pyAgrum-nightly 2.3.0.9.dev202512061764412981__cp310-abi3-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyagrum/__init__.py +165 -0
- pyagrum/_pyagrum.so +0 -0
- pyagrum/bnmixture/BNMInference.py +268 -0
- pyagrum/bnmixture/BNMLearning.py +376 -0
- pyagrum/bnmixture/BNMixture.py +464 -0
- pyagrum/bnmixture/__init__.py +60 -0
- pyagrum/bnmixture/notebook.py +1058 -0
- pyagrum/causal/_CausalFormula.py +280 -0
- pyagrum/causal/_CausalModel.py +436 -0
- pyagrum/causal/__init__.py +81 -0
- pyagrum/causal/_causalImpact.py +356 -0
- pyagrum/causal/_dSeparation.py +598 -0
- pyagrum/causal/_doAST.py +761 -0
- pyagrum/causal/_doCalculus.py +361 -0
- pyagrum/causal/_doorCriteria.py +374 -0
- pyagrum/causal/_exceptions.py +95 -0
- pyagrum/causal/_types.py +61 -0
- pyagrum/causal/causalEffectEstimation/_CausalEffectEstimation.py +1175 -0
- pyagrum/causal/causalEffectEstimation/_IVEstimators.py +718 -0
- pyagrum/causal/causalEffectEstimation/_RCTEstimators.py +132 -0
- pyagrum/causal/causalEffectEstimation/__init__.py +46 -0
- pyagrum/causal/causalEffectEstimation/_backdoorEstimators.py +774 -0
- pyagrum/causal/causalEffectEstimation/_causalBNEstimator.py +324 -0
- pyagrum/causal/causalEffectEstimation/_frontdoorEstimators.py +396 -0
- pyagrum/causal/causalEffectEstimation/_learners.py +118 -0
- pyagrum/causal/causalEffectEstimation/_utils.py +466 -0
- pyagrum/causal/notebook.py +171 -0
- pyagrum/clg/CLG.py +658 -0
- pyagrum/clg/GaussianVariable.py +111 -0
- pyagrum/clg/SEM.py +312 -0
- pyagrum/clg/__init__.py +63 -0
- pyagrum/clg/canonicalForm.py +408 -0
- pyagrum/clg/constants.py +54 -0
- pyagrum/clg/forwardSampling.py +202 -0
- pyagrum/clg/learning.py +776 -0
- pyagrum/clg/notebook.py +480 -0
- pyagrum/clg/variableElimination.py +271 -0
- pyagrum/common.py +60 -0
- pyagrum/config.py +319 -0
- pyagrum/ctbn/CIM.py +513 -0
- pyagrum/ctbn/CTBN.py +573 -0
- pyagrum/ctbn/CTBNGenerator.py +216 -0
- pyagrum/ctbn/CTBNInference.py +459 -0
- pyagrum/ctbn/CTBNLearner.py +161 -0
- pyagrum/ctbn/SamplesStats.py +671 -0
- pyagrum/ctbn/StatsIndepTest.py +355 -0
- pyagrum/ctbn/__init__.py +79 -0
- pyagrum/ctbn/constants.py +54 -0
- pyagrum/ctbn/notebook.py +264 -0
- pyagrum/defaults.ini +199 -0
- pyagrum/deprecated.py +95 -0
- pyagrum/explain/_ComputationCausal.py +75 -0
- pyagrum/explain/_ComputationConditional.py +48 -0
- pyagrum/explain/_ComputationMarginal.py +48 -0
- pyagrum/explain/_CustomShapleyCache.py +110 -0
- pyagrum/explain/_Explainer.py +176 -0
- pyagrum/explain/_Explanation.py +70 -0
- pyagrum/explain/_FIFOCache.py +54 -0
- pyagrum/explain/_ShallCausalValues.py +204 -0
- pyagrum/explain/_ShallConditionalValues.py +155 -0
- pyagrum/explain/_ShallMarginalValues.py +155 -0
- pyagrum/explain/_ShallValues.py +296 -0
- pyagrum/explain/_ShapCausalValues.py +208 -0
- pyagrum/explain/_ShapConditionalValues.py +126 -0
