py-neuromodulation 0.0.3__py3-none-any.whl → 0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (176) hide show
  1. py_neuromodulation/ConnectivityDecoding/Automated Anatomical Labeling 3 (Rolls 2020).nii +0 -0
  2. py_neuromodulation/ConnectivityDecoding/_get_grid_hull.m +34 -0
  3. py_neuromodulation/ConnectivityDecoding/_get_grid_whole_brain.py +106 -0
  4. py_neuromodulation/ConnectivityDecoding/_helper_write_connectome.py +119 -0
  5. py_neuromodulation/ConnectivityDecoding/mni_coords_cortical_surface.mat +0 -0
  6. py_neuromodulation/ConnectivityDecoding/mni_coords_whole_brain.mat +0 -0
  7. py_neuromodulation/ConnectivityDecoding/rmap_func_all.nii +0 -0
  8. py_neuromodulation/ConnectivityDecoding/rmap_struc.nii +0 -0
  9. py_neuromodulation/data/README +6 -0
  10. py_neuromodulation/data/dataset_description.json +8 -0
  11. py_neuromodulation/data/participants.json +32 -0
  12. py_neuromodulation/data/participants.tsv +2 -0
  13. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +5 -0
  14. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +11 -0
  15. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +11 -0
  16. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.eeg +0 -0
  17. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +18 -0
  18. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +35 -0
  19. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +13 -0
  20. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +2 -0
  21. py_neuromodulation/grid_cortex.tsv +40 -0
  22. py_neuromodulation/grid_subcortex.tsv +1429 -0
  23. py_neuromodulation/nm_settings.json +338 -0
  24. py_neuromodulation/nm_stream_offline.py +7 -6
  25. py_neuromodulation/plots/STN_surf.mat +0 -0
  26. py_neuromodulation/plots/Vertices.mat +0 -0
  27. py_neuromodulation/plots/faces.mat +0 -0
  28. py_neuromodulation/plots/grid.mat +0 -0
  29. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.4.dist-info}/METADATA +182 -182
  30. py_neuromodulation-0.0.4.dist-info/RECORD +72 -0
  31. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.4.dist-info}/WHEEL +1 -2
  32. docs/build/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
  33. docs/build/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -233
  34. docs/build/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  35. docs/build/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
  36. docs/build/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  37. docs/build/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
  38. docs/build/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  39. docs/build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
  40. docs/build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -239
  41. docs/build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  42. docs/build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
  43. docs/build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  44. docs/build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
  45. docs/build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  46. docs/source/_build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -76
  47. docs/source/_build/html/_downloads/0d0d0a76e8f648d5d3cbc47da6351932/plot_real_time_demo.py +0 -97
  48. docs/source/_build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -240
  49. docs/source/_build/html/_downloads/5d73cadc59a8805c47e3b84063afc157/plot_example_BIDS.py +0 -233
  50. docs/source/_build/html/_downloads/7660317fa5a6bfbd12fcca9961457fc4/plot_example_rmap_computing.py +0 -63
  51. docs/source/_build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  52. docs/source/_build/html/_downloads/839e5b319379f7fd9e867deb00fd797f/plot_example_gridPointProjection.py +0 -210
  53. docs/source/_build/html/_downloads/ae8be19afe5e559f011fc9b138968ba0/plot_first_demo.py +0 -192
  54. docs/source/_build/html/_downloads/b8b06cacc17969d3725a0b6f1d7741c5/plot_example_sharpwave_analysis.py +0 -219
  55. docs/source/_build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -121
  56. docs/source/_build/html/_downloads/c31a86c0b68cb4167d968091ace8080d/plot_example_add_feature.py +0 -68
  57. docs/source/_build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  58. docs/source/_build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -189
  59. docs/source/_build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  60. docs/source/auto_examples/plot_0_first_demo.py +0 -189
  61. docs/source/auto_examples/plot_1_example_BIDS.py +0 -240
  62. docs/source/auto_examples/plot_2_example_add_feature.py +0 -76
  63. docs/source/auto_examples/plot_3_example_sharpwave_analysis.py +0 -219
  64. docs/source/auto_examples/plot_4_example_gridPointProjection.py +0 -210
  65. docs/source/auto_examples/plot_5_example_rmap_computing.py +0 -64
  66. docs/source/auto_examples/plot_6_real_time_demo.py +0 -121
