passagemath-polyhedra 10.6.31rc3__cp314-cp314-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-polyhedra might be problematic. Click here for more details.
- passagemath_polyhedra-10.6.31rc3.dist-info/METADATA +367 -0
- passagemath_polyhedra-10.6.31rc3.dist-info/METADATA.bak +369 -0
- passagemath_polyhedra-10.6.31rc3.dist-info/RECORD +208 -0
- passagemath_polyhedra-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_polyhedra-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_polyhedra.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_polyhedra.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_polyhedra.libs/libgomp-1ede7ee7.so.1.0.0 +0 -0
- passagemath_polyhedra.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_polyhedra.py +50 -0
- sage/game_theory/all.py +8 -0
- sage/game_theory/catalog.py +6 -0
- sage/game_theory/catalog_normal_form_games.py +923 -0
- sage/game_theory/cooperative_game.py +844 -0
- sage/game_theory/matching_game.py +1181 -0
- sage/game_theory/normal_form_game.py +2697 -0
- sage/game_theory/parser.py +275 -0
- sage/geometry/all__sagemath_polyhedra.py +22 -0
- sage/geometry/cone.py +6940 -0
- sage/geometry/cone_catalog.py +847 -0
- sage/geometry/cone_critical_angles.py +1027 -0
- sage/geometry/convex_set.py +1119 -0
- sage/geometry/fan.py +3743 -0
- sage/geometry/fan_isomorphism.py +389 -0
- sage/geometry/fan_morphism.py +1884 -0
- sage/geometry/hasse_diagram.py +202 -0
- sage/geometry/hyperplane_arrangement/affine_subspace.py +390 -0
- sage/geometry/hyperplane_arrangement/all.py +1 -0
- sage/geometry/hyperplane_arrangement/arrangement.py +3895 -0
- sage/geometry/hyperplane_arrangement/check_freeness.py +145 -0
- sage/geometry/hyperplane_arrangement/hyperplane.py +773 -0
- sage/geometry/hyperplane_arrangement/library.py +825 -0
- sage/geometry/hyperplane_arrangement/ordered_arrangement.py +642 -0
- sage/geometry/hyperplane_arrangement/plot.py +520 -0
- sage/geometry/integral_points.py +35 -0
- sage/geometry/integral_points_generic_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/integral_points_generic_dense.pyx +7 -0
- sage/geometry/lattice_polytope.py +5894 -0
- sage/geometry/linear_expression.py +773 -0
- sage/geometry/newton_polygon.py +767 -0
- sage/geometry/point_collection.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/point_collection.pyx +1008 -0
- sage/geometry/polyhedral_complex.py +2616 -0
- sage/geometry/polyhedron/all.py +8 -0
- sage/geometry/polyhedron/backend_cdd.py +460 -0
- sage/geometry/polyhedron/backend_cdd_rdf.py +231 -0
- sage/geometry/polyhedron/backend_field.py +347 -0
- sage/geometry/polyhedron/backend_normaliz.py +2503 -0
- sage/geometry/polyhedron/backend_number_field.py +168 -0
- sage/geometry/polyhedron/backend_polymake.py +765 -0
- sage/geometry/polyhedron/backend_ppl.py +582 -0
- sage/geometry/polyhedron/base.py +1206 -0
- sage/geometry/polyhedron/base0.py +1444 -0
- sage/geometry/polyhedron/base1.py +886 -0
- sage/geometry/polyhedron/base2.py +812 -0
- sage/geometry/polyhedron/base3.py +1845 -0
- sage/geometry/polyhedron/base4.py +1262 -0
- sage/geometry/polyhedron/base5.py +2700 -0
- sage/geometry/polyhedron/base6.py +1741 -0
- sage/geometry/polyhedron/base7.py +997 -0
- sage/geometry/polyhedron/base_QQ.py +1258 -0
- sage/geometry/polyhedron/base_RDF.py +98 -0
- sage/geometry/polyhedron/base_ZZ.py +934 -0
- sage/geometry/polyhedron/base_mutable.py +215 -0
- sage/geometry/polyhedron/base_number_field.py +122 -0
- sage/geometry/polyhedron/cdd_file_format.py +155 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/all.py +1 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/base.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/base.pxd +76 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/base.pyx +3859 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.pxd +39 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.pyx +1038 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/conversions.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/conversions.pxd +9 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/conversions.pyx +501 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_data_structure.pxd +207 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.pxd +102 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.pyx +2274 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.pxd +370 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.pyx +84 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.pxd +31 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.pyx +587 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.pxd +52 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.pyx +560 -0
- sage/geometry/polyhedron/constructor.py +773 -0
- sage/geometry/polyhedron/double_description.py +753 -0
- sage/geometry/polyhedron/double_description_inhomogeneous.py +564 -0
- sage/geometry/polyhedron/face.py +1060 -0
- sage/geometry/polyhedron/generating_function.py +1810 -0
- sage/geometry/polyhedron/lattice_euclidean_group_element.py +178 -0
- sage/geometry/polyhedron/library.py +3502 -0
- sage/geometry/polyhedron/misc.py +121 -0
- sage/geometry/polyhedron/modules/all.py +1 -0
- sage/geometry/polyhedron/modules/formal_polyhedra_module.py +155 -0
- sage/geometry/polyhedron/palp_database.py +447 -0
- sage/geometry/polyhedron/parent.py +1279 -0
- sage/geometry/polyhedron/plot.py +1986 -0
- sage/geometry/polyhedron/ppl_lattice_polygon.py +556 -0
- sage/geometry/polyhedron/ppl_lattice_polytope.py +1257 -0
- sage/geometry/polyhedron/representation.py +1723 -0
- sage/geometry/pseudolines.py +515 -0
- sage/geometry/relative_interior.py +445 -0
- sage/geometry/toric_plotter.py +1103 -0
- sage/geometry/triangulation/all.py +2 -0
- sage/geometry/triangulation/base.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/triangulation/base.pyx +963 -0
- sage/geometry/triangulation/data.h +147 -0
- sage/geometry/triangulation/data.pxd +4 -0
- sage/geometry/triangulation/element.py +914 -0
- sage/geometry/triangulation/functions.h +10 -0
- sage/geometry/triangulation/functions.pxd +4 -0
- sage/geometry/triangulation/point_configuration.py +2256 -0
- sage/geometry/triangulation/triangulations.h +49 -0
- sage/geometry/triangulation/triangulations.pxd +7 -0
- sage/geometry/voronoi_diagram.py +319 -0
- sage/interfaces/all__sagemath_polyhedra.py +1 -0
- sage/interfaces/polymake.py +2028 -0
- sage/numerical/all.py +13 -0
- sage/numerical/all__sagemath_polyhedra.py +11 -0
- sage/numerical/backends/all.py +1 -0
- sage/numerical/backends/all__sagemath_polyhedra.py +1 -0
- sage/numerical/backends/cvxopt_backend.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/cvxopt_backend.pyx +1006 -0
- sage/numerical/backends/cvxopt_backend_test.py +19 -0
- sage/numerical/backends/cvxopt_sdp_backend.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/cvxopt_sdp_backend.pyx +382 -0
- sage/numerical/backends/cvxpy_backend.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/cvxpy_backend.pxd +41 -0
- sage/numerical/backends/cvxpy_backend.pyx +934 -0
- sage/numerical/backends/cvxpy_backend_test.py +13 -0
- sage/numerical/backends/generic_backend_test.py +24 -0
- sage/numerical/backends/interactivelp_backend.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/interactivelp_backend.pxd +36 -0
- sage/numerical/backends/interactivelp_backend.pyx +1231 -0
- sage/numerical/backends/interactivelp_backend_test.py +12 -0
- sage/numerical/backends/logging_backend.py +391 -0
- sage/numerical/backends/matrix_sdp_backend.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/matrix_sdp_backend.pxd +15 -0
- sage/numerical/backends/matrix_sdp_backend.pyx +478 -0
- sage/numerical/backends/ppl_backend.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/ppl_backend.pyx +1126 -0
- sage/numerical/backends/ppl_backend_test.py +13 -0
- sage/numerical/backends/scip_backend.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/scip_backend.pxd +22 -0
- sage/numerical/backends/scip_backend.pyx +1289 -0
- sage/numerical/backends/scip_backend_test.py +13 -0
- sage/numerical/interactive_simplex_method.py +5338 -0
- sage/numerical/knapsack.py +665 -0
- sage/numerical/linear_functions.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/linear_functions.pxd +31 -0
- sage/numerical/linear_functions.pyx +1648 -0
- sage/numerical/linear_tensor.py +470 -0
- sage/numerical/linear_tensor_constraints.py +448 -0
- sage/numerical/linear_tensor_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/linear_tensor_element.pxd +6 -0
- sage/numerical/linear_tensor_element.pyx +459 -0
- sage/numerical/mip.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/mip.pxd +40 -0
- sage/numerical/mip.pyx +3667 -0
- sage/numerical/sdp.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/sdp.pxd +39 -0
- sage/numerical/sdp.pyx +1433 -0
- sage/rings/all__sagemath_polyhedra.py +3 -0
- sage/rings/polynomial/all__sagemath_polyhedra.py +10 -0
- sage/rings/polynomial/omega.py +982 -0
- sage/schemes/all__sagemath_polyhedra.py +2 -0
- sage/schemes/toric/all.py +10 -0
- sage/schemes/toric/chow_group.py +1248 -0
- sage/schemes/toric/divisor.py +2082 -0
- sage/schemes/toric/divisor_class.cpython-314-aarch64-linux-musl.so +0 -0
- sage/schemes/toric/divisor_class.pyx +322 -0
- sage/schemes/toric/fano_variety.py +1606 -0
- sage/schemes/toric/homset.py +650 -0
- sage/schemes/toric/ideal.py +451 -0
- sage/schemes/toric/library.py +1322 -0
- sage/schemes/toric/morphism.py +1958 -0
- sage/schemes/toric/points.py +1032 -0
- sage/schemes/toric/sheaf/all.py +1 -0
- sage/schemes/toric/sheaf/constructor.py +302 -0
- sage/schemes/toric/sheaf/klyachko.py +921 -0
- sage/schemes/toric/toric_subscheme.py +905 -0
- sage/schemes/toric/variety.py +3460 -0
- sage/schemes/toric/weierstrass.py +1078 -0
- sage/schemes/toric/weierstrass_covering.py +457 -0
- sage/schemes/toric/weierstrass_higher.py +288 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.info +10 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v03 +0 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v04 +0 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v05 +1 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v06 +1 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.info +22 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v04 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v05 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v06 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v07 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v08 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v09 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v10 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v11 +1 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v12 +1 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v13 +1 -0
- sage_wheels/share/reflexive_polytopes/reflexive_polytopes_2d +80 -0
- sage_wheels/share/reflexive_polytopes/reflexive_polytopes_3d +37977 -0
|
@@ -0,0 +1,1606 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-polyhedra
|
|
2
|
+
# sage.doctest: needs sage.geometry.polyhedron sage.graphs
|
|
3
|
+
r"""
|
|
4
|
+
Fano toric varieties
|
|
5
|
+
|
|
6
|
+
This module provides support for (Crepant Partial Resolutions of) Fano toric
|
|
7
|
+
varieties, corresponding to crepant subdivisions of face fans of reflexive
|
|
8
|
+
:class:`lattice polytopes
|
|
9
|
+
<sage.geometry.lattice_polytope.LatticePolytopeClass>`.
|
|
10
|
+
The interface is provided via :func:`CPRFanoToricVariety`.
|
|
11
|
+
|
|
12
|
+
A careful exposition of different flavours of Fano varieties can be found in
|
|
13
|
+
the paper by Benjamin Nill [Nil2005]_. The main goal of this module is to
|
|
14
|
+
support work with **Gorenstein weak Fano toric varieties**. Such a variety
|
|
15
|
+
corresponds to a **coherent crepant refinement of the normal fan of a
|
|
16
|
+
reflexive polytope** `\Delta`, where crepant means that primitive generators
|
|
17
|
+
of the refining rays lie on the facets of the polar polytope `\Delta^\circ`
|
|
18
|
+
and coherent (a.k.a. regular or projective) means that there exists a strictly
|
|
19
|
+
upper convex piecewise linear function whose domains of linearity are
|
|
20
|
+
precisely the maximal cones of the subdivision. These varieties are important
|
|
21
|
+
for string theory in physics, as they serve as ambient spaces for mirror pairs
|
|
22
|
+
of Calabi-Yau manifolds via constructions due to Victor V. Batyrev
|
|
23
|
+
[Bat1994]_ and Lev A. Borisov [Bor1993]_.
|
|
24
|
+
|
|
25
|
+
From the combinatorial point of view, the "crepant" requirement is much more simple
|
|
26
|
+
and natural to work with than "coherent." For this reason, the code in this
|
|
27
|
+
module will allow work with arbitrary crepant subdivisions without checking
|
|
28
|
+
whether they are coherent or not. We refer to corresponding toric varieties as
|
|
29
|
+
**CPR-Fano toric varieties**.
|
|
30
|
+
|
|
31
|
+
REFERENCES:
|
|
32
|
+
|
|
33
|
+
- [Bat1994]_
|
|
34
|
+
- [Bor1993]_
|
|
35
|
+
- [CD2007]_
|
|
36
|
+
- [Nil2005]_
|
|
37
|
+
|
|
38
|
+
AUTHORS:
|
|
39
|
+
|
|
40
|
+
- Andrey Novoseltsev (2010-05-18): initial version.
|
|
41
|
+
|
|
42
|
+
EXAMPLES:
|
|
43
|
+
|
|
44
|
+
Most of the functions available for Fano toric varieties are the same as
|
|
45
|
+
for general toric varieties, so here we will concentrate only on
|
|
46
|
+
Calabi-Yau subvarieties, which were the primary goal for creating this
|
|
47
|
+
module.
