ..stochastics.discrete_probability import DiscreteProbability
|
8
|
-
from ..stochastics.model_uncertainty import ModelUncertainty
|
9
|
-
from ..stochastics.sea_level.sea_level_point import SeaLevelPoint
|
10
|
-
from ..stochastics.sigma_function import SigmaFunction
|
11
|
-
from ..stochastics.wind_speed import WindSpeed
|
12
|
-
from ....settings.settings import Settings
|
13
|
-
from .....common.interpolate import Interpolate
|
14
|
-
from .....common.probability import ProbabilityFunctions
|
15
|
-
|
16
|
-
|
17
|
-
class StatisticsEasternScheldt(Statistics):
|
18
|
-
"""
|
19
|
-
Statistics class for the Eastern Scheldt
|
20
|
-
Water systems: Eastern Scheldt
|
21
|
-
"""
|
22
|
-
|
23
|
-
def __init__(self, settings: Settings):
|
24
|
-
"""
|
25
|
-
Init the Statistics class for the Eastern Scheldt
|
26
|
-
|
27
|
-
Parameters
|
28
|
-
----------
|
29
|
-
settings : Settings
|
30
|
-
The Settings object
|
31
|
-
"""
|
32
|
-
# Inherit initialisation method from parent
|
33
|
-
super().__init__(settings)
|
34
|
-
|
35
|
-
# Sea level
|
36
|
-
self.sea_level = SeaLevelPoint(settings)
|
37
|
-
|
38
|
-
# Storm surge duration
|
39
|
-
self.storm_surge_duration = DiscreteProbability(
|
40
|
-
settings.storm_surge_duration_probability
|
41
|
-
)
|
42
|
-
|
43
|
-
# Fase differences (between surge and tide)
|
44
|
-
self.phase_surge_tide = DiscreteProbability(
|
45
|
-
settings.phase_surge_tide_probability
|
46
|
-
)
|
47
|
-
|
48
|
-
# Sigma function
|
49
|
-
self.sigma_function = SigmaFunction(settings)
|
50
|
-
|
51
|
-
# Wind
|
52
|
-
self.wind_direction = DiscreteProbability(settings.wind_direction_probability)
|
53
|
-
self.wind_speed = WindSpeed(settings)
|
54
|
-
self.wind_speed.correct_with_sigma_function(
|
55
|
-
self.sigma_function, self.wind_direction
|
56
|
-
)
|
57
|
-
|
58
|
-
# Calculate P(u, m, r)
|
59
|
-
self.__calculate_combined_probabilities()
|
60
|
-
|
61
|
-
# Eastern Scheldt Barrier
|
62
|
-
self.barrier = BarrierEasternScheldt(
|
63
|
-
settings, self.wind_direction, self.wind_speed, self.sea_level
|
64
|
-
)
|
65
|
-
|
66
|
-
# Model uncertainty
|
67
|
-
self.model_uncertainties = ModelUncertainty(settings)
|
68
|
-
|
69
|
-
# Discrete, slow, fast stochatics
|
70
|
-
self.stochastics_discrete = {
|
71
|
-
"r": self.wind_direction.get_discretisation(),
|
72
|
-
"k": [1, 2, 3, 4, 5, 6, 7, 8],
|
73
|
-
}
|
74
|
-
self.stochastics_fast = {
|
75
|
-
"u": self.wind_speed.get_discretisation(),
|
76
|
-
"m": self.sea_level.get_discretisation(),
|
77
|
-
"d": self.storm_surge_duration.get_discretisation(),
|
78
|
-
"p": self.phase_surge_tide.get_discretisation(),
|
79
|
-
}
|
80
|
-
self.stochastics_slow = {}
|
81
|
-
|
82
|
-
def calculate_probability(
|
83
|
-
self, wind_direction: float, closing_situation: int = 1, given: list = []
|
84
|
-
):
|
85
|
-
"""
|
86
|
-
Calculate the probability of occurence for the discretisation given the wind direction.