- pyagrum/explain/_ShapMarginalValues.py +191 -0
- pyagrum/explain/_ShapleyValues.py +298 -0
- pyagrum/explain/__init__.py +81 -0
- pyagrum/explain/_explGeneralizedMarkovBlanket.py +152 -0
- pyagrum/explain/_explIndependenceListForPairs.py +146 -0
- pyagrum/explain/_explInformationGraph.py +264 -0
- pyagrum/explain/notebook/__init__.py +54 -0
- pyagrum/explain/notebook/_bar.py +142 -0
- pyagrum/explain/notebook/_beeswarm.py +174 -0
- pyagrum/explain/notebook/_showShapValues.py +97 -0
- pyagrum/explain/notebook/_waterfall.py +220 -0
- pyagrum/explain/shapley.py +225 -0
- pyagrum/lib/__init__.py +46 -0
- pyagrum/lib/_colors.py +390 -0
- pyagrum/lib/bn2graph.py +299 -0
- pyagrum/lib/bn2roc.py +1026 -0
- pyagrum/lib/bn2scores.py +217 -0
- pyagrum/lib/bn_vs_bn.py +605 -0
- pyagrum/lib/cn2graph.py +305 -0
- pyagrum/lib/discreteTypeProcessor.py +1102 -0
- pyagrum/lib/discretizer.py +58 -0
- pyagrum/lib/dynamicBN.py +390 -0
- pyagrum/lib/explain.py +57 -0
- pyagrum/lib/export.py +84 -0
- pyagrum/lib/id2graph.py +258 -0
- pyagrum/lib/image.py +387 -0
- pyagrum/lib/ipython.py +307 -0
- pyagrum/lib/mrf2graph.py +471 -0
- pyagrum/lib/notebook.py +1821 -0
- pyagrum/lib/proba_histogram.py +552 -0
- pyagrum/lib/utils.py +138 -0
- pyagrum/pyagrum.py +31495 -0
- pyagrum/skbn/_MBCalcul.py +242 -0
- pyagrum/skbn/__init__.py +49 -0
- pyagrum/skbn/_learningMethods.py +282 -0
- pyagrum/skbn/_utils.py +297 -0
- pyagrum/skbn/bnclassifier.py +1014 -0
- pyagrum_nightly-2.3.0.9.dev202512061764412981.dist-info/LICENSE.md +12 -0
- pyagrum_nightly-2.3.0.9.dev202512061764412981.dist-info/LICENSES/LGPL-3.0-or-later.txt +304 -0
- pyagrum_nightly-2.3.0.9.dev202512061764412981.dist-info/LICENSES/MIT.txt +18 -0
- pyagrum_nightly-2.3.0.9.dev202512061764412981.dist-info/METADATA +145 -0
- pyagrum_nightly-2.3.0.9.dev202512061764412981.dist-info/RECORD +107 -0
- pyagrum_nightly-2.3.0.9.dev202512061764412981.dist-info/WHEEL +4 -0
pyagrum/clg/notebook.py
ADDED
|
@@ -0,0 +1,480 @@
|
|
|
1
|
+
############################################################################
|
|
2
|
+
# This file is part of the aGrUM/pyAgrum library. #
|
|
3
|
+
# #
|
|
4
|
+
# Copyright (c) 2005-2025 by #
|
|
5
|
+
# - Pierre-Henri WUILLEMIN(_at_LIP6) #
|
|
6
|
+
# - Christophe GONZALES(_at_AMU) #
|
|
7
|
+
# #
|
|
8
|
+
# The aGrUM/pyAgrum library is free software; you can redistribute it #
|
|
9
|
+
# and/or modify it under the terms of either : #
|
|
10
|
+
# #
|
|
11
|
+
# - the GNU Lesser General Public License as published by #
|
|
12
|
+
# the Free Software Foundation, either version 3 of the License, #
|
|
13
|
+
# or (at your option) any later version, #
|
|
14
|
+
# - the MIT license (MIT), #
|
|
15
|
+
# - or both in dual license, as here. #
|
|
16
|
+
# #
|
|
17
|
+
# (see https://agrum.gitlab.io/articles/dual-licenses-lgplv3mit.html) #
|
|
18
|
+
# #
|
|
19
|
+
