passagemath-symbolics 10.6.37__cp310-cp310-musllinux_1_2_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (171) hide show
  1. passagemath_symbolics/__init__.py +3 -0
  2. passagemath_symbolics-10.6.37.dist-info/METADATA +187 -0
  3. passagemath_symbolics-10.6.37.dist-info/RECORD +171 -0
  4. passagemath_symbolics-10.6.37.dist-info/WHEEL +5 -0
  5. passagemath_symbolics-10.6.37.dist-info/top_level.txt +3 -0
  6. sage/all__sagemath_symbolics.py +17 -0
  7. sage/calculus/all.py +14 -0
  8. sage/calculus/calculus.py +2826 -0
  9. sage/calculus/desolvers.py +1866 -0
  10. sage/calculus/predefined.py +51 -0
  11. sage/calculus/tests.py +225 -0
  12. sage/calculus/var.cpython-310-x86_64-linux-gnu.so +0 -0
  13. sage/calculus/var.pyx +401 -0
  14. sage/dynamics/all__sagemath_symbolics.py +6 -0
  15. sage/dynamics/complex_dynamics/all.py +5 -0
  16. sage/dynamics/complex_dynamics/mandel_julia.py +765 -0
  17. sage/dynamics/complex_dynamics/mandel_julia_helper.cpython-310-x86_64-linux-gnu.so +0 -0
  18. sage/dynamics/complex_dynamics/mandel_julia_helper.pyx +1035 -0
  19. sage/ext/all__sagemath_symbolics.py +1 -0
  20. sage/ext_data/kenzo/CP2.txt +45 -0
  21. sage/ext_data/kenzo/CP3.txt +349 -0
  22. sage/ext_data/kenzo/CP4.txt +4774 -0
  23. sage/ext_data/kenzo/README.txt +49 -0
  24. sage/ext_data/kenzo/S4.txt +20 -0
  25. sage/ext_data/magma/latex/latex.m +1021 -0
  26. sage/ext_data/magma/latex/latex.spec +1 -0
  27. sage/ext_data/magma/sage/basic.m +356 -0
  28. sage/ext_data/magma/sage/sage.spec +1 -0
  29. sage/ext_data/magma/spec +9 -0
  30. sage/geometry/all__sagemath_symbolics.py +8 -0
  31. sage/geometry/hyperbolic_space/all.py +5 -0
  32. sage/geometry/hyperbolic_space/hyperbolic_coercion.py +743 -0
  33. sage/geometry/hyperbolic_space/hyperbolic_constants.py +5 -0
  34. sage/geometry/hyperbolic_space/hyperbolic_geodesic.py +2409 -0
  35. sage/geometry/hyperbolic_space/hyperbolic_interface.py +206 -0
  36. sage/geometry/hyperbolic_space/hyperbolic_isometry.py +1082 -0
  37. sage/geometry/hyperbolic_space/hyperbolic_model.py +1502 -0
  38. sage/geometry/hyperbolic_space/hyperbolic_point.py +621 -0
  39. sage/geometry/riemannian_manifolds/all.py +7 -0
  40. sage/geometry/riemannian_manifolds/parametrized_surface3d.py +1632 -0
  41. sage/geometry/riemannian_manifolds/surface3d_generators.py +461 -0
  42. sage/interfaces/all__sagemath_symbolics.py +1 -0
  43. sage/interfaces/magma.py +3017 -0
  44. sage/interfaces/magma_free.py +92 -0
  45. sage/interfaces/maple.py +1397 -0
  46. sage/interfaces/mathematica.py +1345 -0
  47. sage/interfaces/mathics.py +1312 -0
  48. sage/interfaces/sympy.py +1398 -0
  49. sage/interfaces/sympy_wrapper.py +197 -0
  50. sage/interfaces/tides.py +938 -0
  51. sage/libs/all__sagemath_symbolics.py +6 -0
  52. sage/manifolds/all.py +7 -0
  53. sage/manifolds/calculus_method.py +555 -0
  54. sage/manifolds/catalog.py +437 -0
  55. sage/manifolds/chart.py +4019 -0
  56. sage/manifolds/chart_func.py +3419 -0
  57. sage/manifolds/continuous_map.py +2183 -0
  58. sage/manifolds/continuous_map_image.py +155 -0
  59. sage/manifolds/differentiable/affine_connection.py +2475 -0
  60. sage/manifolds/differentiable/all.py +1 -0
  61. sage/manifolds/differentiable/automorphismfield.py +1383 -0
  62. sage/manifolds/differentiable/automorphismfield_group.py +604 -0
  63. sage/manifolds/differentiable/bundle_connection.py +1445 -0
  64. sage/manifolds/differentiable/characteristic_cohomology_class.py +1840 -0
  65. sage/manifolds/differentiable/chart.py +1241 -0
  66. sage/manifolds/differentiable/curve.py +1028 -0
  67. sage/manifolds/differentiable/de_rham_cohomology.py +541 -0
  68. sage/manifolds/differentiable/degenerate.py +559 -0
  69. sage/manifolds/differentiable/degenerate_submanifold.py +1671 -0
  70. sage/manifolds/differentiable/diff_form.py +1658 -0
  71. sage/manifolds/differentiable/diff_form_module.py +1062 -0
  72. sage/manifolds/differentiable/diff_map.py +1315 -0
  73. sage/manifolds/differentiable/differentiable_submanifold.py +291 -0
  74. sage/manifolds/differentiable/examples/all.py +1 -0
  75. sage/manifolds/differentiable/examples/euclidean.py +2517 -0
  76. sage/manifolds/differentiable/examples/real_line.py +897 -0
  77. sage/manifolds/differentiable/examples/sphere.py +1186 -0
  78. sage/manifolds/differentiable/examples/symplectic_space.py +187 -0
  79. sage/manifolds/differentiable/examples/symplectic_space_test.py +40 -0
  80. sage/manifolds/differentiable/integrated_curve.py +4035 -0
  81. sage/manifolds/differentiable/levi_civita_connection.py +841 -0
  82. sage/manifolds/differentiable/manifold.py +4254 -0
  83. sage/manifolds/differentiable/manifold_homset.py +1826 -0
  84. sage/manifolds/differentiable/metric.py +3032 -0
  85. sage/manifolds/differentiable/mixed_form.py +1507 -0
  86. sage/manifolds/differentiable/mixed_form_algebra.py +559 -0
  87. sage/manifolds/differentiable/multivector_module.py +800 -0
  88. sage/manifolds/differentiable/multivectorfield.py +1520 -0
  89. sage/manifolds/differentiable/poisson_tensor.py +268 -0
  90. sage/manifolds/differentiable/pseudo_riemannian.py +755 -0
  91. sage/manifolds/differentiable/pseudo_riemannian_submanifold.py +1839 -0
  92. sage/manifolds/differentiable/scalarfield.py +1343 -0
  93. sage/manifolds/differentiable/scalarfield_algebra.py +472 -0
  94. sage/manifolds/differentiable/symplectic_form.py +910 -0
