pydra-core 0.0.1__py2.py3-none-any.whl → 0.0.3__py2.py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pydra_core/__init__.py +32 -32
- pydra_core/common/common.py +98 -98
- pydra_core/common/enum.py +63 -63
- pydra_core/common/interpolate.py +345 -345
- pydra_core/common/probability.py +293 -293
- pydra_core/core/calculation.py +51 -51
- pydra_core/core/datamodels/frequency_line.py +60 -60
- pydra_core/core/exceedance_frequency_line.py +224 -224
- pydra_core/core/exceedance_frequency_line_experimental.py +163 -163
- pydra_core/core/hbn.py +226 -226
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017.txt +36 -36
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_2017_metOnzHeid.txt +45 -45
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_metOnzHeid_v02.txt +50 -50
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2015_v02.txt +42 -42
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_metOnzHeid_v02.txt +56 -56
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2050_v02.txt +48 -48
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_metOnzHeid_v02.txt +56 -56
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_G_2100_v02.txt +48 -48
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_metOnzHeid_v02.txt +50 -50
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2015_v02.txt +42 -42
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_metOnzHeid_v02.txt +56 -56
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2050_v02.txt +48 -48
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_metOnzHeid_v02.txt +51 -51
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_OI2014_W_2100_v02.txt +44 -44
- pydra_core/data/statistics/Afvoer/Borgharen/Ovkans_Borgharen_piekafvoer_Ref.txt +27 -27
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017.txt +30 -30
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_2017_metOnzHeid.txt +32 -32
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2015_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2050_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_G_2100_metOnzHeid.txt +38 -38
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2015_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2050_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100.txt +44 -44
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_OI2014_W_2100_metOnzHeid.txt +33 -33
- pydra_core/data/statistics/Afvoer/Dalfsen/Ovkans_Dalfsen_piekafvoer_Ref.txt +13 -13
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017.txt +47 -47
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_2017_metOnzHeid.txt +47 -47
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +58 -58
- pydra_core/data/statistics/Afvoer/Lith/Ovkans_Lith_piekafvoer_Ref.txt +20 -20
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017.txt +33 -33
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_2017_metOnzHeid.txt +59 -59
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_BenedenRijn.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2015_metOnzHeid_BenedenRijn.txt +65 -65
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_BenedenRijn.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2050_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_BenedenRijn.txt +49 -49
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_G_2100_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_BenedenRijn.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2015_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_BenedenRijn.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2050_metOnzHeid_BenedenRijn.txt +64 -64
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_BenedenRijn.txt +50 -50
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid.txt +62 -62
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_OI2014_W_2100_metOnzHeid_BenedenRijn.txt +65 -65
- pydra_core/data/statistics/Afvoer/Lobith/Ovkans_Lobith_piekafvoer_Ref.txt +22 -22
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017.txt +55 -55
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_2017_metOnzHeid.txt +55 -55
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015.txt +46 -46
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2015_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050.txt +46 -46
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2050_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100.txt +46 -46
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_G_2100_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015.txt +47 -47
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2015_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050.txt +47 -47
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2050_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100.txt +47 -47
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_OI2014_W_2100_metOnzHeid.txt +64 -64
- pydra_core/data/statistics/Afvoer/Olst/Ovkans_Olst_piekafvoer_Ref.txt +14 -14
- pydra_core/data/statistics/Golfvorm/Borgharen/Golfvormen_Borgharen.txt +76 -76
- pydra_core/data/statistics/Golfvorm/Dalfsen/Golfvormen_Dalfsen.txt +83 -83
- pydra_core/data/statistics/Golfvorm/Grevelingenmeer/Golfvormen_Grevelingenmeer.txt +33 -33
- pydra_core/data/statistics/Golfvorm/IJsselmeer/Golfvormen_IJsselmeer.txt +83 -83
- pydra_core/data/statistics/Golfvorm/Lith/Golfvormen_Lith.txt +76 -76
- pydra_core/data/statistics/Golfvorm/Lobith/Golfvormen_Lobith.txt +76 -76
- pydra_core/data/statistics/Golfvorm/Markermeer/Golfvormen_Markermeer.txt +139 -139
- pydra_core/data/statistics/Golfvorm/Olst/Golfvormen_Olst.txt +83 -83
- pydra_core/data/statistics/Golfvorm/Veerse Meer/Golfvormen_Veersemeer.txt +53 -53
- pydra_core/data/statistics/Golfvorm/Veluwerandmeer/Golfvormen_Veluwerandmeer.txt +139 -139
- pydra_core/data/statistics/Golfvorm/Volkerak-Zoommeer/Golfvormen_Volkerakzoommeer.txt +73 -73
- pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017.txt +12 -12
- pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_2017_metOnzHeid.txt +24 -24
- pydra_core/data/statistics/Meerpeil/Grevelingenmeer/Ovkans_Grevelingenmeer_piekmeerpeil_v01.txt +12 -12
- pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017.txt +25 -25
- pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_2017_metOnzHeid.txt +39 -39
- pydra_core/data/statistics/Meerpeil/IJsselmeer/Ovkans_IJsselmeer_piekmeerpeil_v01.txt +14 -14
- pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017.txt +18 -18
- pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_2017_metOnzHeid.txt +37 -37
- pydra_core/data/statistics/Meerpeil/Markermeer/Ovkans_Markermeer_piekmeerpeil_v01.txt +10 -10
- pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_excl_peilverhoging.txt +13 -13
- pydra_core/data/statistics/Meerpeil/Veerse Meer/Ovkans_Veersemeer_piekmeerpeil_v01.txt +15 -15
- pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017.txt +13 -13
- pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_2017_metOnzHeid.txt +36 -36
- pydra_core/data/statistics/Meerpeil/Veluwerandmeer/Ovkans_Veluwerandmeer_piekmeerpeil_v01.txt +13 -13
- pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM.txt +17 -17
- pydra_core/data/statistics/Meerpeil/Volkerak-Zoommeer/Ovkans_VZM_piekmeerpeil_BER-VZM_metOnzHeid.txt +42 -42
- pydra_core/data/statistics/Restant/Oosterschelde/BesliskansenOSKering.txt +524 -524
- pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_2023.txt +7 -7
- pydra_core/data/statistics/Restant/Oosterschelde/KansenFaseverschil_OS.txt +13 -13
- pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS.txt +14 -14
- pydra_core/data/statistics/Restant/Oosterschelde/KansenStormduur_OS_40_60_80uur_2023.txt +16 -16
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2008.txt +23 -23
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2013.txt +18 -18
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2017.txt +18 -18
- pydra_core/data/statistics/Restant/Oosterschelde/ScenariokansenOSKering_2023.txt +13 -13
- pydra_core/data/statistics/Restant/Up2U/Up2U10.dat +59 -59
- pydra_core/data/statistics/Restant/Up2U/Up2Up.dat +59 -59
- pydra_core/data/statistics/Restant/Up2U/Up2Ustar.dat +59 -59
- pydra_core/data/statistics/Restant/hulpdijken.txt +59 -59
- pydra_core/data/statistics/Restant/hulpgolfhoogtes.txt +23 -23
- pydra_core/data/statistics/Restant/hulpgolfperiodes.txt +38 -38
- pydra_core/data/statistics/Restant/kansstormduur.txt +8 -8
- pydra_core/data/statistics/Restant/pwind_west.txt +33 -33
- pydra_core/data/statistics/Restant/pwind_west_met_Volkerfactor.txt +33 -33
- pydra_core/data/statistics/Restant/pwind_west_zonder_Volkerfactor.txt +33 -33
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Midden/VS_sigmafunctie_Kust_Midden_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Noord/VS_sigmafunctie_Kust_Noord_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Hollandse Kust Zuid/VS_sigmafunctie_Kust_Zuid_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS.txt +21 -21
- pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_16sectoren_2023.txt +23 -23
- pydra_core/data/statistics/Sigmafunctie/Oosterschelde/VS_sigmafunctie_OS_2017.txt +21 -21
- pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Waddenzee Oost/VS_sigmafunctie_WZ_oost_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Waddenzee West/VS_sigmafunctie_WZ_west_2017.txt +22 -22
- pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS.txt +18 -18
- pydra_core/data/statistics/Sigmafunctie/Westerschelde/VS_sigmafunctie_WS_2017.txt +22 -22
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Maas 2017.csv +630 -630
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Europoortkering Rijn 2017.csv +630 -630
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Hollandsche IJsselkering.csv +757 -757
- pydra_core/data/statistics/Sluitpeilen/Sluitfunctie Oosterscheldekering 2017.csv +55080 -55080
- pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_2017.txt +18 -18
- pydra_core/data/statistics/Topduur/Borgharen/Topduur_Borgharen_v00.txt +14 -14
- pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/Dalfsen/Topduur_Dalfsen_v01.txt +15 -15
- pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_2017.txt +13 -13
- pydra_core/data/statistics/Topduur/Grevelingenmeer/Topduur_Grevelingenmeer_v01.txt +13 -13
- pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/IJsselmeer/Topduur_IJsselmeer_v01.txt +14 -14
- pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_2017.txt +18 -18
- pydra_core/data/statistics/Topduur/Lith/Topduur_Lith_v01.txt +17 -17
- pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_2017.txt +18 -18
- pydra_core/data/statistics/Topduur/Lobith/Topduur_Lobith_v01.txt +16 -16
- pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/Markermeer/Topduur_Markermeer_v01.txt +11 -11
- pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_2017.txt +19 -19
- pydra_core/data/statistics/Topduur/Olst/Topduur_Olst_v01.txt +15 -15
- pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_excl_peilverhoging.txt +12 -12
- pydra_core/data/statistics/Topduur/Veerse Meer/Topduur_Veersemeer_v01.txt +15 -15
- pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_2017.txt +11 -11
- pydra_core/data/statistics/Topduur/Veluwerandmeer/Topduur_Veluwerandmeer_v01.txt +11 -11
- pydra_core/data/statistics/Topduur/Volkerak-Zoommeer/Topduur_Volkerakzoommeer_BER-VZM.txt +17 -17
- pydra_core/data/statistics/Windrichting/Deelen/Richtingskansen_Deelen_2017.txt +27 -27
- pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust.txt +16 -16
- pydra_core/data/statistics/Windrichting/Hollandse Kust/KansenWindrichting_Kust_2017.txt +23 -23
- pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_16sectoren_OS_2023.txt +30 -30
- pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS.txt +19 -19
- pydra_core/data/statistics/Windrichting/Oosterschelde/KansenWindrichting_OS_2017.txt +23 -23
- pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren.txt +19 -19
- pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_12sectoren_2017.txt +19 -19
- pydra_core/data/statistics/Windrichting/Schiphol/Richtingskansen_Schiphol_2017.txt +27 -27
- pydra_core/data/statistics/Windrichting/Schiphol/kanswindrichting_v01.txt +28 -28
- pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ.txt +16 -16
- pydra_core/data/statistics/Windrichting/Waddenzee/KansenWindrichting_WZ_2017.txt +23 -23
- pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS.txt +16 -16
- pydra_core/data/statistics/Windrichting/Westerschelde/KansenWindrichting_WS_2017.txt +23 -23
- pydra_core/data/statistics/Windsnelheid/De Kooy/OvkansWindsnelheid_Texel.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/De Kooy/Ovkanswind_de Kooy_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Deelen/Ovkanswind_Deelen_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Hoek van Holland/OvkansWindsnelheid_Hoek van Holland.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Hoek van Holland/Ovkanswind_Hoek van Holland_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/IJmuiden/OvkansWindsnelheid_IJmuiden.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/IJmuiden/Ovkanswind_IJmuiden_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren.txt +50 -50
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_12sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_16sectoren_2017_metWindDrag_metOnzHeid.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_Schiphol_met_Volkerfactor_2017_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol.txt +57 -57
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_10%.txt +63 -63
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_5%.txt +61 -61
- pydra_core/data/statistics/Windsnelheid/Schiphol/Ovkanswind_schiphol_B_met volker.txt +59 -59
- pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_OS.txt +66 -66
- pydra_core/data/statistics/Windsnelheid/Vlissingen/OvkansWindsnelheid_Vlissingen.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_16sectoren_2023_metOnzHeid.txt +90 -90
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/Vlissingen/Ovkanswind_Vlissingen_2017_metWindDrag_metOnzHeid.txt +96 -96
- pydra_core/data/statistics/Windsnelheid/West-Terschelling/OvkansWindsnelheid_West-Tersch.txt +69 -69
- pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017.txt +91 -91
- pydra_core/data/statistics/Windsnelheid/West-Terschelling/Ovkanswind_West Terschelling_2017_metOnzHeid.txt +91 -91
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar1985_2017_metOnzHeid.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/CondPovDelfzijl_12u_zichtjaar2017_metOnzHeid.txt +81 -81
- pydra_core/data/statistics/Zeewaterstand/Delfzijl/OvkansZee_Delfzijl.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017.txt +89 -89
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar1985_2017_metOnzHeid.txt +89 -89
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Helder/CondPovDenHelder_12u_zichtjaar2017_metOnzHeid.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Helder/OvkansZee_Den Helder.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar1985_2017_metOnzHeid.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/Den Oever/CondPovDenOeverBuiten_12u_zichtjaar2017_metOnzHeid.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/Den Oever/OvkansZee_Den Oever.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017.txt +71 -71
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar1985_2017_metOnzHeid.txt +71 -71
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hansweert/CondPovHansweert_12u_zichtjaar2017_metOnzHeid.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hansweert/OvkansZee_Hansweert.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Harlingen/CondPovHarlingen_12u_zichtjaar2017_metOnzHeid.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Harlingen/OvkansZee_Harlingen.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar1985_2017_metOnzHeid.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017.txt +83 -83
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/CondPovHoekvanHolland_12u_zichtjaar2017_metOnzHeid.txt +83 -83
- pydra_core/data/statistics/Zeewaterstand/Hoek van Holland/OvkansZee_Hoek van Holland.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar1985_2017_metOnzHeid.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/CondPovHuibertgat_12u_zichtjaar2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Huibertgat/OvkansZee_Huibertgat.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/CondPovIJmuiden_12u_zichtjaar2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden/OvkansZee_IJmuiden.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/CondPovIJmuiden-Additional_12u_zichtjaar2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/IJmuiden virtueel/OvkansZee_IJmuiden_virtueel.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar1985_2017_metOnzHeid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/CondPovLauwersoog_12u_zichtjaar2017_metOnzHeid.txt +84 -84
- pydra_core/data/statistics/Zeewaterstand/Lauwersoog/OvkansZee_Lauwersoog.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2011.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017.txt +88 -88
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar1985_2017_metOnzheid.txt +92 -92
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Maasmond/CondPovMaasmond_12u_zichtjaar2017_metOnzheid.txt +85 -85
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar1985_2017_metOnzHeid.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_12u_zichtjaar2017_metOnzHeid.txt +79 -79
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/CondPovOS11_16sectoren_12u_2023_metOnzHeid.txt +73 -73
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZee_OS11.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Oosterschelde/OvkansZeewaterstand_OS.txt +71 -71