  67. docs/source/conf.py +0 -105
  68. examples/plot_0_first_demo.py +0 -189
  69. examples/plot_1_example_BIDS.py +0 -240
  70. examples/plot_2_example_add_feature.py +0 -76
  71. examples/plot_3_example_sharpwave_analysis.py +0 -219
  72. examples/plot_4_example_gridPointProjection.py +0 -210
  73. examples/plot_5_example_rmap_computing.py +0 -64
  74. examples/plot_6_real_time_demo.py +0 -121
  75. packages/realtime_decoding/build/lib/realtime_decoding/__init__.py +0 -4
  76. packages/realtime_decoding/build/lib/realtime_decoding/decoder.py +0 -104
  77. packages/realtime_decoding/build/lib/realtime_decoding/features.py +0 -163
  78. packages/realtime_decoding/build/lib/realtime_decoding/helpers.py +0 -15
  79. packages/realtime_decoding/build/lib/realtime_decoding/run_decoding.py +0 -345
  80. packages/realtime_decoding/build/lib/realtime_decoding/trainer.py +0 -54
  81. packages/tmsi/build/lib/TMSiFileFormats/__init__.py +0 -37
  82. packages/tmsi/build/lib/TMSiFileFormats/file_formats/__init__.py +0 -36
  83. packages/tmsi/build/lib/TMSiFileFormats/file_formats/lsl_stream_writer.py +0 -200
  84. packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_file_writer.py +0 -496
  85. packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_to_edf_converter.py +0 -236
  86. packages/tmsi/build/lib/TMSiFileFormats/file_formats/xdf_file_writer.py +0 -977
  87. packages/tmsi/build/lib/TMSiFileFormats/file_readers/__init__.py +0 -35
  88. packages/tmsi/build/lib/TMSiFileFormats/file_readers/edf_reader.py +0 -116
  89. packages/tmsi/build/lib/TMSiFileFormats/file_readers/poly5reader.py +0 -294
  90. packages/tmsi/build/lib/TMSiFileFormats/file_readers/xdf_reader.py +0 -229
  91. packages/tmsi/build/lib/TMSiFileFormats/file_writer.py +0 -102
  92. packages/tmsi/build/lib/TMSiPlotters/__init__.py +0 -2
  93. packages/tmsi/build/lib/TMSiPlotters/gui/__init__.py +0 -39
  94. packages/tmsi/build/lib/TMSiPlotters/gui/_plotter_gui.py +0 -234
  95. packages/tmsi/build/lib/TMSiPlotters/gui/plotting_gui.py +0 -440
  96. packages/tmsi/build/lib/TMSiPlotters/plotters/__init__.py +0 -44
  97. packages/tmsi/build/lib/TMSiPlotters/plotters/hd_emg_plotter.py +0 -446
  98. packages/tmsi/build/lib/TMSiPlotters/plotters/impedance_plotter.py +0 -589
  99. packages/tmsi/build/lib/TMSiPlotters/plotters/signal_plotter.py +0 -1326
  100. packages/tmsi/build/lib/TMSiSDK/__init__.py +0 -54
  101. packages/tmsi/build/lib/TMSiSDK/device.py +0 -588
  102. packages/tmsi/build/lib/TMSiSDK/devices/__init__.py +0 -34
  103. packages/tmsi/build/lib/TMSiSDK/devices/saga/TMSi_Device_API.py +0 -1764
  104. packages/tmsi/build/lib/TMSiSDK/devices/saga/__init__.py +0 -34
  105. packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_device.py +0 -1366
  106. packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_types.py +0 -520
  107. packages/tmsi/build/lib/TMSiSDK/devices/saga/xml_saga_config.py +0 -165
  108. packages/tmsi/build/lib/TMSiSDK/error.py +0 -95
  109. packages/tmsi/build/lib/TMSiSDK/sample_data.py +0 -63
  110. packages/tmsi/build/lib/TMSiSDK/sample_data_server.py +0 -99
  111. packages/tmsi/build/lib/TMSiSDK/settings.py +0 -45
  112. packages/tmsi/build/lib/TMSiSDK/tmsi_device.py +0 -111
  113. packages/tmsi/build/lib/__init__.py +0 -4
  114. packages/tmsi/build/lib/apex_sdk/__init__.py +0 -34
  115. packages/tmsi/build/lib/apex_sdk/device/__init__.py +0 -41
  116. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API.py +0 -1009
  117. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_enums.py +0 -239
  118. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_structures.py +0 -668
  119. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_device.py +0 -1611
  120. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_dongle.py +0 -38
  121. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_event_reader.py +0 -57
  122. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_channel.py +0 -44
  123. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_config.py +0 -150
  124. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_const.py +0 -36
  125. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_impedance_channel.py +0 -48
  126. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_info.py +0 -108
  127. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/dongle_info.py +0 -39
  128. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/download_measurement.py +0 -77
  129. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/eeg_measurement.py +0 -150
  130. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/impedance_measurement.py +0 -129
  131. packages/tmsi/build/lib/apex_sdk/device/threads/conversion_thread.py +0 -59
  132. packages/tmsi/build/lib/apex_sdk/device/threads/sampling_thread.py +0 -57
  133. packages/tmsi/build/lib/apex_sdk/device/tmsi_channel.py +0 -83