# This aGrUM/pyAgrum library is distributed in the hope that it will be #
|
|
20
|
+
# useful, but WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #
|
|
21
|
+
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES MERCHANTABILITY or FITNESS #
|
|
22
|
+
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #
|
|
23
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #
|
|
24
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, #
|
|
25
|
+
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR #
|
|
26
|
+
# OTHER DEALINGS IN THE SOFTWARE. #
|
|
27
|
+
# #
|
|
28
|
+
# See LICENCES for more details. #
|
|
29
|
+
# #
|
|
30
|
+
# SPDX-FileCopyrightText: Copyright 2005-2025 #
|
|
31
|
+
# - Pierre-Henri WUILLEMIN(_at_LIP6) #
|
|
32
|
+
# - Christophe GONZALES(_at_AMU) #
|
|
33
|
+
# SPDX-License-Identifier: LGPL-3.0-or-later OR MIT #
|
|
34
|
+
# #
|
|
35
|
+
# Contact : info_at_agrum_dot_org #
|
|
36
|
+
# homepage : http://agrum.gitlab.io #
|
|
37
|
+
# gitlab : https://gitlab.com/agrumery/agrum #
|
|
38
|
+
# #
|
|
39
|
+
############################################################################
|
|
40
|
+
|
|
41
|
+
"""
|
|
42
|
+
The purpose of this module is to provide tools for mapping Conditional Linear Gaussian in dot language in order to
|
|
43
|
+
be displayed/saved as image.
|
|
44
|
+
"""
|
|
45
|
+
|
|
46
|
+
import matplotlib.pyplot as plt
|
|
47
|
+
import pyagrum as gum
|
|
48
|
+
import pydot as dot
|
|
49
|
+
|
|
50
|
+
import pyagrum.lib._colors as gumcols
|
|
51
|
+
import pyagrum.lib.image as gimg
|
|
52
|
+
|
|
53
|
+
import pyagrum.clg.CLG as CLG
|
|
54
|
+
import pyagrum.clg.variableElimination as clginference
|
|
55
|
+
import pyagrum.lib.notebook as gnb
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def CLG2dot(clg, *, size=None, nodeColor=None, arcWidth=None, arcColor=None, cmapNode=None, cmapArc=None, showMsg=None):
|
|
59
|
+
"""
|
|
60
|
+
create a pydot representation of the CLG
|
|
61
|
+
|
|
62
|
+
Parameters
|
|
63
|
+
----------
|
|
64
|
+
clg : CLG
|
|
65
|
+
Conditional Linear Gaussian.
|
|
66
|
+
size: str
|
|
67
|
+
Size of the rendered graph.
|
|
68
|
+
nodeColor: dict[Tuple(int,int),float]
|
|
69
|
+
A nodeMap of values to be shown as color nodes (with special color for 0 and 1).
|
|
70
|
+
arcWidth: dict[Tuple(int,int),float]
|
|
71
|
+
An arcMap of values to be shown as bold arcs.
|
|
72
|
+
arcColor: dict[Tuple(int,int),float]
|
|
73
|
+
An arcMap of values (between 0 and 1) to be shown as color of arcs.
|
|
74
|
+
cmapNode: ColorMap
|
|
75
|
+
Color map to show the vals of Nodes.
|
|
76
|
+
cmapArc: ColorMap
|
|
77
|
+
Color map to show the vals of Arcs.
|
|
78
|
+
showMsg: dict
|
|
79
|
+
A nodeMap of values to be shown as tooltip.
|
|
80
|
+
|
|
81
|
+
Returns
|
|
82
|
+
-------
|
|
83
|
+
pydot.Dot
|
|
84
|
+
The desired representation of the Conditional Linear Gaussian.
