passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-macosx_14_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1157 -0
- gap/pkg/semigroups/config.status +1132 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,2055 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/semigroups/semiex.tst
|
|
4
|
+
#Y Copyright (C) 2016-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local M, S, T, acting, n, part
|
|
12
|
+
gap> START_TEST("Semigroups package: standard/semigroups/semiex.tst");
|
|
13
|
+
gap> LoadPackage("semigroups", false);;
|
|
14
|
+
|
|
15
|
+
#
|
|
16
|
+
gap> SEMIGROUPS.StartTest();
|
|
17
|
+
|
|
18
|
+
# Test EndomorphismsPartition 1
|
|
19
|
+
gap> EndomorphismsPartition([-1]);
|
|
20
|
+
Error, the argument (a cyclo. coll.) does not consist of positive integers
|
|
21
|
+
gap> EndomorphismsPartition([1, 1, 1]);
|
|
22
|
+
<full transformation monoid of degree 3>
|
|
23
|
+
gap> EndomorphismsPartition([5]);
|
|
24
|
+
<full transformation monoid of degree 5>
|
|
25
|
+
gap> part := [2, 1, 3];
|
|
26
|
+
[ 2, 1, 3 ]
|
|
27
|
+
gap> EndomorphismsPartition(part);
|
|
28
|
+
<transformation semigroup of degree 6 with 7 generators>
|
|
29
|
+
gap> part;
|
|
30
|
+
[ 2, 1, 3 ]
|
|
31
|
+
|
|
32
|
+
# Test EndomorphismsPartition 2
|
|
33
|
+
gap> List(Partitions(11), EndomorphismsPartition);
|
|
34
|
+
[ <full transformation monoid of degree 11>,
|
|
35
|
+
<transformation semigroup of degree 11 with 6 generators>,
|
|
36
|
+
<transformation semigroup of degree 11 with 8 generators>,
|
|
37
|
+
<transformation semigroup of degree 11 with 8 generators>,
|
|
38
|
+
<transformation semigroup of degree 11 with 8 generators>,
|
|
39
|
+
<transformation semigroup of degree 11 with 5 generators>,
|
|
40
|
+
<transformation semigroup of degree 11 with 7 generators>,
|
|
41
|
+
<transformation semigroup of degree 11 with 10 generators>,
|
|
42
|
+
<transformation semigroup of degree 11 with 12 generators>,
|
|
43
|
+
<transformation semigroup of degree 11 with 12 generators>,
|
|
44
|
+
<transformation semigroup of degree 11 with 7 generators>,
|
|
45
|
+
<transformation semigroup of degree 11 with 9 generators>,
|
|
46
|
+
<transformation semigroup of degree 11 with 12 generators>,
|
|
47
|
+
<transformation semigroup of degree 11 with 11 generators>,
|
|
48
|
+
<transformation semigroup of degree 11 with 9 generators>,
|
|
49
|
+
<transformation semigroup of degree 11 with 7 generators>,
|
|
50
|
+
<transformation semigroup of degree 11 with 7 generators>,
|
|
51
|
+
<transformation semigroup of degree 11 with 11 generators>,
|
|
52
|
+
<transformation semigroup of degree 11 with 13 generators>,
|
|
53
|
+
<transformation semigroup of degree 11 with 11 generators>,
|
|
54
|
+
<transformation semigroup of degree 11 with 11 generators>,
|
|
55
|
+
<transformation semigroup of degree 11 with 15 generators>,
|
|
56
|
+
<transformation semigroup of degree 11 with 11 generators>,
|
|
57
|
+