|
87
|
-
|
88
|
-
Parameters
|
89
|
-
----------
|
90
|
-
wind_direction : float
|
91
|
-
Wind direction
|
92
|
-
closing_situation : int
|
93
|
-
Closing situation, (irrelevant for Coast)
|
94
|
-
given : list
|
95
|
-
Given stochasts
|
96
|
-
"""
|
97
|
-
# Probability of wind direction
|
98
|
-
ir = self.wind_direction.get_discretisation().tolist().index(wind_direction)
|
99
|
-
pwr = 1.0 if "r" in given else self.wind_direction.get_probability()[ir]
|
100
|
-
|
101
|
-
# Probability of closing given a wind direction
|
102
|
-
p_k = (
|
103
|
-
1.0
|
104
|
-
if "k" in given
|
105
|
-
else self.barrier.calculate_closing_probability(
|
106
|
-
wind_direction, closing_situation
|
107
|
-
)
|
108
|
-
)
|
109
|
-
|
110
|
-
# Probability of a sea level and wind speed given a wind direction
|
111
|
-
p_um_r = self.p_mur[:, :, ir]
|
112
|
-
|
113
|
-
# If given, calculate the conditional probabilities
|
114
|
-
if "u" in given:
|
115
|
-
p_um_r[:] = ProbabilityFunctions.conditional_probability(p_um_r, axis=0)
|
116
|
-
if "m" in given:
|
117
|
-
p_um_r[:] = ProbabilityFunctions.conditional_probability(p_um_r, axis=1)
|
118
|
-
|
119
|
-
# Combine all probabilities
|
120
|
-
probability = (
|
121
|
-
p_um_r[:, :, None, None]
|
122
|
-
* self.storm_surge_duration.get_probability()[None, None, :, None]
|
123
|
-
* self.phase_surge_tide.get_probability()[None, None, None, :]
|
124
|
-
* p_k
|
125
|
-
* pwr
|
126
|
-
)
|
127
|
-
|
128
|
-
# Return probability
|
129
|
-
return probability
|
130
|
-
|
131
|
-
def __calculate_combined_probabilities(self):
|
132
|
-
# Statistics
|
133
|
-
m = self.sea_level
|
134
|
-
s = self.sigma_function
|
135
|
-
r = self.wind_direction
|
136
|
-
u = self.wind_speed
|
137
|
-
|
138
|
-
# Initialize an empty matrix
|
139
|
-
self.p_mur = np.zeros((len(u), len(m), len(r)))
|
140
|
-
|
141
|
-
# Per wind direction
|
142
|
-
for ir in range(len(r)):
|
143
|
-
# Calculate the probability density of the sea level given the wind direction
|
144
|
-
pd_m = ProbabilityFunctions.probability_density(
|
145
|
-
m.get_discretisation(), m.get_exceedance_probability()[:, ir]
|
146
|
-
)
|
147
|
-
|
148
|
-
# If there is correlation (sigma > 0)
|
149
|
-
if s.correlation[ir]:
|
150
|
-
# Calculate sigma
|
151
|
-
sigma = Interpolate.inextrp1d(
|
152
|
-
x=m.get_discretisation(), xp=s.sigma_sea_level, fp=s.sigma[:, ir]
|
153
|
-
)
|
154
|
-
if np.min(sigma) < 0.0:
|
155
|
-
raise ValueError()
|
156
|
-
|
157
|
-
# Exceedance probability of the wind speed given the sea water level epm_r[Nwind, Nswl]
|
158
|
-
snorm = (
|
159
|
-
self.wind_speed.k_u[:, ir][:, None] - m.epm_exp[:, ir][None, :]
|
160
|
-
) / sigma[None, :]
|
161
|
-
ovkansen = 1 - norm.cdf(snorm)
|
162
|
-
|
163
|
-
# Per sea level
|
164
|
-
for im in range(len(m)):
|
165
|
-
pd_u = ProbabilityFunctions.probability_density(
|
166
|
-
u.get_discretisation(), ovkansen[:, im]
|
167
|
-
)
|
168
|
-
self.p_mur[:, im, ir] = pd_u.probability * pd_m.probability[im]
|
169
|
-
|
170
|
-
# If there is no correlation (sigma <= 0)
|
171
|
-
else:
|
172
|
-
pd_u = ProbabilityFunctions.probability_density(
|
173
|
-
u.get_discretisation(), u.get_exceedance_probability()[:, ir]
|
174
|
-
)
|
175
|
-
self.p_mur[:, :, ir] = (