|
|
85
|
+
"""
|
|
86
|
+
arcLabel = {arc: clg.coefArc(*arc) for arc in clg.arcs()}
|
|
87
|
+
|
|
88
|
+
if cmapNode is None:
|
|
89
|
+
cmapNode = plt.get_cmap(gum.config["notebook", "default_node_cmap"])
|
|
90
|
+
|
|
91
|
+
if cmapArc is None:
|
|
92
|
+
cmapArc = plt.get_cmap(gum.config["notebook", "default_arc_cmap"])
|
|
93
|
+
|
|
94
|
+
# default
|
|
95
|
+
maxarcs = 100
|
|
96
|
+
minarcs = 0
|
|
97
|
+
|
|
98
|
+
if arcWidth is not None:
|
|
99
|
+
minarcs = min(arcWidth.values())
|
|
100
|
+
maxarcs = max(arcWidth.values())
|
|
101
|
+
|
|
102
|
+
dotobj = dot.Dot(graph_type="digraph", bgcolor="transparent")
|
|
103
|
+
|
|
104
|
+
for n in clg.names():
|
|
105
|
+
if nodeColor is None or n not in nodeColor:
|
|
106
|
+
bgcol = gum.config["notebook", "default_node_bgcolor"]
|
|
107
|
+
fgcol = gum.config["notebook", "default_node_fgcolor"]
|
|
108
|
+
res = ""
|
|
109
|
+
else:
|
|
110
|
+
bgcol = gumcols.proba2bgcolor(nodeColor[n], cmapNode)
|
|
111
|
+
fgcol = gumcols.proba2fgcolor(nodeColor[n], cmapNode)
|
|
112
|
+
res = f" : {nodeColor[n] if showMsg is None else showMsg[n]:2.5f}"
|
|
113
|
+
node = dot.Node(
|
|
114
|
+
'"' + n + '"',
|
|
115
|
+
style="filled",
|
|
116
|
+
fillcolor=bgcol,
|
|
117
|
+
fontcolor=fgcol,
|
|
118
|
+
tooltip=f'"({clg.idFromName(n)}) {n}{res}"',
|
|
119
|
+
label=f"{{{n}|{{μ={clg.variable(n).mu():.3f}|σ={clg.variable(n).sigma():.3f}}}}}",
|
|
120
|
+
shape="Mrecord",
|
|
121
|
+
)
|
|
122
|
+
dotobj.add_node(node)
|
|
123
|
+
|
|
124
|
+
for a in clg.arcs():
|
|
125
|
+
if arcWidth is None:
|
|
126
|
+
pw = 1
|
|
127
|
+
av = ""
|
|
128
|
+
else:
|
|
129
|
+
if a in arcWidth:
|
|
130
|
+
if maxarcs == minarcs:
|
|
131
|
+
pw = 1
|
|
132
|
+
else:
|
|
133
|
+
pw = 0.1 + 5 * (arcWidth[a] - minarcs) / (maxarcs - minarcs)
|
|
134
|
+
av = arcWidth[a]
|
|
135
|
+
else:
|
|
136
|
+
pw = 1
|
|
137
|
+
av = 1
|
|
138
|
+
|
|
139
|
+
if arcColor is None:
|
|
140
|
+
col = gumcols.getBlackInTheme()
|
|
141
|
+
else:
|
|
142
|
+
if a in arcColor:
|
|
143
|
+
col = gumcols.proba2color(arcColor[a], cmapArc)
|
|
144
|
+
else:
|
|
145
|
+
col = gumcols.getBlackInTheme()
|
|
146
|
+
|
|
147
|
+
if arcLabel is None:
|
|
148
|
+
lb = ""
|
|
149
|
+
else:
|
|
150
|
+
if a in arcLabel:
|
|
151
|
+
lb = "%.2f" % (arcLabel[a])
|
|
152
|
+
else:
|
|
153
|
+
lb = ""
|
|
154
|
+
|
|
155
|
+
edge = dot.Edge(
|
|
156
|
+
'"' + clg.variable(a[0]).name() + '"',
|
|
157
|
+
'"' + clg.variable(a[1]).name() + '"',
|
|
158
|
+
label=lb,
|
|
159
|
+
fontsize="15",
|
|
160
|
+
penwidth=pw,
|
|
161
|
+
color=col,
|
|
162
|
+
tooltip=f"{a} : {av}",
|
|
163
|
+
)
|
|
164
|
+
dotobj.add_edge(edge)
|
|
165
|
+
|
|
166
|
+
if size is None:
|
|
167
|
+
size = gum.config["notebook", "default_graph_size"]
|
|
168
|
+
|
|
169
|
+
# dynamic member makes pylink unhappy
|
|
170
|
+
# pylint: disable=no-member
|
|
171
|
+
dotobj.set_size(size)
|
|
172
|
+
|
|
173
|
+
return dotobj
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
def CLGInference2dot(
|
|
177
|
+
clg, *, evs=None, size=None, nodeColor=None, arcWidth=None, arcColor=None, cmapNode=None, cmapArc=None, showMsg=None
|
|
178
|
+
):
|
|
179
|
+
"""
|
|
180
|
+
create a pydot representation of the CLG
|
|
181
|
+
|
|
182
|
+
Parameters
|
|
183
|
+
----------
|
|
184
|
+
clg : CLG
|
|
185
|
+
Conditional Linear Gaussian.