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/CondPovVlissingen_12u_zichtjaar2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen/OvkansZee_Vlissingen.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar1985_2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/CondPovVlissingen-Additional_12u_zichtjaar2017_metOnzHeid.txt +74 -74
- pydra_core/data/statistics/Zeewaterstand/Vlissingen virtueel/OvkansZee_Vlissingen_virtueel.txt +70 -70
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar1985_2017_metOnzHeid.txt +87 -87
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/CondPovWestTerschelling_12u_zichtjaar2017_metOnzHeid.txt +86 -86
- pydra_core/data/statistics/Zeewaterstand/West-Terschelling/OvkansZee_West-Terschelling.txt +70 -70
- pydra_core/hrdatabase/hrdatabase.py +177 -177
- pydra_core/io/database_hr.py +598 -598
- pydra_core/io/database_settings.py +183 -183
- pydra_core/io/file_hydranl.py +92 -92
- pydra_core/location/location.py +115 -115
- pydra_core/location/model/base_model.py +270 -270
- pydra_core/location/model/loading/loading.py +368 -368
- pydra_core/location/model/loading/loading_factory.py +89 -89
- pydra_core/location/model/loading/loading_model/loading_model.py +324 -324
- pydra_core/location/model/loading/other_systems/loading_wave_overtopping.py +122 -122
- pydra_core/location/model/loading/water_systems/loading_coast.py +54 -54
- pydra_core/location/model/loading/water_systems/loading_eastern_scheldt.py +169 -169
- pydra_core/location/model/loading/water_systems/loading_ijssel_vechtdelta.py +55 -55
- pydra_core/location/model/loading/water_systems/loading_lake.py +55 -55
- pydra_core/location/model/loading/water_systems/loading_lower_rivier.py +68 -68
- pydra_core/location/model/loading/water_systems/loading_upper_river.py +55 -55
- pydra_core/location/model/statistics/other_systems/statistics_wave_overtopping.py +72 -72
- pydra_core/location/model/statistics/statistics.py +171 -171
- pydra_core/location/model/statistics/statistics_factory.py +89 -89
- pydra_core/location/model/statistics/stochastics/barrier/barrier.py +43 -43
- pydra_core/location/model/statistics/stochastics/barrier/barrier_easternscheldt.py +147 -147
- pydra_core/location/model/statistics/stochastics/barrier/barrier_europoort.py +209 -209
- pydra_core/location/model/statistics/stochastics/barrier/barrier_ramspol.py +41 -41
- pydra_core/location/model/statistics/stochastics/barrier/no_barrier.py +21 -21
- pydra_core/location/model/statistics/stochastics/discharge.py +108 -108
- pydra_core/location/model/statistics/stochastics/discrete_probability.py +55 -55
- pydra_core/location/model/statistics/stochastics/lake_level.py +158 -158
- pydra_core/location/model/statistics/stochastics/model_uncertainty.py +358 -358
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level.py +53 -53
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level_lower_river.py +93 -93
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level_point.py +65 -65
- pydra_core/location/model/statistics/stochastics/sea_level/sea_level_triangular.py +158 -158
- pydra_core/location/model/statistics/stochastics/sigma_function.py +24 -24
- pydra_core/location/model/statistics/stochastics/wave_shape.py +624 -624
- pydra_core/location/model/statistics/stochastics/wind_speed.py +196 -196
- pydra_core/location/model/statistics/water_systems/statistics_coast.py +153 -153
- pydra_core/location/model/statistics/water_systems/statistics_eastern_scheldt.py +177 -177
- pydra_core/location/model/statistics/water_systems/statistics_ijssel_vechtdelta.py +229 -229
- pydra_core/location/model/statistics/water_systems/statistics_lake.py +86 -86
- pydra_core/location/model/statistics/water_systems/statistics_lower_river.py +321 -321
- pydra_core/location/model/statistics/water_systems/statistics_upper_river.py +86 -86
- pydra_core/location/model/water_system.py +249 -249
- pydra_core/location/model/wave_overtopping.py +25 -25
- pydra_core/location/profile/foreland.py +246 -246
- pydra_core/location/profile/lib/CombOverloopOverslag64.dll +0 -0
- pydra_core/location/profile/lib/DynamicLib-DaF.dll +0 -0
- pydra_core/location/profile/lib/README.MD +10 -10
- pydra_core/location/profile/lib/dllDikesOvertopping.dll +0 -0
- pydra_core/location/profile/lib/feedbackDLL.dll +0 -0
- pydra_core/location/profile/profile.py +971 -971
- pydra_core/location/profile/profile_loading.py +473 -473
- pydra_core/location/settings/settings.py +387 -387
- {pydra_core-0.0.1.dist-info → pydra_core-0.0.3.dist-info}/METADATA +25 -5
- pydra_core-0.0.3.dist-info/RECORD +393 -0
- pydra_core-0.0.1.dist-info/RECORD +0 -389
- {pydra_core-0.0.1.dist-info → pydra_core-0.0.3.dist-info}/WHEEL +0 -0
pydra_core/common/probability.py
CHANGED
@@ -1,293 +1,293 @@
|
|
1
|
-
import numpy as np
|
2
|
-
|
3
|
-
from collections import namedtuple
|
4
|
-
|
5
|
-
pdstruct = namedtuple("pdstruct", ["delta", "probability", "density", "edges"])
|
6
|
-
|
7
|
-
|
8
|
-
class ProbabilityFunctions:
|
9
|
-
"""
|
10
|
-
A class with common functions used within statistics.
|
11
|
-
"""
|
12
|
-
|
13
|
-
@staticmethod
|
14
|
-
def probability_density(
|
15
|
-
values: np.ndarray,
|
16
|
-
exceedance_probability: np.ndarray,
|
17
|
-
bounded: bool = True,
|
18
|
-
check: bool = True,
|
19
|
-
axis: int = None,
|
20
|
-
) -> pdstruct:
|
21
|
-
"""
|
22
|
-
Function to convert the exceedance probability into a probability
|
23
|
-
density function.
|
24
|
-
|
25
|
-
Parameters
|
26
|
-
----------
|
27
|
-
values : np.ndarray
|
28
|
-
Values, for example the wind speed discretisation
|
29
|
-
exceedance_probability : np.ndarray
|
30
|
-
Exceedance probability of the values
|
31
|
-
bounded : bool, optional
|
32
|
-
If bounded, add the first and last element based on the min and max
|
33
|
-
in the exceedance probability. Otherwise between 1.0 and 0.0
|
34
|
-
(default : True)
|
35
|
-
check : bool, optional
|
36
|
-
Check whether the values and exceedance probabilities are
|
37
|
-
monotonously increasing (default : True)
|
38
|
-
axis : int, optional
|
39
|
-