<transformation semigroup of degree 11 with 11 generators>,
|
|
58
|
+
<transformation semigroup of degree 11 with 9 generators>,
|
|
59
|
+
<transformation semigroup of degree 11 with 10 generators>,
|
|
60
|
+
<transformation semigroup of degree 11 with 7 generators>,
|
|
61
|
+
<transformation semigroup of degree 11 with 7 generators>,
|
|
62
|
+
<transformation semigroup of degree 11 with 11 generators>,
|
|
63
|
+
<transformation semigroup of degree 11 with 13 generators>,
|
|
64
|
+
<transformation semigroup of degree 11 with 8 generators>,
|
|
65
|
+
<transformation semigroup of degree 11 with 12 generators>,
|
|
66
|
+
<transformation semigroup of degree 11 with 13 generators>,
|
|
67
|
+
<transformation semigroup of degree 11 with 8 generators>,
|
|
68
|
+
<transformation semigroup of degree 11 with 11 generators>,
|
|
69
|
+
<transformation semigroup of degree 11 with 10 generators>,
|
|
70
|
+
<transformation semigroup of degree 11 with 6 generators>,
|
|
71
|
+
<transformation semigroup of degree 11 with 7 generators>,
|
|
72
|
+
<transformation semigroup of degree 11 with 11 generators>,
|
|
73
|
+
<transformation semigroup of degree 11 with 11 generators>,
|
|
74
|
+
<transformation semigroup of degree 11 with 12 generators>,
|
|
75
|
+
<transformation semigroup of degree 11 with 10 generators>,
|
|
76
|
+
<transformation semigroup of degree 11 with 10 generators>,
|
|
77
|
+
<transformation semigroup of degree 11 with 5 generators>,
|
|
78
|
+
<transformation semigroup of degree 11 with 7 generators>,
|
|
79
|
+
<transformation semigroup of degree 11 with 11 generators>,
|
|
80
|
+
<transformation semigroup of degree 11 with 8 generators>,
|
|
81
|
+
<transformation semigroup of degree 11 with 10 generators>,
|
|
82
|
+
<transformation semigroup of degree 11 with 6 generators>,
|
|
83
|
+
<transformation semigroup of degree 11 with 7 generators>,
|
|
84
|
+
<transformation semigroup of degree 11 with 8 generators>,
|
|
85
|
+
<transformation semigroup of degree 11 with 6 generators>,
|
|
86
|
+
<transformation semigroup of degree 11 with 7 generators>,
|
|
87
|
+
<transformation semigroup of degree 11 with 6 generators>,
|
|
88
|
+
<transformation semigroup of degree 11 with 5 generators>,
|
|
89
|
+
<full transformation monoid of degree 11> ]
|
|
90
|
+
|
|
91
|
+
# ExamplesTest37: ham-examples
|
|
92
|
+
# planar uniform block bijection monoid
|
|
93
|
+
gap> S := PlanarUniformBlockBijectionMonoid(1);
|
|
94
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
95
|
+
gap> Size(S);
|
|
96
|
+
1
|
|
97
|
+
gap> Size(Generators(S));
|
|
98
|
+
1
|
|
99
|
+
gap> NrHClasses(S);
|
|
100
|
+
1
|
|
101
|
+
gap> NrRClasses(S);
|
|
102
|
+
1
|
|
103
|
+
gap> NrDClasses(S);
|
|
104
|
+
1
|
|
105
|
+
gap> NrIdempotents(S);
|
|
106
|
+
1
|
|
107
|
+
gap> IsBlockBijectionMonoid(S);
|
|
108
|
+
true
|
|
109
|
+
gap> IsHTrivial(S);
|
|
110
|
+
true
|
|
111
|
+
gap> IsInverseMonoid(S);
|
|
112
|
+
true
|
|
113
|
+
gap> IsRegularSemigroup(S);