  95. sage/manifolds/differentiable/symplectic_form_test.py +220 -0
  96. sage/manifolds/differentiable/tangent_space.py +412 -0
  97. sage/manifolds/differentiable/tangent_vector.py +616 -0
  98. sage/manifolds/differentiable/tensorfield.py +4665 -0
  99. sage/manifolds/differentiable/tensorfield_module.py +963 -0
  100. sage/manifolds/differentiable/tensorfield_paral.py +2450 -0
  101. sage/manifolds/differentiable/tensorfield_paral_test.py +16 -0
  102. sage/manifolds/differentiable/vector_bundle.py +1728 -0
  103. sage/manifolds/differentiable/vectorfield.py +1717 -0
  104. sage/manifolds/differentiable/vectorfield_module.py +2445 -0
  105. sage/manifolds/differentiable/vectorframe.py +1832 -0
  106. sage/manifolds/family.py +270 -0
  107. sage/manifolds/local_frame.py +1490 -0
  108. sage/manifolds/manifold.py +3090 -0
  109. sage/manifolds/manifold_homset.py +452 -0
  110. sage/manifolds/operators.py +359 -0
  111. sage/manifolds/point.py +994 -0
  112. sage/manifolds/scalarfield.py +3718 -0
  113. sage/manifolds/scalarfield_algebra.py +629 -0
  114. sage/manifolds/section.py +3111 -0
  115. sage/manifolds/section_module.py +831 -0
  116. sage/manifolds/structure.py +229 -0
  117. sage/manifolds/subset.py +2764 -0
  118. sage/manifolds/subsets/all.py +1 -0
  119. sage/manifolds/subsets/closure.py +131 -0
  120. sage/manifolds/subsets/pullback.py +885 -0
  121. sage/manifolds/topological_submanifold.py +891 -0
  122. sage/manifolds/trivialization.py +733 -0
  123. sage/manifolds/utilities.py +1348 -0
  124. sage/manifolds/vector_bundle.py +1342 -0
  125. sage/manifolds/vector_bundle_fiber.py +332 -0
  126. sage/manifolds/vector_bundle_fiber_element.py +111 -0
  127. sage/matrix/all__sagemath_symbolics.py +1 -0
  128. sage/matrix/matrix_symbolic_dense.cpython-310-x86_64-linux-gnu.so +0 -0
  129. sage/matrix/matrix_symbolic_dense.pxd +6 -0
  130. sage/matrix/matrix_symbolic_dense.pyx +1022 -0
  131. sage/matrix/matrix_symbolic_sparse.cpython-310-x86_64-linux-gnu.so +0 -0
  132. sage/matrix/matrix_symbolic_sparse.pxd +6 -0
  133. sage/matrix/matrix_symbolic_sparse.pyx +1029 -0
  134. sage/modules/all__sagemath_symbolics.py +1 -0
  135. sage/modules/vector_callable_symbolic_dense.py +105 -0
  136. sage/modules/vector_symbolic_dense.py +116 -0
  137. sage/modules/vector_symbolic_sparse.py +118 -0
  138. sage/rings/all__sagemath_symbolics.py +4 -0
  139. sage/rings/asymptotic/all.py +6 -0
  140. sage/rings/asymptotic/asymptotic_expansion_generators.py +1485 -0
  141. sage/rings/asymptotic/asymptotic_ring.py +4858 -0
  142. sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py +4153 -0
  143. sage/rings/asymptotic/growth_group.py +5373 -0
  144. sage/rings/asymptotic/growth_group_cartesian.py +1400 -0
  145. sage/rings/asymptotic/term_monoid.py +5237 -0
  146. sage/rings/function_field/all__sagemath_symbolics.py +2 -0
  147. sage/rings/polynomial/all__sagemath_symbolics.py +1 -0
  148. sage/symbolic/all.py +15 -0
  149. sage/symbolic/assumptions.py +985 -0
  150. sage/symbolic/benchmark.py +93 -0
  151. sage/symbolic/callable.py +459 -0
  152. sage/symbolic/complexity_measures.py +35 -0
  153. sage/symbolic/constants.py +1287 -0
  154. sage/symbolic/expression_conversion_algebraic.py +310 -0
  155. sage/symbolic/expression_conversion_sympy.py +317 -0
  156. sage/symbolic/expression_conversions.py +1713 -0
  157. sage/symbolic/function_factory.py +355 -0
  158. sage/symbolic/integration/all.py +1 -0
  159. sage/symbolic/integration/external.py +270 -0
  160. sage/symbolic/integration/integral.py +1115 -0
  161. sage/symbolic/maxima_wrapper.py +162 -0
  162. sage/symbolic/operators.py +267 -0
  163. sage/symbolic/random_tests.py +462 -0
  164. sage/symbolic/relation.py +1907 -0
  165. sage/symbolic/ring.cpython-310-x86_64-linux-gnu.so +0 -0
  166. sage/symbolic/ring.pxd +5 -0
  167. sage/symbolic/ring.pyx +1396 -0
  168. sage/symbolic/subring.py +1025 -0
  169. sage/symbolic/symengine.py +19 -0
  170. sage/symbolic/tests.py +40 -0
  171. sage/symbolic/units.py +1470 -0
@@ -0,0 +1,1029 @@
1
+ # sage_setup: distribution = sagemath-symbolics
2
+ """
3
+ Symbolic sparse matrices
4
+
5
+ EXAMPLES::
6
+
7
+ sage: matrix(SR, 2, 2, range(4), sparse=True)
8
+ [0 1]
9
+ [2 3]
10
+ sage: matrix(SR, 2, 2, var('t'), sparse=True)
11
+ [t 0]
12
+ [0 t]
13
+
14
+ Arithmetic::
15
+
16
+ sage: -matrix(SR, 2, range(4), sparse=True)
17
+ [ 0 -1]
18
+ [-2 -3]
19
+ sage: m = matrix(SR, 2, [1..4], sparse=True); sqrt(2)*m
20
+ [ sqrt(2) 2*sqrt(2)]
21
+ [3*sqrt(2) 4*sqrt(2)]
22
+ sage: m = matrix(SR, 4, [1..4^2], sparse=True)
23
+ sage: m * m
24
+ [ 90 100 110 120]
25
+ [202 228 254 280]
26
+ [314 356 398 440]
27
+ [426 484 542 600]
28
+
29
+ sage: m = matrix(SR, 3, [1, 2, 3], sparse=True); m
30
+ [1]
31
+ [2]
32
+ [3]
33
+ sage: m.transpose() * m
34
+ [14]
35
+
36
+ Computing inverses::
37
+
38
+ sage: M = matrix(SR, 2, var('a,b,c,d'), sparse=True)
39
+ sage: ~M
40
+ [1/a - b*c/(a^2*(b*c/a - d)) b/(a*(b*c/a - d))]
41
+ [ c/(a*(b*c/a - d)) -1/(b*c/a - d)]
42
+ sage: (~M*M).simplify_rational()
43
+ [1 0]
44
+ [0 1]
45
+ sage: M = matrix(SR, 3, 3, range(9), sparse=True) - var('t')
46
+ sage: (~M * M).simplify_rational()
47
+ [1 0 0]
48
+ [0 1 0]
49
+ [0 0 1]
50
+
51
+ sage: matrix(SR, 1, 1, 1, sparse=True).inverse()
52
+ [1]
53
+ sage: matrix(SR, 0, 0, sparse=True).inverse()
54
+ []
55
+ sage: matrix(SR, 3, 0, sparse=True).inverse()
56
+ Traceback (most recent call last):
57
+ ...