|
|
48
|
+
|
|
49
|
+
For our first example we realize the projective plane as a Fano toric
|
|
50
|
+
variety::
|
|
51
|
+
|
|
52
|
+
sage: simplex = LatticePolytope([(1,0), (0,1), (-1,-1)])
|
|
53
|
+
sage: P2 = CPRFanoToricVariety(Delta_polar=simplex)
|
|
54
|
+
|
|
55
|
+
Its anticanonical "hypersurface" is a one-dimensional Calabi-Yau
|
|
56
|
+
manifold::
|
|
57
|
+
|
|
58
|
+
sage: P2.anticanonical_hypersurface(monomial_points='all')
|
|
59
|
+
Closed subscheme of 2-d CPR-Fano toric variety covered by 3 affine patches defined by:
|
|
60
|
+
a0*z0^3 + a9*z0^2*z1 + a7*z0*z1^2 + a1*z1^3 + a8*z0^2*z2 + a6*z0*z1*z2
|
|
61
|
+
+ a4*z1^2*z2 + a5*z0*z2^2 + a3*z1*z2^2 + a2*z2^3
|
|
62
|
+
|
|
63
|
+
In many cases, it is sufficient to work with the "simplified polynomial
|
|
64
|
+
moduli space" of anticanonical hypersurfaces::
|
|
65
|
+
|
|
66
|
+
sage: P2.anticanonical_hypersurface(monomial_points='simplified')
|
|
67
|
+
Closed subscheme of 2-d CPR-Fano toric variety covered by 3 affine patches defined by:
|
|
68
|
+
a0*z0^3 + a1*z1^3 + a6*z0*z1*z2 + a2*z2^3
|
|
69
|
+
|
|
70
|
+
The mirror family to these hypersurfaces lives inside the Fano toric
|
|
71
|
+
variety obtained using ``simplex`` as ``Delta`` instead of ``Delta_polar``::
|
|
72
|
+
|
|
73
|
+
sage: FTV = CPRFanoToricVariety(Delta=simplex, coordinate_points='all')
|
|
74
|
+
sage: FTV.anticanonical_hypersurface(monomial_points='simplified')
|
|
75
|
+
Closed subscheme of 2-d CPR-Fano toric variety covered by 9 affine patches defined by:
|
|
76
|
+
a2*z2^3*z3^2*z4*z5^2*z8 + a1*z1^3*z3*z4^2*z7^2*z9
|
|
77
|
+
+ a3*z0*z1*z2*z3*z4*z5*z7*z8*z9 + a0*z0^3*z5*z7*z8^2*z9^2
|
|
78
|
+
|
|
79
|
+
Here we have taken the resolved version of the ambient space for the
|
|
80
|
+
mirror family, but in fact we don't have to resolve singularities
|
|
81
|
+
corresponding to the interior points of facets - they are singular
|
|
82
|
+
points which do not lie on a generic anticanonical hypersurface::
|
|
83
|
+
|
|
84
|
+
sage: FTV = CPRFanoToricVariety(Delta=simplex, coordinate_points="all but facets")
|
|
85
|
+
sage: FTV.anticanonical_hypersurface(monomial_points='simplified')
|
|
86
|
+
Closed subscheme of 2-d CPR-Fano toric variety covered by 3 affine patches defined by:
|
|
87
|
+
a0*z0^3 + a1*z1^3 + a3*z0*z1*z2 + a2*z2^3
|
|
88
|
+
|
|
89
|
+
This looks very similar to our second version of the anticanonical
|
|
90
|
+
hypersurface of the projective plane, as expected, since all
|
|
91
|
+
one-dimensional Calabi-Yau manifolds are elliptic curves!
|
|
92
|
+
|
|
93
|
+
Now let's take a look at a toric realization of `M`-polarized K3 surfaces
|
|
94
|
+
studied by Adrian Clingher and Charles F. Doran in [CD2007]_::
|
|
95
|
+
|
|
96
|
+
sage: # needs polytopes_db
|
|
97
|
+
sage: p4318 = ReflexivePolytope(3, 4318)
|
|
98
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=p4318)
|
|
99
|
+
sage: FTV.anticanonical_hypersurface()
|
|
100
|
+
Closed subscheme of 3-d CPR-Fano toric variety covered by 4 affine patches defined by:
|
|
101
|
+
a0*z2^12 + a4*z2^6*z3^6 + a3*z3^12 + a8*z0*z1*z2*z3 + a2*z1^3 + a1*z0^2
|
|
102
|
+
|
|
103
|
+
Below you will find detailed descriptions of available functions. Current
|
|
104
|
+
functionality of this module is very basic, but it is under active
|
|
105
|
+
development and hopefully will improve in future releases of Sage. If there
|
|
106
|
+
are some particular features that you would like to see implemented ASAP,
|
|
107
|
+
please consider reporting them to the Sage Development Team or even
|
|
108
|
+
implementing them on your own as a patch for inclusion!
|
|
109
|
+
"""
|
|
110
|
+
# The first example of the tutorial is taken from
|
|
111
|
+
# CPRFanoToricVariety_field.anticanonical_hypersurface
|
|
112
|
+
|
|
113
|
+
# ****************************************************************************
|
|
114
|
+
# Copyright (C) 2010 Andrey Novoseltsev <novoselt@gmail.com>
|
|
115
|
+
# Copyright (C) 2010 William Stein <wstein@gmail.com>
|
|
116
|
+
#
|
|
117
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
118
|
+
#
|
|
119
|
+
# https://www.gnu.org/licenses/
|
|
120
|
+
# ****************************************************************************
|
|
121
|
+
|
|
122
|
+
import re
|
|
123
|
+
|
|
124
|
+
from sage.geometry.cone import Cone
|
|
125
|
+
from sage.geometry.fan import FaceFan
|
|
126
|
+
from sage.geometry.fan import Fan
|
|
127
|
+
from sage.geometry.lattice_polytope import LatticePolytope
|
|
128
|
+
from sage.misc.latex import latex
|
|
129
|
+
from sage.misc.misc_c import prod
|
|
130
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
131
|
+
from sage.rings.rational_field import QQ
|
|
132
|
+
|
|
133
|
+
from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_base
|
|
134
|
+
from sage.rings.polynomial.polynomial_ring import PolynomialRing_generic
|
|
135
|
+
from sage.rings.fraction_field import FractionField_generic
|
|
136
|
+
|
|
137
|
+
from sage.schemes.toric.toric_subscheme import AlgebraicScheme_subscheme_toric
|
|
138
|
+
from sage.schemes.toric.variety import (
|
|
139
|
+
ToricVariety_field,
|
|
140
|
+
normalize_names)
|
|
141
|
+
from sage.structure.all import coercion_model
|
|
142
|
+
from sage.categories.fields import Fields
|
|
143
|
+
_Fields = Fields()
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
# Default coefficient for anticanonical hypersurfaces
|
|
147
|
+
DEFAULT_COEFFICIENT = "a"
|
|
148
|
+
# Default coefficients for nef complete intersections
|
|
149
|
+
DEFAULT_COEFFICIENTS = tuple(chr(i) for i in range(ord("a"), ord("z") + 1))
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
def is_CPRFanoToricVariety(x):
|
|
153
|
+
r"""
|
|
154
|
+
Check if ``x`` is a CPR-Fano toric variety.
|
|
155
|
+
|
|
156
|
+
INPUT:
|
|
157
|
+
|
|
158
|
+
- ``x`` -- anything
|
|
159
|
+
|
|
160
|
+
OUTPUT:
|
|
161
|
+
|
|
162
|
+
- ``True`` if ``x`` is a :class:`CPR-Fano toric variety
|
|
163
|
+
<CPRFanoToricVariety_field>` and ``False`` otherwise.
|
|
164
|
+
|
|
165
|
+
.. NOTE::
|
|
166
|
+
|
|
167
|
+
While projective spaces are Fano toric varieties mathematically, they
|
|
168
|
+
are not toric varieties in Sage due to efficiency considerations, so
|
|
169
|
+
this function will return ``False``.
|
|
170
|
+
|
|
171
|
+
EXAMPLES::
|
|
172
|
+
|
|
173
|
+
sage: from sage.schemes.toric.fano_variety import is_CPRFanoToricVariety
|
|
174
|
+
sage: is_CPRFanoToricVariety(1)
|
|
175
|
+
doctest:warning...
|
|
176
|
+
DeprecationWarning: The function is_CPRFanoToricVariety is deprecated; use 'isinstance(..., CPRFanoToricVariety_field)' instead.
|
|
177
|
+
See https://github.com/sagemath/sage/issues/38022 for details.
|
|
178
|
+
False
|
|
179
|
+
sage: FTV = toric_varieties.P2()
|
|
180
|
+
sage: FTV
|
|
181
|
+
2-d CPR-Fano toric variety covered by 3 affine patches
|
|
182
|
+
sage: is_CPRFanoToricVariety(FTV)
|
|
183
|
+
True
|
|
184
|
+
sage: is_CPRFanoToricVariety(ProjectiveSpace(2))
|
|
185
|
+
False
|
|
186
|
+
"""
|
|
187
|
+
from sage.misc.superseded import deprecation
|
|
188
|
+
deprecation(38022, "The function is_CPRFanoToricVariety is deprecated; use 'isinstance(..., CPRFanoToricVariety_field)' instead.")
|
|
189
|
+
return isinstance(x, CPRFanoToricVariety_field)
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
def CPRFanoToricVariety(Delta=None,
|
|
193
|
+
Delta_polar=None,
|
|
194
|
+
coordinate_points=None,
|
|
195
|
+
charts=None,
|
|
196
|
+
coordinate_names=None,
|
|
197
|
+
names=None,
|
|
198
|
+
coordinate_name_indices=None,
|
|
199
|
+
make_simplicial=False,
|
|
200
|
+
base_ring=None,
|
|
201
|
+
base_field=None,
|
|
202
|
+
check=True):
|
|
203
|
+
r"""
|
|
204
|
+
Construct a CPR-Fano toric variety.
|
|
205
|
+
|
|
206
|
+
.. NOTE::
|
|
207
|
+
|
|
208
|
+
See documentation of the module
|
|
209
|
+
:mod:`~sage.schemes.toric.fano_variety` for the used
|
|
210
|
+
definitions and supported varieties.
|
|
211
|
+
|
|
212
|
+
Due to the large number of available options, it is recommended to always
|
|
213
|
+
use keyword parameters.
|
|
214
|
+
|
|
215
|
+
INPUT:
|
|
216
|
+
|
|
217
|
+
- ``Delta`` -- reflexive :class:`lattice polytope
|
|
218
|
+
<sage.geometry.lattice_polytope.LatticePolytopeClass>`. The fan of the
|
|
219
|
+
constructed CPR-Fano toric variety will be a crepant subdivision of the
|
|
220
|
+
*normal fan* of ``Delta``. Either ``Delta`` or ``Delta_polar`` must be
|
|
221
|
+
given, but not both at the same time, since one is completely determined
|
|
222
|
+
by another via :meth:`polar
|
|
223
|
+
<sage.geometry.lattice_polytope.LatticePolytopeClass.polar>` method.
|
|
224
|
+
|
|
225
|
+
- ``Delta_polar`` -- reflexive :class:`lattice polytope
|
|
226
|
+
<sage.geometry.lattice_polytope.LatticePolytopeClass>`. The fan of the
|
|
227
|
+
constructed CPR-Fano toric variety will be a crepant subdivision of the
|
|
228
|
+
*face fan* of ``Delta_polar``. Either ``Delta`` or ``Delta_polar`` must
|
|
229
|
+
be given, but not both at the same time, since one is completely
|
|
230
|
+
determined by another via :meth:`polar
|
|
231
|
+
<sage.geometry.lattice_polytope.LatticePolytopeClass.polar>` method.
|
|
232
|
+
|
|
233
|
+
- ``coordinate_points`` -- list of integers or string. A list will be
|
|
234
|
+
interpreted as indices of (boundary) points of ``Delta_polar`` which
|
|
235
|
+
should be used as rays of the underlying fan. It must include all
|
|
236
|
+
vertices of ``Delta_polar`` and no repetitions are allowed. A string
|
|
237
|
+
must be one of the following descriptions of points of ``Delta_polar``:
|
|
238
|
+
|
|
239
|
+
* "vertices" (default),
|
|
240
|
+
* "all" (will not include the origin),
|
|
241
|
+
* "all but facets" (will not include points in the relative interior of
|
|
242
|
+
facets);
|
|
243
|
+
|
|
244
|
+
- ``charts`` -- list of lists of elements from ``coordinate_points``. Each
|
|
245
|
+
of these lists must define a generating cone of a fan subdividing the
|
|
246
|
+
normal fan of ``Delta``. Default ``charts`` correspond to the normal fan
|
|
247
|
+
of ``Delta`` without subdivision. The fan specified by ``charts`` will
|
|
248
|
+
be subdivided to include all of the requested ``coordinate_points``.
|
|
249
|
+
|
|
250
|
+
- ``coordinate_names`` -- names of variables for the coordinate ring, see
|
|
251
|
+
:func:`~sage.schemes.toric.variety.normalize_names`
|
|
252
|
+
for acceptable formats. If not given, indexed variable names will be
|
|
253
|
+
created automatically.
|
|
254
|
+
|
|
255
|
+
- ``names`` -- an alias of ``coordinate_names`` for internal
|
|
256
|
+
use. You may specify either ``names`` or ``coordinate_names``,
|
|
257
|
+
but not both.
|
|
258
|
+
|
|
259
|
+
- ``coordinate_name_indices`` -- list of integers, indices for indexed
|
|
260
|
+
variables. If not given, the index of each variable will coincide with
|
|
261
|
+
the index of the corresponding point of ``Delta_polar``.
|
|
262
|
+
|
|
263
|
+
- ``make_simplicial`` -- if ``True``, the underlying fan will be made
|
|
264
|
+
simplicial (default: ``False``)
|
|
265
|
+
|
|
266
|
+
- ``base_ring`` -- base field of the CPR-Fano toric variety
|
|
267
|
+
(default: `\QQ`)
|
|
268
|
+
|
|
269
|
+
- ``base_field`` -- alias for ``base_ring``. Takes precedence if
|
|
270
|
+
both are specified.