  134. packages/tmsi/build/lib/apex_sdk/device/tmsi_device.py +0 -201
  135. packages/tmsi/build/lib/apex_sdk/device/tmsi_device_enums.py +0 -103
  136. packages/tmsi/build/lib/apex_sdk/device/tmsi_dongle.py +0 -43
  137. packages/tmsi/build/lib/apex_sdk/device/tmsi_event_reader.py +0 -50
  138. packages/tmsi/build/lib/apex_sdk/device/tmsi_measurement.py +0 -118
  139. packages/tmsi/build/lib/apex_sdk/sample_data_server/__init__.py +0 -33
  140. packages/tmsi/build/lib/apex_sdk/sample_data_server/event_data.py +0 -44
  141. packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data.py +0 -50
  142. packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data_server.py +0 -136
  143. packages/tmsi/build/lib/apex_sdk/tmsi_errors/error.py +0 -126
  144. packages/tmsi/build/lib/apex_sdk/tmsi_sdk.py +0 -113
  145. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/apex/apex_structure_generator.py +0 -134
  146. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/decorators.py +0 -60
  147. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/logger_filter.py +0 -42
  148. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/singleton.py +0 -42
  149. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/support_functions.py +0 -72
  150. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/tmsi_logger.py +0 -98
  151. py_neuromodulation-0.0.3.dist-info/RECORD +0 -188
  152. py_neuromodulation-0.0.3.dist-info/top_level.txt +0 -5
  153. tests/__init__.py +0 -0
  154. tests/conftest.py +0 -117
  155. tests/test_all_examples.py +0 -10
  156. tests/test_all_features.py +0 -63
  157. tests/test_bispectra.py +0 -70
  158. tests/test_bursts.py +0 -105
  159. tests/test_feature_sampling_rates.py +0 -143
  160. tests/test_fooof.py +0 -16
  161. tests/test_initalization_offline_stream.py +0 -41
  162. tests/test_multiprocessing.py +0 -58
  163. tests/test_nan_values.py +0 -29
  164. tests/test_nm_filter.py +0 -95
  165. tests/test_nm_resample.py +0 -63
  166. tests/test_normalization_settings.py +0 -146
  167. tests/test_notch_filter.py +0 -31
  168. tests/test_osc_features.py +0 -424
  169. tests/test_preprocessing_filter.py +0 -151
  170. tests/test_rereference.py +0 -171
  171. tests/test_sampling.py +0 -57
  172. tests/test_settings_change_after_init.py +0 -76
  173. tests/test_sharpwave.py +0 -165
  174. tests/test_target_channel_add.py +0 -100
  175. tests/test_timing.py +0 -80
  176. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.4.dist-info/licenses}/LICENSE +0 -0
@@ -1,219 +0,0 @@
1
- """
2
- Analyzing sharpwave temporal features
3
- =====================================
4
-
5
- """
6
-
7
- # %%
8
- # Time series data can be characterized using oscillatory components, but assumptions of sinusoidality are for real data rarely fulfilled.
9
- # See *"Brain Oscillations and the Importance of Waveform Shape"* `Cole et al 2017 <https://doi.org/10.1016/j.tics.2016.12.008>`_ for a great motivation.
10
- # We implemented here temporal characteristics based on individual trough and peak relations,
11
- # based on the :meth:~`scipy.signal.find_peaks` method. The function parameter *distance* can be specified in the *nm_settings.json*.
12
- # Temporal features can be calculated twice for troughs and peaks. In the settings, this can be specified by setting *estimate* to true
13
- # in *detect_troughs* and/or *detect_peaks*. A statistical measure (e.g. mean, max, median, var) can be defined as a resulting feature from the peak and
14
- # trough estimates using the *apply_estimator_between_peaks_and_troughs* setting.
15
- #
16
- # In py_neuromodulation the following characteristics are implemented:
17
- #
18
- # .. note::
19
- # The nomenclature is written here for sharpwave troughs, but detection of peak characteristics can be computed in the same way.
20
- #
21
- # - prominence:
22
- # :math:`V_{prominence} = |\frac{V_{peak-left} + V_{peak-right}}{2}| - V_{trough}`
23
- # - sharpness:
24
- # :math:`V_{sharpnesss} = \frac{(V_{trough} - V_{trough-5 ms}) + (V_{trough} - V_{trough+5 ms})}{2}`
25
- # - rise and decay rise time
26
- # - rise and decay steepness
27
- # - width (between left and right peaks)
28
- # - interval (between troughs)
29
- #
30
- # Additionally, different filter ranges can be parametrized using the *filter_ranges_hz* setting.
31
- # Filtering is necessary to remove high frequent signal fluctuations, but limits also the true estimation of sharpness and prominence due to signal smoothing.
32
-
33
- import seaborn as sb
34
- from matplotlib import pyplot as plt
35
- from scipy import signal
36
- import numpy as np
37
-
38
- import py_neuromodulation as nm
39
- from py_neuromodulation import (
40
- nm_define_nmchannels,
41
- nm_IO,
42
- nm_settings,
43
- )
44
-
45
-
46
- # %%
47
- # We will first read the example ECoG data and plot the identified features on the filtered time series.