58
+ ArithmeticError: self must be a square matrix
59
+
60
+ Transposition::
61
+
62
+ sage: m = matrix(SR, 2, [sqrt(2), -1, pi, e^2], sparse=True)
63
+ sage: m.transpose()
64
+ [sqrt(2) pi]
65
+ [ -1 e^2]
66
+
67
+ ``.T`` is a convenient shortcut for the transpose::
68
+
69
+ sage: m.T
70
+ [sqrt(2) pi]
71
+ [ -1 e^2]
72
+
73
+ Test pickling::
74
+
75
+ sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e], sparse=True); m
76
+ [sqrt(2) 3]
77
+ [ pi e]
78
+ sage: TestSuite(m).run()
79
+
80
+ Comparison::
81
+
82
+ sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e], sparse=True)
83
+ sage: m == m
84
+ True
85
+ sage: m != 3
86
+ True
87
+ sage: m = matrix(SR,2,[1..4], sparse=True); n = m^2
88
+ sage: (exp(m+n) - exp(m)*exp(n)).simplify_rational() == 0 # indirect test
89
+ True
90
+
91
+
92
+ Determinant::
93
+
94
+ sage: M = matrix(SR, 2, 2, [x,2,3,4], sparse=True)
95
+ sage: M.determinant()
96
+ 4*x - 6
97
+ sage: M = matrix(SR, 3,3,range(9), sparse=True)
98
+ sage: M.det()
99
+ 0
100
+ sage: t = var('t')
101
+ sage: M = matrix(SR, 2, 2, [cos(t), sin(t), -sin(t), cos(t)], sparse=True)
102
+ sage: M.det()
103
+ cos(t)^2 + sin(t)^2
104
+ sage: M = matrix([[sqrt(x),0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]], sparse=True)
105
+ sage: det(M)
106
+ sqrt(x)
107
+
108
+ Permanents::
109
+
110
+ sage: M = matrix(SR, 2, 2, [x,2,3,4], sparse=True)
111
+ sage: M.permanent()
112
+ 4*x + 6
113
+
114
+ Rank::
115
+
116
+ sage: M = matrix(SR, 5, 5, range(25), sparse=True)
117
+ sage: M.rank()
118
+ 2
119
+ sage: M = matrix(SR, 5, 5, range(25), sparse=True) - var('t')
120
+ sage: M.rank()
121
+ 5
122
+
123
+ .. warning::
124
+
125
+ :meth:`rank` may return the wrong answer if it cannot determine that a
126
+ matrix element that is equivalent to zero is indeed so.
127
+
128
+ Copying symbolic matrices::
129
+
130
+ sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e], sparse=True)
131
+ sage: n = copy(m)
132
+ sage: n[0,0] = sin(1)
133
+ sage: m
134
+ [sqrt(2) 3]
135
+ [ pi e]
136
+ sage: n
137
+ [sin(1) 3]
138
+ [ pi e]
139
+
140
+ Conversion to Maxima::
141
+
142
+ sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e], sparse=True)
143
+ sage: m._maxima_()
144
+ matrix([sqrt(2),3],[%pi,%e])
145
+
146
+ TESTS:
147
+
148
+ Check that :issue:`12778` is fixed::
149
+
150
+ sage: M = Matrix([[1, 0.9, 1/5, x^2], [2, 1.9, 2/5, x^3], [3, 2.9, 3/5, x^4]], sparse=True); M
151
+ [ 1 0.900000000000000 1/5 x^2]
152
+ [ 2 1.90000000000000 2/5 x^3]
153
+ [ 3 2.90000000000000 3/5 x^4]
154
+ sage: parent(M)
155
+ Full MatrixSpace of 3 by 4 sparse matrices over Symbolic Ring
156
+
157
+ Check that :issue:`35653` is fixed::
158
+
159
+ sage: diagonal_matrix([x]).inverse()
160
+ [1/x]
161
+ sage: M = MatrixSpace(SR,2,2,sparse=True)
162
+ sage: M([[x,0],[0,x]]).inverse()
163
+ [1/x 0]
164
+ [ 0 1/x]
165
+ """
166
+ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
167
+ from sage.structure.factorization import Factorization
168
+
169
+ from sage.matrix.matrix_generic_sparse cimport Matrix_generic_sparse
170
+ from sage.matrix.constructor import matrix
171
+
172
+ cdef maxima
173
+
174
+ from sage.calculus.calculus import maxima
175
+
176
+ cdef class Matrix_symbolic_sparse(Matrix_generic_sparse):
177
+ def echelonize(self, **kwds):
178
+ """
179
+ Echelonize using the classical algorithm.
180
+
181
+ TESTS::
182
+
183
+ sage: m = matrix([[cos(pi/5), sin(pi/5)], [-sin(pi/5), cos(pi/5)]], sparse=True)
184
+ sage: m.echelonize(); m
185
+ [1 0]
186
+ [0 1]
187
+ """
188
+ return super().echelonize(algorithm='classical', **kwds)
189
+
190
+ def eigenvalues(self, extend=True):
191
+ """
192
+ Compute the eigenvalues by solving the characteristic
193
+ polynomial in maxima.
194
+
195
+ The argument ``extend`` is ignored but kept for compatibility with
196
+ other matrix classes.
197
+
198
+ EXAMPLES::
199
+
200
+ sage: a=matrix(SR,[[1,2],[3,4]], sparse=True)
201
+ sage: a.eigenvalues()
202
+ [-1/2*sqrt(33) + 5/2, 1/2*sqrt(33) + 5/2]
203
+
204
+ TESTS:
205
+
206
+ Check for :issue:`31700`::
207
+
208
+ sage: m = matrix([[cos(pi/5), sin(pi/5)], [-sin(pi/5), cos(pi/5)]], sparse=True)
209
+ sage: t = linear_transformation(m)
210
+ sage: t.eigenvalues()
211
+ [1/4*sqrt(5) - 1/4*sqrt(2*sqrt(5) - 10) + 1/4,
212
+ 1/4*sqrt(5) + 1/4*sqrt(2*sqrt(5) - 10) + 1/4]
213
+ """
214
+ maxima_evals = self._maxima_(maxima).eigenvalues()._sage_()
215
+ if not len(maxima_evals):
216
+ raise ArithmeticError("could not determine eigenvalues exactly using symbolic matrices; try using a different type of matrix via self.change_ring(), if possible")
217
+ return sum([[ev] * int(mult) for ev, mult in zip(*maxima_evals)], [])
218
+
219
+ def eigenvectors_left(self, other=None):
220
+ r"""
221
+ Compute the left eigenvectors of a matrix.