|
|
114
|
+
true
|
|
115
|
+
gap> IsSimpleSemigroup(S);
|
|
116
|
+
true
|
|
117
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
118
|
+
[ "1" ]
|
|
119
|
+
gap> S := PlanarUniformBlockBijectionMonoid(4);
|
|
120
|
+
<inverse block bijection monoid of degree 4 with 3 generators>
|
|
121
|
+
gap> Size(S);
|
|
122
|
+
8
|
|
123
|
+
gap> Size(Generators(S));
|
|
124
|
+
3
|
|
125
|
+
gap> NrHClasses(S);
|
|
126
|
+
8
|
|
127
|
+
gap> NrRClasses(S);
|
|
128
|
+
8
|
|
129
|
+
gap> NrDClasses(S);
|
|
130
|
+
8
|
|
131
|
+
gap> NrIdempotents(S);
|
|
132
|
+
8
|
|
133
|
+
gap> IsBlockBijectionMonoid(S);
|
|
134
|
+
true
|
|
135
|
+
gap> IsHTrivial(S);
|
|
136
|
+
true
|
|
137
|
+
gap> IsInverseMonoid(S);
|
|
138
|
+
true
|
|
139
|
+
gap> IsRegularSemigroup(S);
|
|
140
|
+
true
|
|
141
|
+
gap> IsSimpleSemigroup(S);
|
|
142
|
+
false
|
|
143
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
144
|
+
[ "1" ]
|
|
145
|
+
|
|
146
|
+
# singular planar uniform block bijection monoid
|
|
147
|
+
gap> S := SingularPlanarUniformBlockBijectionMonoid(4);
|
|
148
|
+
<inverse bipartition semigroup ideal of degree 4 with 1 generator>
|
|
149
|
+
gap> Size(S);
|
|
150
|
+
4
|
|
151
|
+
gap> Size(Generators(S));
|
|
152
|
+
1
|
|
153
|
+
gap> NrHClasses(S);
|
|
154
|
+
4
|
|
155
|
+
gap> NrRClasses(S);
|
|
156
|
+
4
|
|
157
|
+
gap> NrDClasses(S);
|
|
158
|
+
4
|
|
159
|
+
gap> NrIdempotents(S);
|
|
160
|
+
4
|
|
161
|
+
gap> IsBlockBijectionMonoid(S);
|
|
162
|
+
false
|
|
163
|
+
gap> IsHTrivial(S);
|
|
164
|
+
true
|
|
165
|
+
gap> IsInverseMonoid(S);
|
|
166
|
+
false
|
|
167
|
+
gap> IsRegularSemigroup(S);
|
|
168
|
+
true
|
|
169
|
+
gap> IsSimpleSemigroup(S);
|
|
170
|
+
false
|
|
171
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
172
|
+
[ "1" ]
|
|
173
|
+
gap> SingularPlanarUniformBlockBijectionMonoid(1);
|
|
174
|
+
Error, the argument (an int) is not > 1
|
|
175
|
+
|
|
176
|
+
# uniform block bijection monoid
|
|
177
|
+
gap> S := UniformBlockBijectionMonoid(1);
|
|
178
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
179
|
+
gap> Size(S);
|
|
180
|
+
1
|
|
181
|
+
gap> Size(Generators(S));
|
|
182
|
+
1
|
|
183
|
+
gap> NrHClasses(S);
|
|
184
|
+
1
|
|
185
|
+
gap> NrRClasses(S);
|
|
186
|
+
1
|
|
187
|
+
gap> NrDClasses(S);
|
|
188
|
+
1
|
|
189
|
+
gap> NrIdempotents(S);
|
|
190
|
+
1
|
|
191
|
+
gap> IsBlockBijectionMonoid(S);
|
|
192
|
+
true
|
|
193
|
+
gap> IsHTrivial(S);
|
|
194
|
+
true
|
|
195
|
+
gap> IsInverseMonoid(S);
|
|
196
|
+
true
|
|
197
|
+
gap> IsRegularSemigroup(S);
|
|
198
|
+
true
|
|
199
|
+
gap> IsSimpleSemigroup(S);
|
|
200
|
+
true
|
|
201
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
202
|
+
[ "1" ]
|
|
203
|
+
gap> S := UniformBlockBijectionMonoid(4);
|
|
204
|
+
<inverse block bijection monoid of degree 4 with 3 generators>
|
|
205
|
+
gap> Size(S);
|
|
206
|
+
131
|
|
207
|
+
gap> Size(Generators(S));
|
|
208
|
+
3
|
|
209
|
+
gap> NrHClasses(S);
|
|
210
|
+
63
|
|