|
176
|
-
pd_m.probability[None, :] * pd_u.probability[:, None]
|
177
|
-
)
|
1
|
+
import numpy as np
|
2
|
+
|
3
|
+
from scipy.stats import norm
|
4
|
+
|
5
|
+
from ..statistics import Statistics
|
6
|
+
from ..stochastics.barrier.barrier_easternscheldt import BarrierEasternScheldt
|
7
|
+
from ..stochastics.discrete_probability import DiscreteProbability
|
8
|
+
from ..stochastics.model_uncertainty import ModelUncertainty
|
9
|
+
from ..stochastics.sea_level.sea_level_point import SeaLevelPoint
|
10
|
+
from ..stochastics.sigma_function import SigmaFunction
|
11
|
+
from ..stochastics.wind_speed import WindSpeed
|
12
|
+
from ....settings.settings import Settings
|
13
|
+
from .....common.interpolate import Interpolate
|
14
|
+
from .....common.probability import ProbabilityFunctions
|
15
|
+
|
16
|
+
|
17
|
+
class StatisticsEasternScheldt(Statistics):
|
18
|
+
"""
|
19
|
+
Statistics class for the Eastern Scheldt
|
20
|
+
Water systems: Eastern Scheldt
|
21
|
+
"""
|
22
|
+
|
23
|
+
def __init__(self, settings: Settings):
|
24
|
+
"""
|
25
|
+
Init the Statistics class for the Eastern Scheldt
|
26
|
+
|
27
|
+
Parameters
|
28
|
+
----------
|
29
|
+
settings : Settings
|
30
|
+
The Settings object
|
31
|
+
"""
|
32
|
+
# Inherit initialisation method from parent
|
33
|
+
super().__init__(settings)
|
34
|
+
|
35
|
+
# Sea level
|
36
|
+
self.sea_level = SeaLevelPoint(settings)
|
37
|
+
|
38
|
+
# Storm surge duration
|
39
|
+
self.storm_surge_duration = DiscreteProbability(
|
40
|
+
settings.storm_surge_duration_probability
|
41
|
+
)
|
42
|
+
|
43
|
+
# Fase differences (between surge and tide)
|
44
|
+
self.phase_surge_tide = DiscreteProbability(
|
45
|
+
settings.phase_surge_tide_probability
|
46
|
+
)
|
47
|
+
|
48
|
+
# Sigma function
|
49
|
+
self.sigma_function = SigmaFunction(settings)
|
50
|
+
|
51
|
+
# Wind
|
52
|
+
self.wind_direction = DiscreteProbability(settings.wind_direction_probability)
|
53
|
+
self.wind_speed = WindSpeed(settings)
|
54
|
+
self.wind_speed.correct_with_sigma_function(
|
55
|
+
self.sigma_function, self.wind_direction
|
56
|
+
)
|
57
|
+
|
58
|
+
# Calculate P(u, m, r)
|
59
|
+
self.__calculate_combined_probabilities()
|
60
|
+
|
61
|
+
# Eastern Scheldt Barrier
|
62
|
+
self.barrier = BarrierEasternScheldt(
|
63
|
+
settings, self.wind_direction, self.wind_speed, self.sea_level
|
64
|
+
)
|
65
|
+
|
66
|
+
# Model uncertainty
|
67
|
+
self.model_uncertainties = ModelUncertainty(settings)
|
68
|
+
|
69
|
+
# Discrete, slow, fast stochatics
|
70
|
+
self.stochastics_discrete = {
|
71
|
+
"r": self.wind_direction.get_discretisation(),
|
72
|
+
"k": [1, 2, 3, 4, 5, 6, 7, 8],
|
73
|
+
}
|
74
|
+
self.stochastics_fast = {
|
75
|
+
"u": self.wind_speed.get_discretisation(),
|
76
|
+
"m": self.sea_level.get_discretisation(),
|
77
|
+
"d": self.storm_surge_duration.get_discretisation(),
|
78
|
+
"p": self.phase_surge_tide.get_discretisation(),
|
79
|
+
}
|
80
|
+
self.stochastics_slow = {}
|
81
|
+
|
82
|
+
def calculate_probability(
|
83
|
+
self, wind_direction: float, closing_situation: int = 1, given: list = []
|
84
|
+
):
|
85
|
+
"""
|
86
|
+
Calculate the probability of occurence for the discretisation given the wind direction.