48
-
49
- RUN_NAME, PATH_RUN, PATH_BIDS, PATH_OUT, datatype = nm_IO.get_paths_example_data()
50
-
51
- (
52
- raw,
53
- data,
54
- sfreq,
55
- line_noise,
56
- coord_list,
57
- coord_names,
58
- ) = nm_IO.read_BIDS_data(
59
- PATH_RUN=PATH_RUN,
60
- BIDS_PATH=PATH_BIDS, datatype=datatype
61
- )
62
-
63
- # %%
64
- settings = nm_settings.get_default_settings()
65
- settings = nm_settings.set_settings_fast_compute(settings)
66
-
67
- settings["features"]["fft"] = True
68
- settings["features"]["bursts"] = False
69
- settings["features"]["sharpwave_analysis"] = True
70
- settings["features"]["coherence"] = False
71
-
72
- settings["sharpwave_analysis_settings"]["estimator"]["mean"] = []
73
- for sw_feature in list(
74
- settings["sharpwave_analysis_settings"]["sharpwave_features"].keys()
75
- ):
76
- settings["sharpwave_analysis_settings"]["sharpwave_features"][sw_feature] = True
77
- settings["sharpwave_analysis_settings"]["estimator"]["mean"].append(sw_feature)
78
-
79
- nm_channels = nm_define_nmchannels.set_channels(
80
- ch_names=raw.ch_names,
81
- ch_types=raw.get_channel_types(),
82
- reference="default",
83
- bads=raw.info["bads"],
84
- new_names="default",
85
- used_types=("ecog", "dbs", "seeg"),
86
- target_keywords=["MOV_RIGHT"]
87
- )
88
-
89
- stream = nm.Stream(
90
- sfreq=sfreq,
91
- nm_channels=nm_channels,
92
- settings=settings,
93
- line_noise=line_noise,
94
- coord_list=coord_list,
95
- coord_names=coord_names,
96
- verbose=False,
97
- )
98
- sw_analyzer = stream.run_analysis.features.features[1]
99
-
100
- # %%
101
- # The plotted example time series, visualized on a short time scale, shows the relation of identified peaks, troughs, and estimated features:
102
- data_plt = data[5, 1000:4000]
103
-
104
-
105
- sw_analyzer._initialize_sw_features()
106
- filtered_dat = np.convolve(
107
- data_plt,
108
- sw_analyzer.list_filter[0][1],
109
- mode="same"
110
- )
111
- #filtered_dat = filtered_dat[500:-500]
112
-
113
- troughs = signal.find_peaks(-filtered_dat, distance=10)[0]
114
- peaks = signal.find_peaks(filtered_dat, distance=5)[0]
115
-
116
- sw_analyzer.data_process_sw = filtered_dat
117
- sw_analyzer.analyze_waveform()
118
-
119
- WIDTH = BAR_WIDTH = 4
120
- BAR_OFFSET = 50
121
- OFFSET_TIME_SERIES = -100
122
- SCALE_TIMESERIES = 1
123
-
124
- hue_colors = sb.color_palette("viridis_r", 6)
125
-
126
- plt.figure(figsize=(5, 3), dpi=300)
127
- plt.plot(OFFSET_TIME_SERIES + data_plt, color="gray", linewidth=0.5, alpha=0.5, label="original ECoG data")
128
- plt.plot(OFFSET_TIME_SERIES + filtered_dat*SCALE_TIMESERIES, linewidth=0.5, color="black", label="[5-30]Hz filtered data")
129
-
130
- plt.plot(peaks, OFFSET_TIME_SERIES + filtered_dat[peaks]*SCALE_TIMESERIES, "x", label="peaks",markersize=3, color="darkgray")
131
- plt.plot(troughs, OFFSET_TIME_SERIES + filtered_dat[troughs]*SCALE_TIMESERIES, "x", label="troughs", markersize=3, color="lightgray")
132
-
133
- plt.bar(troughs+BAR_WIDTH, np.array(sw_analyzer.prominence)*4, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[0], label="Prominence", alpha=0.5)
134
- plt.bar(troughs+BAR_WIDTH*2, -np.array(sw_analyzer.sharpness)*6, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[1], label="Sharpness", alpha=0.5)
135
- plt.bar(troughs+BAR_WIDTH*3, np.array(sw_analyzer.interval)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[2], label="Interval", alpha=0.5)
136
- plt.bar(troughs+BAR_WIDTH*4, np.array(sw_analyzer.rise_time)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[3], label="Rise time", alpha=0.5)
137
-
138
- plt.xticks(np.arange(0, data_plt.shape[0], 200), np.round(np.arange(0, int(data_plt.shape[0]/1000), 0.2), 2))
139
- plt.xlabel("Time [s]")
140
- plt.title("Temporal waveform shape features")
141
- plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
142
- plt.ylim(-550, 700)
143
- plt.xlim(0, 200)
144
- plt.ylabel("a.u.")
145
- plt.tight_layout()
146
-
147
- # %%
148
- # See in the following example a time series example, that is aligned to movement. With movement onset the prominence, sharpness, and interval features are reduced:
149
-
150
- plt.figure(figsize=(8, 5), dpi=300)
151
- plt.plot(OFFSET_TIME_SERIES + data_plt, color="gray", linewidth=0.5, alpha=0.5, label="original ECoG data")
152
- plt.plot(OFFSET_TIME_SERIES + filtered_dat*SCALE_TIMESERIES, linewidth=0.5, color="black", label="[5-30]Hz filtered data")
153
-
154
- plt.plot(peaks, OFFSET_TIME_SERIES + filtered_dat[peaks]*SCALE_TIMESERIES, "x", label="peaks",markersize=3, color="darkgray")
155
- plt.plot(troughs, OFFSET_TIME_SERIES + filtered_dat[troughs]*SCALE_TIMESERIES, "x", label="troughs", markersize=3, color="lightgray")
156
-
157
- plt.bar(troughs+BAR_WIDTH, np.array(sw_analyzer.prominence)*4, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[0], label="Prominence", alpha=0.5)
158
- plt.bar(troughs+BAR_WIDTH*2, -np.array(sw_analyzer.sharpness)*6, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[1], label="Sharpness", alpha=0.5)
159
- plt.bar(troughs+BAR_WIDTH*3, np.array(sw_analyzer.interval)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[2], label="Interval", alpha=0.5)
160
- plt.bar(troughs+BAR_WIDTH*4, np.array(sw_analyzer.rise_time)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[3], label="Rise time", alpha=0.5)
161
-
162
- plt.axvline(x=1500, label="Movement start", color="red")
163
-
164
- #plt.xticks(np.arange(0, 2000, 200), np.round(np.arange(0, 2, 0.2), 2))
165
- plt.xticks(np.arange(0, data_plt.shape[0], 200), np.round(np.arange(0, int(data_plt.shape[0]/1000), 0.2), 2))
166
- plt.xlabel("Time [s]")
167
- plt.title("Temporal waveform shape features")
168
- plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
169
- plt.ylim(-450, 400)
170
- plt.ylabel("a.u.")