211
|
+
gap> NrRClasses(S);
|
|
212
|
+
15
|
|
213
|
+
gap> NrDClasses(S);
|
|
214
|
+
5
|
|
215
|
+
gap> NrIdempotents(S);
|
|
216
|
+
15
|
|
217
|
+
gap> IsBlockBijectionMonoid(S);
|
|
218
|
+
true
|
|
219
|
+
gap> IsHTrivial(S);
|
|
220
|
+
false
|
|
221
|
+
gap> IsInverseMonoid(S);
|
|
222
|
+
true
|
|
223
|
+
gap> IsRegularSemigroup(S);
|
|
224
|
+
true
|
|
225
|
+
gap> IsSimpleSemigroup(S);
|
|
226
|
+
false
|
|
227
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
228
|
+
[ "1", "C2", "S4" ]
|
|
229
|
+
|
|
230
|
+
# singular uniform block bijection monoid
|
|
231
|
+
gap> S := SingularUniformBlockBijectionMonoid(4);
|
|
232
|
+
<inverse bipartition semigroup ideal of degree 4 with 1 generator>
|
|
233
|
+
gap> Size(S);
|
|
234
|
+
107
|
|
235
|
+
gap> Size(Generators(S));
|
|
236
|
+
1
|
|
237
|
+
gap> NrHClasses(S);
|
|
238
|
+
62
|
|
239
|
+
gap> NrRClasses(S);
|
|
240
|
+
14
|
|
241
|
+
gap> NrDClasses(S);
|
|
242
|
+
4
|
|
243
|
+
gap> NrIdempotents(S);
|
|
244
|
+
14
|
|
245
|
+
gap> IsBlockBijectionMonoid(S);
|
|
246
|
+
false
|
|
247
|
+
gap> IsHTrivial(S);
|
|
248
|
+
false
|
|
249
|
+
gap> IsInverseMonoid(S);
|
|
250
|
+
false
|
|
251
|
+
gap> IsRegularSemigroup(S);
|
|
252
|
+
true
|
|
253
|
+
gap> IsSimpleSemigroup(S);
|
|
254
|
+
false
|
|
255
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
256
|
+
[ "1", "C2" ]
|
|
257
|
+
gap> SingularUniformBlockBijectionMonoid(1);
|
|
258
|
+
Error, the argument (an int) is not > 1
|
|
259
|
+
|
|
260
|
+
# apsis monoid
|
|
261
|
+
gap> S := ApsisMonoid(1, 1);
|
|
262
|
+
<commutative inverse bipartition monoid of degree 1 with 1 generator>
|
|
263
|
+
gap> Size(S);
|
|
264
|
+
2
|
|
265
|
+
gap> Size(Generators(S));
|
|
266
|
+
1
|
|
267
|
+
gap> NrHClasses(S);
|
|
268
|
+
2
|
|
269
|
+
gap> NrRClasses(S);
|
|
270
|
+
2
|
|
271
|
+
gap> NrDClasses(S);
|
|
272
|
+
2
|
|
273
|
+
gap> NrIdempotents(S);
|
|
274
|
+
2
|
|
275
|
+
gap> IsBlockBijectionMonoid(S);
|
|
276
|
+
false
|
|
277
|
+
gap> IsHTrivial(S);
|
|
278
|
+
true
|
|
279
|
+
gap> IsInverseMonoid(S);
|
|
280
|
+
true
|
|
281
|
+
gap> IsRegularSemigroup(S);
|
|
282
|
+
true
|
|
283
|
+
gap> IsSimpleSemigroup(S);
|
|
284
|
+
false
|
|
285
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
286
|
+
[ "1" ]
|
|
287
|
+
gap> S := ApsisMonoid(2, 1);
|
|
288
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
289
|
+
gap> Size(S);
|
|
290
|
+
1
|
|
291
|
+
gap> Size(Generators(S));
|
|
292
|
+
1
|
|
293
|
+
gap> NrHClasses(S);
|
|
294
|
+
1
|
|
295
|
+
gap> NrRClasses(S);
|
|
296
|
+
1
|
|
297
|
+
gap> NrDClasses(S);
|
|
298
|
+
1
|
|
299
|
+
gap> NrIdempotents(S);
|
|
300
|
+
1
|
|
301
|
+
gap> IsBlockBijectionMonoid(S);
|
|
302
|
+
true
|
|
303
|
+
gap> IsHTrivial(S);
|
|
304
|
+
true
|
|
305
|
+
gap> IsInverseMonoid(S);
|
|
306
|
+
true
|
|
307
|
+
gap> IsRegularSemigroup(S);
|
|
308
|
+
true
|
|
309
|
+
gap> IsSimpleSemigroup(S);
|
|
310
|
+
true
|
|
311
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