222
+
223
+ INPUT:
224
+
225
+ - ``other`` -- a square matrix `B` (default: ``None``) in a generalized
226
+ eigenvalue problem; if ``None``, an ordinary eigenvalue problem is
227
+ solved (currently supported only if the base ring of ``self`` is
228
+ ``RDF`` or ``CDF``)
229
+
230
+ OUTPUT:
231
+
232
+ For each distinct eigenvalue, returns a list of the form (e,V,n)
233
+ where e is the eigenvalue, V is a list of eigenvectors forming a
234
+ basis for the corresponding left eigenspace, and n is the
235
+ algebraic multiplicity of the eigenvalue.
236
+
237
+ EXAMPLES::
238
+
239
+ sage: A = matrix(SR,3,3,range(9), sparse=True); A
240
+ [0 1 2]
241
+ [3 4 5]
242
+ [6 7 8]
243
+ sage: es = A.eigenvectors_left(); es
244
+ [(-3*sqrt(6) + 6, [(1, -1/5*sqrt(6) + 4/5, -2/5*sqrt(6) + 3/5)], 1),
245
+ (3*sqrt(6) + 6, [(1, 1/5*sqrt(6) + 4/5, 2/5*sqrt(6) + 3/5)], 1),
246
+ (0, [(1, -2, 1)], 1)]
247
+ sage: eval, [evec], mult = es[0]
248
+ sage: delta = eval*evec - evec*A
249
+ sage: abs(abs(delta)) < 1e-10
250
+ 3/5*sqrt(((2*sqrt(6) - 3)*(sqrt(6) - 2) + 7*sqrt(6) - 18)^2 + ((sqrt(6) - 2)*(sqrt(6) - 4) + 6*sqrt(6) - 14)^2) < (1.00000000000000e-10)
251
+ sage: abs(abs(delta)).n() < 1e-10
252
+ True
253
+
254
+ ::
255
+
256
+ sage: A = matrix(SR, 2, 2, var('a,b,c,d'), sparse=True)
257
+ sage: A.eigenvectors_left()
258
+ [(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d + sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d - sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1)]
259
+ sage: es = A.eigenvectors_left(); es
260
+ [(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d + sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d - sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1)]
261
+ sage: eval, [evec], mult = es[0]
262
+ sage: delta = eval*evec - evec*A
263
+ sage: delta.apply_map(lambda x: x.full_simplify())
264
+ (0, 0)
265
+
266
+ This routine calls Maxima and can struggle with even small matrices
267
+ with a few variables, such as a `3\times 3` matrix with three variables.
268
+ However, if the entries are integers or rationals it can produce exact
269
+ values in a reasonable time. These examples create 0-1 matrices from
270
+ the adjacency matrices of graphs and illustrate how the format and type
271
+ of the results differ when the base ring changes. First for matrices
272
+ over the rational numbers, then the same matrix but viewed as a symbolic
273
+ matrix. ::
274
+
275
+ sage: # needs sage.graphs
276
+ sage: G = graphs.CycleGraph(5)
277
+ sage: am = G.adjacency_matrix(sparse=True)
278
+ sage: spectrum = am.eigenvectors_left()
279
+ sage: qqbar_evalue = spectrum[2][0]
280
+ sage: type(qqbar_evalue)
281
+ <class 'sage.rings.qqbar.AlgebraicNumber'>
282
+ sage: qqbar_evalue
283
+ 0.618033988749895?
284
+ sage: am = G.adjacency_matrix(sparse=True).change_ring(SR)
285
+ sage: spectrum = am.eigenvectors_left()
286
+ sage: symbolic_evalue = spectrum[2][0]
287
+ sage: type(symbolic_evalue)
288
+ <class 'sage.symbolic.expression.Expression'>
289
+ sage: symbolic_evalue
290
+ 1/2*sqrt(5) - 1/2
291
+ sage: bool(qqbar_evalue == symbolic_evalue)
292
+ True
293
+
294
+ A slightly larger matrix with a "nice" spectrum. ::
295
+
296
+ sage: # needs sage.graphs
297
+ sage: G = graphs.CycleGraph(6)
298
+ sage: am = G.adjacency_matrix(sparse=True).change_ring(SR)
299
+ sage: am.eigenvectors_left()
300
+ [(-1, [(1, 0, -1, 1, 0, -1), (0, 1, -1, 0, 1, -1)], 2), (1, [(1, 0, -1, -1, 0, 1), (0, 1, 1, 0, -1, -1)], 2), (-2, [(1, -1, 1, -1, 1, -1)], 1), (2, [(1, 1, 1, 1, 1, 1)], 1)]
301
+
302
+ TESTS::
303
+
304
+ sage: A = matrix(SR, [[1, 2], [3, 4]], sparse=True)
305
+ sage: B = matrix(SR, [[1, 1], [0, 1]], sparse=True)
306
+ sage: A.eigenvectors_left(B)
307
+ Traceback (most recent call last):
308
+ ...
309
+ NotImplementedError: generalized eigenvector decomposition is
310
+ implemented for RDF and CDF, but not for Symbolic Ring
311
+
312
+ Check that :issue:`23332` is fixed::
313
+
314
+ sage: matrix([[x, x^2], [1, 0]], sparse=True).eigenvectors_left()
315
+ [(-1/2*x*(sqrt(5) - 1), [(1, -1/2*x*(sqrt(5) + 1))], 1),
316
+ (1/2*x*(sqrt(5) + 1), [(1, 1/2*x*(sqrt(5) - 1))], 1)]
317
+ """
318
+ if other is not None:
319
+ raise NotImplementedError('generalized eigenvector decomposition '
320
+ 'is implemented for RDF and CDF, but '
321
+ 'not for %s' % self.base_ring())
322
+
323
+ from sage.modules.free_module_element import vector
324
+ from sage.rings.integer_ring import ZZ
325
+
326
+ [evals, mults], evecs = self.transpose()._maxima_(maxima).eigenvectors()._sage_()
327
+ result = []
328
+ for e, evec, m in zip(evals, evecs, mults):
329
+ result.append((e, [vector(v) for v in evec], ZZ(m)))
330
+
331
+ return result
332
+
333
+ def eigenvectors_right(self, other=None):
334
+ r"""
335
+ Compute the right eigenvectors of a matrix.
336
+
337
+ INPUT:
338
+
339
+ - ``other`` -- a square matrix `B` (default: ``None``) in a generalized
340
+ eigenvalue problem; if ``None``, an ordinary eigenvalue problem is
341
+ solved (currently supported only if the base ring of ``self`` is
342
+ ``RDF`` or ``CDF``)
343
+
344
+ OUTPUT:
345
+
346
+ For each distinct eigenvalue, returns a list of the form (e,V,n)
347
+ where e is the eigenvalue, V is a list of eigenvectors forming a
348
+ basis for the corresponding right eigenspace, and n is the
349
+ algebraic multiplicity of the eigenvalue.