|
87
|
+
|
88
|
+
Parameters
|
89
|
+
----------
|
90
|
+
wind_direction : float
|
91
|
+
Wind direction
|
92
|
+
closing_situation : int
|
93
|
+
Closing situation, (irrelevant for Coast)
|
94
|
+
given : list
|
95
|
+
Given stochasts
|
96
|
+
"""
|
97
|
+
# Probability of wind direction
|
98
|
+
ir = self.wind_direction.get_discretisation().tolist().index(wind_direction)
|
99
|
+
pwr = 1.0 if "r" in given else self.wind_direction.get_probability()[ir]
|
100
|
+
|
101
|
+
# Probability of closing given a wind direction
|
102
|
+
p_k = (
|
103
|
+
1.0
|
104
|
+
if "k" in given
|
105
|
+
else self.barrier.calculate_closing_probability(
|
106
|
+
wind_direction, closing_situation
|
107
|
+
)
|
108
|
+
)
|
109
|
+
|
110
|
+
# Probability of a sea level and wind speed given a wind direction
|
111
|
+
p_um_r = self.p_mur[:, :, ir]
|
112
|
+
|
113
|
+
# If given, calculate the conditional probabilities
|
114
|
+
if "u" in given:
|
115
|
+
p_um_r[:] = ProbabilityFunctions.conditional_probability(p_um_r, axis=0)
|
116
|
+
if "m" in given:
|
117
|
+
p_um_r[:] = ProbabilityFunctions.conditional_probability(p_um_r, axis=1)
|
118
|
+
|
119
|
+
# Combine all probabilities
|
120
|
+
probability = (
|
121
|
+
p_um_r[:, :, None, None]
|
122
|
+
* self.storm_surge_duration.get_probability()[None, None, :, None]
|
123
|
+
* self.phase_surge_tide.get_probability()[None, None, None, :]
|
124
|
+
* p_k
|
125
|
+
* pwr
|
126
|
+
)
|
127
|
+
|
128
|
+
# Return probability
|
129
|
+
return probability
|
130
|
+
|
131
|
+
def __calculate_combined_probabilities(self):
|
132
|
+
# Statistics
|
133
|
+
m = self.sea_level
|
134
|
+
s = self.sigma_function
|
135
|
+
r = self.wind_direction
|
136
|
+
u = self.wind_speed
|
137
|
+
|
138
|
+
# Initialize an empty matrix
|
139
|
+
self.p_mur = np.zeros((len(u), len(m), len(r)))
|
140
|
+
|
141
|
+
# Per wind direction
|
142
|
+
for ir in range(len(r)):
|
143
|
+
# Calculate the probability density of the sea level given the wind direction
|
144
|
+
pd_m = ProbabilityFunctions.probability_density(
|
145
|
+
m.get_discretisation(), m.get_exceedance_probability()[:, ir]
|
146
|
+
)
|
147
|
+
|
148
|
+
# If there is correlation (sigma > 0)
|
149
|
+
if s.correlation[ir]:
|
150
|
+
# Calculate sigma
|
151
|
+
sigma = Interpolate.inextrp1d(
|
152
|
+
x=m.get_discretisation(), xp=s.sigma_sea_level, fp=s.sigma[:, ir]
|
153
|
+
)
|
154
|
+
if np.min(sigma) < 0.0:
|
155
|
+
raise ValueError()
|
156
|
+
|
157
|
+
# Exceedance probability of the wind speed given the sea water level epm_r[Nwind, Nswl]
|
158
|
+
snorm = (
|
159
|
+
self.wind_speed.k_u[:, ir][:, None] - m.epm_exp[:, ir][None, :]
|
160
|
+
) / sigma[None, :]
|
161
|
+
ovkansen = 1 - norm.cdf(snorm)
|
162
|
+
|
163
|
+
# Per sea level
|
164
|
+
for im in range(len(m)):
|
165
|
+
pd_u = ProbabilityFunctions.probability_density(
|
166
|
+
u.get_discretisation(), ovkansen[:, im]
|
167
|
+
)
|
168
|
+
self.p_mur[:, im, ir] = pd_u.probability * pd_m.probability[im]
|
169
|
+
|
170
|
+
# If there is no correlation (sigma <= 0)
|
171
|
+
else:
|
172
|
+
pd_u = ProbabilityFunctions.probability_density(
|
173
|
+
u.get_discretisation(), u.get_exceedance_probability()[:, ir]
|
174
|
+
)
|
175
|
+
self.p_mur[:, :, ir] = (
|
176
|
+
pd_m.probability[None, :] * pd_u.probability[:, None]
|
177
|
+
)
|