py-neuromodulation 0.0.3__py3-none-any.whl → 0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (176) hide show
  1. py_neuromodulation/ConnectivityDecoding/Automated Anatomical Labeling 3 (Rolls 2020).nii +0 -0
  2. py_neuromodulation/ConnectivityDecoding/_get_grid_hull.m +34 -0
  3. py_neuromodulation/ConnectivityDecoding/_get_grid_whole_brain.py +106 -0
  4. py_neuromodulation/ConnectivityDecoding/_helper_write_connectome.py +119 -0
  5. py_neuromodulation/ConnectivityDecoding/mni_coords_cortical_surface.mat +0 -0
  6. py_neuromodulation/ConnectivityDecoding/mni_coords_whole_brain.mat +0 -0
  7. py_neuromodulation/ConnectivityDecoding/rmap_func_all.nii +0 -0
  8. py_neuromodulation/ConnectivityDecoding/rmap_struc.nii +0 -0
  9. py_neuromodulation/data/README +6 -0
  10. py_neuromodulation/data/dataset_description.json +8 -0
  11. py_neuromodulation/data/participants.json +32 -0
  12. py_neuromodulation/data/participants.tsv +2 -0
  13. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +5 -0
  14. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +11 -0
  15. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +11 -0
  16. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.eeg +0 -0
  17. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +18 -0
  18. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +35 -0
  19. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +13 -0
  20. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +2 -0
  21. py_neuromodulation/grid_cortex.tsv +40 -0
  22. py_neuromodulation/grid_subcortex.tsv +1429 -0
  23. py_neuromodulation/nm_settings.json +338 -0
  24. py_neuromodulation/nm_stream_offline.py +7 -6
  25. py_neuromodulation/plots/STN_surf.mat +0 -0
  26. py_neuromodulation/plots/Vertices.mat +0 -0
  27. py_neuromodulation/plots/faces.mat +0 -0
  28. py_neuromodulation/plots/grid.mat +0 -0
  29. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.4.dist-info}/METADATA +182 -182
  30. py_neuromodulation-0.0.4.dist-info/RECORD +72 -0
  31. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.4.dist-info}/WHEEL +1 -2
  32. docs/build/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
  33. docs/build/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -233
  34. docs/build/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  35. docs/build/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
  36. docs/build/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  37. docs/build/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
  38. docs/build/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  39. docs/build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
  40. docs/build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -239
  41. docs/build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  42. docs/build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
  43. docs/build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  44. docs/build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
  45. docs/build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  46. docs/source/_build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -76
  47. docs/source/_build/html/_downloads/0d0d0a76e8f648d5d3cbc47da6351932/plot_real_time_demo.py +0 -97
  48. docs/source/_build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -240
  49. docs/source/_build/html/_downloads/5d73cadc59a8805c47e3b84063afc157/plot_example_BIDS.py +0 -233
  50. docs/source/_build/html/_downloads/7660317fa5a6bfbd12fcca9961457fc4/plot_example_rmap_computing.py +0 -63
  51. docs/source/_build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  52. docs/source/_build/html/_downloads/839e5b319379f7fd9e867deb00fd797f/plot_example_gridPointProjection.py +0 -210
  53. docs/source/_build/html/_downloads/ae8be19afe5e559f011fc9b138968ba0/plot_first_demo.py +0 -192
  54. docs/source/_build/html/_downloads/b8b06cacc17969d3725a0b6f1d7741c5/plot_example_sharpwave_analysis.py +0 -219
  55. docs/source/_build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -121
  56. docs/source/_build/html/_downloads/c31a86c0b68cb4167d968091ace8080d/plot_example_add_feature.py +0 -68
  57. docs/source/_build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  58. docs/source/_build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -189
  59. docs/source/_build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  60. docs/source/auto_examples/plot_0_first_demo.py +0 -189
  61. docs/source/auto_examples/plot_1_example_BIDS.py +0 -240
  62. docs/source/auto_examples/plot_2_example_add_feature.py +0 -76
  63. docs/source/auto_examples/plot_3_example_sharpwave_analysis.py +0 -219
  64. docs/source/auto_examples/plot_4_example_gridPointProjection.py +0 -210
  65. docs/source/auto_examples/plot_5_example_rmap_computing.py +0 -64
  66. docs/source/auto_examples/plot_6_real_time_demo.py +0 -121