350
+
351
+ EXAMPLES::
352
+
353
+ sage: A = matrix(SR,2,2,range(4), sparse=True); A
354
+ [0 1]
355
+ [2 3]
356
+ sage: right = A.eigenvectors_right(); right
357
+ [(-1/2*sqrt(17) + 3/2, [(1, -1/2*sqrt(17) + 3/2)], 1), (1/2*sqrt(17) + 3/2, [(1, 1/2*sqrt(17) + 3/2)], 1)]
358
+
359
+ The right eigenvectors are nothing but the left eigenvectors of the
360
+ transpose matrix::
361
+
362
+ sage: left = A.transpose().eigenvectors_left(); left
363
+ [(-1/2*sqrt(17) + 3/2, [(1, -1/2*sqrt(17) + 3/2)], 1), (1/2*sqrt(17) + 3/2, [(1, 1/2*sqrt(17) + 3/2)], 1)]
364
+ sage: right[0][1] == left[0][1]
365
+ True
366
+
367
+ TESTS::
368
+
369
+ sage: A = matrix(SR, [[1, 2], [3, 4]], sparse=True)
370
+ sage: B = matrix(SR, [[1, 1], [0, 1]], sparse=True)
371
+ sage: A.eigenvectors_right(B)
372
+ Traceback (most recent call last):
373
+ ...
374
+ NotImplementedError: generalized eigenvector decomposition is
375
+ implemented for RDF and CDF, but not for Symbolic Ring
376
+
377
+ Check that :issue:`23332` is fixed::
378
+
379
+ sage: matrix([[x, x^2], [1, 0]], sparse=True).eigenvectors_right()
380
+ [(-1/2*x*(sqrt(5) - 1), [(1, -1/2*(sqrt(5) + 1)/x)], 1),
381
+ (1/2*x*(sqrt(5) + 1), [(1, 1/2*(sqrt(5) - 1)/x)], 1)]
382
+ """
383
+ return self.transpose().eigenvectors_left(other=other)
384
+
385
+ def exp(self):
386
+ r"""
387
+ Return the matrix exponential of this matrix `X`, which is the matrix
388
+
389
+ .. MATH::
390
+
391
+ e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}.
392
+
393
+ This function depends on maxima's matrix exponentiation
394
+ function, which does not deal well with floating point
395
+ numbers. If the matrix has floating point numbers, they will
396
+ be rounded automatically to rational numbers during the
397
+ computation.
398
+
399
+ EXAMPLES::
400
+
401
+ sage: m = matrix(SR,2, [0,x,x,0], sparse=True); m
402
+ [0 x]
403
+ [x 0]
404
+ sage: m.exp()
405
+ [1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)]
406
+ [1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)]
407
+ sage: exp(m)
408
+ [1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)]
409
+ [1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)]
410
+
411
+ Exponentiation works on 0x0 and 1x1 matrices, but the 1x1 example
412
+ requires a patched version of maxima (:issue:`32898`) for now::
413
+
414
+ sage: m = matrix(SR,0,[], sparse=True); m
415
+ []
416
+ sage: m.exp()
417
+ []
418
+ sage: m = matrix(SR,1,[2], sparse=True); m
419
+ [2]
420
+ sage: m.exp() # not tested, requires patched maxima
421
+ [e^2]
422
+
423
+ Commuting matrices `m, n` have the property that
424
+ `e^{m+n} = e^m e^n` (but non-commuting matrices need not)::
425
+
426
+ sage: m = matrix(SR,2,[1..4], sparse=True); n = m^2
427
+ sage: m*n
428
+ [ 37 54]
429
+ [ 81 118]
430
+ sage: n*m
431
+ [ 37 54]
432
+ [ 81 118]
433
+
434
+ sage: a = exp(m+n) - exp(m)*exp(n)
435
+ sage: a.simplify_rational() == 0
436
+ True
437
+
438
+ The input matrix must be square::
439
+
440
+ sage: m = matrix(SR,2,3,[1..6], sparse=True); exp(m)
441
+ Traceback (most recent call last):
442
+ ...
443
+ ValueError: exp only defined on square matrices
444
+
445
+ In this example we take the symbolic answer and make it
446
+ numerical at the end::
447
+
448
+ sage: exp(matrix(SR, [[1.2, 5.6], [3,4]], sparse=True)).change_ring(RDF) # rel tol 1e-15
449
+ [ 346.5574872980695 661.7345909344504]
450
+ [354.50067371488416 677.4247827652946]
451
+
452
+ Another example involving the reversed identity matrix, which
453
+ we clumsily create::
454
+
455
+ sage: m = identity_matrix(SR,4, sparse=True)
456
+ sage: m = matrix(list(reversed(m.rows())), sparse=True) * x
457
+ sage: exp(m)
458
+ [1/2*(e^(2*x) + 1)*e^(-x) 0 0 1/2*(e^(2*x) - 1)*e^(-x)]
459
+ [ 0 1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x) 0]
460
+ [ 0 1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x) 0]
461
+ [1/2*(e^(2*x) - 1)*e^(-x) 0 0 1/2*(e^(2*x) + 1)*e^(-x)]
462
+ """
463
+ if not self.is_square():
464
+ raise ValueError("exp only defined on square matrices")
465
+ if self.nrows() == 0:
466
+ return self
467
+ # Maxima's matrixexp function chokes on floating point numbers
468
+ # so we automatically convert floats to rationals by passing
469
+ # keepfloat: false
470
+ m = self._maxima_(maxima)
471
+ z = maxima('matrixexp(%s), keepfloat: false' % m.name())
472
+ if self.nrows() == 1:
473
+ # We do the following, because Maxima stupidly exp's 1x1
474
+ # matrices into non-matrices!
475
+ z = maxima('matrix([%s])' % z.name())
476
+
477
+ return z._sage_()
478
+
479
+ def charpoly(self, var='x', algorithm=None):
480
+ r"""
481
+ Compute the characteristic polynomial of ``self``, using maxima.
482
+
483
+ .. NOTE::
484
+
485
+ The characteristic polynomial is defined as `\det(xI-A)`.
486
+
487
+ INPUT:
488
+
489
+ - ``var`` -- (default: ``'x'``) name of variable of charpoly
490
+
491
+ EXAMPLES::
492
+
493
+ sage: M = matrix(SR, 2, 2, var('a,b,c,d'), sparse=True)
494
+ sage: M.charpoly('t')
495
+ t^2 + (-a - d)*t - b*c + a*d
496
+ sage: matrix(SR, 5, [1..5^2], sparse=True).charpoly()
497
+ x^5 - 65*x^4 - 250*x^3
498
+
499
+ TESTS:
500
+
501
+ The cached polynomial should be independent of the ``var``
502
+ argument (:issue:`12292`). We check (indirectly) that the
503
+ second call uses the cached value by noting that its result is
504
+ not cached::
505
+
506
+ sage: M = MatrixSpace(SR, 2, sparse=True)
507
+ sage: A = M(range(0, 2^2))
508
+ sage: type(A)
509
+ <class 'sage.matrix.matrix_symbolic_sparse.Matrix_symbolic_sparse'>
510
+ sage: A.charpoly('x')
511
+ x^2 - 3*x - 2
512
+ sage: A.charpoly('y')
513
+ y^2 - 3*y - 2
514
+ sage: A._cache['charpoly']
515
+ x^2 - 3*x - 2
516
+
517
+ Ensure the variable name of the polynomial does not conflict
518
+ with variables used within the matrix (:issue:`14403`)::
519
+
520
+ sage: Matrix(SR, [[sqrt(x), x],[1,x]], sparse=True).charpoly().list()
521
+ [x^(3/2) - x, -x - sqrt(x), 1]
522
+
523
+ Test that :issue:`13711` is fixed::
524
+
525
+ sage: matrix([[sqrt(2), -1], [pi, e^2]], sparse=True).charpoly()
526
+ x^2 + (-sqrt(2) - e^2)*x + pi + sqrt(2)*e^2
527
+
528
+ Test that :issue:`26427` is fixed::
529
+
530
+ sage: M = matrix(SR, 7, 7, SR.var('a', 49), sparse=True)
531
+ sage: M.charpoly().degree() # long time
532
+ 7
533
+ """
534
+ cache_key = 'charpoly'
535
+ cp = self.fetch(cache_key)
536
+ if cp is not None:
537
+ return cp.change_variable_name(var)
538
+ from sage.symbolic.ring import SR
539
+
540
+ # We must not use a variable name already present in the matrix
541
+ vname = 'do_not_use_this_name_in_a_matrix_youll_compute_a_charpoly_of'
542
+ vsym = SR(vname)
543
+
544
+ cp = self._maxima_(maxima).charpoly(vname)._sage_().expand()
545
+ cp = [cp.coefficient(vsym, i) for i in range(self.nrows() + 1)]
546
+ cp = SR[var](cp)
547
+
548
+ # Maxima has the definition det(matrix-xI) instead of
549
+ # det(xI-matrix), which is what Sage uses elsewhere. We
550
+ # correct for the discrepancy.