|
|
271
|
+
|
|
272
|
+
- ``check`` -- by default the input data will be checked for correctness
|
|
273
|
+
(e.g. that ``charts`` do form a subdivision of the normal fan of
|
|
274
|
+
``Delta``). If you know for sure that the input is valid, you may
|
|
275
|
+
significantly decrease construction time using ``check=False`` option.
|
|
276
|
+
|
|
277
|
+
OUTPUT: :class:`CPR-Fano toric variety <CPRFanoToricVariety_field>`
|
|
278
|
+
|
|
279
|
+
EXAMPLES:
|
|
280
|
+
|
|
281
|
+
We start with the product of two projective lines::
|
|
282
|
+
|
|
283
|
+
sage: diamond = lattice_polytope.cross_polytope(2)
|
|
284
|
+
sage: diamond.vertices()
|
|
285
|
+
M( 1, 0), M( 0, 1),
|
|
286
|
+
M(-1, 0), M( 0, -1)
|
|
287
|
+
in 2-d lattice M
|
|
288
|
+
sage: P1xP1 = CPRFanoToricVariety(Delta_polar=diamond)
|
|
289
|
+
sage: P1xP1
|
|
290
|
+
2-d CPR-Fano toric variety covered by 4 affine patches
|
|
291
|
+
sage: P1xP1.fan()
|
|
292
|
+
Rational polyhedral fan in 2-d lattice M
|
|
293
|
+
sage: P1xP1.fan().rays()
|
|
294
|
+
M( 1, 0), M( 0, 1),
|
|
295
|
+
M(-1, 0), M( 0, -1)
|
|
296
|
+
in 2-d lattice M
|
|
297
|
+
|
|
298
|
+
"Unfortunately," this variety is smooth to start with and we cannot
|
|
299
|
+
perform any subdivisions of the underlying fan without leaving the
|
|
300
|
+
category of CPR-Fano toric varieties. Our next example starts with a
|
|
301
|
+
square::
|
|
302
|
+
|
|
303
|
+
sage: square = diamond.polar()
|
|
304
|
+
sage: square.vertices()
|
|
305
|
+
N( 1, 1), N( 1, -1),
|
|
306
|
+
N(-1, -1), N(-1, 1)
|
|
307
|
+
in 2-d lattice N
|
|
308
|
+
sage: square.points()
|
|
309
|
+
N( 1, 1), N( 1, -1), N(-1, -1),
|
|
310
|
+
N(-1, 1), N(-1, 0), N( 0, -1),
|
|
311
|
+
N( 0, 0), N( 0, 1), N( 1, 0)
|
|
312
|
+
in 2-d lattice N
|
|
313
|
+
|
|
314
|
+
We will construct several varieties associated to it::
|
|
315
|
+
|
|
316
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square)
|
|
317
|
+
sage: FTV.fan().rays()
|
|
318
|
+
N( 1, 1), N( 1, -1),
|
|
319
|
+
N(-1, -1), N(-1, 1)
|
|
320
|
+
in 2-d lattice N
|
|
321
|
+
sage: FTV.gens()
|
|
322
|
+
(z0, z1, z2, z3)
|
|
323
|
+
|
|
324
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
325
|
+
....: coordinate_points=[0,1,2,3,8])
|
|
326
|
+
sage: FTV.fan().rays()
|
|
327
|
+
N( 1, 1), N( 1, -1), N(-1, -1),
|
|
328
|
+
N(-1, 1), N( 1, 0)
|
|
329
|
+
in 2-d lattice N
|
|
330
|
+
sage: FTV.gens()
|
|
331
|
+
(z0, z1, z2, z3, z8)
|
|
332
|
+
|
|
333
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
334
|
+
....: coordinate_points=[8,0,2,1,3],
|
|
335
|
+
....: coordinate_names='x+')
|
|
336
|
+
sage: FTV.fan().rays()
|
|
337
|
+
N( 1, 0), N( 1, 1), N(-1, -1),
|
|
338
|
+
N( 1, -1), N(-1, 1)
|
|
339
|
+
in 2-d lattice N
|
|
340
|
+
sage: FTV.gens()
|
|
341
|
+
(x8, x0, x2, x1, x3)
|
|
342
|
+
|
|
343
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
344
|
+
....: coordinate_points='all',
|
|
345
|
+
....: coordinate_names="x y Z+")
|
|
346
|
+
sage: FTV.fan().rays()
|
|
347
|
+
N( 1, 1), N( 1, -1), N(-1, -1), N(-1, 1),
|
|
348
|
+
N(-1, 0), N( 0, -1), N( 0, 1), N( 1, 0)
|
|
349
|
+
in 2-d lattice N
|
|
350
|
+
sage: FTV.gens()
|
|
351
|
+
(x, y, Z2, Z3, Z4, Z5, Z7, Z8)
|
|
352
|
+
|
|
353
|
+
Note that ``Z6`` is "missing". This is due to the fact that the 6-th point
|
|
354
|
+
of ``square`` is the origin, and all automatically created names have the
|
|
355
|
+
same indices as corresponding points of
|
|
356
|
+
:meth:`~CPRFanoToricVariety_field.Delta_polar`. This is usually very
|
|
357
|
+
convenient, especially if you have to work with several partial
|
|
358
|
+
resolutions of the same Fano toric variety. However, you can change it, if
|
|
359
|
+
you want::
|
|
360
|
+
|
|
361
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
362
|
+
....: coordinate_points='all',
|
|
363
|
+
....: coordinate_names="x y Z+",
|
|
364
|
+
....: coordinate_name_indices=list(range(8)))
|
|
365
|
+
sage: FTV.gens()
|
|
366
|
+
(x, y, Z2, Z3, Z4, Z5, Z6, Z7)
|
|
367
|
+
|
|
368
|
+
Note that you have to provide indices for *all* variables, including those
|
|
369
|
+
that have "completely custom" names. Again, this is usually convenient,
|
|
370
|
+
because you can add or remove "custom" variables without disturbing too
|
|
371
|
+
much "automatic" ones::
|
|
372
|
+
|
|
373
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
374
|
+
....: coordinate_points='all',
|
|
375
|
+
....: coordinate_names="x Z+",
|
|
376
|
+
....: coordinate_name_indices=list(range(8)))
|
|
377
|
+
sage: FTV.gens()
|
|
378
|
+
(x, Z1, Z2, Z3, Z4, Z5, Z6, Z7)
|
|
379
|
+
|
|
380
|
+
If you prefer to always start from zero, you will have to shift indices
|
|
381
|
+
accordingly::
|
|
382
|
+
|
|
383
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
384
|
+
....: coordinate_points='all',
|
|
385
|
+
....: coordinate_names="x Z+",
|
|
386
|
+
....: coordinate_name_indices=[0] + list(range(7)))
|
|
387
|
+
sage: FTV.gens()
|
|
388
|
+
(x, Z0, Z1, Z2, Z3, Z4, Z5, Z6)
|
|
389
|
+
|
|
390
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
391
|
+
....: coordinate_points='all',
|
|
392
|
+
....: coordinate_names="x y Z+",
|
|
393
|
+
....: coordinate_name_indices=[0]*2 + list(range(6)))
|
|
394
|
+
sage: FTV.gens()
|
|
395
|
+
(x, y, Z0, Z1, Z2, Z3, Z4, Z5)
|
|
396
|
+
|
|
397
|
+
So you always can get any names you want, somewhat complicated default
|
|
398
|
+
behaviour was designed with the hope that in most cases you will have no
|
|
399
|
+
desire to provide different names.
|
|
400
|
+
|
|
401
|
+
Now we will use the possibility to specify initial charts::
|
|
402
|
+
|
|
403
|
+
sage: charts = [(0,1), (1,2), (2,3), (3,0)]
|
|
404
|
+
|
|
405
|
+
(these charts actually form exactly the face fan of our square) ::
|
|
406
|
+
|
|
407
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
408
|
+
....: coordinate_points=[0,1,2,3,4],
|
|
409
|
+
....: charts=charts)
|
|
410
|
+
sage: FTV.fan().rays()
|
|
411
|
+
N( 1, 1), N( 1, -1), N(-1, -1),
|
|
412
|
+
N(-1, 1), N(-1, 0)
|
|
413
|
+
in 2-d lattice N
|
|
414
|
+
sage: [cone.ambient_ray_indices() for cone in FTV.fan()]
|
|
415
|
+
[(0, 1), (1, 2), (2, 4), (3, 4), (0, 3)]
|
|
416
|
+
|
|
417
|
+
If charts are wrong, it should be detected::
|
|
418
|
+
|
|
419
|
+
sage: bad_charts = charts + [(3,0)]
|
|
420
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
421
|
+
....: coordinate_points=[0,1,2,3,4],
|
|
422
|
+
....: charts=bad_charts)
|
|
423
|
+
Traceback (most recent call last):
|
|
424
|
+
...
|
|
425
|
+
ValueError: you have provided 5 cones, but only 4 of them are maximal!
|
|
426
|
+
Use discard_faces=True if you indeed need to construct a fan from these cones.
|
|
427
|
+
|
|
428
|
+
These charts are technically correct, they just happened to list one of
|
|
429
|
+
them twice, but it is assumed that such a situation will not happen. It is
|
|
430
|
+
especially important when you try to speed up your code::
|
|
431
|
+
|
|
432
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
433
|
+
....: coordinate_points=[0,1,2,3,4],
|
|
434
|
+
....: charts=bad_charts,
|
|
435
|
+
....: check=False)
|
|
436
|
+
Traceback (most recent call last):
|
|
437
|
+
...
|
|
438
|
+
IndexError: list assignment index out of range
|
|
439
|
+
|
|
440
|
+
In this case you still get an error message, but it is harder to figure out
|
|
441
|
+
what is going on. It may also happen that "everything will still work" in
|
|
442
|
+
the sense of not crashing, but work with such an invalid variety may lead to
|
|
443
|
+
mathematically wrong results, so use ``check=False`` carefully!
|
|
444
|
+
|
|
445
|
+
Here are some other possible mistakes::
|
|
446
|
+
|
|
447
|
+
sage: bad_charts = charts + [(0,2)]
|
|
448
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
449
|
+
....: coordinate_points=[0,1,2,3,4],
|
|
450
|
+
....: charts=bad_charts)
|
|
451
|
+
Traceback (most recent call last):
|
|
452
|
+
...
|
|
453
|
+
ValueError: (0, 2) does not form a chart of a subdivision of
|
|
454
|
+
the face fan of 2-d reflexive polytope ... in 2-d lattice N!
|
|
455
|
+
|
|
456
|
+
sage: bad_charts = charts[:-1]
|
|
457
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
458
|
+
....: coordinate_points=[0,1,2,3,4],
|
|
459
|
+
....: charts=bad_charts)
|
|
460
|
+
Traceback (most recent call last):
|
|
461
|
+
...
|
|
462
|
+
ValueError: given charts do not form a complete fan!
|
|
463
|
+
|
|
464
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
465
|
+
....: coordinate_points=[1,2,3,4])
|
|
466
|
+
Traceback (most recent call last):
|
|
467
|
+
...
|
|
468
|
+
ValueError: all 4 vertices of Delta_polar must be used for coordinates!
|
|
469
|
+
Got: [1, 2, 3, 4]
|
|
470
|
+
|
|
471
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
472
|
+
....: coordinate_points=[0,0,1,2,3,4])
|
|
473
|
+
Traceback (most recent call last):
|
|
474
|
+
...
|
|
475
|
+
ValueError: no repetitions are allowed for coordinate points!
|
|
476
|
+
Got: [0, 0, 1, 2, 3, 4]
|
|
477
|
+
|
|
478
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
479
|
+
....: coordinate_points=[0,1,2,3,6])
|
|
480
|
+
Traceback (most recent call last):
|
|
481
|
+
...
|
|
482
|
+
ValueError: the origin (point #6) cannot be used for a coordinate!
|
|
483
|
+
Got: [0, 1, 2, 3, 6]
|
|
484
|
+
|
|
485
|
+
Here is a shorthand for defining the toric variety and homogeneous
|
|
486
|
+
coordinates in one go::
|
|
487
|
+
|
|
488
|
+
sage: P1xP1.<a,b,c,d> = CPRFanoToricVariety(Delta_polar=diamond)
|
|
489
|
+
sage: (a^2+b^2) * (c+d)
|
|
490
|
+
a^2*c + b^2*c + a^2*d + b^2*d
|
|
491
|
+
"""
|
|
492
|
+
if names is not None:
|
|
493
|
+
if coordinate_names is not None:
|
|
494
|
+
raise ValueError('You must not specify both coordinate_names and names!')
|
|
495
|
+
coordinate_names = names
|
|
496
|
+
# Check/normalize Delta_polar
|
|
497
|
+
if Delta is None and Delta_polar is None:
|
|
498
|
+
raise ValueError("either Delta or Delta_polar must be given!")
|
|
499
|
+
elif Delta is not None and Delta_polar is not None:
|
|
500
|
+
raise ValueError("Delta and Delta_polar cannot be given together!")
|
|
501
|
+
elif Delta_polar is None:
|
|
502
|
+
Delta_polar = Delta.polar()
|
|
503
|
+
elif not Delta_polar.is_reflexive():
|
|
504
|
+
raise ValueError("Delta_polar must be reflexive!")
|
|
505
|
+
# Check/normalize coordinate_points and construct fan rays
|
|
506
|
+
if coordinate_points is None:
|
|
507
|
+
coordinate_points = list(range(Delta_polar.nvertices()))
|
|
508
|
+
if charts is not None:
|
|
509
|
+
for chart in charts:
|
|
510
|
+
for point in chart:
|
|
511
|
+
if point not in coordinate_points:
|
|
512
|
+
coordinate_points.append(point)
|
|
513
|
+
elif coordinate_points == "vertices":
|
|
514
|
+
coordinate_points = list(range(Delta_polar.nvertices()))
|
|
515
|
+
elif coordinate_points == "all":
|
|
516
|
+
coordinate_points = list(range(Delta_polar.npoints()))
|
|
517
|
+
coordinate_points.remove(Delta_polar.origin())
|
|
518
|
+
elif coordinate_points == "all but facets":
|
|
519
|
+
coordinate_points = Delta_polar.skeleton_points(Delta_polar.dim() - 2)
|
|
520
|
+
elif isinstance(coordinate_points, str):
|
|
521
|
+
raise ValueError("unrecognized description of the coordinate points!"