Axis (default : None)
|
40
|
-
|
41
|
-
Raises
|
42
|
-
------
|
43
|
-
ValueError
|
44
|
-
If the values or exceedance probabilities are not monotonously
|
45
|
-
increasing
|
46
|
-
|
47
|
-
Returns
|
48
|
-
-------
|
49
|
-
pdstruct
|
50
|
-
Probability density structure
|
51
|
-
"""
|
52
|
-
# For multiple dimensions, use the _nd function
|
53
|
-
if exceedance_probability.ndim > 1:
|
54
|
-
return ProbabilityFunctions.probability_density_nd(
|
55
|
-
values, exceedance_probability, bounded, axis=axis
|
56
|
-
)
|
57
|
-
|
58
|
-
# Check whether the values and exceedance probabilities are monotonously increasing
|
59
|
-
if check:
|
60
|
-
for arr, tag in zip(
|
61
|
-
[values, exceedance_probability], ["Values", "Exceedance probabilities"]
|
62
|
-
):
|
63
|
-
diff = arr[1:] - arr[:-1]
|
64
|
-
if not (all(diff >= 0) or all(diff <= 0)):
|
65
|
-
raise ValueError(
|
66
|
-
tag + "are not monotonously increasing or decreasing.",
|
67
|
-
arr,
|
68
|
-
diff,
|
69
|
-
)
|
70
|
-
|
71
|
-
# Determine the exceedance probability bins
|
72
|
-
bins_edges = (exceedance_probability[1:] + exceedance_probability[:-1]) / 2.0
|
73
|
-
|
74
|
-
# If bounded, add the first and last element based on the min and max in the exceedance probability
|
75
|
-
if bounded:
|
76
|
-
bins_edges = np.concatenate(
|
77
|
-
[[exceedance_probability[0]], bins_edges, [exceedance_probability[-1]]]
|
78
|
-
)
|
79
|
-
|
80
|
-
# Else, determine the bins between the 0 and 1
|
81
|
-
else:
|
82
|
-
if exceedance_probability[0] < exceedance_probability[-1]:
|
83
|
-
bins_edges = np.concatenate([[0.0], bins_edges, [1.0]])
|
84
|
-
else:
|
85
|
-
bins_edges = np.concatenate([[1.0], bins_edges, [0.0]])
|
86
|
-
|
87
|
-
# The difference between the bin_edges are the bins_probabilities
|
88
|
-
bins_probability = np.absolute(bins_edges[1:] - bins_edges[:-1])
|
89
|
-
|
90
|
-
# Determine the delta of the values
|
91
|
-
bins_values = np.concatenate(
|
92
|
-
[[values[0]], (values[1:] + values[:-1]) / 2.0, [values[-1]]]
|
93
|
-
)
|
94
|
-
bins_deltas = np.absolute(np.diff(bins_values))
|
95
|
-
|
96
|
-
# Probability density is the bins_probability divided by the delta
|
97
|
-
probability_density = np.absolute(bins_probability / bins_deltas)
|
98
|
-
|
99
|
-
# Return as a structure
|
100
|
-
return pdstruct(bins_deltas, bins_probability, probability_density, bins_edges)
|
101
|
-
|
102
|
-
@staticmethod
|
103
|
-
def probability_density_nd(
|
104
|
-
values: np.ndarray,
|
105
|
-
exceedance_probability: np.ndarray,
|
106
|
-
bounded: bool = True,
|
107
|
-
axis: int = None,
|
108
|
-
) -> pdstruct:
|
109
|
-
"""
|
110
|
-
Convert the exceedance probability into a probability density function
|
111
|
-
for multidimensional arrays.
|
112
|
-
|
113
|
-
This function converts the exceedance probabilities
|
114
|
-
(exceedance_probability) into a probability density function (PDF) for
|
115
|
-
multidimensional arrays represented by 'values' and
|
116
|
-
'exceedance_probability'.
|
117
|
-
|
118
|
-
Parameters
|
119
|
-
----------
|
120
|
-
values : np.ndarray
|
121
|
-
Values, e.g., wind speed discretization, for which the PDF is
|
122
|
-
calculated.
|
123
|
-
exceedance_probability : np.ndarray
|
124
|
-
Exceedance probability of the values.
|
125
|
-
bounded (bool):
|
126
|
-
If True, add the first and last element based on the min and max in
|
127
|
-
the exceedance probability. Otherwise, create the PDF between 1.0
|
128
|
-
and 0.0.
|
129
|
-
axis : int, optional
|
130
|
-
The axis along which the PDF is calculated. By default, axis 0 is
|
131
|
-
used.
|
132
|
-
|
133
|
-
Returns
|
134
|
-
-------
|
135
|
-
pdstruct
|
136
|
-
Probability density structure containing the calculated PDF.
|
137
|
-
"""
|
138
|
-
# If bounded, add the first and last element based on the min and max
|
139
|
-
# in the exceedance probability
|
140
|
-
if bounded:
|
141
|
-
bins_edges = np.concatenate(
|
142
|
-
[
|
143
|
-
[exceedance_probability[0]],
|
144
|
-
(exceedance_probability[1:] + exceedance_probability[:-1]) / 2.0,
|
145
|
-
[exceedance_probability[-1]],
|
146
|
-
]
|
147
|
-
)
|
148
|
-
|
149
|
-
# If not
|
150
|
-
else:
|
151
|
-
bins_edges = np.pad(
|
152
|
-
(exceedance_probability[1:] + exceedance_probability[:-1]) / 2,
|
153
|
-
pad_width=(1, 1),
|
154
|
-
mode="constant",
|
155
|
-
constant_values=(0, 1)
|
156
|
-
if (exceedance_probability[0] < exceedance_probability[-1]).all()
|
157
|
-
else (1, 0),
|
158
|
-
)
|
159
|
-
|
160
|
-
# The difference between the bin_edges are the bins_probabilities
|
161
|
-
bins_probability = np.absolute(bins_edges[1:, ...] - bins_edges[:-1, ...])
|
162
|
-
|
163
|
-
# Edges between consecutive values, the difference gives the bin_deltas
|
164
|
-
bins_deltas = np.absolute(
|
165
|
-
np.diff(
|
166
|
-
np.concatenate(
|
167
|
-
[[values[0]], (values[1:] + values[:-1]) / 2.0, [values[-1]]]
|
168
|
-
)
|
169
|
-
)
|
170
|
-
)
|
171
|
-
|
172
|
-
# Probability density is the bins_probability divided by the delta
|
173
|
-
shp = [1] * bins_probability.ndim
|
174
|
-
if axis is None:
|
175
|
-
axis = 0
|
176
|
-
shp[axis] = -1
|
177
|
-
probability_density = np.absolute(
|
178
|
-
bins_probability / bins_deltas.reshape(tuple(shp))
|
179
|
-
)
|
180
|
-
|
181
|
-
# Return as a structure
|
182
|
-
return pdstruct(bins_deltas, bins_probability, probability_density, bins_edges)
|
183
|
-
|
184
|
-
@staticmethod
|
185
|
-
def get_hnl_disc_array(vmin: float, vmax: float, step: float) -> np.ndarray:
|
186
|
-
"""
|
187
|
-
Get a discretized array of values between vmin and vmax with the given
|
188
|
-
step size.
|
189
|
-
|
190
|
-
This function generates a discretized array of values in the specified
|
191
|
-
range [vmin, vmax] with a given step size. The array includes the vmin
|
192
|
-
and vmax values and is uniformly spaced with steps of the specified
|
193
|
-
size.
|
194
|
-
|
195
|
-
Parameters
|
196
|
-
----------
|
197
|
-
vmin : float
|
198
|
-
Minimum value of the range.