551
+ if self.nrows() % 2 == 1:
552
+ cp = -cp
553
+
554
+ self.cache(cache_key, cp)
555
+ return cp
556
+
557
+ def minpoly(self, var='x'):
558
+ """
559
+ Return the minimal polynomial of ``self``.
560
+
561
+ EXAMPLES::
562
+
563
+ sage: M = Matrix.identity(SR, 2, sparse=True)
564
+ sage: M.minpoly()
565
+ x - 1
566
+
567
+ sage: t = var('t')
568
+ sage: m = matrix(2, [1, 2, 4, t], sparse=True)
569
+ sage: m.minimal_polynomial()
570
+ x^2 + (-t - 1)*x + t - 8
571
+
572
+ TESTS:
573
+
574
+ Check that the variable `x` can occur in the matrix::
575
+
576
+ sage: m = matrix([[x]], sparse=True)
577
+ sage: m.minimal_polynomial('y')
578
+ y - x
579
+ """
580
+ mp = self.fetch('minpoly')
581
+ if mp is None:
582
+ mp = self._maxima_lib_().jordan().minimalPoly().expand()
583
+ d = mp.hipow('x')
584
+ mp = [mp.coeff('x', i) for i in range(int(d) + 1)]
585
+ mp = PolynomialRing(self.base_ring(), 'x')(mp)
586
+ self.cache('minpoly', mp)
587
+ return mp.change_variable_name(var)
588
+
589
+ def fcp(self, var='x'):
590
+ """
591
+ Return the factorization of the characteristic polynomial of ``self``.
592
+
593
+ INPUT:
594
+
595
+ - ``var`` -- (default: ``'x'``) name of variable of charpoly
596
+
597
+ EXAMPLES::
598
+
599
+ sage: a = matrix(SR,[[1,2],[3,4]], sparse=True)
600
+ sage: a.fcp()
601
+ x^2 - 5*x - 2
602
+ sage: [i for i in a.fcp()]
603
+ [(x^2 - 5*x - 2, 1)]
604
+ sage: a = matrix(SR,[[1,0],[0,2]], sparse=True)
605
+ sage: a.fcp()
606
+ (x - 2) * (x - 1)
607
+ sage: [i for i in a.fcp()]
608
+ [(x - 2, 1), (x - 1, 1)]
609
+ sage: a = matrix(SR, 5, [1..5^2], sparse=True)
610
+ sage: a.fcp()
611
+ (x^2 - 65*x - 250) * x^3
612
+ sage: list(a.fcp())
613
+ [(x^2 - 65*x - 250, 1), (x, 3)]
614
+ """
615
+ from sage.symbolic.ring import SR
616
+ sub_dict = {var: SR.var(var)}
617
+ return Factorization(self.charpoly(var).subs(**sub_dict).factor_list())
618
+
619
+ def jordan_form(self, subdivide=True, transformation=False):
620
+ """
621
+ Return a Jordan normal form of ``self``.
622
+
623
+ INPUT:
624
+
625
+ - ``self`` -- a square matrix
626
+
627
+ - ``subdivide`` -- boolean (default: ``True``)
628
+
629
+ - ``transformation`` -- boolean (default: ``False``)
630
+
631
+ OUTPUT:
632
+
633
+ If ``transformation`` is ``False``, only a Jordan normal form
634
+ (unique up to the ordering of the Jordan blocks) is returned.
635
+ Otherwise, a pair ``(J, P)`` is returned, where ``J`` is a
636
+ Jordan normal form and ``P`` is an invertible matrix such that
637
+ ``self`` equals ``P * J * P^(-1)``.
638
+
639
+ If ``subdivide`` is ``True``, the Jordan blocks in the
640
+ returned matrix ``J`` are indicated by a subdivision in
641
+ the sense of :meth:`~sage.matrix.matrix2.subdivide`.
642
+
643
+ EXAMPLES:
644
+
645
+ We start with some examples of diagonalisable matrices::
646
+
647
+ sage: a,b,c,d = var('a,b,c,d')
648
+ sage: matrix([a], sparse=True).jordan_form()
649
+ [a]
650
+ sage: matrix([[a, 0], [1, d]], sparse=True).jordan_form(subdivide=True)
651
+ [d|0]
652
+ [-+-]
653
+ [0|a]
654
+ sage: matrix([[a, 0], [1, d]], sparse=True).jordan_form(subdivide=False)
655
+ [d 0]
656
+ [0 a]
657
+ sage: matrix([[a, x, x], [0, b, x], [0, 0, c]], sparse=True).jordan_form()
658
+ [c|0|0]
659
+ [-+-+-]
660
+ [0|b|0]
661
+ [-+-+-]
662
+ [0|0|a]
663
+
664
+ In the following examples, we compute Jordan forms of some
665
+ non-diagonalisable matrices::
666
+
667
+ sage: matrix([[a, a], [0, a]], sparse=True).jordan_form()
668
+ [a 1]
669
+ [0 a]
670
+ sage: matrix([[a, 0, b], [0, c, 0], [0, 0, a]], sparse=True).jordan_form()
671
+ [c|0 0]
672
+ [-+---]
673
+ [0|a 1]
674
+ [0|0 a]
675
+
676
+ The following examples illustrate the ``transformation`` flag.