|
|
522
|
+
"\nGot: %s" % coordinate_points)
|
|
523
|
+
elif check:
|
|
524
|
+
cp_set = set(coordinate_points)
|
|
525
|
+
if len(cp_set) != len(coordinate_points):
|
|
526
|
+
raise ValueError(
|
|
527
|
+
"no repetitions are allowed for coordinate points!\nGot: %s"
|
|
528
|
+
% coordinate_points)
|
|
529
|
+
if not cp_set.issuperset(list(range(Delta_polar.nvertices()))):
|
|
530
|
+
raise ValueError("all %d vertices of Delta_polar must be used "
|
|
531
|
+
"for coordinates!\nGot: %s"
|
|
532
|
+
% (Delta_polar.nvertices(), coordinate_points))
|
|
533
|
+
if Delta_polar.origin() in cp_set:
|
|
534
|
+
raise ValueError("the origin (point #%d) cannot be used for a "
|
|
535
|
+
"coordinate!\nGot: %s"
|
|
536
|
+
% (Delta_polar.origin(), coordinate_points))
|
|
537
|
+
point_to_ray = {point: n
|
|
538
|
+
for n, point in enumerate(coordinate_points)}
|
|
539
|
+
# This can be simplified if LatticePolytopeClass is adjusted.
|
|
540
|
+
rays = [Delta_polar.point(p) for p in coordinate_points]
|
|
541
|
+
# Check/normalize charts and construct the fan based on them.
|
|
542
|
+
if charts is None:
|
|
543
|
+
# Start with the face fan
|
|
544
|
+
fan = FaceFan(Delta_polar)
|
|
545
|
+
else:
|
|
546
|
+
# First of all, check that each chart is completely contained in a
|
|
547
|
+
# single facet of Delta_polar, otherwise they do not form a
|
|
548
|
+
# subdivision of the face fan of Delta_polar
|
|
549
|
+
if check:
|
|
550
|
+
ambient_points = Delta_polar.ambient().points()
|
|
551
|
+
facet_sets = [frozenset(Pindex for Pindex, point in enumerate(ambient_points)
|
|
552
|
+
if normal*point + Delta_polar.facet_constant(Hindex) == 0)
|
|
553
|
+
for Hindex, normal in enumerate(Delta_polar.facet_normals())]
|
|
554
|
+
for chart in charts:
|
|
555
|
+
is_bad = True
|
|
556
|
+
for fset in facet_sets:
|
|
557
|
+
if fset.issuperset(chart):
|
|
558
|
+
is_bad = False
|
|
559
|
+
break
|
|
560
|
+
if is_bad:
|
|
561
|
+
raise ValueError(
|
|
562
|
+
"%s does not form a chart of a subdivision of the "
|
|
563
|
+
"face fan of %s!" % (chart, Delta_polar))
|
|
564
|
+
# We will construct the initial fan from Cone objects: since charts
|
|
565
|
+
# may not use all of the necessary rays, alternative form is tedious
|
|
566
|
+
# With check=False it should not be long anyway.
|
|
567
|
+
cones = [Cone((rays[point_to_ray[point]] for point in chart),
|
|
568
|
+
check=check)
|
|
569
|
+
for chart in charts]
|
|
570
|
+
fan = Fan(cones, check=check)
|
|
571
|
+
if check and not fan.is_complete():
|
|
572
|
+
raise ValueError("given charts do not form a complete fan!")
|
|
573
|
+
# Subdivide this fan to use all required points
|
|
574
|
+
fan = fan.subdivide(new_rays=(ray for ray in rays
|
|
575
|
+
if ray not in fan.rays().set()),
|
|
576
|
+
make_simplicial=make_simplicial)
|
|
577
|
+
# Now create yet another fan making sure that the order of the rays is
|
|
578
|
+
# the same as requested (it is a bit difficult to get it from the start)
|
|
579
|
+
trans = {}
|
|
580
|
+
for n, ray in enumerate(fan.rays()):
|
|
581
|
+
trans[n] = rays.index(ray)
|
|
582
|
+
cones = tuple(tuple(sorted(trans[r] for r in cone.ambient_ray_indices()))
|
|
583
|
+
for cone in fan)
|
|
584
|
+
fan = Fan(cones, rays, check=False)
|
|
585
|
+
# Check/normalize base_field
|
|
586
|
+
if base_field is not None:
|
|
587
|
+
base_ring = base_field
|
|
588
|
+
if base_ring is None:
|
|
589
|
+
base_ring = QQ
|
|
590
|
+
elif base_ring not in _Fields:
|
|
591
|
+
raise TypeError("need a field to construct a Fano toric variety!"
|
|
592
|
+
"\n Got %s" % base_ring)
|
|
593
|
+
fan._is_complete = True # At this point it must be for sure
|
|
594
|
+
return CPRFanoToricVariety_field(
|
|
595
|
+
Delta_polar, fan, coordinate_points,
|
|
596
|
+
point_to_ray, coordinate_names, coordinate_name_indices, base_ring)
|
|
597
|
+
|
|
598
|
+
|
|
599
|
+
class CPRFanoToricVariety_field(ToricVariety_field):
|
|
600
|
+
r"""
|
|
601
|
+
Construct a CPR-Fano toric variety associated to a reflexive polytope.
|
|
602
|
+
|
|
603
|
+
.. WARNING::
|
|
604
|
+
|
|
605
|
+
This class does not perform any checks of correctness of input and it
|
|
606
|
+
does assume that the internal structure of the given parameters is
|
|
607
|
+
coordinated in a certain way. Use
|
|
608
|
+
:func:`CPRFanoToricVariety` to construct CPR-Fano toric varieties.
|
|
609
|
+
|
|
610
|
+
.. NOTE::
|
|
611
|
+
|
|
612
|
+
See documentation of the module
|
|
613
|
+
:mod:`~sage.schemes.toric.fano_variety` for the used
|
|
614
|
+
definitions and supported varieties.
|
|
615
|
+
|
|
616
|
+
INPUT:
|
|
617
|
+
|
|
618
|
+
- ``Delta_polar`` -- reflexive polytope
|
|
619
|
+
|
|
620
|
+
- ``fan`` -- rational polyhedral fan subdividing the face fan of
|
|
621
|
+
``Delta_polar``
|
|
622
|
+
|
|
623
|
+
- ``coordinate_points`` -- list of indices of points of ``Delta_polar``
|
|
624
|
+
used for rays of ``fan``
|
|
625
|
+
|
|
626
|
+
- ``point_to_ray`` -- dictionary mapping the index of a coordinate point
|
|
627
|
+
to the index of the corresponding ray
|
|
628
|
+
|
|
629
|
+
- ``coordinate_names`` -- names of the variables of the coordinate ring in
|
|
630
|
+
the format accepted by
|
|
631
|
+
:func:`~sage.schemes.toric.variety.normalize_names`
|
|
632
|
+
|
|
633
|
+
- ``coordinate_name_indices`` -- indices for indexed variables,
|
|
634
|
+
if ``None``, will be equal to ``coordinate_points``
|
|
635
|
+
|
|
636
|
+
- ``base_field`` -- base field of the CPR-Fano toric variety
|
|
637
|
+
|
|
638
|
+
OUTPUT: :class:`CPR-Fano toric variety <CPRFanoToricVariety_field>`
|
|
639
|
+
|
|
640
|
+
TESTS::
|
|
641
|
+
|
|
642
|
+
sage: P1xP1 = CPRFanoToricVariety(
|
|
643
|
+
....: Delta_polar=lattice_polytope.cross_polytope(2))
|
|
644
|
+
sage: P1xP1
|
|
645
|
+
2-d CPR-Fano toric variety covered by 4 affine patches
|
|
646
|
+
"""
|
|
647
|
+
|
|
648
|
+
def __init__(self, Delta_polar, fan, coordinate_points, point_to_ray,
|
|
649
|
+
coordinate_names, coordinate_name_indices, base_field):
|
|
650
|
+
r"""
|
|
651
|
+
See :class:`CPRFanoToricVariety_field` for documentation.
|
|
652
|
+
|
|
653
|
+
Use ``CPRFanoToricVariety`` to construct CPR-Fano toric varieties.
|
|
654
|
+
|
|
655
|
+
TESTS::
|
|
656
|
+
|
|
657
|
+
sage: P1xP1 = CPRFanoToricVariety(
|
|
658
|
+
....: Delta_polar=lattice_polytope.cross_polytope(2))
|
|
659
|
+
sage: P1xP1
|
|
660
|
+
2-d CPR-Fano toric variety covered by 4 affine patches
|
|
661
|
+
"""
|
|
662
|
+
self._Delta_polar = Delta_polar
|
|
663
|
+
self._coordinate_points = tuple(coordinate_points)
|
|
664
|
+
self._point_to_ray = point_to_ray
|
|
665
|
+
# Check/normalize coordinate_indices
|
|
666
|
+
if coordinate_name_indices is None:
|
|
667
|
+
coordinate_name_indices = coordinate_points
|
|
668
|
+
super().__init__(fan, coordinate_names,
|
|
669
|
+
coordinate_name_indices, base_field)
|
|
670
|
+
|
|
671
|
+
def _latex_(self):
|
|
672
|
+
r"""
|
|
673
|
+
Return a LaTeX representation of ``self``.
|
|
674
|
+
|
|
675
|
+
OUTPUT: string
|
|
676
|
+
|
|
677
|
+
TESTS::
|
|
678
|
+
|
|
679
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
680
|
+
sage: print(P1xP1._latex_()) # needs polytopes_db
|
|
681
|
+
\mathbb{P}_{\Delta^{2}_{14}}
|
|
682
|
+
"""
|
|
683
|
+
return r"\mathbb{P}_{%s}" % latex(self.Delta())
|
|
684
|
+
|
|
685
|
+
def _repr_(self):
|
|
686
|
+
r"""
|
|
687
|
+
Return a string representation of ``self``.
|
|
688
|
+
|
|
689
|
+
OUTPUT: string
|
|
690
|
+
|
|
691
|
+
TESTS::
|
|
692
|
+
|
|
693
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
694
|
+
sage: print(P1xP1._repr_())
|
|
695
|
+
2-d CPR-Fano toric variety covered by 4 affine patches
|
|
696
|
+
"""
|
|
697
|
+
return ("%d-d CPR-Fano toric variety covered by %d affine patches"
|
|
698
|
+
% (self.dimension_relative(), self.fan().ngenerating_cones()))
|
|
699
|
+
|
|
700
|
+
def anticanonical_hypersurface(self, **kwds):
|
|
701
|
+
r"""
|
|
702
|
+
Return an anticanonical hypersurface of ``self``.
|
|
703
|
+
|
|
704
|
+
.. NOTE::
|
|
705
|
+
|
|
706
|
+
The returned hypersurface may be actually a subscheme of
|
|
707
|
+
**another** CPR-Fano toric variety: if the base field of ``self``
|
|
708
|
+
does not include all of the required names for generic monomial
|
|
709
|
+
coefficients, it will be automatically extended.
|
|
710
|
+
|
|
711
|
+
Below `\Delta` is the reflexive polytope corresponding to ``self``,
|
|
712
|
+
i.e. the fan of ``self`` is a refinement of the normal fan of
|
|
713
|
+
`\Delta`. This function accepts only keyword parameters.
|
|
714
|
+
|
|
715
|
+
INPUT:
|
|
716
|
+
|
|
717
|
+
- ``monomial_points`` -- list of integers or a string. A list will be
|
|
718
|
+
interpreted as indices of points of `\Delta` which should be used
|
|
719
|
+
for monomials of this hypersurface. A string must be one of the
|
|
720
|
+
following descriptions of points of `\Delta`:
|
|
721
|
+
|
|
722
|
+
* "vertices",
|
|
723
|
+
* "vertices+origin",
|
|
724
|
+
* "all",
|
|
725
|
+
* "simplified" (default) -- all points of `\Delta` except for
|
|
726
|
+
the interior points of facets, this choice corresponds to working
|
|
727
|
+
with the "simplified polynomial moduli space" of anticanonical
|
|
728
|
+
hypersurfaces;
|
|
729
|
+
|
|
730
|
+
- ``coefficient_names`` -- names for the monomial coefficients, see
|
|
731
|
+
:func:`~sage.schemes.toric.variety.normalize_names`
|
|
732
|
+
for acceptable formats. If not given, indexed coefficient names will
|
|
733
|
+
be created automatically.
|
|
734
|
+
|
|
735
|
+
- ``coefficient_name_indices`` -- list of integers, indices for
|
|
736
|
+
indexed coefficients. If not given, the index of each coefficient
|
|
737
|
+
will coincide with the index of the corresponding point of `\Delta`.
|
|
738
|
+
|
|
739
|
+
- ``coefficients`` -- as an alternative to specifying coefficient
|
|
740
|
+
names and/or indices, you can give the coefficients themselves as
|
|
741
|
+
arbitrary expressions and/or strings. Using strings allows you to
|
|
742
|
+
easily add "parameters": the base field of ``self`` will be extended
|
|
743
|
+
to include all necessary names.
|
|
744
|
+
|
|
745
|
+
OUTPUT:
|
|
746
|
+
|
|
747
|
+
- an :class:`anticanonical hypersurface <AnticanonicalHypersurface>` of
|
|
748
|
+
``self`` (with the extended base field, if necessary).