171
- plt.tight_layout()
172
-
173
- # %%
174
- # In the *sharpwave_analysis_settings* the *estimator* keyword further specifies which statistic is computed based on the individual
175
- # features in one batch. The "global" setting *segment_length_features_ms* specifies the time duration for feature computation.
176
- # Since there can be a different number of identified waveform shape features for different batches (i.e. different number of peaks/troughs),
177
- # taking a statistical measure (e.g. the maximum or mean) will be necessary for feature comparison.
178
-
179
- # %%
180
- # Example time series computation for movement decoding
181
- # -----------------------------------------------------
182
- # We will now read the ECoG example/data and investigate if samples differ across movement states. Therefore we compute features and enable the default *sharpwave* features.
183
-
184
- settings = nm_settings.get_default_settings()
185
- settings = nm_settings.reset_settings(settings)
186
- settings["features"]["sharpwave_analysis"] = True
187
- settings["sharpwave_analysis_settings"]["interval"] = False
188
- settings["sharpwave_analysis_settings"]["filter_ranges"] = [[5, 80]]
189
-
190
- nm_channels["used"] = 0 # set only two ECoG channels for faster computation to true
191
- nm_channels.loc[[3, 8], "used"] = 1
192
-
193
- stream = nm.Stream(
194
- sfreq=sfreq,
195
- nm_channels=nm_channels,
196
- settings=settings,
197
- line_noise=line_noise,
198
- coord_list=coord_list,
199
- coord_names=coord_names,
200
- verbose=True,
201
- )
202
-
203
- df_features = stream.run(data=data[:, :30000])
204
-
205
- # %%
206
- # We can then plot two exemplary features, prominence and interval, and see that the movement amplitude can be clustered with those two features alone:
207
-
208
- plt.figure(figsize=(5, 3), dpi=300)
209
- plt.scatter(
210
- df_features["ECOG_RIGHT_0-avgref_Sharpwave_Max_prominence_range_5_80"],
211
- df_features["ECOG_RIGHT_5-avgref_Sharpwave_Mean_interval_range_5_80"],
212
- c=df_features["MOV_RIGHT"], alpha=0.8, s=30
213
- )
214
- cbar = plt.colorbar()
215
- cbar.set_label("Movement amplitude")
216
- plt.xlabel("Prominence a.u.")
217
- plt.ylabel("Interval a.u.")
218
- plt.title("Temporal features predict movement amplitude")
219
- plt.tight_layout()
@@ -1,121 +0,0 @@
1
- """
2
- Real-time feature estimation
3
- ============================
4
-
5
- """
6
-
7
- # %%
8
- # Implementation of individual nm_streams
9
- # ---------------------------------------
10
- #
11
- # *py_neuromodulation* was optimized for computation of real-time data streams.
12
- # There are however center -and lab specific hardware acquisition systems. Therefore, each experiment requires modules to interact with hardware platforms
13
- # which periodically acquire data.
14
- #
15
- # Given the raw data, data can be analyzed using *py_neuromodulation*. Preprocessing methods, such as re-referencing and normalization,
16
- # feature computation and decoding can be performed then in real-time.
17
- #
18
- # For online as well as as offline analysis, the :class:`~nm_stream_abc` class needs to be instantiated.
19
- # Here the `nm_settings` and `nm_channels` are required to be defined.
20
- # Previously for the offline analysis, an offline :class:`~nm_generator` object was defined that periodically yielded data.
21
- # For online data, the :meth:`~nm_stream_abc.run` function therefore needs to be overwritten, which first acquires data and then calls
22
- # the :meth:`~nm_run_analysis.process` function.
23
- #
24
- # The following illustrates in pseudo-code how such a stream could be initialized:
25
- #
26
- # .. code-block:: python
27
- #
28
- # from py_neuromodulation import nm_stream_abc
29
- #
30
- # class MyStream(nm_stream_abc):
31
- # def __init__(self, settings, channels):
32
- # super().__init__(settings, channels)
33
- #
34
- # def run(self):
35
- # features_ = []
36
- # while True:
37
- # data = self.acquire_data()
38
- # features_.append(self.run_analysis.process(data))
39
- # # potentially use machine learning model for decoding
40
- #
41
- #
42
- # Computation time examples
43
- # -------------------------
44
- #
45
- # The following example calculates for six channels, CAR re-referencing, z-score normalization and FFT features results the following computation time:
46
-
47
- # %%
48
- import py_neuromodulation as nm
49
- import numpy as np
50
- import timeit
51
-
52
-
53
- def get_fast_compute_settings():
54
- settings = nm.nm_settings.get_default_settings()
55
- settings = nm.nm_settings.reset_settings(settings)
56
- settings = nm.nm_settings.set_settings_fast_compute(settings)
57
- settings["preprocessing"] = ["re_referencing", "notch_filter"]
58
- settings["features"]["fft"] = True
59
- settings["postprocessing"]["feature_normalization"] = True
60
- return settings
61
-
62
-
63
- data = np.random.random([1, 1000])
64
-
65
- print("FFT Features, CAR re-referencing, z-score normalization")
66
- print()
67
- print("Computation time for single ECoG channel: ")
68
- stream = nm.Stream(
69
- sfreq=1000,
70
- data=data,
71
- sampling_rate_features_hz=10,
72
- verbose=False,
73
- settings=get_fast_compute_settings(),
74
- )
75
- print(
76
- f"{np.round(timeit.timeit(lambda: stream.run_analysis.process(data), number=100)/100, 3)} s"
77
- )
78
-
79
- print("Computation time for 6 ECoG channels: ")
80
- data = np.random.random([6, 1000])
81
- stream = nm.Stream(
82
- sfreq=500,
83
- data=data,
84
- sampling_rate_features_hz=10,
85
- verbose=False,
86
- settings=get_fast_compute_settings(),
87
- )
88
- print(
89
- f"{np.round(timeit.timeit(lambda: stream.run_analysis.process(data), number=100)/100, 3)} s"
90
- )
91
-
92
- print(
93
- "\nFFT Features & Temporal Waveform Shape & Hjorth & Bursts, CAR re-referencing, z-score normalization"
94
- )
95
- print("Computation time for single ECoG channel: ")
96
- data = np.random.random([1, 1000])
97
- stream = nm.Stream(
98
- sfreq=1000, data=data, sampling_rate_features_hz=10, verbose=False
99
- )
100
- print(
101
- f"{np.round(timeit.timeit(lambda: stream.run_analysis.process(data), number=10)/10, 3)} s"
102
- )
103
-
104
-
105
- # %%
106
- # Those results show that the computation time for a typical pipeline (FFT, re-referencing, notch-filtering, feature normalization)
107
- # is well below 10 ms, which is fast enough for real-time analysis with feature sampling rates below 100 Hz.