677
+ Note that symbolic expressions may need to be simplified to
678
+ make consistency checks succeed::
679
+
680
+ sage: A = matrix([[x - a*c, a^2], [-c^2, x + a*c]], sparse=True)
681
+ sage: J, P = A.jordan_form(transformation=True)
682
+ sage: J, P
683
+ (
684
+ [x 1] [-a*c 1]
685
+ [0 x], [-c^2 0]
686
+ )
687
+ sage: A1 = P * J * ~P; A1
688
+ [ -a*c + x (a*c - x)*a/c + a*x/c]
689
+ [ -c^2 a*c + x]
690
+ sage: A1.simplify_rational() == A
691
+ True
692
+
693
+ sage: B = matrix([[a, b, c], [0, a, d], [0, 0, a]], sparse=True)
694
+ sage: J, T = B.jordan_form(transformation=True)
695
+ sage: J, T
696
+ (
697
+ [a 1 0] [b*d c 0]
698
+ [0 a 1] [ 0 d 0]
699
+ [0 0 a], [ 0 0 1]
700
+ )
701
+ sage: (B * T).simplify_rational() == T * J
702
+ True
703
+
704
+ Finally, some examples involving square roots::
705
+
706
+ sage: matrix([[a, -b], [b, a]], sparse=True).jordan_form()
707
+ [a - I*b| 0]
708
+ [-------+-------]
709
+ [ 0|a + I*b]
710
+ sage: matrix([[a, b], [c, d]], sparse=True).jordan_form(subdivide=False)
711
+ [1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2) 0]
712
+ [ 0 1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2)]
713
+ """
714
+ A = self._maxima_lib_()
715
+ jordan_info = A.jordan()
716
+ J = matrix(jordan_info.dispJordan()._sage_(), sparse=True)
717
+ if subdivide:
718
+ v = [x[1] for x in jordan_info]
719
+ w = [sum(v[0:i]) for i in range(1, len(v))]
720
+ J.subdivide(w, w)
721
+ if transformation:
722
+ P = A.diag_mode_matrix(jordan_info)._sage_()
723
+ return J, matrix(P, sparse=True)
724
+ else:
725
+ return J
726
+
727
+ def simplify(self):
728
+ """
729
+ Simplify ``self``.
730
+
731
+ EXAMPLES::
732
+
733
+ sage: var('x,y,z')
734
+ (x, y, z)
735
+ sage: m = matrix([[z, (x+y)/(x+y)], [x^2, y^2+2]], sparse=True); m
736
+ [ z 1]
737
+ [ x^2 y^2 + 2]
738
+ sage: m.simplify()
739
+ [ z 1]
740
+ [ x^2 y^2 + 2]
741
+ """
742
+ return self.parent()([x.simplify() for x in self.list()])
743
+
744
+ def simplify_trig(self):
745
+ """
746
+ EXAMPLES::
747
+
748
+ sage: theta = var('theta')
749
+ sage: M = matrix(SR, 2, 2, [cos(theta), sin(theta), -sin(theta), cos(theta)], sparse=True)
750
+ sage: ~M
751
+ [1/cos(theta) - sin(theta)^2/((sin(theta)^2/cos(theta) + cos(theta))*cos(theta)^2) -sin(theta)/((sin(theta)^2/cos(theta) + cos(theta))*cos(theta))]
752
+ [ sin(theta)/((sin(theta)^2/cos(theta) + cos(theta))*cos(theta)) 1/(sin(theta)^2/cos(theta) + cos(theta))]
753
+ sage: (~M).simplify_trig()
754
+ [ cos(theta) -sin(theta)]
755
+ [ sin(theta) cos(theta)]
756
+ """
757
+ return self._maxima_(maxima).trigexpand().trigsimp()._sage_()
758
+
759
+ def simplify_rational(self):
760
+ """
761
+ EXAMPLES::
762
+
763
+ sage: M = matrix(SR, 3, 3, range(9), sparse=True) - var('t')
764
+ sage: (~M*M)[0,0]
765
+ t*(3*(2/t + (6/t + 7)/((t - 3/t - 4)*t))*(2/t + (6/t + 5)/((t - 3/t
766
+ - 4)*t))/(t - (6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) + 1/t +
767
+ 3/((t - 3/t - 4)*t^2)) - 6*(2/t + (6/t + 5)/((t - 3/t - 4)*t))/(t -
768
+ (6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) - 3*(6/t + 7)*(2/t +
769
+ (6/t + 5)/((t - 3/t - 4)*t))/((t - (6/t + 7)*(6/t + 5)/(t - 3/t -
770
+ 4) - 12/t - 8)*(t - 3/t - 4)) - 3/((t - 3/t - 4)*t)
771
+ sage: expand((~M*M)[0,0])
772
+ 1
773
+ sage: (~M * M).simplify_rational()
774
+ [1 0 0]
775
+ [0 1 0]
776
+ [0 0 1]
777
+ """
778
+ return self._maxima_(maxima).fullratsimp()._sage_()
779
+
780
+ def simplify_full(self):
781
+ """
782
+ Simplify a symbolic matrix by calling
783
+ :meth:`Expression.simplify_full()` componentwise.
784
+
785
+ INPUT:
786
+
787
+ - ``self`` -- the matrix whose entries we should simplify
788
+
789
+ OUTPUT: a copy of ``self`` with all of its entries simplified
790
+
791
+ EXAMPLES:
792
+
793
+ Symbolic matrices will have their entries simplified::
794
+
795
+ sage: a,n,k = SR.var('a,n,k')
796
+ sage: f1 = sin(x)^2 + cos(x)^2
797
+ sage: f2 = sin(x/(x^2 + x))
798
+ sage: f3 = binomial(n,k)*factorial(k)*factorial(n-k)
799
+ sage: f4 = x*sin(2)/(x^a)
800
+ sage: A = matrix(SR, [[f1,f2],[f3,f4]], sparse=True)
801
+ sage: A.simplify_full()
802
+ [ 1 sin(1/(x + 1))]
803
+ [ factorial(n) x^(-a + 1)*sin(2)]
804
+ """
805
+ M = self.parent()
806
+ return M([expr.simplify_full() for expr in self])
807
+
808
+ def canonicalize_radical(self):
809
+ r"""
810
+ Choose a canonical branch of each entry of ``self`` by calling
811
+ :meth:`Expression.canonicalize_radical()` componentwise.
812
+
813
+ EXAMPLES::
814
+
815
+ sage: var('x','y')
816
+ (x, y)
817
+ sage: l1 = [sqrt(2)*sqrt(3)*sqrt(6) , log(x*y)]
818
+ sage: l2 = [sin(x/(x^2 + x)) , 1]
819
+ sage: m = matrix([l1, l2], sparse=True)
820
+ sage: m
821
+ [sqrt(6)*sqrt(3)*sqrt(2) log(x*y)]
822
+ [ sin(x/(x^2 + x)) 1]
823
+ sage: m.canonicalize_radical()
824
+ [ 6 log(x) + log(y)]
825
+ [ sin(1/(x + 1)) 1]
826
+ """
827
+ M = self.parent()
828
+ return M([expr.canonicalize_radical() for expr in self])
829
+
830
+ def factor(self):
831
+ """
832
+ Operate point-wise on each element.
833
+
834
+ EXAMPLES::
835
+
836
+ sage: M = matrix(SR, 2, 2, x^2 - 2*x + 1, sparse=True); M
837
+ [x^2 - 2*x + 1 0]
838
+ [ 0 x^2 - 2*x + 1]
839
+ sage: M.factor()
840
+ [(x - 1)^2 0]
841
+ [ 0 (x - 1)^2]
842
+ """
843
+ return matrix(self._maxima_(maxima).factor()._sage_(), sparse=True)
844
+
845
+ def expand(self):
846
+ """
847
+ Operate point-wise on each element.