|
|
749
|
+
|
|
750
|
+
EXAMPLES:
|
|
751
|
+
|
|
752
|
+
We realize the projective plane as a Fano toric variety::
|
|
753
|
+
|
|
754
|
+
sage: simplex = LatticePolytope([(1,0), (0,1), (-1,-1)])
|
|
755
|
+
sage: P2 = CPRFanoToricVariety(Delta_polar=simplex)
|
|
756
|
+
|
|
757
|
+
Its anticanonical "hypersurface" is a one-dimensional Calabi-Yau
|
|
758
|
+
manifold::
|
|
759
|
+
|
|
760
|
+
sage: P2.anticanonical_hypersurface(monomial_points='all')
|
|
761
|
+
Closed subscheme of 2-d CPR-Fano toric variety
|
|
762
|
+
covered by 3 affine patches defined by:
|
|
763
|
+
a0*z0^3 + a9*z0^2*z1 + a7*z0*z1^2 + a1*z1^3 + a8*z0^2*z2 + a6*z0*z1*z2
|
|
764
|
+
+ a4*z1^2*z2 + a5*z0*z2^2 + a3*z1*z2^2 + a2*z2^3
|
|
765
|
+
|
|
766
|
+
In many cases it is sufficient to work with the "simplified polynomial
|
|
767
|
+
moduli space" of anticanonical hypersurfaces::
|
|
768
|
+
|
|
769
|
+
sage: P2.anticanonical_hypersurface(monomial_points='simplified')
|
|
770
|
+
Closed subscheme of 2-d CPR-Fano toric variety
|
|
771
|
+
covered by 3 affine patches defined by:
|
|
772
|
+
a0*z0^3 + a1*z1^3 + a6*z0*z1*z2 + a2*z2^3
|
|
773
|
+
|
|
774
|
+
The mirror family to these hypersurfaces lives inside the Fano toric
|
|
775
|
+
variety obtained using ``simplex`` as ``Delta`` instead of
|
|
776
|
+
``Delta_polar``::
|
|
777
|
+
|
|
778
|
+
sage: FTV = CPRFanoToricVariety(Delta=simplex,
|
|
779
|
+
....: coordinate_points='all')
|
|
780
|
+
sage: FTV.anticanonical_hypersurface(monomial_points='simplified')
|
|
781
|
+
Closed subscheme of 2-d CPR-Fano toric variety
|
|
782
|
+
covered by 9 affine patches defined by:
|
|
783
|
+
a2*z2^3*z3^2*z4*z5^2*z8 + a1*z1^3*z3*z4^2*z7^2*z9
|
|
784
|
+
+ a3*z0*z1*z2*z3*z4*z5*z7*z8*z9 + a0*z0^3*z5*z7*z8^2*z9^2
|
|
785
|
+
|
|
786
|
+
Here we have taken the resolved version of the ambient space for the
|
|
787
|
+
mirror family, but in fact we don't have to resolve singularities
|
|
788
|
+
corresponding to the interior points of facets - they are singular
|
|
789
|
+
points which do not lie on a generic anticanonical hypersurface::
|
|
790
|
+
|
|
791
|
+
sage: FTV = CPRFanoToricVariety(Delta=simplex,
|
|
792
|
+
....: coordinate_points="all but facets")
|
|
793
|
+
sage: FTV.anticanonical_hypersurface(monomial_points='simplified')
|
|
794
|
+
Closed subscheme of 2-d CPR-Fano toric variety
|
|
795
|
+
covered by 3 affine patches defined by:
|
|
796
|
+
a0*z0^3 + a1*z1^3 + a3*z0*z1*z2 + a2*z2^3
|
|
797
|
+
|
|
798
|
+
This looks very similar to our second anticanonical
|
|
799
|
+
hypersurface of the projective plane, as expected, since all
|
|
800
|
+
one-dimensional Calabi-Yau manifolds are elliptic curves!
|
|
801
|
+
|
|
802
|
+
All anticanonical hypersurfaces constructed above were generic with
|
|
803
|
+
automatically generated coefficients. If you want, you can specify your
|
|
804
|
+
own names ::
|
|
805
|
+
|
|
806
|
+
sage: FTV.anticanonical_hypersurface(coefficient_names="a b c d")
|
|
807
|
+
Closed subscheme of 2-d CPR-Fano toric variety
|
|
808
|
+
covered by 3 affine patches defined by:
|
|
809
|
+
a*z0^3 + b*z1^3 + d*z0*z1*z2 + c*z2^3
|
|
810
|
+
|
|
811
|
+
or give concrete coefficients ::
|
|
812
|
+
|
|
813
|
+
sage: FTV.anticanonical_hypersurface(coefficients=[1, 2, 3, 4])
|
|
814
|
+
Closed subscheme of 2-d CPR-Fano toric variety
|
|
815
|
+
covered by 3 affine patches defined by:
|
|
816
|
+
z0^3 + 2*z1^3 + 4*z0*z1*z2 + 3*z2^3
|
|
817
|
+
|
|
818
|
+
or even mix numerical coefficients with some expressions ::
|
|
819
|
+
|
|
820
|
+
sage: H = FTV.anticanonical_hypersurface(
|
|
821
|
+
....: coefficients=[0, "t", "1/t", "psi/(psi^2 + phi)"])
|
|
822
|
+
sage: H
|
|
823
|
+
Closed subscheme of 2-d CPR-Fano toric variety
|
|
824
|
+
covered by 3 affine patches defined by:
|
|
825
|
+
t*z1^3 + psi/(phi + psi^2)*z0*z1*z2 + 1/t*z2^3
|
|
826
|
+
sage: R = H.ambient_space().base_ring()
|
|
827
|
+
sage: R
|
|
828
|
+
Fraction Field of
|
|
829
|
+
Multivariate Polynomial Ring in phi, psi, t over Rational Field
|
|
830
|
+
"""
|
|
831
|
+
# The example above is also copied to the tutorial section in the
|
|
832
|
+
# main documentation of the module.
|
|
833
|
+
return AnticanonicalHypersurface(self, **kwds)
|
|
834
|
+
|
|
835
|
+
def change_ring(self, F):
|
|
836
|
+
r"""
|
|
837
|
+
Return a CPR-Fano toric variety over field ``F``, otherwise the same
|
|
838
|
+
as ``self``.
|
|
839
|
+
|
|
840
|
+
INPUT:
|
|
841
|
+
|
|
842
|
+
- ``F`` -- field
|
|
843
|
+
|
|
844
|
+
OUTPUT: :class:`CPR-Fano toric variety <CPRFanoToricVariety_field>` over ``F``
|
|
845
|
+
|
|
846
|
+
.. NOTE::
|
|
847
|
+
|
|
848
|
+
There is no need to have any relation between ``F`` and the base
|
|
849
|
+
field of ``self``. If you do want to have such a relation, use
|
|
850
|
+
:meth:`base_extend` instead.
|
|
851
|
+
|
|
852
|
+
EXAMPLES::
|
|
853
|
+
|
|
854
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
855
|
+
sage: P1xP1.base_ring()
|
|
856
|
+
Rational Field
|
|
857
|
+
sage: P1xP1_RR = P1xP1.change_ring(RR)
|
|
858
|
+
sage: P1xP1_RR.base_ring()
|
|
859
|
+
Real Field with 53 bits of precision
|
|
860
|
+
sage: P1xP1_QQ = P1xP1_RR.change_ring(QQ)
|
|
861
|
+
sage: P1xP1_QQ.base_ring()
|
|
862
|
+
Rational Field
|
|
863
|
+
sage: P1xP1_RR.base_extend(QQ)
|
|
864
|
+
Traceback (most recent call last):
|
|
865
|
+
...
|
|
866
|
+
ValueError: no natural map from the base ring
|
|
867
|
+
(=Real Field with 53 bits of precision) to R (=Rational Field)!
|
|
868
|
+
sage: R = PolynomialRing(QQ, 2, 'a')
|
|
869
|
+
sage: P1xP1.change_ring(R)
|
|
870
|
+
Traceback (most recent call last):
|
|
871
|
+
...
|
|
872
|
+
TypeError: need a field to construct a Fano toric variety!
|
|
873
|
+
Got Multivariate Polynomial Ring in a0, a1 over Rational Field
|
|
874
|
+
"""
|
|
875
|
+
if self.base_ring() == F:
|
|
876
|
+
return self
|
|
877
|
+
elif F not in _Fields:
|
|
878
|
+
raise TypeError("need a field to construct a Fano toric variety!"
|
|
879
|
+
"\n Got %s" % F)
|
|
880
|
+
else:
|
|
881
|
+
return CPRFanoToricVariety_field(self._Delta_polar, self._fan,
|
|
882
|
+
self._coordinate_points, self._point_to_ray,
|
|
883
|
+
self.variable_names(), None, F)
|
|
884
|
+
# coordinate_name_indices do not matter, we give explicit
|
|
885
|
+
# names for all variables
|
|
886
|
+
|
|
887
|
+
def coordinate_point_to_coordinate(self, point):
|
|
888
|
+
r"""
|
|
889
|
+
Return the variable of the coordinate ring corresponding to ``point``.
|
|
890
|
+
|
|
891
|
+
INPUT:
|
|
892
|
+
|
|
893
|
+
- ``point`` -- integer from the list of :meth:`coordinate_points`
|
|
894
|
+
|
|
895
|
+
OUTPUT: the corresponding generator of the coordinate ring of ``self``
|
|
896
|
+
|
|
897
|
+
EXAMPLES::
|
|
898
|
+
|
|
899
|
+
sage: diamond = lattice_polytope.cross_polytope(2)
|
|
900
|
+
sage: FTV = CPRFanoToricVariety(diamond, coordinate_points=[0,1,2,3,8])
|
|
901
|
+
sage: FTV.coordinate_points()
|
|
902
|
+
(0, 1, 2, 3, 8)
|
|
903
|
+
sage: FTV.gens()
|
|
904
|
+
(z0, z1, z2, z3, z8)
|
|
905
|
+
sage: FTV.coordinate_point_to_coordinate(8)
|
|
906
|
+
z8
|
|
907
|
+
"""
|
|
908
|
+
return self.gen(self._point_to_ray[point])
|
|
909
|
+
|
|
910
|
+
def coordinate_points(self):
|
|
911
|
+
r"""
|
|
912
|
+
Return indices of points of :meth:`Delta_polar` used for coordinates.
|
|
913
|
+
|
|
914
|
+
OUTPUT: :class:`tuple` of integers
|
|
915
|
+
|
|
916
|
+
EXAMPLES::
|
|
917
|
+
|
|
918
|
+
sage: diamond = lattice_polytope.cross_polytope(2)
|
|
919
|
+
sage: square = diamond.polar()
|
|
920
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
921
|
+
....: coordinate_points=[0,1,2,3,8])
|
|
922
|
+
sage: FTV.coordinate_points()
|
|
923
|
+
(0, 1, 2, 3, 8)
|
|
924
|
+
sage: FTV.gens()
|
|
925
|
+
(z0, z1, z2, z3, z8)
|
|
926
|
+
|
|
927
|
+
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
|
|
928
|
+
....: coordinate_points='all')
|
|
929
|
+
sage: FTV.coordinate_points()
|
|
930
|
+
(0, 1, 2, 3, 4, 5, 7, 8)
|
|
931
|
+
sage: FTV.gens()
|
|
932
|
+
(z0, z1, z2, z3, z4, z5, z7, z8)
|
|
933
|
+
|
|
934
|
+
Note that one point is missing, namely ::
|
|
935
|
+
|
|
936
|
+
sage: square.origin()
|
|
937
|
+
6
|
|
938
|
+
"""
|
|
939
|
+
return self._coordinate_points
|
|
940
|
+
|
|
941
|
+
def Delta(self):
|
|
942
|
+
r"""
|
|
943
|
+
Return the reflexive polytope associated to ``self``.
|
|
944
|
+
|
|
945
|
+
OUTPUT:
|
|
946
|
+
|
|
947
|
+
- reflexive :class:`lattice polytope
|
|
948
|
+
<sage.geometry.lattice_polytope.LatticePolytopeClass>`. The
|
|
949
|
+
underlying fan of ``self`` is a coherent subdivision of the
|
|
950
|
+
*normal fan* of this polytope.
|
|
951
|
+
|
|
952
|
+
EXAMPLES::
|
|
953
|
+
|
|
954
|
+
sage: diamond = lattice_polytope.cross_polytope(2)
|
|
955
|
+
sage: P1xP1 = CPRFanoToricVariety(Delta_polar=diamond)
|
|
956
|
+
sage: P1xP1.Delta() # needs polytopes_db
|
|
957
|
+
2-d reflexive polytope #14 in 2-d lattice N
|
|
958
|
+
sage: P1xP1.Delta() is diamond.polar()
|
|
959
|
+
True
|
|
960
|
+
"""
|
|
961
|
+
return self._Delta_polar.polar()
|
|
962
|
+
|
|
963
|
+
def Delta_polar(self):
|
|
964
|
+
r"""
|
|
965
|
+
Return polar of :meth:`Delta`.
|
|
966
|
+
|
|
967
|
+
OUTPUT:
|
|
968
|
+
|
|
969
|
+
- reflexive :class:`lattice polytope
|
|
970
|
+
<sage.geometry.lattice_polytope.LatticePolytopeClass>`. The
|
|
971
|
+
underlying fan of ``self`` is a coherent subdivision of the
|
|
972
|
+
*face fan* of this polytope.
|
|
973
|
+
|
|
974
|
+
EXAMPLES::
|
|
975
|
+
|
|
976
|
+
sage: diamond = lattice_polytope.cross_polytope(2)
|
|
977
|
+
sage: P1xP1 = CPRFanoToricVariety(Delta_polar=diamond)
|
|
978
|
+
sage: P1xP1.Delta_polar() # needs polytopes_db
|
|
979
|
+
2-d reflexive polytope #3 in 2-d lattice M
|
|
980
|
+
sage: P1xP1.Delta_polar() is diamond
|
|
981
|
+
True
|
|
982
|
+
sage: P1xP1.Delta_polar() is P1xP1.Delta().polar()
|
|
983
|
+
True
|
|
984
|
+
"""
|
|
985
|
+
return self._Delta_polar
|
|
986
|
+
|
|
987
|
+
def nef_complete_intersection(self, nef_partition, **kwds):
|
|
988
|
+
r"""
|
|
989
|
+
Return a nef complete intersection in ``self``.
|
|
990
|
+
|
|
991
|
+
.. NOTE::
|
|
992
|
+
|
|
993
|
+
The returned complete intersection may be actually a subscheme of
|
|
994
|
+
**another** CPR-Fano toric variety: if the base field of ``self``
|
|
995
|
+
does not include all of the required names for monomial
|
|
996
|
+
coefficients, it will be automatically extended.