312
|
+
[ "1" ]
|
|
313
|
+
gap> S := ApsisMonoid(3, 2);
|
|
314
|
+
<trivial block bijection group of degree 2 with 1 generator>
|
|
315
|
+
gap> Size(S);
|
|
316
|
+
1
|
|
317
|
+
gap> Size(Generators(S));
|
|
318
|
+
1
|
|
319
|
+
gap> NrHClasses(S);
|
|
320
|
+
1
|
|
321
|
+
gap> NrRClasses(S);
|
|
322
|
+
1
|
|
323
|
+
gap> NrDClasses(S);
|
|
324
|
+
1
|
|
325
|
+
gap> NrIdempotents(S);
|
|
326
|
+
1
|
|
327
|
+
gap> IsBlockBijectionMonoid(S);
|
|
328
|
+
true
|
|
329
|
+
gap> IsHTrivial(S);
|
|
330
|
+
true
|
|
331
|
+
gap> IsInverseMonoid(S);
|
|
332
|
+
true
|
|
333
|
+
gap> IsRegularSemigroup(S);
|
|
334
|
+
true
|
|
335
|
+
gap> IsSimpleSemigroup(S);
|
|
336
|
+
true
|
|
337
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
338
|
+
[ "1" ]
|
|
339
|
+
gap> S := ApsisMonoid(3, 4);
|
|
340
|
+
<regular bipartition *-monoid of degree 4 with 2 generators>
|
|
341
|
+
gap> Size(S);
|
|
342
|
+
5
|
|
343
|
+
gap> Size(Generators(S));
|
|
344
|
+
2
|
|
345
|
+
gap> NrHClasses(S);
|
|
346
|
+
5
|
|
347
|
+
gap> NrRClasses(S);
|
|
348
|
+
3
|
|
349
|
+
gap> NrDClasses(S);
|
|
350
|
+
2
|
|
351
|
+
gap> NrIdempotents(S);
|
|
352
|
+
5
|
|
353
|
+
gap> IsBlockBijectionMonoid(S);
|
|
354
|
+
false
|
|
355
|
+
gap> IsHTrivial(S);
|
|
356
|
+
true
|
|
357
|
+
gap> IsInverseMonoid(S);
|
|
358
|
+
false
|
|
359
|
+
gap> IsRegularSemigroup(S);
|
|
360
|
+
true
|
|
361
|
+
gap> IsSimpleSemigroup(S);
|
|
362
|
+
false
|
|
363
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
364
|
+
[ "1" ]
|
|
365
|
+
gap> S := ApsisMonoid(5, 4);
|
|
366
|
+
<trivial block bijection group of degree 4 with 1 generator>
|
|
367
|
+
gap> Size(S);
|
|
368
|
+
1
|
|
369
|
+
gap> Size(Generators(S));
|
|
370
|
+
1
|
|
371
|
+
gap> NrHClasses(S);
|
|
372
|
+
1
|
|
373
|
+
gap> NrRClasses(S);
|
|
374
|
+
1
|
|
375
|
+
gap> NrDClasses(S);
|
|
376
|
+
1
|
|
377
|
+
gap> NrIdempotents(S);
|
|
378
|
+
1
|
|
379
|
+
gap> IsBlockBijectionMonoid(S);
|
|
380
|
+
true
|
|
381
|
+
gap> IsHTrivial(S);
|
|
382
|
+
true
|
|
383
|
+
gap> IsInverseMonoid(S);
|
|
384
|
+
true
|
|
385
|
+
gap> IsRegularSemigroup(S);
|
|
386
|
+
true
|
|
387
|
+
gap> IsSimpleSemigroup(S);
|
|
388
|
+
true
|
|
389
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
390
|
+
[ "1" ]
|
|
391
|
+
|
|
392
|
+
# singular apsis monoid
|
|
393
|
+
gap> S := SingularApsisMonoid(1, 1);
|
|
394
|
+
<commutative inverse bipartition semigroup ideal of degree 1 with 1 generator>
|
|
395
|
+
gap> Size(S);
|
|
396
|
+
1
|
|
397
|
+
gap> Size(Generators(S));
|
|
398
|
+
1
|
|
399
|
+
gap> NrHClasses(S);
|
|
400
|
+
1
|
|
401
|
+
gap> NrRClasses(S);
|
|
402
|
+
1
|
|
403
|
+
gap> NrDClasses(S);
|
|
404
|
+
1
|
|
405
|
+
gap> NrIdempotents(S);
|
|
406
|
+
1
|
|
407
|
+
gap> IsBlockBijectionMonoid(S);
|
|
408
|
+
false
|
|
409
|
+
gap> IsHTrivial(S);
|
|
410
|
+
true
|
|
411
|
+
gap> IsInverseMonoid(S);
|
|
412
|
+
false
|
|
413
|
+
gap> IsRegularSemigroup(S);
|
|
414
|
+
true
|
|
415