848
+
849
+ EXAMPLES::
850
+
851
+ sage: M = matrix(2, 2, range(4)) - var('x')
852
+ sage: M*M
853
+ [ x^2 + 2 -2*x + 3]
854
+ [ -4*x + 6 (x - 3)^2 + 2]
855
+ sage: (M*M).expand()
856
+ [ x^2 + 2 -2*x + 3]
857
+ [ -4*x + 6 x^2 - 6*x + 11]
858
+ """
859
+ from sage.misc.call import attrcall
860
+ return self.apply_map(attrcall('expand'))
861
+
862
+ def variables(self):
863
+ """
864
+ Return the variables of ``self``.
865
+
866
+ EXAMPLES::
867
+
868
+ sage: var('a,b,c,x,y')
869
+ (a, b, c, x, y)
870
+ sage: m = matrix([[x, x+2], [x^2, x^2+2]], sparse=True); m
871
+ [ x x + 2]
872
+ [ x^2 x^2 + 2]
873
+ sage: m.variables()
874
+ (x,)
875
+ sage: m = matrix([[a, b+c], [x^2, y^2+2]], sparse=True); m
876
+ [ a b + c]
877
+ [ x^2 y^2 + 2]
878
+ sage: m.variables()
879
+ (a, b, c, x, y)
880
+ """
881
+ vars = set(sum([op.variables() for op in self.list()], ()))
882
+ return tuple(sorted(vars, key=repr))
883
+
884
+ def arguments(self):
885
+ """
886
+ Return a tuple of the arguments that ``self`` can take.
887
+
888
+ EXAMPLES::
889
+
890
+ sage: var('x,y,z')
891
+ (x, y, z)
892
+ sage: M = MatrixSpace(SR,2,2, sparse=True)
893
+ sage: M(x).arguments()
894
+ (x,)
895
+ sage: M(x+sin(x)).arguments()
896
+ (x,)
897
+ """
898
+ return self.variables()
899
+
900
+ def number_of_arguments(self):
901
+ """
902
+ Return the number of arguments that ``self`` can take.
903
+
904
+ EXAMPLES::
905
+
906
+ sage: var('a,b,c,x,y')
907
+ (a, b, c, x, y)
908
+ sage: m = matrix([[a, (x+y)/(x+y)], [x^2, y^2+2]], sparse=True); m
909
+ [ a 1]
910
+ [ x^2 y^2 + 2]
911
+ sage: m.number_of_arguments()
912
+ 3
913
+ """
914
+ return len(self.variables())
915
+
916
+ def __call__(self, *args, **kwargs):
917
+ """
918
+ EXAMPLES::
919
+
920
+ sage: var('x,y,z')
921
+ (x, y, z)
922
+ sage: M = MatrixSpace(SR,2,2, sparse=True)
923
+ sage: h = M(sin(x)+cos(x))
924
+ sage: h
925
+ [cos(x) + sin(x) 0]
926
+ [ 0 cos(x) + sin(x)]
927
+ sage: h(x=1)
928
+ [cos(1) + sin(1) 0]
929
+ [ 0 cos(1) + sin(1)]
930
+ sage: h(x=x)
931
+ [cos(x) + sin(x) 0]
932
+ [ 0 cos(x) + sin(x)]
933
+
934
+ sage: h = M((sin(x)+cos(x)).function(x))
935
+ sage: h
936
+ [cos(x) + sin(x) 0]
937
+ [ 0 cos(x) + sin(x)]
938
+
939
+ sage: f = M([0,x,y,z]); f
940
+ [0 x]
941
+ [y z]
942
+ sage: f.arguments()
943
+ (x, y, z)
944
+ sage: f()
945
+ [0 x]
946
+ [y z]
947
+ sage: f(x=1)
948
+ [0 1]
949
+ [y z]
950
+ sage: f(x=1,y=2)
951
+ [0 1]
952
+ [2 z]
953
+ sage: f(x=1,y=2,z=3)
954
+ [0 1]
955
+ [2 3]
956
+ sage: f({x:1,y:2,z:3})
957
+ [0 1]
958
+ [2 3]
959
+
960
+ TESTS::
961
+
962
+ sage: f(1, x=2)
963
+ Traceback (most recent call last):
964
+ ...
965
+ ValueError: args and kwargs cannot both be specified
966
+ sage: f(x=1,y=2,z=3,t=4)
967
+ [0 1]
968
+ [2 3]
969
+
970
+ sage: h(1)
971
+ Traceback (most recent call last):
972
+ ...
973
+ ValueError: use named arguments, like EXPR(x=..., y=...)
974
+ """
975
+ if kwargs and args:
976
+ raise ValueError("args and kwargs cannot both be specified")
977
+
978
+ if args:
979
+ if len(args) == 1 and isinstance(args[0], dict):
980
+ kwargs = {repr(x): vx for x, vx in args[0].iteritems()}
981
+ else:
982
+ raise ValueError('use named arguments, like EXPR(x=..., y=...)')
983
+
984
+ new_entries = []
985
+ for entry in self.list():
986
+ try:
987
+ new_entries.append(entry(**kwargs))
988
+ except ValueError:
989
+ new_entries.append(entry)
990
+
991
+ return self.parent(new_entries)
992
+
993
+ cdef bint get_is_zero_unsafe(self, Py_ssize_t i, Py_ssize_t j) except -1:
994
+ r"""
995
+ Return 1 if the entry ``(i, j)`` is zero, otherwise 0.
996
+
997
+ EXAMPLES::
998
+
999
+ sage: M = matrix(SR, [[0,1,0],[0,0,0]], sparse=True)
1000
+ sage: M.zero_pattern_matrix() # indirect doctest
1001
+ [1 0 1]
1002
+ [1 1 1]
1003
+ """
1004
+ entry = self.get_unsafe(i, j)
1005
+ # See if we can avoid the full proof machinery that the entry is 0
1006
+ if entry.is_trivial_zero():
1007
+ return 1
1008
+ if entry:
1009
+ return 0
1010
+ else:
1011
+ return 1
1012
+
1013
+ def function(self, *args):
1014
+ """
1015
+ Return a matrix over a callable symbolic expression ring.
1016
+
1017
+ EXAMPLES::
1018
+
1019
+ sage: x, y = var('x,y')
1020
+ sage: v = matrix([[x,y],[x*sin(y), 0]], sparse=True)
1021
+ sage: w = v.function([x,y]); w
1022
+ [ (x, y) |--> x (x, y) |--> y]
1023
+ [(x, y) |--> x*sin(y) (x, y) |--> 0]
1024
+ sage: w.parent()
1025
+ Full MatrixSpace of 2 by 2 sparse matrices over Callable function ring with arguments (x, y)
1026
+ """
1027
+ from sage.symbolic.callable import CallableSymbolicExpressionRing
1028
+ return matrix(CallableSymbolicExpressionRing(args),
1029
+ self.nrows(), self.ncols(), self.list(), sparse=True)