|
|
997
|
+
|
|
998
|
+
Below `\Delta` is the reflexive polytope corresponding to ``self``,
|
|
999
|
+
i.e. the fan of ``self`` is a refinement of the normal fan of
|
|
1000
|
+
`\Delta`. Other polytopes are described in the documentation of
|
|
1001
|
+
:class:`nef-partitions <sage.geometry.lattice_polytope.NefPartition>`
|
|
1002
|
+
of :class:`reflexive polytopes
|
|
1003
|
+
<sage.geometry.lattice_polytope.LatticePolytopeClass>`.
|
|
1004
|
+
|
|
1005
|
+
Except for the first argument, ``nef_partition``, this method accepts
|
|
1006
|
+
only keyword parameters.
|
|
1007
|
+
|
|
1008
|
+
INPUT:
|
|
1009
|
+
|
|
1010
|
+
- ``nef_partition`` -- a `k`-part :class:`nef-partition
|
|
1011
|
+
<sage.geometry.lattice_polytope.NefPartition>` of `\Delta^\circ`, all
|
|
1012
|
+
other parameters (if given) must be lists of length `k`
|
|
1013
|
+
|
|
1014
|
+
- ``monomial_points`` -- the `i`-th element of this list is either a
|
|
1015
|
+
list of integers or a string. A list will be interpreted as indices
|
|
1016
|
+
of points of `\Delta_i` which should be used for monomials of the
|
|
1017
|
+
`i`-th polynomial of this complete intersection. A string must be one
|
|
1018
|
+
of the following descriptions of points of `\Delta_i`:
|
|
1019
|
+
|
|
1020
|
+
* "vertices",
|
|
1021
|
+
* "vertices+origin",
|
|
1022
|
+
* "all" (default),
|
|
1023
|
+
|
|
1024
|
+
when using this description, it is also OK to pass a single string as
|
|
1025
|
+
``monomial_points`` instead of repeating it `k` times.
|
|
1026
|
+
|
|
1027
|
+
- ``coefficient_names`` -- the `i`-th element of this list specifies
|
|
1028
|
+
names for the monomial coefficients of the `i`-th polynomial, see
|
|
1029
|
+
:func:`~sage.schemes.toric.variety.normalize_names`
|
|
1030
|
+
for acceptable formats. If not given, indexed coefficient names will
|
|
1031
|
+
be created automatically.
|
|
1032
|
+
|
|
1033
|
+
- ``coefficient_name_indices`` -- the `i`-th element of this list
|
|
1034
|
+
specifies indices for indexed coefficients of the `i`-th polynomial.
|
|
1035
|
+
If not given, the index of each coefficient will coincide with the
|
|
1036
|
+
index of the corresponding point of `\Delta_i`.
|
|
1037
|
+
|
|
1038
|
+
- ``coefficients`` -- as an alternative to specifying coefficient
|
|
1039
|
+
names and/or indices, you can give the coefficients themselves as
|
|
1040
|
+
arbitrary expressions and/or strings. Using strings allows you to
|
|
1041
|
+
easily add "parameters": the base field of ``self`` will be extended
|
|
1042
|
+
to include all necessary names.
|
|
1043
|
+
|
|
1044
|
+
OUTPUT:
|
|
1045
|
+
|
|
1046
|
+
- a :class:`nef complete intersection <NefCompleteIntersection>` of
|
|
1047
|
+
``self`` (with the extended base field, if necessary).
|
|
1048
|
+
|
|
1049
|
+
EXAMPLES:
|
|
1050
|
+
|
|
1051
|
+
We construct several complete intersections associated to the same
|
|
1052
|
+
nef-partition of the 3-dimensional reflexive polytope #2254::
|
|
1053
|
+
|
|
1054
|
+
sage: # needs polytopes_db
|
|
1055
|
+
sage: p = ReflexivePolytope(3, 2254)
|
|
1056
|
+
sage: np = p.nef_partitions()[1]; np
|
|
1057
|
+
Nef-partition {2, 3, 4, 7, 8} ⊔ {0, 1, 5, 6}
|
|
1058
|
+
sage: X = CPRFanoToricVariety(Delta_polar=p)
|
|
1059
|
+
sage: X.nef_complete_intersection(np)
|
|
1060
|
+
Closed subscheme of 3-d CPR-Fano toric variety
|
|
1061
|
+
covered by 10 affine patches defined by:
|
|
1062
|
+
a0*z1*z4^2*z5^2*z7^3 + a2*z2*z4*z5*z6*z7^2*z8^2
|
|
1063
|
+
+ a3*z2*z3*z4*z7*z8 + a1*z0*z2,
|
|
1064
|
+
b3*z1*z4*z5^2*z6^2*z7^2*z8^2 + b0*z2*z5*z6^3*z7*z8^4
|
|
1065
|
+
+ b5*z1*z3*z4*z5*z6*z7*z8 + b2*z2*z3*z6^2*z8^3
|
|
1066
|
+
+ b1*z1*z3^2*z4 + b4*z0*z1*z5*z6
|
|
1067
|
+
|
|
1068
|
+
Now we include only monomials associated to vertices of `\Delta_i`::
|
|
1069
|
+
|
|
1070
|
+
sage: X.nef_complete_intersection(np, monomial_points='vertices') # needs polytopes_db
|
|
1071
|
+
Closed subscheme of 3-d CPR-Fano toric variety
|
|
1072
|
+
covered by 10 affine patches defined by:
|
|
1073
|
+
a0*z1*z4^2*z5^2*z7^3 + a2*z2*z4*z5*z6*z7^2*z8^2
|
|
1074
|
+
+ a3*z2*z3*z4*z7*z8 + a1*z0*z2,
|
|
1075
|
+
b3*z1*z4*z5^2*z6^2*z7^2*z8^2 + b0*z2*z5*z6^3*z7*z8^4
|
|
1076
|
+
+ b2*z2*z3*z6^2*z8^3 + b1*z1*z3^2*z4 + b4*z0*z1*z5*z6
|
|
1077
|
+
|
|
1078
|
+
(effectively, we set ``b5=0``). Next we provide coefficients explicitly
|
|
1079
|
+
instead of using default generic names::
|
|
1080
|
+
|
|
1081
|
+
sage: X.nef_complete_intersection(np, # needs polytopes_db
|
|
1082
|
+
....: monomial_points='vertices',
|
|
1083
|
+
....: coefficients=[("a", "a^2", "a/e", "c_i"), list(range(1,6))])
|
|
1084
|
+
Closed subscheme of 3-d CPR-Fano toric variety
|
|
1085
|
+
covered by 10 affine patches defined by:
|
|
1086
|
+
a*z1*z4^2*z5^2*z7^3 + a/e*z2*z4*z5*z6*z7^2*z8^2
|
|
1087
|
+
+ (c_i)*z2*z3*z4*z7*z8 + (a^2)*z0*z2,
|
|
1088
|
+
4*z1*z4*z5^2*z6^2*z7^2*z8^2 + z2*z5*z6^3*z7*z8^4
|
|
1089
|
+
+ 3*z2*z3*z6^2*z8^3 + 2*z1*z3^2*z4 + 5*z0*z1*z5*z6
|
|
1090
|
+
|
|
1091
|
+
Finally, we take a look at the generic representative of these complete
|
|
1092
|
+
intersections in a completely resolved ambient toric variety::
|
|
1093
|
+
|
|
1094
|
+
sage: X = CPRFanoToricVariety(Delta_polar=p, # needs polytopes_db
|
|
1095
|
+
....: coordinate_points='all')
|
|
1096
|
+
sage: X.nef_complete_intersection(np) # needs polytopes_db
|
|
1097
|
+
Closed subscheme of 3-d CPR-Fano toric variety
|
|
1098
|
+
covered by 22 affine patches defined by:
|
|
1099
|
+
a2*z2*z4*z5*z6*z7^2*z8^2*z9^2*z10^2*z11*z12*z13
|
|
1100
|
+
+ a0*z1*z4^2*z5^2*z7^3*z9*z10^2*z12*z13
|
|
1101
|
+
+ a3*z2*z3*z4*z7*z8*z9*z10*z11*z12 + a1*z0*z2,
|
|
1102
|
+
b0*z2*z5*z6^3*z7*z8^4*z9^3*z10^2*z11^2*z12*z13^2
|
|
1103
|
+
+ b3*z1*z4*z5^2*z6^2*z7^2*z8^2*z9^2*z10^2*z11*z12*z13^2
|
|
1104
|
+
+ b2*z2*z3*z6^2*z8^3*z9^2*z10*z11^2*z12*z13
|
|
1105
|
+
+ b5*z1*z3*z4*z5*z6*z7*z8*z9*z10*z11*z12*z13
|
|
1106
|
+
+ b1*z1*z3^2*z4*z11*z12 + b4*z0*z1*z5*z6*z13
|
|
1107
|
+
"""
|
|
1108
|
+
return NefCompleteIntersection(self, nef_partition, **kwds)
|
|
1109
|
+
|
|
1110
|
+
def cartesian_product(self, other,
|
|
1111
|
+
coordinate_names=None, coordinate_indices=None):
|
|
1112
|
+
r"""
|
|
1113
|
+
Return the Cartesian product of ``self`` with ``other``.
|
|
1114
|
+
|
|
1115
|
+
INPUT:
|
|
1116
|
+
|
|
1117
|
+
- ``other`` -- a (possibly
|
|
1118
|
+
:class:`CPR-Fano <CPRFanoToricVariety_field>`) :class:`toric variety
|
|
1119
|
+
<sage.schemes.toric.variety.ToricVariety_field>`
|
|
1120
|
+
|
|
1121
|
+
- ``coordinate_names`` -- names of variables for the coordinate ring,
|
|
1122
|
+
see :func:`normalize_names` for acceptable formats. If not given,
|
|
1123
|
+
indexed variable names will be created automatically.
|
|
1124
|
+
|
|
1125
|
+
- ``coordinate_indices`` -- list of integers, indices for indexed
|
|
1126
|
+
variables. If not given, the index of each variable will coincide
|
|
1127
|
+
with the index of the corresponding ray of the fan.
|
|
1128
|
+
|
|
1129
|
+
OUTPUT:
|
|
1130
|
+
|
|
1131
|
+
- a :class:`toric variety
|
|
1132
|
+
<sage.schemes.toric.variety.ToricVariety_field>`, which is
|
|
1133
|
+
:class:`CPR-Fano <CPRFanoToricVariety_field>` if ``other`` was.
|
|
1134
|
+
|
|
1135
|
+
EXAMPLES::
|
|
1136
|
+
|
|
1137
|
+
sage: P1 = toric_varieties.P1()
|
|
1138
|
+
sage: P2 = toric_varieties.P2()
|
|
1139
|
+
sage: P1xP2 = P1.cartesian_product(P2); P1xP2
|
|
1140
|
+
3-d CPR-Fano toric variety covered by 6 affine patches
|
|
1141
|
+
sage: P1xP2.fan().rays()
|
|
1142
|
+
N+N( 1, 0, 0), N+N(-1, 0, 0), N+N( 0, 1, 0),
|
|
1143
|
+
N+N( 0, 0, 1), N+N( 0, -1, -1)
|
|
1144
|
+
in 3-d lattice N+N
|
|
1145
|
+
sage: P1xP2.Delta_polar()
|
|
1146
|
+
3-d reflexive polytope in 3-d lattice N+N
|
|
1147
|
+
"""
|
|
1148
|
+
if isinstance(other, CPRFanoToricVariety_field):
|
|
1149
|
+
fan = self.fan().cartesian_product(other.fan())
|
|
1150
|
+
Delta_polar = LatticePolytope(fan.rays())
|
|
1151
|
+
|
|
1152
|
+
points = Delta_polar.points()
|
|
1153
|
+
point_to_ray = {}
|
|
1154
|
+
coordinate_points = []
|
|
1155
|
+
for ray_index, ray in enumerate(fan.rays()):
|
|
1156
|
+
point = points.index(ray)
|
|
1157
|
+
coordinate_points.append(point)
|
|
1158
|
+
point_to_ray[point] = ray_index
|
|
1159
|
+
|
|
1160
|
+
return CPRFanoToricVariety_field(Delta_polar, fan,
|
|
1161
|
+
coordinate_points, point_to_ray,
|
|
1162
|
+
coordinate_names, coordinate_indices,
|
|
1163
|
+
self.base_ring())
|
|
1164
|
+
return super().cartesian_product(other)
|
|
1165
|
+
|
|
1166
|
+
def resolve(self, **kwds):
|
|
1167
|
+
r"""
|
|
1168
|
+
Construct a toric variety whose fan subdivides the fan of ``self``.
|
|
1169
|
+
|
|
1170
|
+
This function accepts only keyword arguments, none of which are
|
|
1171
|
+
mandatory.
|
|
1172
|
+
|
|
1173
|
+
INPUT:
|
|
1174
|
+
|
|
1175
|
+
- ``new_points`` -- list of integers, indices of boundary points of
|
|
1176
|
+
:meth:`Delta_polar`, which should be added as rays to the
|
|
1177
|
+
subdividing fan
|
|
1178
|
+
|
|
1179
|
+
- all other arguments will be passed to
|
|
1180
|
+
:meth:`~sage.schemes.toric.variety.ToricVariety_field.resolve`
|
|
1181
|
+
method of (general) toric varieties; see its documentation for
|
|
1182
|
+
details
|
|
1183
|
+
|
|
1184
|
+
OUTPUT:
|
|
1185
|
+
|
|
1186
|
+
- :class:`CPR-Fano toric variety <CPRFanoToricVariety_field>` if there
|
|
1187
|
+
was no ``new_rays`` argument and :class:`toric variety
|
|
1188
|
+
<sage.schemes.toric.variety.ToricVariety_field>` otherwise.