  67. docs/source/conf.py +0 -105
  68. examples/plot_0_first_demo.py +0 -189
  69. examples/plot_1_example_BIDS.py +0 -240
  70. examples/plot_2_example_add_feature.py +0 -76
  71. examples/plot_3_example_sharpwave_analysis.py +0 -219
  72. examples/plot_4_example_gridPointProjection.py +0 -210
  73. examples/plot_5_example_rmap_computing.py +0 -64
  74. examples/plot_6_real_time_demo.py +0 -121
  75. packages/realtime_decoding/build/lib/realtime_decoding/__init__.py +0 -4
  76. packages/realtime_decoding/build/lib/realtime_decoding/decoder.py +0 -104
  77. packages/realtime_decoding/build/lib/realtime_decoding/features.py +0 -163
  78. packages/realtime_decoding/build/lib/realtime_decoding/helpers.py +0 -15
  79. packages/realtime_decoding/build/lib/realtime_decoding/run_decoding.py +0 -345
  80. packages/realtime_decoding/build/lib/realtime_decoding/trainer.py +0 -54
  81. packages/tmsi/build/lib/TMSiFileFormats/__init__.py +0 -37
  82. packages/tmsi/build/lib/TMSiFileFormats/file_formats/__init__.py +0 -36
  83. packages/tmsi/build/lib/TMSiFileFormats/file_formats/lsl_stream_writer.py +0 -200
  84. packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_file_writer.py +0 -496
  85. packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_to_edf_converter.py +0 -236
  86. packages/tmsi/build/lib/TMSiFileFormats/file_formats/xdf_file_writer.py +0 -977
  87. packages/tmsi/build/lib/TMSiFileFormats/file_readers/__init__.py +0 -35
  88. packages/tmsi/build/lib/TMSiFileFormats/file_readers/edf_reader.py +0 -116
  89. packages/tmsi/build/lib/TMSiFileFormats/file_readers/poly5reader.py +0 -294
  90. packages/tmsi/build/lib/TMSiFileFormats/file_readers/xdf_reader.py +0 -229
  91. packages/tmsi/build/lib/TMSiFileFormats/file_writer.py +0 -102
  92. packages/tmsi/build/lib/TMSiPlotters/__init__.py +0 -2
  93. packages/tmsi/build/lib/TMSiPlotters/gui/__init__.py +0 -39
  94. packages/tmsi/build/lib/TMSiPlotters/gui/_plotter_gui.py +0 -234
  95. packages/tmsi/build/lib/TMSiPlotters/gui/plotting_gui.py +0 -440
  96. packages/tmsi/build/lib/TMSiPlotters/plotters/__init__.py +0 -44
  97. packages/tmsi/build/lib/TMSiPlotters/plotters/hd_emg_plotter.py +0 -446
  98. packages/tmsi/build/lib/TMSiPlotters/plotters/impedance_plotter.py +0 -589
  99. packages/tmsi/build/lib/TMSiPlotters/plotters/signal_plotter.py +0 -1326
  100. packages/tmsi/build/lib/TMSiSDK/__init__.py +0 -54
  101. packages/tmsi/build/lib/TMSiSDK/device.py +0 -588
  102. packages/tmsi/build/lib/TMSiSDK/devices/__init__.py +0 -34
  103. packages/tmsi/build/lib/TMSiSDK/devices/saga/TMSi_Device_API.py +0 -1764
  104. packages/tmsi/build/lib/TMSiSDK/devices/saga/__init__.py +0 -34
  105. packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_device.py +0 -1366
  106. packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_types.py +0 -520
  107. packages/tmsi/build/lib/TMSiSDK/devices/saga/xml_saga_config.py +0 -165
  108. packages/tmsi/build/lib/TMSiSDK/error.py +0 -95
  109. packages/tmsi/build/lib/TMSiSDK/sample_data.py +0 -63
  110. packages/tmsi/build/lib/TMSiSDK/sample_data_server.py +0 -99
  111. packages/tmsi/build/lib/TMSiSDK/settings.py +0 -45
  112. packages/tmsi/build/lib/TMSiSDK/tmsi_device.py +0 -111
  113. packages/tmsi/build/lib/__init__.py +0 -4
  114. packages/tmsi/build/lib/apex_sdk/__init__.py +0 -34
  115. packages/tmsi/build/lib/apex_sdk/device/__init__.py +0 -41
  116. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API.py +0 -1009
  117. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_enums.py +0 -239
  118. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_structures.py +0 -668
  119. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_device.py +0 -1611
  120. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_dongle.py +0 -38
  121. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_event_reader.py +0 -57
  122. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_channel.py +0 -44
  123. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_config.py +0 -150
  124. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_const.py +0 -36
  125. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_impedance_channel.py +0 -48
  126. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_info.py +0 -108
  127. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/dongle_info.py +0 -39
  128. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/download_measurement.py +0 -77
  129. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/eeg_measurement.py +0 -150
  130. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/impedance_measurement.py +0 -129
  131. packages/tmsi/build/lib/apex_sdk/device/threads/conversion_thread.py +0 -59
  132. packages/tmsi/build/lib/apex_sdk/device/threads/sampling_thread.py +0 -57
  133. packages/tmsi/build/lib/apex_sdk/device/tmsi_channel.py +0 -83