|
|
186
|
+
evs : dict[str,float]
|
|
187
|
+
A dictionary of evidence.
|
|
188
|
+
size: str
|
|
189
|
+
Size of the rendered graph.
|
|
190
|
+
nodeColor: dict[Tuple(int,int),float]
|
|
191
|
+
A nodeMap of values to be shown as color nodes (with special color for 0 and 1).
|
|
192
|
+
arcWidth: dict[Tuple(int,int),float]
|
|
193
|
+
An arcMap of values to be shown as bold arcs.
|
|
194
|
+
arcColor: dict[Tuple(int,int),float]
|
|
195
|
+
An arcMap of values (between 0 and 1) to be shown as color of arcs.
|
|
196
|
+
cmapNode: ColorMap
|
|
197
|
+
Color map to show the vals of Nodes.
|
|
198
|
+
cmapArc: ColorMap
|
|
199
|
+
Color map to show the vals of Arcs.
|
|
200
|
+
showMsg: dict
|
|
201
|
+
A nodeMap of values to be shown as tooltip.
|
|
202
|
+
|
|
203
|
+
Returns
|
|
204
|
+
-------
|
|
205
|
+
pydot.Dot
|
|
206
|
+
The desired representation of the Conditional Linear Gaussian.
|
|
207
|
+
"""
|
|
208
|
+
ie = clginference.CLGVariableElimination(clg)
|
|
209
|
+
ie.updateEvidence(evs)
|
|
210
|
+
|
|
211
|
+
if cmapNode is None:
|
|
212
|
+
cmapNode = plt.get_cmap(gum.config["notebook", "default_node_cmap"])
|
|
213
|
+
|
|
214
|
+
if cmapArc is None:
|
|
215
|
+
cmapArc = plt.get_cmap(gum.config["notebook", "default_arc_cmap"])
|
|
216
|
+
|
|
217
|
+
# default
|
|
218
|
+
maxarcs = 100
|
|
219
|
+
minarcs = 0
|
|
220
|
+
|
|
221
|
+
if arcWidth is not None:
|
|
222
|
+
minarcs = min(arcWidth.values())
|
|
223
|
+
maxarcs = max(arcWidth.values())
|
|
224
|
+
|
|
225
|
+
dotobj = dot.Dot(graph_type="digraph", bgcolor="transparent")
|
|
226
|
+
|
|
227
|
+
for n in clg.names():
|
|
228
|
+
if n in evs:
|
|
229
|
+
bgcol = gum.config["notebook", "evidence_bgcolor"]
|
|
230
|
+
fgcol = gum.config["notebook", "evidence_fgcolor"]
|
|
231
|
+
res = ""
|
|
232
|
+
else:
|
|
233
|
+
if nodeColor is None or n not in nodeColor:
|
|
234
|
+
bgcol = gum.config["notebook", "histogram_color"]
|
|
235
|
+
fgcol = gumcols.rgb2brightness(*gumcols.hex2rgb(bgcol))
|
|
236
|
+
res = ""
|
|
237
|
+
else:
|
|
238
|
+
bgcol = gumcols.proba2bgcolor(nodeColor[n], cmapNode)
|
|
239
|
+
fgcol = gumcols.proba2fgcolor(nodeColor[n], cmapNode)
|
|
240
|
+
res = f" : {nodeColor[n] if showMsg is None else showMsg[n]:2.5f}"
|
|
241
|
+
v = ie.posterior(n)
|
|
242
|
+
node = dot.Node(
|
|
243
|
+
'"' + n + '"',
|
|
244
|
+
style="filled",
|
|
245
|
+
fillcolor=bgcol,
|
|
246
|
+
fontcolor=fgcol,
|
|
247
|
+
tooltip=f'"({clg.idFromName(n)}) {n}{res}"',
|
|