|
|
1189
|
+
|
|
1190
|
+
EXAMPLES::
|
|
1191
|
+
|
|
1192
|
+
sage: diamond = lattice_polytope.cross_polytope(2)
|
|
1193
|
+
sage: FTV = CPRFanoToricVariety(Delta=diamond)
|
|
1194
|
+
sage: FTV.coordinate_points()
|
|
1195
|
+
(0, 1, 2, 3)
|
|
1196
|
+
sage: FTV.gens()
|
|
1197
|
+
(z0, z1, z2, z3)
|
|
1198
|
+
sage: FTV_res = FTV.resolve(new_points=[6,8])
|
|
1199
|
+
Traceback (most recent call last):
|
|
1200
|
+
...
|
|
1201
|
+
ValueError: the origin (point #6)
|
|
1202
|
+
cannot be used for subdivision!
|
|
1203
|
+
sage: FTV_res = FTV.resolve(new_points=[8,5]); FTV_res
|
|
1204
|
+
2-d CPR-Fano toric variety covered by 6 affine patches
|
|
1205
|
+
sage: FTV_res.coordinate_points()
|
|
1206
|
+
(0, 1, 2, 3, 8, 5)
|
|
1207
|
+
sage: FTV_res.gens()
|
|
1208
|
+
(z0, z1, z2, z3, z8, z5)
|
|
1209
|
+
|
|
1210
|
+
sage: TV_res = FTV.resolve(new_rays=[(1,2)]); TV_res
|
|
1211
|
+
2-d toric variety covered by 5 affine patches
|
|
1212
|
+
sage: TV_res.gens()
|
|
1213
|
+
(z0, z1, z2, z3, z4)
|
|
1214
|
+
"""
|
|
1215
|
+
# Reasons to override the base class:
|
|
1216
|
+
# - allow using polytope point indices for subdivision
|
|
1217
|
+
# - handle automatic name creation in a different fashion
|
|
1218
|
+
# - return CPR-Fano toric variety if the above feature was used and
|
|
1219
|
+
# just toric variety if subdivision involves rays
|
|
1220
|
+
if "new_rays" in kwds:
|
|
1221
|
+
if "new_points" in kwds:
|
|
1222
|
+
raise ValueError("you cannot give new_points and new_rays at "
|
|
1223
|
+
"the same time!")
|
|
1224
|
+
return super().resolve(**kwds)
|
|
1225
|
+
# Now we need to construct another Fano variety
|
|
1226
|
+
new_points = kwds.pop("new_points", ())
|
|
1227
|
+
coordinate_points = self.coordinate_points()
|
|
1228
|
+
new_points = tuple(point for point in new_points
|
|
1229
|
+
if point not in coordinate_points)
|
|
1230
|
+
Delta_polar = self._Delta_polar
|
|
1231
|
+
if Delta_polar.origin() in new_points:
|
|
1232
|
+
raise ValueError("the origin (point #%d) cannot be used for "
|
|
1233
|
+
"subdivision!" % Delta_polar.origin())
|
|
1234
|
+
if new_points:
|
|
1235
|
+
coordinate_points = coordinate_points + new_points
|
|
1236
|
+
point_to_ray = {point: n
|
|
1237
|
+
for n, point in enumerate(coordinate_points)}
|
|
1238
|
+
else:
|
|
1239
|
+
point_to_ray = self._point_to_ray
|
|
1240
|
+
new_rays = [Delta_polar.point(point) for point in new_points]
|
|
1241
|
+
coordinate_name_indices = kwds.pop("coordinate_name_indices",
|
|
1242
|
+
coordinate_points)
|
|
1243
|
+
fan = self.fan()
|
|
1244
|
+
if "coordinate_names" in kwds:
|
|
1245
|
+
coordinate_names = kwds.pop("coordinate_names")
|
|
1246
|
+
else:
|
|
1247
|
+
coordinate_names = list(self.variable_names())
|
|
1248
|
+
coordinate_names.extend(normalize_names(ngens=len(new_rays),
|
|
1249
|
+
indices=coordinate_name_indices[fan.nrays():],
|
|
1250
|
+
prefix=self._coordinate_prefix))
|
|
1251
|
+
coordinate_names.append(self._coordinate_prefix + "+")
|
|
1252
|
+
rfan = fan.subdivide(new_rays=new_rays, **kwds)
|
|
1253
|
+
resolution = CPRFanoToricVariety_field(Delta_polar, rfan,
|
|
1254
|
+
coordinate_points, point_to_ray, coordinate_names,
|
|
1255
|
+
coordinate_name_indices, self.base_ring())
|
|
1256
|
+
R = self.coordinate_ring()
|
|
1257
|
+
R_res = resolution.coordinate_ring()
|
|
1258
|
+
resolution_map = resolution.hom(R.hom(R_res.gens()[:R.ngens()]), self)
|
|
1259
|
+
resolution._resolution_map = resolution_map
|
|
1260
|
+
return resolution
|
|
1261
|
+
|
|
1262
|
+
|
|
1263
|
+
class AnticanonicalHypersurface(AlgebraicScheme_subscheme_toric):
|
|
1264
|
+
r"""
|
|
1265
|
+
Construct an anticanonical hypersurface of a CPR-Fano toric variety.
|
|
1266
|
+
|
|
1267
|
+
INPUT:
|
|
1268
|
+
|
|
1269
|
+
- ``P_Delta`` -- :class:`CPR-Fano toric variety
|
|
1270
|
+
<CPRFanoToricVariety_field>` associated to a reflexive polytope `\Delta`
|
|
1271
|
+
|
|
1272
|
+
- see :meth:`CPRFanoToricVariety_field.anticanonical_hypersurface` for
|
|
1273
|
+
documentation on all other acceptable parameters
|
|
1274
|
+
|
|
1275
|
+
OUTPUT:
|
|
1276
|
+
|
|
1277
|
+
:class:`anticanonical hypersurface <AnticanonicalHypersurface>` of
|
|
1278
|
+
``P_Delta`` (with the extended base field, if necessary).
|
|
1279
|
+
|
|
1280
|
+
EXAMPLES::
|
|
1281
|
+
|
|
1282
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1283
|
+
sage: import sage.schemes.toric.fano_variety as ftv
|
|
1284
|
+
sage: ftv.AnticanonicalHypersurface(P1xP1)
|
|
1285
|
+
Closed subscheme of 2-d CPR-Fano toric variety
|
|
1286
|
+
covered by 4 affine patches defined by:
|
|
1287
|
+
a0*s^2*x^2 + a3*t^2*x^2 + a6*s*t*x*y + a1*s^2*y^2 + a2*t^2*y^2
|
|
1288
|
+
|
|
1289
|
+
See :meth:`~CPRFanoToricVariety_field.anticanonical_hypersurface()` for a
|
|
1290
|
+
more elaborate example.
|
|
1291
|
+
"""
|
|
1292
|
+
def __init__(self, P_Delta, monomial_points=None, coefficient_names=None,
|
|
1293
|
+
coefficient_name_indices=None, coefficients=None):
|
|
1294
|
+
r"""
|
|
1295
|
+
See :meth:`CPRFanoToricVariety_field.anticanonical_hypersurface` for
|
|
1296
|
+
documentation.
|
|
1297
|
+
|
|
1298
|
+
TESTS::
|
|
1299
|
+
|
|
1300
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1301
|
+
sage: import sage.schemes.toric.fano_variety as ftv
|
|
1302
|
+
sage: ftv.AnticanonicalHypersurface(P1xP1)
|
|
1303
|
+
Closed subscheme of 2-d CPR-Fano toric variety
|
|
1304
|
+
covered by 4 affine patches defined by:
|
|
1305
|
+
a0*s^2*x^2 + a3*t^2*x^2 + a6*s*t*x*y + a1*s^2*y^2 + a2*t^2*y^2
|
|
1306
|
+
|
|
1307
|
+
Check that finite fields are handled correctly :issue:`14899`::
|
|
1308
|
+
|
|
1309
|
+
sage: F = GF(5^2, "a") # needs sage.rings.finite_rings
|
|
1310
|
+
sage: X = P1xP1.change_ring(F) # needs sage.rings.finite_rings
|
|
1311
|
+
sage: X.anticanonical_hypersurface(monomial_points='all', # needs sage.rings.finite_rings
|
|
1312
|
+
....: coefficients=[1]*X.Delta().npoints())
|
|
1313
|
+
Closed subscheme of 2-d CPR-Fano toric variety
|
|
1314
|
+
covered by 4 affine patches defined by:
|
|
1315
|
+
s^2*x^2 + s*t*x^2 + t^2*x^2 + s^2*x*y + s*t*x*y
|
|
1316
|
+
+ t^2*x*y + s^2*y^2 + s*t*y^2 + t^2*y^2
|
|
1317
|
+
"""
|
|
1318
|
+
if not isinstance(P_Delta, CPRFanoToricVariety_field):
|
|
1319
|
+
raise TypeError("anticanonical hypersurfaces can only be "
|
|
1320
|
+
"constructed for CPR-Fano toric varieties!"
|
|
1321
|
+
"\nGot: %s" % P_Delta)
|
|
1322
|
+
Delta = P_Delta.Delta()
|
|
1323
|
+
Delta_polar = Delta.polar()
|
|
1324
|
+
# Monomial points normalization
|
|
1325
|
+
if monomial_points == "vertices":
|
|
1326
|
+
monomial_points = list(range(Delta.nvertices()))
|
|
1327
|
+
elif monomial_points == "all":
|
|
1328
|
+
monomial_points = list(range(Delta.npoints()))
|
|
1329
|
+
elif monomial_points == "vertices+origin":
|
|
1330
|
+
monomial_points = list(range(Delta.nvertices()))
|
|
1331
|
+
monomial_points.append(Delta.origin())
|
|
1332
|
+
elif monomial_points == "simplified" or monomial_points is None:
|
|
1333
|
+
monomial_points = Delta.skeleton_points(Delta.dim() - 2)
|
|
1334
|
+
monomial_points.append(Delta.origin())
|
|
1335
|
+
elif isinstance(monomial_points, str):
|
|
1336
|
+
raise ValueError("%s is an unsupported description of monomial "
|
|
1337
|
+
"points!" % monomial_points)
|
|
1338
|
+
monomial_points = tuple(monomial_points)
|
|
1339
|
+
self._monomial_points = monomial_points
|
|
1340
|
+
# Make the necessary ambient space
|
|
1341
|
+
if coefficients is None:
|
|
1342
|
+
if coefficient_name_indices is None:
|
|
1343
|
+
coefficient_name_indices = monomial_points
|
|
1344
|
+
coefficient_names = normalize_names(
|
|
1345
|
+
coefficient_names, len(monomial_points),
|
|
1346
|
+
DEFAULT_COEFFICIENT, coefficient_name_indices)
|
|
1347
|
+
# We probably don't want it: the analog in else-branch is unclear.
|
|
1348
|
+
# self._coefficient_names = coefficient_names
|
|
1349
|
+
F = add_variables(P_Delta.base_ring(), coefficient_names)
|
|
1350
|
+
coefficients = [F(coef) for coef in coefficient_names]
|
|
1351
|
+
else:
|
|
1352
|
+
variables = set()
|
|
1353
|
+
nonstr = []
|
|
1354
|
+
regex = re.compile(r"[_A-Za-z]\w*")
|
|
1355
|
+
for c in coefficients:
|
|
1356
|
+
if isinstance(c, str):
|
|
1357
|
+
variables.update(regex.findall(c))
|
|
1358
|
+
else:
|
|
1359
|
+
nonstr.append(c)
|
|
1360
|
+
F = add_variables(P_Delta.base_ring(), sorted(variables))
|
|
1361
|
+
F = coercion_model.common_parent(F, *nonstr)
|
|
1362
|
+
coefficients = [F(_) for _ in coefficients]
|
|
1363
|
+
P_Delta = P_Delta.base_extend(F)
|
|
1364
|
+
if len(monomial_points) != len(coefficients):
|
|
1365
|
+
raise ValueError("cannot construct equation of the anticanonical"
|
|
1366
|
+
" hypersurface with %d monomials and %d coefficients"
|
|
1367
|
+
% (len(monomial_points), len(coefficients)))
|
|
1368
|
+
# Defining polynomial
|
|
1369
|
+
h = sum(coef * prod(P_Delta.coordinate_point_to_coordinate(n)
|
|
1370
|
+
** (Delta.point(m) * Delta_polar.point(n) + 1)
|
|
1371
|
+
for n in P_Delta.coordinate_points())
|
|
1372
|
+
for m, coef in zip(monomial_points, coefficients))
|
|
1373
|
+
super().__init__(P_Delta, h)
|
|
1374
|
+
|
|
1375
|
+
|
|
1376
|
+
class NefCompleteIntersection(AlgebraicScheme_subscheme_toric):
|
|
1377
|
+
r"""
|
|
1378
|
+
Construct a nef complete intersection in a CPR-Fano toric variety.
|
|
1379
|
+
|
|
1380
|
+
INPUT:
|
|
1381
|
+
|
|
1382
|
+
- ``P_Delta`` -- a :class:`CPR-Fano toric variety
|
|
1383
|
+
<CPRFanoToricVariety_field>` associated to a reflexive polytope `\Delta`
|
|
1384
|
+
|
|
1385
|
+
- see :meth:`CPRFanoToricVariety_field.nef_complete_intersection` for
|
|
1386
|
+
documentation on all other acceptable parameters
|
|
1387
|
+
|
|
1388
|
+
OUTPUT:
|
|
1389
|
+
|
|
1390
|
+
- a :class:`nef complete intersection <NefCompleteIntersection>` of
|
|
1391
|
+
``P_Delta`` (with the extended base field, if necessary).
|
|
1392
|
+
|
|
1393
|
+
EXAMPLES::
|
|
1394
|
+
|
|
1395
|
+
sage: o = lattice_polytope.cross_polytope(3)
|
|
1396
|
+
sage: np = o.nef_partitions()[0]; np
|
|
1397
|
+
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
|
|
1398
|
+
sage: X = CPRFanoToricVariety(Delta_polar=o)
|
|
1399
|
+
sage: X.nef_complete_intersection(np)
|
|
1400
|
+
Closed subscheme of 3-d CPR-Fano toric variety
|
|
1401
|
+
covered by 8 affine patches defined by:
|
|
1402
|
+
a2*z0^2*z1 + a5*z0*z1*z3 + a1*z1*z3^2 + a3*z0^2*z4 + a4*z0*z3*z4 + a0*z3^2*z4,
|
|
1403
|
+
b1*z1*z2^2 + b2*z2^2*z4 + b5*z1*z2*z5 + b4*z2*z4*z5 + b3*z1*z5^2 + b0*z4*z5^2
|
|
1404
|
+
|
|
1405
|
+
See :meth:`CPRFanoToricVariety_field.nef_complete_intersection` for a
|
|
1406
|
+
more elaborate example.