  134. packages/tmsi/build/lib/apex_sdk/device/tmsi_device.py +0 -201
  135. packages/tmsi/build/lib/apex_sdk/device/tmsi_device_enums.py +0 -103
  136. packages/tmsi/build/lib/apex_sdk/device/tmsi_dongle.py +0 -43
  137. packages/tmsi/build/lib/apex_sdk/device/tmsi_event_reader.py +0 -50
  138. packages/tmsi/build/lib/apex_sdk/device/tmsi_measurement.py +0 -118
  139. packages/tmsi/build/lib/apex_sdk/sample_data_server/__init__.py +0 -33
  140. packages/tmsi/build/lib/apex_sdk/sample_data_server/event_data.py +0 -44
  141. packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data.py +0 -50
  142. packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data_server.py +0 -136
  143. packages/tmsi/build/lib/apex_sdk/tmsi_errors/error.py +0 -126
  144. packages/tmsi/build/lib/apex_sdk/tmsi_sdk.py +0 -113
  145. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/apex/apex_structure_generator.py +0 -134
  146. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/decorators.py +0 -60
  147. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/logger_filter.py +0 -42
  148. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/singleton.py +0 -42
  149. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/support_functions.py +0 -72
  150. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/tmsi_logger.py +0 -98
  151. py_neuromodulation-0.0.3.dist-info/RECORD +0 -188
  152. py_neuromodulation-0.0.3.dist-info/top_level.txt +0 -5
  153. tests/__init__.py +0 -0
  154. tests/conftest.py +0 -117
  155. tests/test_all_examples.py +0 -10
  156. tests/test_all_features.py +0 -63
  157. tests/test_bispectra.py +0 -70
  158. tests/test_bursts.py +0 -105
  159. tests/test_feature_sampling_rates.py +0 -143
  160. tests/test_fooof.py +0 -16
  161. tests/test_initalization_offline_stream.py +0 -41
  162. tests/test_multiprocessing.py +0 -58
  163. tests/test_nan_values.py +0 -29
  164. tests/test_nm_filter.py +0 -95
  165. tests/test_nm_resample.py +0 -63
  166. tests/test_normalization_settings.py +0 -146
  167. tests/test_notch_filter.py +0 -31
  168. tests/test_osc_features.py +0 -424
  169. tests/test_preprocessing_filter.py +0 -151
  170. tests/test_rereference.py +0 -171
  171. tests/test_sampling.py +0 -57
  172. tests/test_settings_change_after_init.py +0 -76
  173. tests/test_sharpwave.py +0 -165
  174. tests/test_target_channel_add.py +0 -100
  175. tests/test_timing.py +0 -80
  176. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.4.dist-info/licenses}/LICENSE +0 -0
@@ -1,219 +0,0 @@
1
- """
2
- Analyzing temporal features
3
- ===========================
4
-
5
- """
6
-
7
- # %%
8
- # Time series data can be characterized using oscillatory components, but assumptions of sinusoidality are for real data rarely fulfilled.
9
- # See *"Brain Oscillations and the Importance of Waveform Shape"* `Cole et al 2017 <https://doi.org/10.1016/j.tics.2016.12.008>`_ for a great motivation.
10
- # We implemented here temporal characteristics based on individual trough and peak relations,
11
- # based on the :meth:~`scipy.signal.find_peaks` method. The function parameter *distance* can be specified in the *nm_settings.json*.
12
- # Temporal features can be calculated twice for troughs and peaks. In the settings, this can be specified by setting *estimate* to true
13
- # in *detect_troughs* and/or *detect_peaks*. A statistical measure (e.g. mean, max, median, var) can be defined as a resulting feature from the peak and
14
- # trough estimates using the *apply_estimator_between_peaks_and_troughs* setting.
15
- #
16
- # In py_neuromodulation the following characteristics are implemented:
17
- #
18
- # .. note::
19
- # The nomenclature is written here for sharpwave troughs, but detection of peak characteristics can be computed in the same way.
20
- #
21
- # - prominence:
22
- # :math:`V_{prominence} = |\frac{V_{peak-left} + V_{peak-right}}{2}| - V_{trough}`
23
- # - sharpness:
24
- # :math:`V_{sharpnesss} = \frac{(V_{trough} - V_{trough-5 ms}) + (V_{trough} - V_{trough+5 ms})}{2}`
25
- # - rise and decay rise time
26
- # - rise and decay steepness
27
- # - width (between left and right peaks)
28
- # - interval (between troughs)
29
- #
30
- # Additionally, different filter ranges can be parametrized using the *filter_ranges_hz* setting.
31
- # Filtering is necessary to remove high frequent signal fluctuations, but limits also the true estimation of sharpness and prominence due to signal smoothing.
32
-
33
- import seaborn as sb
34
- from matplotlib import pyplot as plt
35
- from scipy import signal
36
- import numpy as np
37
-
38
- import py_neuromodulation as nm
39
- from py_neuromodulation import (
40
- nm_define_nmchannels,
41
- nm_IO,
42
- nm_settings,
43
- )
44
-
45
-
46
- # %%
47
- # We will first read the example ECoG data and plot the identified features on the filtered time series.