|
+
gap> IsSimpleSemigroup(S);
|
|
416
|
+
true
|
|
417
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
418
|
+
[ "1" ]
|
|
419
|
+
gap> S := SingularApsisMonoid(2, 4);
|
|
420
|
+
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
|
|
421
|
+
gap> Size(S);
|
|
422
|
+
13
|
|
423
|
+
gap> Size(Generators(S));
|
|
424
|
+
1
|
|
425
|
+
gap> NrHClasses(S);
|
|
426
|
+
13
|
|
427
|
+
gap> NrRClasses(S);
|
|
428
|
+
5
|
|
429
|
+
gap> NrDClasses(S);
|
|
430
|
+
2
|
|
431
|
+
gap> NrIdempotents(S);
|
|
432
|
+
11
|
|
433
|
+
gap> IsBlockBijectionMonoid(S);
|
|
434
|
+
false
|
|
435
|
+
gap> IsHTrivial(S);
|
|
436
|
+
true
|
|
437
|
+
gap> IsInverseMonoid(S);
|
|
438
|
+
false
|
|
439
|
+
gap> IsRegularSemigroup(S);
|
|
440
|
+
true
|
|
441
|
+
gap> IsSimpleSemigroup(S);
|
|
442
|
+
false
|
|
443
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
444
|
+
[ "1" ]
|
|
445
|
+
gap> S := SingularApsisMonoid(3, 4);
|
|
446
|
+
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
|
|
447
|
+
gap> Size(S);
|
|
448
|
+
4
|
|
449
|
+
gap> Size(Generators(S));
|
|
450
|
+
1
|
|
451
|
+
gap> NrHClasses(S);
|
|
452
|
+
4
|
|
453
|
+
gap> NrRClasses(S);
|
|
454
|
+
2
|
|
455
|
+
gap> NrDClasses(S);
|
|
456
|
+
1
|
|
457
|
+
gap> NrIdempotents(S);
|
|
458
|
+
4
|
|
459
|
+
gap> IsBlockBijectionMonoid(S);
|
|
460
|
+
false
|
|
461
|
+
gap> IsHTrivial(S);
|
|
462
|
+
true
|
|
463
|
+
gap> IsInverseMonoid(S);
|
|
464
|
+
false
|
|
465
|
+
gap> IsRegularSemigroup(S);
|
|
466
|
+
true
|
|
467
|
+
gap> IsSimpleSemigroup(S);
|
|
468
|
+
true
|
|
469
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
470
|
+
[ "1" ]
|
|
471
|
+
gap> SingularApsisMonoid(2, 1);
|
|
472
|
+
Error, the 1st argument (a pos. int.) is not <= to the 2nd argument (a pos. in\
|
|
473
|
+
t.)
|
|
474
|
+
|
|
475
|
+
# crossed apsis monoid
|
|
476
|
+
gap> S := CrossedApsisMonoid(1, 1);
|
|
477
|
+
<commutative inverse bipartition monoid of degree 1 with 1 generator>
|
|
478
|
+
gap> Size(S);
|
|
479
|
+
2
|
|
480
|
+
gap> Size(Generators(S));
|
|
481
|
+
1
|
|
482
|
+
gap> NrHClasses(S);
|
|
483
|
+
2
|
|
484
|
+
gap> NrRClasses(S);
|
|
485
|
+
2
|
|
486
|
+
gap> NrDClasses(S);
|
|
487
|
+
2
|
|
488
|
+
gap> NrIdempotents(S);
|
|
489
|
+
2
|
|
490
|
+
gap> IsBlockBijectionMonoid(S);
|
|
491
|
+
false
|
|
492
|
+
gap> IsHTrivial(S);
|
|
493
|
+
true
|
|
494
|
+
gap> IsInverseMonoid(S);
|
|
495
|
+
true
|
|
496
|
+
gap> IsRegularSemigroup(S);
|
|
497
|
+
true
|
|
498
|
+
gap> IsSimpleSemigroup(S);
|
|
499
|
+
false
|
|
500
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
501
|
+
[ "1" ]
|
|
502
|
+
gap> S := CrossedApsisMonoid(2, 1);
|
|
503
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
504
|
+
gap> Size(S);
|
|
505
|
+
1
|
|
506
|
+
gap> Size(Generators(S));
|
|
507
|
+
1
|
|
508
|
+
gap> NrHClasses(S);
|
|
509
|
+
1
|
|
510
|
+
gap> NrRClasses(S);
|
|
511
|
+
1
|
|
512
|
+
gap> NrDClasses(S);
|
|
513
|
+
1
|
|
514
|
+
gap> NrIdempotents(S);
|
|