108
- # Computation of more complex features could still result in feature sampling rates of more than 30 Hz.
109
- #
110
- # Real-time movement decoding using the TMSi-SAGA amplifier
111
- # ---------------------------------------------------------
112
- #
113
- # In the following example, we will show how we setup a real-time movement decoding experiment using the TMSi-SAGA amplifier.
114
- # First, we relied on different software modules for data streaming and visualization.
115
- # `LabStreamingLayer <https://labstreaminglayer.org>`_ allows for real-time data streaming and synchronization across multiple devices.
116
- # We used `timeflux <https://timeflux.io>`_ for real-time data visualization of features, decoded output.
117
- # For raw data visualization we used `Brain Streaming Layer <https://fcbg-hnp-meeg.github.io/bsl/dev/index.html>`_.
118
- #
119
- # The code for real-time movement decoding is added in the GitHub branch `realtime_decoding <https://github.com/neuromodulation/py_neuromodulation/tree/realtime_decoding>`_.
120
- # Here we relied on the `TMSI SAGA Python interface <https://gitlab.com/tmsi/tmsi-python-interface>`_.
121
- #
@@ -1,68 +0,0 @@
1
- """
2
- ===================
3
- Adding New Features
4
- ===================
5
-
6
- """
7
-
8
- import py_neuromodulation as pn
9
- from py_neuromodulation import nm_features_abc
10
- import numpy as np
11
- from typing import Iterable
12
-
13
- # %%
14
- # In this example we will demonstrate how a new feature can be added to the existing feature pipeline.
15
- # This can be done simply by adding an object of the inherited :class:`~nm_features_abc.Feature`
16
- # class to the stream `stream.run_analysis.features.features` list.
17
-
18
- data = np.random.random([1, 1000])
19
-
20
- stream = pn.Stream(sfreq=1000, data=data, sampling_rate_features_hz=10, verbose=False,)
21
-
22
- class NewFeature(nm_features_abc.Feature):
23
-
24
- def __init__(
25
- self, settings: dict, ch_names: Iterable[str], sfreq: float
26
- ) -> None:
27
- self.s = settings
28
- self.ch_names = ch_names
29
-
30
- def calc_feature(self, data: np.array, features_compute: dict) -> dict:
31
- for ch_idx, ch in enumerate(self.ch_names):
32
- features_compute[f"new_feature_{ch}"] = np.mean(data[ch_idx, :])
33
-
34
- return features_compute
35
-
36
- def test_settings():
37
- pass
38
-
39
- newFeature = NewFeature(stream.settings, list(stream.nm_channels["name"]), stream.sfreq)
40
- stream.run_analysis.features.features.append(newFeature)
41
-
42
- features = stream.run_analysis.process(data)
43
- feature_name = f"new_feature_{stream.nm_channels['name'][0]}"
44
-
45
- print(f"{feature_name}: {features[feature_name]}")
46
-
47
- # %%
48
- # This example shows a simple newly instantiated feature class called `NewFeature`.
49
- # The instantiated `newFeature` object could then be added to the existing feature list by calling
50
- # `stream.run_analysis.features.features.append(newFeature)`.
51
- #
52
- # To permanently add a novel feature, the new feature class needs to be added to
53
- # the :class:`~nm_features` class. This can be done by inserting the feature_name in
54
- # in the :class:`~nm_features.Feature` init function:
55
- #
56
- # .. code-block:: python
57
- #
58
- # for feature in s["features"]:
59
- # if s["features"][feature] is False:
60
- # continue
61
- # match feature:
62
- # case "new_feature":
63
- # FeatureClass = nm_new_feature.NewFeature
64
- # ...
65
- #
66
- # The new feature class can then be used by setting the `settings["feature"]["new_feature"]` value in the
67
- # settings to true.