248
|
+
label=f"{{{n}|{{μ={v.mu():.3f}|σ={v.sigma():.3f}}}}}",
|
|
249
|
+
shape="Mrecord",
|
|
250
|
+
)
|
|
251
|
+
dotobj.add_node(node)
|
|
252
|
+
|
|
253
|
+
for a in clg.arcs():
|
|
254
|
+
if arcWidth is None:
|
|
255
|
+
pw = 1
|
|
256
|
+
av = ""
|
|
257
|
+
else:
|
|
258
|
+
if a in arcWidth:
|
|
259
|
+
if maxarcs == minarcs:
|
|
260
|
+
pw = 1
|
|
261
|
+
else:
|
|
262
|
+
pw = 0.1 + 5 * (arcWidth[a] - minarcs) / (maxarcs - minarcs)
|
|
263
|
+
av = arcWidth[a]
|
|
264
|
+
else:
|
|
265
|
+
pw = 1
|
|
266
|
+
av = 1
|
|
267
|
+
if arcColor is None:
|
|
268
|
+
col = gumcols.getBlackInTheme()
|
|
269
|
+
else:
|
|
270
|
+
if a in arcColor:
|
|
271
|
+
col = gumcols.proba2color(arcColor[a], cmapArc)
|
|
272
|
+
else:
|
|
273
|
+
col = gumcols.getBlackInTheme()
|
|
274
|
+
|
|
275
|
+
edge = dot.Edge(
|
|
276
|
+
'"' + clg.variable(a[0]).name() + '"',
|
|
277
|
+
'"' + clg.variable(a[1]).name() + '"',
|
|
278
|
+
penwidth=pw,
|
|
279
|
+
color=col,
|
|
280
|
+
tooltip=f"{a} : {av}",
|
|
281
|
+
)
|
|
282
|
+
dotobj.add_edge(edge)
|
|
283
|
+
|
|
284
|
+
if size is None:
|
|
285
|
+
size = gum.config["notebook", "default_graph_size"]
|
|
286
|
+
|
|
287
|
+
# dynamic member makes pylink unhappy
|
|
288
|
+
# pylint: disable=no-member
|
|
289
|
+
dotobj.set_size(size)
|
|
290
|
+
|
|
291
|
+
return dotobj
|
|
292
|
+
|
|
293
|
+
|
|
294
|
+
def getInference(
|
|
295
|
+
clg, *, evs=None, size=None, nodeColor=None, arcWidth=None, arcColor=None, cmapNode=None, cmapArc=None, showMsg=None
|
|
296
|
+
):
|
|
297
|
+
"""
|
|
298
|
+
return a pydot representation of the CLG
|
|
299
|
+
|
|
300
|
+
Parameters
|
|
301
|
+
----------
|
|
302
|
+
clg : CLG
|
|
303
|
+
Conditional Linear Gaussian.
|
|
304
|
+
evs : dict[str,float]
|
|
305
|
+
A dictionary of evidence.
|
|
306
|
+
size: str
|
|
307
|
+
Size of the rendered graph.
|
|
308
|
+
nodeColor: dict[Tuple(int,int),float]
|
|
309
|
+
A nodeMap of values to be shown as color nodes (with special color for 0 and 1).
|
|
310
|
+
arcWidth: dict[Tuple(int,int),float]
|
|
311
|
+
An arcMap of values to be shown as bold arcs.
|
|
312
|
+
arcColor: dict[Tuple(int,int),float]
|
|
313
|
+
An arcMap of values (between 0 and 1) to be shown as color of arcs.
|
|
314
|
+
cmapNode: ColorMap
|
|
315
|
+
Color map to show the vals of Nodes.
|
|
316
|
+
cmapArc: ColorMap
|
|
317
|
+
Color map to show the vals of Arcs.
|
|
318
|
+
showMsg: dict
|
|
319
|
+
A nodeMap of values to be shown as tooltip.