515
|
+
1
|
|
516
|
+
gap> IsBlockBijectionMonoid(S);
|
|
517
|
+
true
|
|
518
|
+
gap> IsHTrivial(S);
|
|
519
|
+
true
|
|
520
|
+
gap> IsInverseMonoid(S);
|
|
521
|
+
true
|
|
522
|
+
gap> IsRegularSemigroup(S);
|
|
523
|
+
true
|
|
524
|
+
gap> IsSimpleSemigroup(S);
|
|
525
|
+
true
|
|
526
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
527
|
+
[ "1" ]
|
|
528
|
+
gap> S := CrossedApsisMonoid(2, 4);
|
|
529
|
+
<regular bipartition *-monoid of degree 4 with 3 generators>
|
|
530
|
+
gap> Size(S);
|
|
531
|
+
105
|
|
532
|
+
gap> Size(Generators(S));
|
|
533
|
+
3
|
|
534
|
+
gap> NrHClasses(S);
|
|
535
|
+
46
|
|
536
|
+
gap> NrRClasses(S);
|
|
537
|
+
10
|
|
538
|
+
gap> NrDClasses(S);
|
|
539
|
+
3
|
|
540
|
+
gap> NrIdempotents(S);
|
|
541
|
+
40
|
|
542
|
+
gap> IsBlockBijectionMonoid(S);
|
|
543
|
+
false
|
|
544
|
+
gap> IsHTrivial(S);
|
|
545
|
+
false
|
|
546
|
+
gap> IsInverseMonoid(S);
|
|
547
|
+
false
|
|
548
|
+
gap> IsRegularSemigroup(S);
|
|
549
|
+
true
|
|
550
|
+
gap> IsSimpleSemigroup(S);
|
|
551
|
+
false
|
|
552
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
553
|
+
[ "1", "C2", "S4" ]
|
|
554
|
+
gap> S := CrossedApsisMonoid(3, 4);
|
|
555
|
+
<regular bipartition *-monoid of degree 4 with 3 generators>
|
|
556
|
+
gap> Size(S);
|
|
557
|
+
40
|
|
558
|
+
gap> Size(Generators(S));
|
|
559
|
+
3
|
|
560
|
+
gap> NrHClasses(S);
|
|
561
|
+
17
|
|
562
|
+
gap> NrRClasses(S);
|
|
563
|
+
5
|
|
564
|
+
gap> NrDClasses(S);
|
|
565
|
+
2
|
|
566
|
+
gap> NrIdempotents(S);
|
|
567
|
+
17
|
|
568
|
+
gap> IsBlockBijectionMonoid(S);
|
|
569
|
+
false
|
|
570
|
+
gap> IsHTrivial(S);
|
|
571
|
+
false
|
|
572
|
+
gap> IsInverseMonoid(S);
|
|
573
|
+
false
|
|
574
|
+
gap> IsRegularSemigroup(S);
|
|
575
|
+
true
|
|
576
|
+
gap> IsSimpleSemigroup(S);
|
|
577
|
+
false
|
|
578
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
579
|
+
[ "1", "S4" ]
|
|
580
|
+
gap> S := CrossedApsisMonoid(5, 4);
|
|
581
|
+
<block bijection group of degree 4 with 2 generators>
|
|
582
|
+
gap> Size(S);
|
|
583
|
+
24
|
|
584
|
+
gap> Size(Generators(S));
|
|
585
|
+
2
|
|
586
|
+
gap> NrHClasses(S);
|
|
587
|
+
1
|
|
588
|
+
gap> NrRClasses(S);
|
|
589
|
+
1
|
|
590
|
+
gap> NrDClasses(S);
|
|
591
|
+
1
|
|
592
|
+
gap> NrIdempotents(S);
|
|
593
|
+
1
|
|
594
|
+
gap> IsBlockBijectionMonoid(S);
|
|
595
|
+
true
|
|
596
|
+
gap> IsHTrivial(S);
|
|
597
|
+
false
|
|
598
|
+
gap> IsInverseMonoid(S);
|
|
599
|
+
true
|
|
600
|
+
gap> IsRegularSemigroup(S);
|
|
601
|
+
true
|
|
602
|
+
gap> IsSimpleSemigroup(S);
|
|
603
|
+
true
|
|
604
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
605
|
+
[ "S4" ]
|
|
606
|
+
|
|
607
|
+
# singular crossed apsis monoid
|
|
608
|
+
gap> S := SingularCrossedApsisMonoid(1, 1);
|
|
609
|
+
<commutative inverse bipartition semigroup ideal of degree 1 with 1 generator>
|
|
610
|
+
gap> Size(S);
|
|
611
|
+
1
|
|
612
|
+
gap> Size(Generators(S));
|
|
613
|
+
1
|
|
614
|
+