48
-
49
- RUN_NAME, PATH_RUN, PATH_BIDS, PATH_OUT, datatype = nm_IO.get_paths_example_data()
50
-
51
- (
52
- raw,
53
- data,
54
- sfreq,
55
- line_noise,
56
- coord_list,
57
- coord_names,
58
- ) = nm_IO.read_BIDS_data(
59
- PATH_RUN=PATH_RUN,
60
- BIDS_PATH=PATH_BIDS, datatype=datatype
61
- )
62
-
63
- # %%
64
- settings = nm_settings.get_default_settings()
65
- settings = nm_settings.set_settings_fast_compute(settings)
66
-
67
- settings["features"]["fft"] = True
68
- settings["features"]["bursts"] = False
69
- settings["features"]["sharpwave_analysis"] = True
70
- settings["features"]["coherence"] = False
71
-
72
- settings["sharpwave_analysis_settings"]["estimator"]["mean"] = []
73
- for sw_feature in list(
74
- settings["sharpwave_analysis_settings"]["sharpwave_features"].keys()
75
- ):
76
- settings["sharpwave_analysis_settings"]["sharpwave_features"][sw_feature] = True
77
- settings["sharpwave_analysis_settings"]["estimator"]["mean"].append(sw_feature)
78
-
79
- nm_channels = nm_define_nmchannels.set_channels(
80
- ch_names=raw.ch_names,
81
- ch_types=raw.get_channel_types(),
82
- reference="default",
83
- bads=raw.info["bads"],
84
- new_names="default",
85
- used_types=("ecog", "dbs", "seeg"),
86
- target_keywords=["MOV_RIGHT"]
87
- )
88
-
89
- stream = nm.Stream(
90
- sfreq=sfreq,
91
- nm_channels=nm_channels,
92
- settings=settings,
93
- line_noise=line_noise,
94
- coord_list=coord_list,
95
- coord_names=coord_names,
96
- verbose=False,
97
- )
98
- sw_analyzer = stream.run_analysis.features.features[1]
99
-
100
- # %%
101
- # The plotted example time series, visualized on a short time scale, shows the relation of identified peaks, troughs, and estimated features:
102
- data_plt = data[5, 1000:4000]
103
-
104
-
105
- sw_analyzer._initialize_sw_features()
106
- filtered_dat = np.convolve(
107
- data_plt,
108
- sw_analyzer.list_filter[0][1],
109
- mode="same"
110
- )
111
- #filtered_dat = filtered_dat[500:-500]
112
-
113
- troughs = signal.find_peaks(-filtered_dat, distance=10)[0]
114
- peaks = signal.find_peaks(filtered_dat, distance=5)[0]
115
-
116
- sw_analyzer.data_process_sw = filtered_dat
117
- sw_analyzer.analyze_waveform()
118
-
119
- WIDTH = BAR_WIDTH = 4
120
- BAR_OFFSET = 50
121
- OFFSET_TIME_SERIES = -100
122
- SCALE_TIMESERIES = 1
123
-
124
- hue_colors = sb.color_palette("viridis_r", 6)
125
-
126
- plt.figure(figsize=(5, 3), dpi=300)
127
- plt.plot(OFFSET_TIME_SERIES + data_plt, color="gray", linewidth=0.5, alpha=0.5, label="original ECoG data")
128
- plt.plot(OFFSET_TIME_SERIES + filtered_dat*SCALE_TIMESERIES, linewidth=0.5, color="black", label="[5-30]Hz filtered data")
129
-
130
- plt.plot(peaks, OFFSET_TIME_SERIES + filtered_dat[peaks]*SCALE_TIMESERIES, "x", label="peaks",markersize=3, color="darkgray")
131
- plt.plot(troughs, OFFSET_TIME_SERIES + filtered_dat[troughs]*SCALE_TIMESERIES, "x", label="troughs", markersize=3, color="lightgray")
132
-
133
- plt.bar(troughs+BAR_WIDTH, np.array(sw_analyzer.prominence)*4, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[0], label="Prominence", alpha=0.5)
134
- plt.bar(troughs+BAR_WIDTH*2, -np.array(sw_analyzer.sharpness)*6, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[1], label="Sharpness", alpha=0.5)
135
- plt.bar(troughs+BAR_WIDTH*3, np.array(sw_analyzer.interval)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[2], label="Interval", alpha=0.5)
136
- plt.bar(troughs+BAR_WIDTH*4, np.array(sw_analyzer.rise_time)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[3], label="Rise time", alpha=0.5)
137
-
138
- plt.xticks(np.arange(0, data_plt.shape[0], 200), np.round(np.arange(0, int(data_plt.shape[0]/1000), 0.2), 2))
139
- plt.xlabel("Time [s]")
140
- plt.title("Temporal waveform shape features")
141
- plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
142
- plt.ylim(-550, 700)
143
- plt.xlim(0, 200)
144
- plt.ylabel("a.u.")
145
- plt.tight_layout()
146
-
147
- # %%
148
- # See in the following example a time series example, that is aligned to movement. With movement onset the prominence, sharpness, and interval features are reduced:
149
-
150
- plt.figure(figsize=(8, 5), dpi=300)
151
- plt.plot(OFFSET_TIME_SERIES + data_plt, color="gray", linewidth=0.5, alpha=0.5, label="original ECoG data")
152
- plt.plot(OFFSET_TIME_SERIES + filtered_dat*SCALE_TIMESERIES, linewidth=0.5, color="black", label="[5-30]Hz filtered data")
153
-
154
- plt.plot(peaks, OFFSET_TIME_SERIES + filtered_dat[peaks]*SCALE_TIMESERIES, "x", label="peaks",markersize=3, color="darkgray")
155
- plt.plot(troughs, OFFSET_TIME_SERIES + filtered_dat[troughs]*SCALE_TIMESERIES, "x", label="troughs", markersize=3, color="lightgray")
156
-
157
- plt.bar(troughs+BAR_WIDTH, np.array(sw_analyzer.prominence)*4, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[0], label="Prominence", alpha=0.5)
158
- plt.bar(troughs+BAR_WIDTH*2, -np.array(sw_analyzer.sharpness)*6, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[1], label="Sharpness", alpha=0.5)
159
- plt.bar(troughs+BAR_WIDTH*3, np.array(sw_analyzer.interval)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[2], label="Interval", alpha=0.5)
160
- plt.bar(troughs+BAR_WIDTH*4, np.array(sw_analyzer.rise_time)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[3], label="Rise time", alpha=0.5)
161
-
162
- plt.axvline(x=1500, label="Movement start", color="red")
163
-
164
- #plt.xticks(np.arange(0, 2000, 200), np.round(np.arange(0, 2, 0.2), 2))
165
- plt.xticks(np.arange(0, data_plt.shape[0], 200), np.round(np.arange(0, int(data_plt.shape[0]/1000), 0.2), 2))
166
- plt.xlabel("Time [s]")
167
- plt.title("Temporal waveform shape features")
168
- plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
169
- plt.ylim(-450, 400)
170
- plt.ylabel("a.u.")