|
199
|
-
vmax : float
|
200
|
-
Maximum value of the range.
|
201
|
-
step : float
|
202
|
-
Step size between values.
|
203
|
-
|
204
|
-
Returns
|
205
|
-
-------
|
206
|
-
np.array
|
207
|
-
Discretized array of values.
|
208
|
-
"""
|
209
|
-
# Calculate the number of steps between vmin and vmax and create the
|
210
|
-
# discretized array
|
211
|
-
n = round((vmax - vmin) / step)
|
212
|
-
levels = np.arange(vmin, vmin + (n + 0.1) * step, step)
|
213
|
-
|
214
|
-
# Ensure that the last element of the array is exactly equal to vmax
|
215
|
-
levels[-1] = vmax
|
216
|
-
return levels
|
217
|
-
|
218
|
-
@staticmethod
|
219
|
-
def conditional_probability(probability: np.ndarray, axis: int) -> np.ndarray:
|
220
|
-
"""
|
221
|
-
Calculate the conditional probability along an axis, taking into account
|
222
|
-
dividing by zero.
|
223
|
-
|
224
|
-
This function calculates the conditional probability along the
|
225
|
-
specified 'axis' of the input 'probability' array. The conditional
|
226
|
-
probability is the probability of an event occurring given that another
|
227
|
-
event has occurred. If the denominator is zero along the specified
|
228
|
-
'axis', the result is set to zero to avoid division by zero errors.
|
229
|
-
|
230
|
-
Parameters
|
231
|
-
----------
|
232
|
-
probability : np.ndarray
|
233
|
-
Array with probabilities
|
234
|
-
axis : int
|
235
|
-
Axis for which the conditional probability has to be calculated
|
236
|
-
|
237
|
-
Returns
|
238
|
-
-------
|
239
|
-
np.ndarray
|
240
|
-
Conditional probability
|
241
|
-
"""
|
242
|
-
# Calculate the denominator as the sum of probabilities along the
|
243
|
-
# specified 'axis'
|
244
|
-
denominator = np.sum(probability, axis=axis)
|
245
|
-
|
246
|
-
# Create a shape with all ones, except for the axis that will be used
|
247
|
-
# for broadcasting
|
248
|
-
shape = list(denominator.shape)
|
249
|
-
shape.insert(axis, -1)
|
250
|
-
|
251
|
-
# Calculate the conditional probability using element-wise division,
|
252
|
-
# handling division by zero
|
253
|
-
cond = np.divide(
|
254
|
-
probability,
|
255
|
-
denominator.reshape(shape),
|
256
|
-
out=np.zeros_like(probability),
|
257
|
-
where=(denominator != 0).reshape(shape),
|
258
|
-
)
|
259
|
-
|
260
|
-
return cond
|
261
|
-
|
262
|
-
@staticmethod
|
263
|
-
def calculate_boundaries(levels: np.ndarray):
|
264
|
-
"""
|
265
|
-
Calculate the boundaries for the input array.
|
266
|
-
|
267
|
-
This function calculates the boundaries between adjacent elements in
|
268
|
-
the input 'arr' array. The boundaries are computed as the midpoints
|
269
|
-
between consecutive elements, with additional values added at the start
|
270
|
-
and end based on the step differences.
|
271
|
-
|
272
|
-
Parameters
|
273
|
-
----------
|
274
|
-
levels : np.ndarray
|
275
|
-
Input array for which boundaries are to be calculated.
|
276
|
-
|
277
|
-
Returns
|
278
|
-
-------
|
279
|
-
ndarray
|
280
|
-
Array containing the calculated boundaries.
|
281
|
-
"""
|
282
|
-
# Calculate the step differences between consecutive elements
|
283
|
-
lower_step = levels[2] - levels[1]
|
284
|
-
upper_step = levels[-1] - levels[-2]
|
285
|
-
|
286
|
-
# Calculate midpoints between consecutive elements
|
287
|
-
mid = (levels[1:] + levels[:-1]) / 2
|
288
|
-
|
289
|
-
# Calculate the boundaries array by concatenating the midpoints with
|
290
|
-
# additional boundary values
|
291
|
-
bounds = np.concatenate([[mid[0] - lower_step], mid, [mid[-1] + upper_step]])
|
292
|
-
|
293
|
-
return bounds
|
1
|
+
import numpy as np
|
2
|
+
|
3
|
+
from collections import namedtuple
|
4
|
+
|
5
|
+
pdstruct = namedtuple("pdstruct", ["delta", "probability", "density", "edges"])
|
6
|
+
|
7
|
+
|
8
|
+
class ProbabilityFunctions:
|
9
|
+
"""
|
10
|
+
A class with common functions used within statistics.
|
11
|
+
"""
|
12
|
+
|
13
|
+
@staticmethod
|
14
|
+
def probability_density(
|
15
|
+
values: np.ndarray,
|
16
|
+
exceedance_probability: np.ndarray,
|
17
|
+
bounded: bool = True,
|
18
|
+
check: bool = True,
|
19
|
+
axis: int = None,
|
20
|
+
) -> pdstruct:
|
21
|
+
"""
|
22
|
+
Function to convert the exceedance probability into a probability
|
23
|
+
density function.