68
- #
@@ -1,64 +0,0 @@
1
- """
2
- R-Map computation
3
- =================
4
-
5
- """
6
- # %%
7
- # sphinx_gallery_thumbnail_path = '_static/RMAP_figure.png'
8
-
9
- # %%
10
- # Across patient decoding using R-Map optimal connectivity
11
- # --------------------------------------------------------
12
- #
13
- # ECoG electrode placement is commonly very heterogeneous across patients and cohorts.
14
- # To still facilitate approaches that are able to perform decoding applications without patient individual training,
15
- # two across-patient decoding approaches were previously investigated for movement decoding:
16
- #
17
- #
18
- # * grid-point decoding
19
- # * optimal connectivity channel decoding
20
- #
21
- #
22
- # First, the grid-point decoding approach relies on definition of a cortical or subcortical grid.
23
- # Data from individual grid points is then interpolated onto those common grid points.
24
- # The approach was also explained in the :doc:`plot_4_example_gridPointProjection` notebook.
25
- #
26
- # .. image:: ../_static/RMAP_figure.png
27
- # :alt: R-Map and grid point approach for decoding without patient-individual training
28
- #
29
- # The R-Map decoding approach relies on the other hand on computation of whole brain connectivity. The electrode MNI space locations need to be known,
30
- # then the following steps can be performed for decoding without patient individual training:
31
- #
32
- # #. Using the `wjn_toolbox <https://github.com/neuromodulation/wjn_toolbox>`_ *wjn_specrical_roi* function, the MNI coordinates can be transformed into NIFTI (.nii) files, containing the electrode contact region of interest (ROI):
33
- #
34
- # .. code-block:: python
35
- #
36
- # wjn_spherical_roi(roiname, mni, 4)
37
- #
38
- # #. For the given *ROI.nii* files, the LeadDBS `LeadMapper <https://netstim.gitbook.io/leaddbs/connectomics/lead-mapper>`_ tool can be used for functional or structural connectivity estimation.
39
- #
40
- # #. The py_neuromodulation :class:`~nm_RMAP.py` module can then compute the R-Map given the contact-individual connectivity fingerprints:
41
- #
42
- # .. code-block:: python
43
- #
44
- # nm_RMAP.calculate_RMap_numba(fingerprints, performances)
45
- #
46
- # #. The fingerprints from test-set patients can then be correlated with the calculated R-Map:
47
- #
48
- # .. code-block:: python
49
- #
50
- # nm_RMAP.get_corr_numba(fp, fp_test)
51
- #
52
- # #. The channel with highest correlation can then be selected for decoding without individual training. :class:`~nm_RMAP.py` contain already leave one channel and leave one patient out cross validation functions:
53
- #
54
- # .. code-block:: python
55
- #
56
- # nm_RMAP.leave_one_sub_out_cv(l_fps_names, l_fps_dat, l_per, sub_list)
57
- #
58
- # #. The obtained R-Map correlations can then be estimated statistically and plotted against true correlates:
59
- #
60
- # .. code-block:: python
61
- #
62
- # nm_RMAP.plot_performance_prediction_correlation(per_left_out, per_predict, out_path_save)
63
- #
64
- #
@@ -1,189 +0,0 @@
1
- """
2
- First Demo
3
- ==========
4
-
5
- This Demo will showcase the feature estimation and
6
- exemplar analysis using simulated data.
7
- """
8
-
9
- import numpy as np
10
- from matplotlib import pyplot as plt
11
-
12
- import py_neuromodulation as nm
13
-
14
- from py_neuromodulation import nm_analysis, nm_define_nmchannels, nm_plots
15
-
16
- # %%
17
- # Data Simulation
18
- # ---------------
19
- # We will now generate some exemplar data with 10 second duration for 6 channels with a sample rate of 1 kHz.
20
-
21
-
22
- def generate_random_walk(NUM_CHANNELS, TIME_DATA_SAMPLES):
23
- # from https://towardsdatascience.com/random-walks-with-python-8420981bc4bc
24
- dims = NUM_CHANNELS
25
- step_n = TIME_DATA_SAMPLES - 1
26
- step_set = [-1, 0, 1]
27
- origin = (np.random.random([1, dims]) - 0.5) * 1 # Simulate steps in 1D
28
- step_shape = (step_n, dims)
29
- steps = np.random.choice(a=step_set, size=step_shape)
30
- path = np.concatenate([origin, steps]).cumsum(0)
31
- return path.T
32
-
33
-
34
- NUM_CHANNELS = 6
35
- sfreq = 1000
36
- TIME_DATA_SAMPLES = 10 * sfreq
37
- data = generate_random_walk(NUM_CHANNELS, TIME_DATA_SAMPLES)
38
- time = np.arange(0, TIME_DATA_SAMPLES / sfreq, 1 / sfreq)
39
-
40
- plt.figure(figsize=(8, 4), dpi=100)
41
- for ch_idx in range(data.shape[0]):
42
- plt.plot(time, data[ch_idx, :])
43
- plt.xlabel("Time [s]")
44
- plt.ylabel("Amplitude")
45
- plt.title("Example random walk data")
46
-
47
- # %%
48
- # Now let’s define the necessary setup files we will be using for data
49
- # preprocessing and feature estimation. Py_neuromodualtion is based on two
50
- # parametrization files: the *nm_channels.tsv* and the *nm_setting.json*.