171
- plt.tight_layout()
172
-
173
- # %%
174
- # In the *sharpwave_analysis_settings* the *estimator* keyword further specifies which statistic is computed based on the individual
175
- # features in one batch. The "global" setting *segment_length_features_ms* specifies the time duration for feature computation.
176
- # Since there can be a different number of identified waveform shape features for different batches (i.e. different number of peaks/troughs),
177
- # taking a statistical measure (e.g. the maximum or mean) will be necessary for feature comparison.
178
-
179
- # %%
180
- # Example time series computation for movement decoding
181
- # -----------------------------------------------------
182
- # We will now read the ECoG example/data and investigate if samples differ across movement states. Therefore we compute features and enable the default *sharpwave* features.
183
-
184
- settings = nm_settings.get_default_settings()
185
- settings = nm_settings.reset_settings(settings)
186
- settings["features"]["sharpwave_analysis"] = True
187
- settings["sharpwave_analysis_settings"]["interval"] = False
188
- settings["sharpwave_analysis_settings"]["filter_ranges"] = [[5, 80]]
189
-
190
- nm_channels["used"] = 0 # set only two ECoG channels for faster computation to true
191
- nm_channels.loc[[3, 8], "used"] = 1
192
-
193
- stream = nm.Stream(
194
- sfreq=sfreq,
195
- nm_channels=nm_channels,
196
- settings=settings,
197
- line_noise=line_noise,
198
- coord_list=coord_list,
199
- coord_names=coord_names,
200
- verbose=True,
201
- )
202
-
203
- df_features = stream.run(data=data[:, :30000])
204
-
205
- # %%
206
- # We can then plot two exemplary features, prominence and interval, and see that the movement amplitude can be clustered with those two features alone:
207
-
208
- plt.figure(figsize=(5, 3), dpi=300)
209
- plt.scatter(
210
- df_features["ECOG_RIGHT_0-avgref_Sharpwave_Max_prominence_range_5_80"],
211
- df_features["ECOG_RIGHT_5-avgref_Sharpwave_Mean_interval_range_5_80"],
212
- c=df_features["MOV_RIGHT"], alpha=0.8, s=30
213
- )
214
- cbar = plt.colorbar()
215
- cbar.set_label("Movement amplitude")
216
- plt.xlabel("Prominence a.u.")
217
- plt.ylabel("Interval a.u.")
218
- plt.title("Temporal features predict movement amplitude")
219
- plt.tight_layout()
@@ -1,210 +0,0 @@
1
- """
2
- Grid Point Projection
3
- =====================
4
-
5
- """
6
-
7
- # %%
8
- # In ECoG datasets the electrode locations are usually different. For this reason, we established a grid
9
- # with a set of points defined in a standardized MNI brain.
10
- # Data is then interpolated to this grid, such that they are common across patients, which allows across patient decoding use cases.
11
- #
12
- # In this notebook, we will plot these grid points and see how the features extracted from our data can be projected into this grid space.
13
- #
14
- # In order to do so, we'll read saved features that were computed in the ECoG movement notebook.
15
- # Please note that in order to do so, when running the feature estimation, the settings
16
- #
17
- # .. note::
18
- #
19
- # .. code-block:: python
20
- #
21
- # stream.settings['postprocessing']['project_cortex'] = True
22
- # stream.settings['postprocessing']['project_subcortex'] = True
23
- #
24
- # need to be set to `True` for a cortical and/or subcortical projection.
25
- #
26
-
27
- # %%
28
- import numpy as np
29
- import matplotlib.pyplot as plt
30
-
31
- import py_neuromodulation as nm
32
- from py_neuromodulation import (
33
- nm_analysis,
34
- nm_plots,
35
- nm_IO,
36
- nm_settings,
37
- nm_define_nmchannels
38
- )
39
-
40
-
41
- # %%
42
- # Read features from BIDS data
43
- # ----------------------------
44
- #
45
- # We first estimate features, with the `grid_point` projection settings enabled for cortex.