|
|
320
|
+
|
|
321
|
+
Returns
|
|
322
|
+
-------
|
|
323
|
+
pydot.Dot
|
|
324
|
+
The desired representation of the Conditional Linear Gaussian.
|
|
325
|
+
"""
|
|
326
|
+
return CLGInference2dot(
|
|
327
|
+
clg,
|
|
328
|
+
evs=evs,
|
|
329
|
+
size=size,
|
|
330
|
+
nodeColor=nodeColor,
|
|
331
|
+
arcWidth=arcWidth,
|
|
332
|
+
arcColor=arcColor,
|
|
333
|
+
cmapNode=cmapNode,
|
|
334
|
+
cmapArc=cmapArc,
|
|
335
|
+
showMsg=showMsg,
|
|
336
|
+
)
|
|
337
|
+
|
|
338
|
+
|
|
339
|
+
def showInference(
|
|
340
|
+
clg, *, evs=None, size=None, nodeColor=None, arcWidth=None, arcColor=None, cmapNode=None, cmapArc=None, showMsg=None
|
|
341
|
+
):
|
|
342
|
+
"""
|
|
343
|
+
display a pydot representation of the CLG
|
|
344
|
+
|
|
345
|
+
Parameters
|
|
346
|
+
----------
|
|
347
|
+
clg : CLG
|
|
348
|
+
Conditional Linear Gaussian.
|
|
349
|
+
evs : dict[str,float]
|
|
350
|
+
A dictionary of evidence.
|
|
351
|
+
size: str
|
|
352
|
+
Size of the rendered graph.
|
|
353
|
+
nodeColor: dict[Tuple(int,int),float]
|
|
354
|
+
A nodeMap of values to be shown as color nodes (with special color for 0 and 1).
|
|
355
|
+
arcWidth: dict[Tuple(int,int),float]
|
|
356
|
+
An arcMap of values to be shown as bold arcs.
|
|
357
|
+
arcColor: dict[Tuple(int,int),float]
|
|
358
|
+
An arcMap of values (between 0 and 1) to be shown as color of arcs.
|
|
359
|
+
cmapNode: ColorMap
|
|
360
|
+
Color map to show the vals of Nodes.
|
|
361
|
+
cmapArc: ColorMap
|
|
362
|
+
Color map to show the vals of Arcs.
|
|
363
|
+
showMsg: dict
|
|
364
|
+
A nodeMap of values to be shown as tooltip.
|
|
365
|
+
"""
|
|
366
|
+
gnb.showDot(
|
|
367
|
+
CLGInference2dot(
|
|
368
|
+
clg,
|
|
369
|
+
evs=evs,
|
|
370
|
+
size=size,
|
|
371
|
+
nodeColor=nodeColor,
|
|
372
|
+
arcWidth=arcWidth,
|
|
373
|
+
arcColor=arcColor,
|
|
374
|
+
cmapNode=cmapNode,
|
|
375
|
+
cmapArc=cmapArc,
|
|
376
|
+
showMsg=showMsg,
|
|
377
|
+
)
|
|
378
|
+
)
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+
def exportCLG(
|
|
382
|
+
clg, filename, *, size=None, nodeColor=None, arcWidth=None, arcColor=None, cmapNode=None, cmapArc=None, showMsg=None
|
|
383
|
+
):
|
|
384
|
+
"""
|
|
385
|
+
Export the clg as a picture.
|
|
386
|
+
|
|
387
|
+
Parameters
|
|
388
|
+
----------
|
|
389
|
+
clgdot : pydot.Dot
|
|
390
|
+
pydot representation of the CLG.
|
|
391
|
+
filename : str
|
|
392
|
+
The filename of the exported file.
|
|
393
|
+
size: str
|
|
394
|
+
Size of the rendered graph.
|
|
395
|
+
nodeColor: dict[Tuple(int,int),float]
|
|
396
|
+
A nodeMap of values to be shown as color nodes (with special color for 0 and 1).
|
|
397
|
+
arcWidth: dict[Tuple(int,int),float]
|
|
398
|
+
An arcMap of values to be shown as bold arcs.