51
- #
52
- # nm_channels
53
- # ~~~~~~~~~~~
54
- #
55
- # The *nm_channel* dataframe. This dataframe contains the columns
56
- #
57
- # +-----------------------------------+-----------------------------------+
58
- # | Column name | Description |
59
- # +===================================+===================================+
60
- # | **name** | name of the channel |
61
- # +-----------------------------------+-----------------------------------+
62
- # | **rereference** | different channel name for |
63
- # | | bipolar re-referencing, or |
64
- # | | average for common average |
65
- # | | re-referencing |
66
- # +-----------------------------------+-----------------------------------+
67
- # | **used** | 0 or 1, channel selection |
68
- # +-----------------------------------+-----------------------------------+
69
- # | **target** | 0 or 1, for some decoding |
70
- # | | applications we can define target |
71
- # | | channels, e.g. EMG channels |
72
- # +-----------------------------------+-----------------------------------+
73
- # | **type** | channel type according to the |
74
- # | | `mne-python`_ toolbox |
75
- # | | |
76
- # | | |
77
- # | | |
78
- # | | |
79
- # | | e.g. ecog, eeg, ecg, emg, dbs, |
80
- # | | seeg etc. |
81
- # +-----------------------------------+-----------------------------------+
82
- # | **status** | good or bad, used for channel |
83
- # | | quality indication |
84
- # +-----------------------------------+-----------------------------------+
85
- # | **new_name** | this keyword can be specified to |
86
- # | | indicate for example the used |
87
- # | | rereferncing scheme |
88
- # +-----------------------------------+-----------------------------------+
89
- #
90
- # .. _mne-python: https://mne.tools/stable/auto_tutorials/raw/10_raw_overview.html#sphx-glr-auto-tutorials-raw-10-raw-overview-py
91
- #
92
- # The :class:`~nm_stream_abc` can either be created as a *.tsv* text file, or as a pandas
93
- # DataFrame. There are some helper functions that let you create the
94
- # nm_channels without much effort:
95
-
96
- nm_channels = nm_define_nmchannels.get_default_channels_from_data(
97
- data, car_rereferencing=True
98
- )
99
-
100
- nm_channels
101
-
102
- # %%
103
- # Using this function default channel names and a common average re-referencing scheme is specified.
104
- # Alternatively the *nm_define_nmchannels.set_channels* function can be used to pass each column values.
105
- #
106
- # nm_settings
107
- # -----------
108
- # Next, we will initialize the nm_settings dictionary and use the default settings, reset them, and enable a subset of features:
109
-
110
- settings = nm.nm_settings.get_default_settings()
111
- settings = nm.nm_settings.reset_settings(settings)
112
-
113
-
114
- # %%
115
- # The setting itself is a .json file which contains the parametrization for preprocessing, feature estimation, postprocessing and
116
- # definition with which sampling rate features are being calculated.
117
- # In this example `sampling_rate_features_hz` is specified to be 10 Hz, so every 100ms a new set of features is calculated.
118
- #
119
- # For many features the `segment_length_features_ms` specifies the time dimension of the raw signal being used for feature calculation. Here it is specified to be 1000 ms.
120
- #
121
- # We will now enable the features:
122
- #
123
- # * fft
124
- # * bursts
125
- # * sharpwave
126
- #
127
- # and stay with the default preprcessing methods:
128
- #
129
- # * notch_filter
130
- # * re_referencing
131
- #
132
- # and use *z-score* postprocessing normalization.
133
-
134
- settings["features"]["fft"] = True
135
- settings["features"]["bursts"] = True
136
- settings["features"]["sharpwave_analysis"] = True
137
-
138
- # %%
139
- # We are now ready to go to instantiate the *Stream* and call the *run* method for feature estimation:
140
-
141
- stream = nm.Stream(
142
- settings=settings,
143
- nm_channels=nm_channels,
144
- verbose=True,
145
- sfreq=sfreq,
146
- line_noise=50,
147
- )
148
-
149
- features = stream.run(data)
150
-
151
- # %%
152
- # Feature Analysis
153
- # ----------------
154
- #
155
- # There is a lot of output, which we could omit by verbose being False, but let's have a look what was being computed.
156
- # We will therefore use the :class:`~nm_analysis` class to showcase some functions. For multi-run -or subject analysis we will pass here the feature_file "sub" as default directory:
157
-
158
- analyzer = nm_analysis.Feature_Reader(
159
- feature_dir=stream.PATH_OUT, feature_file=stream.PATH_OUT_folder_name
160
- )
161
-
162
- # %%
163
- # Let's have a look at the resulting "feature_arr" DataFrame:
164
-
165
- analyzer.feature_arr.iloc[:10, :7]
166
-
167
- # %%
168
- # Seems like a lot of features were calculated. The `time` column tells us about each row time index.
169
- # For the 6 specified channels, it is each 31 features.
170
- # We can now use some in-built plotting functions for visualization.
171
- #
172
- # .. note::
173
- #
174
- # Due to the nature of simulated data, some of the features have constant values, which are not displayed through the image normalization.
175
- #
176
- #
177
-
178
- analyzer.plot_all_features(ch_used="ch1")
179
-
180
- # %%
181
- nm_plots.plot_corr_matrix(
182
- figsize=(25, 25),
183
- show_plot=True,
184
- feature=analyzer.feature_arr,
185
- )
186
-
187
- # %%
188
- # The upper correlation matrix shows the correlation of every feature of every channel to every other.
189
- # This notebook demonstrated a first demo how features can quickly be generated. For further feature modalities and decoding applications check out the next notebooks.