46
-
47
-
48
- # %%
49
- RUN_NAME, PATH_RUN, PATH_BIDS, PATH_OUT, datatype = nm_IO.get_paths_example_data()
50
-
51
- (
52
- raw,
53
- data,
54
- sfreq,
55
- line_noise,
56
- coord_list,
57
- coord_names,
58
- ) = nm_IO.read_BIDS_data(
59
- PATH_RUN=PATH_RUN,
60
- BIDS_PATH=PATH_BIDS, datatype=datatype
61
- )
62
-
63
- settings = nm_settings.get_default_settings()
64
- settings = nm_settings.set_settings_fast_compute(settings)
65
-
66
- settings["postprocessing"]["project_cortex"] = True
67
-
68
- nm_channels = nm_define_nmchannels.set_channels(
69
- ch_names=raw.ch_names,
70
- ch_types=raw.get_channel_types(),
71
- reference="default",
72
- bads=raw.info["bads"],
73
- new_names="default",
74
- used_types=("ecog", "dbs", "seeg"),
75
- target_keywords=["MOV_RIGHT_CLEAN","MOV_LEFT_CLEAN"]
76
- )
77
-
78
- stream = nm.Stream(
79
- sfreq=sfreq,
80
- nm_channels=nm_channels,
81
- settings=settings,
82
- line_noise=line_noise,
83
- coord_list=coord_list,
84
- coord_names=coord_names,
85
- verbose=True,
86
- )
87
-
88
- features = stream.run(
89
- data=data[:, :int(sfreq*5)],
90
- out_path_root=PATH_OUT,
91
- folder_name=RUN_NAME,
92
- )
93
-
94
- # %%
95
- # From nm_analysis.py, we use the :class:~`nm_analysis.FeatureReader` class to load the data.
96
-
97
- # init analyzer
98
- feature_reader = nm_analysis.Feature_Reader(
99
- feature_dir=PATH_OUT, feature_file=RUN_NAME
100
- )
101
-
102
- # %%
103
- # To perform the grid projection, for all computed features we check for every grid point if there is any electrode channel within the spatial range ```max_dist_mm```, and weight
104
- # this electrode contact by the inverse distance and normalize across all electrode distances within the maximum distance range.
105
- # This gives us a projection matrix that we can apply to streamed data, to transform the feature-channel matrix *(n_features, n_channels)* into the grid point matrix *(n_features, n_gridpoints)*.
106
- #
107
- # To save computation time, this projection matrix is precomputed before the real time run computation.
108
- # The cortical grid is stored in *py_neuromodulation/grid_cortex.tsv* and the electrodes coordinates are stored in *_space-mni_electrodes.tsv* in a BIDS dataset.
109
- #
110
- # .. note::
111
- #
112
- # One remark is that our cortical and subcortical grids are defined for the **left** hemisphere of the brain and, therefore, electrode contacts are mapped to the left hemisphere.
113
- #
114
- # From the analyzer, the user can plot the cortical projection with the function below, display the grid points and ECoG electrodes are crosses.
115
- # The yellow grid points are the ones that are active for that specific ECoG electrode location. The inactive grid points are shown in purple.
116
-
117
- feature_reader.plot_cort_projection()
118
-
119
- # %%
120
- # We can also plot only the ECoG electrodes or the grid points, with the help of the data saved in feature_reader.sidecar. BIDS sidecar files are json files where you store additional information, here it is used to save the ECoG strip positions and the grid coordinates, which are not part of the settings and nm_channels.csv. We can check what is stored in the file and then use the nmplotter.plot_cortex function:
121
-
122
- grid_plotter = nm_plots.NM_Plot(
123
- ecog_strip=np.array(feature_reader.sidecar["coords"]["cortex_right"]["positions"]),
124
- grid_cortex=np.array(feature_reader.sidecar["grid_cortex"]),
125
- # grid_subcortex=np.array(feature_reader.sidecar["grid_subcortex"]),
126
- sess_right=feature_reader.sidecar["sess_right"],
127
- proj_matrix_cortex=np.array(feature_reader.sidecar["proj_matrix_cortex"])
128
- )
129
-
130
- # %%
131
- grid_plotter.plot_cortex(
132
- grid_color=np.sum(np.array(feature_reader.sidecar["proj_matrix_cortex"]),axis=1),
133
- lower_clim=0.,
134
- upper_clim=1.0,
135
- cbar_label="Used Grid Points",
136
- title = "ECoG electrodes projected onto cortical grid"
137
- )
138
-
139
- # %%
140
- feature_reader.sidecar["coords"]["cortex_right"]["positions"]
141
-
142
- # %%
143
- feature_reader.nmplotter.plot_cortex(
144
- ecog_strip=np.array(
145
- feature_reader.sidecar["coords"]["cortex_right"]["positions"],
146
- ),
147
- lower_clim=0.,
148
- upper_clim=1.0,
149
- cbar_label="Used ECoG Electrodes",
150
- title = "Plot of ECoG electrodes"
151
- )
152
-
153
- # %%
154
- feature_reader.nmplotter.plot_cortex(
155
- np.array(
156
- feature_reader.sidecar["grid_cortex"]
157
- ),
158
- lower_clim=0.,
159
- upper_clim=1.0,
160
- cbar_label="All Grid Points",
161
- title = "All grid points"
162
- )
163
-
164
- # %%
165
- # The Projection Matrix
166
- # ---------------------
167
- # To go from the feature-channel matrix *(n_features, n_channels)* to the grid point matrix *(n_features, n_gridpoints)*
168
- # we need a projection matrix that has the shape *(n_channels, n_gridpoints)*.