|
24
|
+
|
25
|
+
Parameters
|
26
|
+
----------
|
27
|
+
values : np.ndarray
|
28
|
+
Values, for example the wind speed discretisation
|
29
|
+
exceedance_probability : np.ndarray
|
30
|
+
Exceedance probability of the values
|
31
|
+
bounded : bool, optional
|
32
|
+
If bounded, add the first and last element based on the min and max
|
33
|
+
in the exceedance probability. Otherwise between 1.0 and 0.0
|
34
|
+
(default : True)
|
35
|
+
check : bool, optional
|
36
|
+
Check whether the values and exceedance probabilities are
|
37
|
+
monotonously increasing (default : True)
|
38
|
+
axis : int, optional
|
39
|
+
Axis (default : None)
|
40
|
+
|
41
|
+
Raises
|
42
|
+
------
|
43
|
+
ValueError
|
44
|
+
If the values or exceedance probabilities are not monotonously
|
45
|
+
increasing
|
46
|
+
|
47
|
+
Returns
|
48
|
+
-------
|
49
|
+
pdstruct
|
50
|
+
Probability density structure
|
51
|
+
"""
|
52
|
+
# For multiple dimensions, use the _nd function
|
53
|
+
if exceedance_probability.ndim > 1:
|
54
|
+
return ProbabilityFunctions.probability_density_nd(
|
55
|
+
values, exceedance_probability, bounded, axis=axis
|
56
|
+
)
|
57
|
+
|
58
|
+
# Check whether the values and exceedance probabilities are monotonously increasing
|
59
|
+
if check:
|
60
|
+
for arr, tag in zip(
|
61
|
+
[values, exceedance_probability], ["Values", "Exceedance probabilities"]
|
62
|
+
):
|
63
|
+
diff = arr[1:] - arr[:-1]
|
64
|
+
if not (all(diff >= 0) or all(diff <= 0)):
|
65
|
+
raise ValueError(
|
66
|
+
tag + "are not monotonously increasing or decreasing.",
|
67
|
+
arr,
|
68
|
+
diff,
|
69
|
+
)
|
70
|
+
|
71
|
+
# Determine the exceedance probability bins
|
72
|
+
bins_edges = (exceedance_probability[1:] + exceedance_probability[:-1]) / 2.0
|
73
|
+
|
74
|
+
# If bounded, add the first and last element based on the min and max in the exceedance probability
|
75
|
+
if bounded:
|
76
|
+
bins_edges = np.concatenate(
|
77
|
+
[[exceedance_probability[0]], bins_edges, [exceedance_probability[-1]]]
|
78
|
+
)
|
79
|
+
|
80
|
+
# Else, determine the bins between the 0 and 1
|
81
|
+
else:
|
82
|
+
if exceedance_probability[0] < exceedance_probability[-1]:
|
83
|
+
bins_edges = np.concatenate([[0.0], bins_edges, [1.0]])
|
84
|
+
else:
|
85
|
+
bins_edges = np.concatenate([[1.0], bins_edges, [0.0]])
|
86
|
+
|
87
|
+
# The difference between the bin_edges are the bins_probabilities
|
88
|
+
bins_probability = np.absolute(bins_edges[1:] - bins_edges[:-1])
|
89
|
+
|
90
|
+
# Determine the delta of the values
|
91
|
+
bins_values = np.concatenate(
|
92
|
+
[[values[0]], (values[1:] + values[:-1]) / 2.0, [values[-1]]]
|
93
|
+
)
|
94
|
+
bins_deltas = np.absolute(np.diff(bins_values))
|
95
|
+
|
96
|
+
# Probability density is the bins_probability divided by the delta
|
97
|
+
probability_density = np.absolute(bins_probability / bins_deltas)
|
98
|
+
|
99
|
+
# Return as a structure
|
100
|
+
return pdstruct(bins_deltas, bins_probability, probability_density, bins_edges)
|
101
|
+
|
102
|
+
@staticmethod
|
103
|
+
def probability_density_nd(
|
104
|
+
values: np.ndarray,
|
105
|
+
exceedance_probability: np.ndarray,
|
106
|
+
bounded: bool = True,
|
107
|
+
axis: int = None,
|
108
|
+
) -> pdstruct:
|
109
|
+
"""
|
110
|
+
Convert the exceedance probability into a probability density function
|
111
|
+
for multidimensional arrays.
|
112
|
+
|
113
|
+
This function converts the exceedance probabilities
|
114
|
+
(exceedance_probability) into a probability density function (PDF) for
|
115
|
+
multidimensional arrays represented by 'values' and
|
116
|
+
'exceedance_probability'.
|
117
|
+
|
118
|
+
Parameters
|
119
|
+
----------
|
120
|
+
values : np.ndarray
|
121
|
+
Values, e.g., wind speed discretization, for which the PDF is
|
122
|
+
calculated.
|
123
|
+
exceedance_probability : np.ndarray
|
124
|
+
Exceedance probability of the values.
|
125
|
+
bounded (bool):
|
126
|
+
If True, add the first and last element based on the min and max in
|
127
|
+
the exceedance probability. Otherwise, create the PDF between 1.0
|
128
|
+
and 0.0.
|
129
|
+
axis : int, optional
|
130
|
+
The axis along which the PDF is calculated. By default, axis 0 is
|
131
|
+
used.
|
132
|
+
|
133
|
+
Returns
|
134
|
+
-------
|
135
|
+
pdstruct
|
136
|
+
Probability density structure containing the calculated PDF.
|
137
|
+
"""
|
138
|
+
# If bounded, add the first and last element based on the min and max
|
139
|
+
# in the exceedance probability
|
140
|
+
if bounded:
|
141
|
+
bins_edges = np.concatenate(
|
142
|
+
[
|
143
|
+
[exceedance_probability[0]],
|
144
|
+
(exceedance_probability[1:] + exceedance_probability[:-1]) / 2.0,
|
145
|
+
[exceedance_probability[-1]],
|
146
|
+
]
|
147
|
+
)
|
148
|
+
|
149
|
+
# If not
|
150
|
+
else:
|
151
|
+
bins_edges = np.pad(
|
152
|
+
(exceedance_probability[1:] + exceedance_probability[:-1]) / 2,
|
153
|
+
pad_width=(1, 1),
|
154
|
+
mode="constant",
|
155
|
+
constant_values=(0, 1)
|
156
|
+
if (exceedance_probability[0] < exceedance_probability[-1]).all()
|
157
|
+
else (1, 0),
|
158
|
+
)
|
159
|
+
|
160
|
+
# The difference between the bin_edges are the bins_probabilities
|
161
|
+
bins_probability = np.absolute(bins_edges[1:, ...] - bins_edges[:-1, ...])