|
|
1407
|
+
"""
|
|
1408
|
+
def __init__(self, P_Delta, nef_partition,
|
|
1409
|
+
monomial_points='all', coefficient_names=None,
|
|
1410
|
+
coefficient_name_indices=None, coefficients=None):
|
|
1411
|
+
r"""
|
|
1412
|
+
See :meth:`CPRFanoToricVariety_field.nef_complete_intersection` for
|
|
1413
|
+
documentation.
|
|
1414
|
+
|
|
1415
|
+
TESTS::
|
|
1416
|
+
|
|
1417
|
+
sage: o = lattice_polytope.cross_polytope(3)
|
|
1418
|
+
sage: np = o.nef_partitions()[0]
|
|
1419
|
+
sage: np
|
|
1420
|
+
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
|
|
1421
|
+
sage: X = CPRFanoToricVariety(Delta_polar=o)
|
|
1422
|
+
sage: from sage.schemes.toric.fano_variety import *
|
|
1423
|
+
sage: NefCompleteIntersection(X, np)
|
|
1424
|
+
Closed subscheme of 3-d CPR-Fano toric variety
|
|
1425
|
+
covered by 8 affine patches defined by:
|
|
1426
|
+
a2*z0^2*z1 + a5*z0*z1*z3 + a1*z1*z3^2
|
|
1427
|
+
+ a3*z0^2*z4 + a4*z0*z3*z4 + a0*z3^2*z4,
|
|
1428
|
+
b1*z1*z2^2 + b2*z2^2*z4 + b5*z1*z2*z5
|
|
1429
|
+
+ b4*z2*z4*z5 + b3*z1*z5^2 + b0*z4*z5^2
|
|
1430
|
+
"""
|
|
1431
|
+
if not isinstance(P_Delta, CPRFanoToricVariety_field):
|
|
1432
|
+
raise TypeError("nef complete intersections can only be "
|
|
1433
|
+
"constructed for CPR-Fano toric varieties!"
|
|
1434
|
+
"\nGot: %s" % P_Delta)
|
|
1435
|
+
if nef_partition.Delta() is not P_Delta.Delta():
|
|
1436
|
+
raise ValueError("polytopes 'Delta' of the nef-partition and the "
|
|
1437
|
+
"CPR-Fano toric variety must be the same!")
|
|
1438
|
+
self._nef_partition = nef_partition
|
|
1439
|
+
k = nef_partition.nparts()
|
|
1440
|
+
# Pre-normalize all parameters
|
|
1441
|
+
if isinstance(monomial_points, str):
|
|
1442
|
+
monomial_points = [monomial_points] * k
|
|
1443
|
+
if coefficient_names is None:
|
|
1444
|
+
coefficient_names = [None] * k
|
|
1445
|
+
if coefficient_name_indices is None:
|
|
1446
|
+
coefficient_name_indices = [None] * k
|
|
1447
|
+
if coefficients is None:
|
|
1448
|
+
coefficients = [None] * k
|
|
1449
|
+
|
|
1450
|
+
polynomials = []
|
|
1451
|
+
Delta_polar = P_Delta.Delta_polar()
|
|
1452
|
+
for i in range(k):
|
|
1453
|
+
Delta_i = nef_partition.Delta(i)
|
|
1454
|
+
# Monomial points normalization
|
|
1455
|
+
if monomial_points[i] == "vertices":
|
|
1456
|
+
monomial_points[i] = list(range(Delta_i.nvertices()))
|
|
1457
|
+
elif monomial_points[i] == "all":
|
|
1458
|
+
monomial_points[i] = list(range(Delta_i.npoints()))
|
|
1459
|
+
elif monomial_points[i] == "vertices+origin":
|
|
1460
|
+
monomial_points[i] = list(range(Delta_i.nvertices()))
|
|
1461
|
+
if (Delta_i.origin() is not None
|
|
1462
|
+
and Delta_i.origin() >= Delta_i.nvertices()):
|
|
1463
|
+
monomial_points[i].append(Delta_i.origin())
|
|
1464
|
+
elif isinstance(monomial_points[i], str):
|
|
1465
|
+
raise ValueError("'%s' is an unsupported description of "
|
|
1466
|
+
"monomial points!" % monomial_points[i])
|
|
1467
|
+
monomial_points[i] = tuple(monomial_points[i])
|
|
1468
|
+
# Extend the base ring of the ambient space if necessary
|
|
1469
|
+
if coefficients[i] is None:
|
|
1470
|
+
if coefficient_name_indices[i] is None:
|
|
1471
|
+
coefficient_name_indices[i] = monomial_points[i]
|
|
1472
|
+
coefficient_names[i] = normalize_names(
|
|
1473
|
+
coefficient_names[i], len(monomial_points[i]),
|
|
1474
|
+
DEFAULT_COEFFICIENTS[i], coefficient_name_indices[i])
|
|
1475
|
+
F = add_variables(P_Delta.base_ring(), coefficient_names[i])
|
|
1476
|
+
coefficients[i] = [F(coef) for coef in coefficient_names[i]]
|
|
1477
|
+
else:
|
|
1478
|
+
variables = set()
|
|
1479
|
+
nonstr = []
|
|
1480
|
+
regex = re.compile(r"[_A-Za-z]\w*")
|
|
1481
|
+
for c in coefficients[i]:
|
|
1482
|
+
if isinstance(c, str):
|
|
1483
|
+
variables.update(regex.findall(c))
|
|
1484
|
+
else:
|
|
1485
|
+
nonstr.append(c)
|
|
1486
|
+
F = add_variables(P_Delta.base_ring(), sorted(variables))
|
|
1487
|
+
F = coercion_model.common_parent(F, *nonstr)
|
|
1488
|
+
coefficients[i] = [F(_) for _ in coefficients[i]]
|
|
1489
|
+
P_Delta = P_Delta.base_extend(F)
|
|
1490
|
+
if len(monomial_points[i]) != len(coefficients[i]):
|
|
1491
|
+
raise ValueError("cannot construct equation %d of the complete"
|
|
1492
|
+
" intersection with %d monomials and %d coefficients"
|
|
1493
|
+
% (i, len(monomial_points[i]), len(coefficients[i])))
|
|
1494
|
+
# Defining polynomial
|
|
1495
|
+
h = sum(coef * prod(P_Delta.coordinate_point_to_coordinate(n)
|
|
1496
|
+
** (Delta_i.point(m) * Delta_polar.point(n)
|
|
1497
|
+
+ (nef_partition.part_of_point(n) == i))
|
|
1498
|
+
for n in P_Delta.coordinate_points())
|
|
1499
|
+
for m, coef in zip(monomial_points[i], coefficients[i]))
|
|
1500
|
+
polynomials.append(h)
|
|
1501
|
+
self._monomial_points = tuple(monomial_points)
|
|
1502
|
+
super().__init__(P_Delta, polynomials)
|
|
1503
|
+
|
|
1504
|
+
def cohomology_class(self):
|
|
1505
|
+
r"""
|
|
1506
|
+
Return the class of ``self`` in the ambient space cohomology ring.
|
|
1507
|
+
|
|
1508
|
+
OUTPUT: a :class:`cohomology class <sage.schemes.generic.toric_variety.CohomologyClass>`
|
|
1509
|
+
|
|
1510
|
+
EXAMPLES::
|
|
1511
|
+
|
|
1512
|
+
sage: o = lattice_polytope.cross_polytope(3)
|
|
1513
|
+
sage: np = o.nef_partitions()[0]; np
|
|
1514
|
+
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
|
|
1515
|
+
sage: X = CPRFanoToricVariety(Delta_polar=o)
|
|
1516
|
+
sage: CI = X.nef_complete_intersection(np); CI
|
|
1517
|
+
Closed subscheme of 3-d CPR-Fano toric variety
|
|
1518
|
+
covered by 8 affine patches defined by:
|
|
1519
|
+
a2*z0^2*z1 + a5*z0*z1*z3 + a1*z1*z3^2 + a3*z0^2*z4 + a4*z0*z3*z4 + a0*z3^2*z4,
|
|
1520
|
+
b1*z1*z2^2 + b2*z2^2*z4 + b5*z1*z2*z5 + b4*z2*z4*z5 + b3*z1*z5^2 + b0*z4*z5^2
|
|
1521
|
+
sage: CI.cohomology_class() # needs sage.libs.singular
|
|
1522
|
+
[2*z3*z4 + 4*z3*z5 + 2*z4*z5]
|
|
1523
|
+
"""
|
|
1524
|
+
X = self.ambient_space()
|
|
1525
|
+
H = X.cohomology_ring()
|
|
1526
|
+
return prod(sum(H.gen(X._point_to_ray[point])
|
|
1527
|
+
for point in part if point in X._coordinate_points)
|
|
1528
|
+
for part in self.nef_partition().parts(all_points=True))
|
|
1529
|
+
|
|
1530
|
+
def nef_partition(self):
|
|
1531
|
+
r"""
|
|
1532
|
+
Return the nef-partition associated to ``self``.
|
|
1533
|
+
|
|
1534
|
+
OUTPUT: a :class:`nef-partition <sage.geometry.lattice_polytope.NefPartition>`
|
|
1535
|
+
|
|
1536
|
+
EXAMPLES::
|
|
1537
|
+
|
|
1538
|
+
sage: o = lattice_polytope.cross_polytope(3)
|
|
1539
|
+
sage: np = o.nef_partitions()[0]; np
|
|
1540
|
+
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
|
|
1541
|
+
sage: X = CPRFanoToricVariety(Delta_polar=o)
|
|
1542
|
+
sage: CI = X.nef_complete_intersection(np); CI
|
|
1543
|
+
Closed subscheme of 3-d CPR-Fano toric variety
|
|
1544
|
+
covered by 8 affine patches defined by:
|
|
1545
|
+
a2*z0^2*z1 + a5*z0*z1*z3 + a1*z1*z3^2 + a3*z0^2*z4 + a4*z0*z3*z4 + a0*z3^2*z4,
|
|
1546
|
+
b1*z1*z2^2 + b2*z2^2*z4 + b5*z1*z2*z5 + b4*z2*z4*z5 + b3*z1*z5^2 + b0*z4*z5^2
|
|
1547
|
+
sage: CI.nef_partition()
|
|
1548
|
+
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
|
|
1549
|
+
sage: CI.nef_partition() is np
|
|
1550
|
+
True
|
|
1551
|
+
"""
|
|
1552
|
+
return self._nef_partition
|
|
1553
|
+
|
|
1554
|
+
|
|
1555
|
+
def add_variables(field, variables):
|
|
1556
|
+
r"""
|
|
1557
|
+
Extend ``field`` to include all ``variables``.
|
|
1558
|
+
|
|
1559
|
+
INPUT:
|
|
1560
|
+
|
|
1561
|
+
- ``field`` -- a field
|
|
1562
|
+
|
|
1563
|
+
- ``variables`` -- list of strings
|
|
1564
|
+
|
|
1565
|
+
OUTPUT:
|
|
1566
|
+
|
|
1567
|
+
- a fraction field extending the original ``field``, which has all
|
|
1568
|
+
``variables`` among its generators.
|
|
1569
|
+
|
|
1570
|
+
EXAMPLES:
|
|
1571
|
+
|
|
1572
|
+
We start with the rational field and slowly add more variables::
|
|
1573
|
+
|
|
1574
|
+
sage: from sage.schemes.toric.fano_variety import *
|
|
1575
|
+
sage: F = add_variables(QQ, []); F # No extension
|
|
1576
|
+
Rational Field
|
|
1577
|
+
sage: F = add_variables(QQ, ["a"]); F
|
|
1578
|
+
Fraction Field of Univariate Polynomial Ring in a over Rational Field
|
|
1579
|
+
sage: F = add_variables(F, ["a"]); F
|
|
1580
|
+
Fraction Field of Univariate Polynomial Ring in a over Rational Field
|
|
1581
|
+
sage: F = add_variables(F, ["b", "c"]); F
|
|
1582
|
+
Fraction Field of Multivariate Polynomial Ring in a, b, c over Rational Field
|
|
1583
|
+
sage: F = add_variables(F, ["c", "d", "b", "c", "d"]); F
|
|
1584
|
+
Fraction Field of Multivariate Polynomial Ring in a, b, c, d over Rational Field
|
|
1585
|
+
"""
|
|
1586
|
+
if not variables:
|
|
1587
|
+
return field
|
|
1588
|
+
if isinstance(field, FractionField_generic):
|
|
1589
|
+
# Q(a) ---> Q(a, b) rather than Q(a)(b)
|
|
1590
|
+
R = field.ring()
|
|
1591
|
+
if isinstance(R, (PolynomialRing_generic, MPolynomialRing_base)):
|
|
1592
|
+
new_variables = list(R.variable_names())
|
|
1593
|
+
for v in variables:
|
|
1594
|
+
if v not in new_variables:
|
|
1595
|
+
new_variables.append(v)
|
|
1596
|
+
if len(new_variables) > R.ngens():
|
|
1597
|
+
return PolynomialRing(R.base_ring(),
|
|
1598
|
+
new_variables).fraction_field()
|
|
1599
|
+
else:
|
|
1600
|
+
return field
|
|
1601
|
+
# "Intelligent extension" didn't work, use the "usual one."
|
|
1602
|
+
new_variables = []
|
|
1603
|
+
for v in variables:
|
|
1604
|
+
if v not in new_variables:
|
|
1605
|
+
new_variables.append(v)
|
|
1606
|
+
return PolynomialRing(field, new_variables).fraction_field()
|