169
- # It maps the strengths of the signals in each ECoG channel to the correspondent ones in the cortical grid.
170
- # In the cell below we plot this matrix, that has the property that the column sum over channels for each grid point is either 1 or 0.
171
-
172
- plt.figure(figsize=(8,5))
173
- plt.imshow(np.array(feature_reader.sidecar['proj_matrix_cortex']), aspect = 'auto')
174
- plt.colorbar(label = "Strength of ECoG signal in each grid point")
175
- plt.xlabel("ECoG channels")
176
- plt.ylabel("Grid points")
177
- plt.title("Matrix mapping from ECoG to grid")
178
-
179
- # %%
180
- # Feature Plot in the Grid: An Example of Post-processing
181
- # -------------------------------------------------------
182
- # First we take the dataframe with all the features in all time points.
183
-
184
- df = feature_reader.feature_arr
185
-
186
- # %%
187
- df.iloc[:5, :5]
188
-
189
- # %%
190
- # Then we filter for only 'avgref_fft_theta', which gives us the value for fft_theta in all 6 ECoG channels over all time points. Then we take only the 6th time point - as an arbitrary choice.
191
-
192
- fft_theta_oneTimePoint = np.asarray(df[df.columns[df.columns.str.contains(pat = 'avgref_fft_theta')]].iloc[5])
193
- fft_theta_oneTimePoint
194
-
195
- # %%
196
- # Then the projection of the features into the grid is gonna be the color of the grid points in the *plot_cortex* function.
197
- # That is the matrix multiplication of the projection matrix of the cortex and 6 values for the *fft_theta* feature above.
198
-
199
- grid_fft_Theta = np.array(feature_reader.sidecar["proj_matrix_cortex"]) @ fft_theta_oneTimePoint
200
-
201
- feature_reader.nmplotter.plot_cortex(np.array(
202
- feature_reader.sidecar["grid_cortex"]),grid_color = grid_fft_Theta, set_clim = True, lower_clim=min(grid_fft_Theta[grid_fft_Theta>0]), upper_clim=max(grid_fft_Theta), cbar_label="FFT Theta Projection to Grid", title = "FFT Theta Projection to Grid")
203
-
204
- # %%
205
- # Lower and upper boundaries for clim were chosen to be the max and min values of the projection of the features (minimum value excluding zero). This can be checked in the cell below:
206
-
207
- grid_fft_Theta
208
-
209
- # %%
210
- # In the plot above we can see how the intensity of the fast fourier transform in the theta band varies for each grid point in the cortex, for one specific time point.
@@ -1,192 +0,0 @@
1
- """
2
- First Demo
3
- ==========
4
-
5
- This Demo will showcase the feature estimation and
6
- exemplar analysis using simulated data.
7
- """
8
-
9
- import numpy as np
10
- from matplotlib import pyplot as plt
11
-
12
- import py_neuromodulation as py_nm
13
-
14
- from py_neuromodulation import (
15
- nm_analysis,
16
- nm_define_nmchannels,
17
- nm_plots
18
-
19
- )
20
-
21
- # %%
22
- # Data Simulation
23
- # ---------------
24
- # We will now generate some exemplar data with 10 second duration for 6 channels with a sample rate of 1 kHz.
25
-
26
- def generate_random_walk(NUM_CHANNELS, TIME_DATA_SAMPLES):
27
- # from https://towardsdatascience.com/random-walks-with-python-8420981bc4bc
28
- dims = NUM_CHANNELS
29
- step_n = TIME_DATA_SAMPLES-1
30
- step_set = [-1, 0, 1]
31
- origin = (np.random.random([1,dims])-0.5)*1 # Simulate steps in 1D
32
- step_shape = (step_n,dims)
33
- steps = np.random.choice(a=step_set, size=step_shape)
34
- path = np.concatenate([origin, steps]).cumsum(0)
35
- return path.T
36
-
37
- NUM_CHANNELS = 6
38
- sfreq = 1000
39
- TIME_DATA_SAMPLES = 10 * sfreq
40
- data = generate_random_walk(NUM_CHANNELS, TIME_DATA_SAMPLES)
41
- time = np.arange(0, TIME_DATA_SAMPLES/sfreq, 1/sfreq)
42
-
43
- plt.figure(figsize=(8,4), dpi=100)
44
- for ch_idx in range(data.shape[0]):
45
- plt.plot(time, data[ch_idx, :])
46
- plt.xlabel("Time [s]")
47
- plt.ylabel("Amplitude")
48
- plt.title("Example random walk data")
49
-
50
- # %%
51
- # Now let’s define the necessary setup files we will be using for data
52
- # preprocessing and feature estimation. Py_neuromodualtion is based on two
53
- # parametrization files: the *nm_channels.tsv* and the *nm_setting.json*.