|
|
399
|
+
arcColor: dict[Tuple(int,int),float]
|
|
400
|
+
An arcMap of values (between 0 and 1) to be shown as color of arcs.
|
|
401
|
+
cmapNode: ColorMap
|
|
402
|
+
Color map to show the vals of Nodes.
|
|
403
|
+
cmapArc: ColorMap
|
|
404
|
+
Color map to show the vals of Arcs.
|
|
405
|
+
showMsg: dict
|
|
406
|
+
A nodeMap of values to be shown as tooltip.
|
|
407
|
+
"""
|
|
408
|
+
clgdot = CLG2dot(
|
|
409
|
+
clg,
|
|
410
|
+
size=size,
|
|
411
|
+
nodeColor=nodeColor,
|
|
412
|
+
arcWidth=arcWidth,
|
|
413
|
+
arcColor=arcColor,
|
|
414
|
+
cmapNode=cmapNode,
|
|
415
|
+
cmapArc=cmapArc,
|
|
416
|
+
showMsg=showMsg,
|
|
417
|
+
)
|
|
418
|
+
gimg.export(clgdot, filename)
|
|
419
|
+
|
|
420
|
+
|
|
421
|
+
def exportInference(
|
|
422
|
+
clg,
|
|
423
|
+
filename: str,
|
|
424
|
+
*,
|
|
425
|
+
evs=None,
|
|
426
|
+
size=None,
|
|
427
|
+
nodeColor=None,
|
|
428
|
+
arcWidth=None,
|
|
429
|
+
arcColor=None,
|
|
430
|
+
cmapNode=None,
|
|
431
|
+
cmapArc=None,
|
|
432
|
+
showMsg=None,
|
|
433
|
+
):
|
|
434
|
+
"""
|
|
435
|
+
export a representation of a CLG inference as a picture
|
|
436
|
+
|
|
437
|
+
Parameters
|
|
438
|
+
----------
|
|
439
|
+
clg : CLG
|
|
440
|
+
Conditional Linear Gaussian.
|
|
441
|
+
filename : str
|
|
442
|
+
The filename of the exported file.
|
|
443
|
+
evs : dict[str,float]
|
|
444
|
+
A dictionary of evidence.
|
|
445
|
+
size: str
|
|
446
|
+
Size of the rendered graph.
|
|
447
|
+
nodeColor: dict[Tuple(int,int),float]
|
|
448
|
+
A nodeMap of values to be shown as color nodes (with special color for 0 and 1).
|
|
449
|
+
arcWidth: dict[Tuple(int,int),float]
|
|
450
|
+
An arcMap of values to be shown as bold arcs.
|
|
451
|
+
arcColor: dict[Tuple(int,int),float]
|
|
452
|
+
An arcMap of values (between 0 and 1) to be shown as color of arcs.
|
|
453
|
+
cmapNode: ColorMap
|
|
454
|
+
Color map to show the vals of Nodes.
|
|
455
|
+
cmapArc: ColorMap
|
|
456
|
+
Color map to show the vals of Arcs.
|
|
457
|
+
showMsg: dict
|
|
458
|
+
A nodeMap of values to be shown as tooltip.
|
|
459
|
+
|
|
460
|
+
Returns
|
|
461
|
+
-------
|
|
462
|
+
pydot.Dot
|
|
463
|
+
The desired representation of the Conditional Linear Gaussian.
|
|
464
|
+
"""
|
|
465
|
+
clgdot = CLGInference2dot(
|
|
466
|
+
clg,
|
|
467
|
+
evs=evs,
|
|
468
|
+
size=size,
|
|
469
|
+
nodeColor=nodeColor,
|
|
470
|
+
arcWidth=arcWidth,
|
|
471
|
+
arcColor=arcColor,
|
|
472
|
+
cmapNode=cmapNode,
|
|
473
|
+
cmapArc=cmapArc,
|
|
474
|
+
showMsg=showMsg,
|
|
475
|
+
)
|
|
476
|
+
gimg.export(clgdot, filename)
|
|
477
|
+
|
|
478
|
+
|
|
479
|
+
CLG.toDot = lambda self: str(CLG2dot(self))
|
|
480
|
+
CLG._repr_html_ = lambda self: gnb.getDot(self.toDot())
|