|
162
|
+
|
163
|
+
# Edges between consecutive values, the difference gives the bin_deltas
|
164
|
+
bins_deltas = np.absolute(
|
165
|
+
np.diff(
|
166
|
+
np.concatenate(
|
167
|
+
[[values[0]], (values[1:] + values[:-1]) / 2.0, [values[-1]]]
|
168
|
+
)
|
169
|
+
)
|
170
|
+
)
|
171
|
+
|
172
|
+
# Probability density is the bins_probability divided by the delta
|
173
|
+
shp = [1] * bins_probability.ndim
|
174
|
+
if axis is None:
|
175
|
+
axis = 0
|
176
|
+
shp[axis] = -1
|
177
|
+
probability_density = np.absolute(
|
178
|
+
bins_probability / bins_deltas.reshape(tuple(shp))
|
179
|
+
)
|
180
|
+
|
181
|
+
# Return as a structure
|
182
|
+
return pdstruct(bins_deltas, bins_probability, probability_density, bins_edges)
|
183
|
+
|
184
|
+
@staticmethod
|
185
|
+
def get_hnl_disc_array(vmin: float, vmax: float, step: float) -> np.ndarray:
|
186
|
+
"""
|
187
|
+
Get a discretized array of values between vmin and vmax with the given
|
188
|
+
step size.
|
189
|
+
|
190
|
+
This function generates a discretized array of values in the specified
|
191
|
+
range [vmin, vmax] with a given step size. The array includes the vmin
|
192
|
+
and vmax values and is uniformly spaced with steps of the specified
|
193
|
+
size.
|
194
|
+
|
195
|
+
Parameters
|
196
|
+
----------
|
197
|
+
vmin : float
|
198
|
+
Minimum value of the range.
|
199
|
+
vmax : float
|
200
|
+
Maximum value of the range.
|
201
|
+
step : float
|
202
|
+
Step size between values.
|
203
|
+
|
204
|
+
Returns
|
205
|
+
-------
|
206
|
+
np.array
|
207
|
+
Discretized array of values.
|
208
|
+
"""
|
209
|
+
# Calculate the number of steps between vmin and vmax and create the
|
210
|
+
# discretized array
|
211
|
+
n = round((vmax - vmin) / step)
|
212
|
+
levels = np.arange(vmin, vmin + (n + 0.1) * step, step)
|
213
|
+
|
214
|
+
# Ensure that the last element of the array is exactly equal to vmax
|
215
|
+
levels[-1] = vmax
|
216
|
+
return levels
|
217
|
+
|
218
|
+
@staticmethod
|
219
|
+
def conditional_probability(probability: np.ndarray, axis: int) -> np.ndarray:
|
220
|
+
"""
|
221
|
+
Calculate the conditional probability along an axis, taking into account
|
222
|
+
dividing by zero.
|
223
|
+
|
224
|
+
This function calculates the conditional probability along the
|
225
|
+
specified 'axis' of the input 'probability' array. The conditional
|
226
|
+
probability is the probability of an event occurring given that another
|
227
|
+
event has occurred. If the denominator is zero along the specified
|
228
|
+
'axis', the result is set to zero to avoid division by zero errors.
|
229
|
+
|
230
|
+
Parameters
|
231
|
+
----------
|
232
|
+
probability : np.ndarray
|
233
|
+
Array with probabilities
|
234
|
+
axis : int
|
235
|
+
Axis for which the conditional probability has to be calculated
|
236
|
+
|
237
|
+
Returns
|
238
|
+
-------
|
239
|
+
np.ndarray
|
240
|
+
Conditional probability
|
241
|
+
"""
|
242
|
+
# Calculate the denominator as the sum of probabilities along the
|
243
|
+
# specified 'axis'
|
244
|
+
denominator = np.sum(probability, axis=axis)
|
245
|
+
|
246
|
+
# Create a shape with all ones, except for the axis that will be used
|
247
|
+
# for broadcasting
|
248
|
+
shape = list(denominator.shape)
|
249
|
+
shape.insert(axis, -1)
|
250
|
+
|
251
|
+
# Calculate the conditional probability using element-wise division,
|
252
|
+
# handling division by zero
|
253
|
+
cond = np.divide(
|
254
|
+
probability,
|
255
|
+
denominator.reshape(shape),
|
256
|
+
out=np.zeros_like(probability),
|
257
|
+
where=(denominator != 0).reshape(shape),
|
258
|
+
)
|
259
|
+
|
260
|
+
return cond
|
261
|
+
|
262
|
+
@staticmethod
|
263
|
+
def calculate_boundaries(levels: np.ndarray):
|
264
|
+
"""
|
265
|
+
Calculate the boundaries for the input array.
|
266
|
+
|
267
|
+
This function calculates the boundaries between adjacent elements in
|
268
|
+
the input 'arr' array. The boundaries are computed as the midpoints
|
269
|
+
between consecutive elements, with additional values added at the start
|
270
|
+
and end based on the step differences.
|
271
|
+
|
272
|
+
Parameters
|
273
|
+
----------
|
274
|
+
levels : np.ndarray
|
275
|
+
Input array for which boundaries are to be calculated.
|
276
|
+
|
277
|
+
Returns
|
278
|
+
-------
|
279
|
+
ndarray
|
280
|
+
Array containing the calculated boundaries.
|
281
|
+
"""
|
282
|
+
# Calculate the step differences between consecutive elements
|
283
|
+
lower_step = levels[2] - levels[1]
|
284
|
+
upper_step = levels[-1] - levels[-2]
|
285
|
+
|
286
|
+
# Calculate midpoints between consecutive elements
|
287
|
+
mid = (levels[1:] + levels[:-1]) / 2
|
288
|
+
|
289
|
+
# Calculate the boundaries array by concatenating the midpoints with
|
290
|
+
# additional boundary values
|
291
|
+
bounds = np.concatenate([[mid[0] - lower_step], mid, [mid[-1] + upper_step]])
|
292
|
+
|
293
|
+
return bounds
|