54
- #
55
- # nm_channels
56
- # ~~~~~~~~~~~
57
- #
58
- # The *nm_channel* dataframe. This dataframe contains the columns
59
- #
60
- # +-----------------------------------+-----------------------------------+
61
- # | Column name | Description |
62
- # +===================================+===================================+
63
- # | **name** | name of the channel |
64
- # +-----------------------------------+-----------------------------------+
65
- # | **rereference** | different channel name for |
66
- # | | bipolar re-referencing, or |
67
- # | | average for common average |
68
- # | | re-referencing |
69
- # +-----------------------------------+-----------------------------------+
70
- # | **used** | 0 or 1, channel selection |
71
- # +-----------------------------------+-----------------------------------+
72
- # | **target** | 0 or 1, for some decoding |
73
- # | | applications we can define target |
74
- # | | channels, e.g. EMG channels |
75
- # +-----------------------------------+-----------------------------------+
76
- # | **type** | channel type according to the |
77
- # | | `mne-python`_ toolbox |
78
- # | | |
79
- # | | |
80
- # | | |
81
- # | | |
82
- # | | e.g. ecog, eeg, ecg, emg, dbs, |
83
- # | | seeg etc. |
84
- # +-----------------------------------+-----------------------------------+
85
- # | **status** | good or bad, used for channel |
86
- # | | quality indication |
87
- # +-----------------------------------+-----------------------------------+
88
- # | **new_name** | this keyword can be specified to |
89
- # | | indicate for example the used |
90
- # | | rereferncing scheme |
91
- # +-----------------------------------+-----------------------------------+
92
- #
93
- # .. _mne-python: https://mne.tools/stable/auto_tutorials/raw/10_raw_overview.html#sphx-glr-auto-tutorials-raw-10-raw-overview-py
94
- #
95
- # The :class:`~nm_stream_abc` can either be created as a *.tsv* text file, or as a pandas
96
- # DataFrame. There are some helper functions that let you create the
97
- # nm_channels without much effort:
98
-
99
- nm_channels = nm_define_nmchannels.get_default_channels_from_data(data, car_rereferencing=True)
100
-
101
- nm_channels
102
-
103
- # %%
104
- # Using this function default channel names and a common average re-referencing scheme is specified.
105
- # Alternatively the *nm_define_nmchannels.set_channels* function can be used to pass each column values.
106
- #
107
- # nm_settings
108
- # -----------
109
- # Next, we will initialize the nm_settings dictionary and use the default settings, reset them, and enable a subset of features:
110
-
111
- settings = py_nm.nm_settings.get_default_settings()
112
- settings = py_nm.nm_settings.reset_settings(settings)
113
-
114
-
115
- # %%
116
- # The setting itself is a .json file which contains the parametrization for preprocessing, feature estimation, postprocessing and
117
- # definition with which sampling rate features are being calculated.
118
- # In this example `sampling_rate_features_hz` is specified to be 10 Hz, so every 100ms a new set of features is calculated.
119
- #
120
- # For many features the `segment_length_features_ms` specifies the time dimension of the raw signal being used for feature calculation. Here it is specified to be 1000 ms.
121
- #
122
- # We will now enable the features:
123
- #
124
- # * fft
125
- # * bursts
126
- # * sharpwave
127
- #
128
- # and stay with the default preprcessing methods:
129
- #
130
- # * notch_filter
131
- # * re_referencing
132
- #
133
- # and use *z-score* postprocessing normalization.
134
-
135
- settings["features"]["fft"] = True
136
- settings["features"]["bursts"] = True
137
- settings["features"]["sharpwave_analysis"] = True
138
-
139
- # %%
140
- # We are now ready to go to instantiate the *Stream* and call the *run* method for feature estimation:
141
-
142
- stream = py_nm.Stream(
143
- settings=settings,
144
- nm_channels=nm_channels,
145
- verbose=True,
146
- sfreq=sfreq,
147
- line_noise=50
148
- )
149
-
150
- features = stream.run(data)
151
-
152
- # %%
153
- # Feature Analysis
154
- # ----------------
155
- #
156
- # There is a lot of output, which we could omit by verbose being False, but let's have a look what was being computed.
157
- # We will therefore use the :class:`~nm_analysis` class to showcase some functions. For multi-run -or subject analysis we will pass here the feature_file "sub" as default directory:
158
-
159
- analyzer = nm_analysis.Feature_Reader(
160
- feature_dir=stream.PATH_OUT,
161
- feature_file=stream.PATH_OUT_folder_name
162
- )
163
-
164
- # %%
165
- # Let's have a look at the resulting "feature_arr" DataFrame:
166
-
167
- analyzer.feature_arr.iloc[:10, :7]
168
-
169
- # %%
170
- # Seems like a lot of features were calculated. The `time` column tells us about each row time index.
171
- # For the 6 specified channels, it is each 31 features.
172
- # We can now use some in-built plotting functions for visualization.
173
- #
174
- # .. note::
175
- #
176
- # Due to the nature of simulated data, some of the features have constant values, which are not displayed through the image normalization.
177
- #
178
- #
179
-
180
- analyzer.plot_all_features(ch_used="ch1")
181
-
182
- # %%
183
- nm_plots.plot_corr_matrix(
184
- figsize=(25,25),
185
- show_plot=True,
186
- feature=analyzer.feature_arr,
187
- )
188
-
189
- # %%
190
- # The upper correlation matrix shows the correlation of every feature of every channel to every other.
191
- # This notebook demonstrated a first demo how features can quickly be generated. For further feature modalities and decoding applications check out the next notebooks.
192
-