gap> NrHClasses(S);
|
|
615
|
+
1
|
|
616
|
+
gap> NrRClasses(S);
|
|
617
|
+
1
|
|
618
|
+
gap> NrDClasses(S);
|
|
619
|
+
1
|
|
620
|
+
gap> NrIdempotents(S);
|
|
621
|
+
1
|
|
622
|
+
gap> IsBlockBijectionMonoid(S);
|
|
623
|
+
false
|
|
624
|
+
gap> IsHTrivial(S);
|
|
625
|
+
true
|
|
626
|
+
gap> IsInverseMonoid(S);
|
|
627
|
+
false
|
|
628
|
+
gap> IsRegularSemigroup(S);
|
|
629
|
+
true
|
|
630
|
+
gap> IsSimpleSemigroup(S);
|
|
631
|
+
true
|
|
632
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
633
|
+
[ "1" ]
|
|
634
|
+
gap> S := SingularCrossedApsisMonoid(2, 4);
|
|
635
|
+
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
|
|
636
|
+
gap> Size(S);
|
|
637
|
+
81
|
|
638
|
+
gap> Size(Generators(S));
|
|
639
|
+
1
|
|
640
|
+
gap> NrHClasses(S);
|
|
641
|
+
45
|
|
642
|
+
gap> NrRClasses(S);
|
|
643
|
+
9
|
|
644
|
+
gap> NrDClasses(S);
|
|
645
|
+
2
|
|
646
|
+
gap> NrIdempotents(S);
|
|
647
|
+
39
|
|
648
|
+
gap> IsBlockBijectionMonoid(S);
|
|
649
|
+
false
|
|
650
|
+
gap> IsHTrivial(S);
|
|
651
|
+
false
|
|
652
|
+
gap> IsInverseMonoid(S);
|
|
653
|
+
false
|
|
654
|
+
gap> IsRegularSemigroup(S);
|
|
655
|
+
true
|
|
656
|
+
gap> IsSimpleSemigroup(S);
|
|
657
|
+
false
|
|
658
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
659
|
+
[ "1", "C2" ]
|
|
660
|
+
gap> S := SingularCrossedApsisMonoid(3, 4);
|
|
661
|
+
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
|
|
662
|
+
gap> Size(S);
|
|
663
|
+
16
|
|
664
|
+
gap> Size(Generators(S));
|
|
665
|
+
1
|
|
666
|
+
gap> NrHClasses(S);
|
|
667
|
+
16
|
|
668
|
+
gap> NrRClasses(S);
|
|
669
|
+
4
|
|
670
|
+
gap> NrDClasses(S);
|
|
671
|
+
1
|
|
672
|
+
gap> NrIdempotents(S);
|
|
673
|
+
16
|
|
674
|
+
gap> IsBlockBijectionMonoid(S);
|
|
675
|
+
false
|
|
676
|
+
gap> IsHTrivial(S);
|
|
677
|
+
true
|
|
678
|
+
gap> IsInverseMonoid(S);
|
|
679
|
+
false
|
|
680
|
+
gap> IsRegularSemigroup(S);
|
|
681
|
+
true
|
|
682
|
+
gap> IsSimpleSemigroup(S);
|
|
683
|
+
true
|
|
684
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
685
|
+
[ "1" ]
|
|
686
|
+
gap> SingularCrossedApsisMonoid(2, 1);
|
|
687
|
+
Error, the 1st argument (a pos. int.) is not <= to the 2nd argument (a pos. in\
|
|
688
|
+
t.)
|
|
689
|
+
|
|
690
|
+
# planar modular partition monoid
|
|
691
|
+
gap> S := PlanarModularPartitionMonoid(1, 1);
|
|
692
|
+
<commutative inverse bipartition monoid of degree 1 with 1 generator>
|
|
693
|
+
gap> Size(S);
|
|
694
|
+
2
|
|
695
|
+
gap> Size(Generators(S));
|
|
696
|
+
1
|
|
697
|
+
gap> NrHClasses(S);
|
|
698
|
+
2
|
|
699
|
+
gap> NrRClasses(S);
|
|
700
|
+
2
|
|
701
|
+
gap> NrDClasses(S);
|
|
702
|
+
2
|
|
703
|
+
gap> NrIdempotents(S);
|
|
704
|
+
2
|
|
705
|
+
gap> IsBlockBijectionMonoid(S);
|
|
706
|
+
false
|
|
707
|
+
gap> IsHTrivial(S);
|
|
708
|
+
true
|
|
709
|
+
gap> IsInverseMonoid(S);
|
|
710
|
+
true
|
|
711
|
+
gap> IsRegularSemigroup(S);
|
|
712
|
+
true
|
|
713
|
+
gap> IsSimpleSemigroup(S);
|
|
714
|
+
false
|
|
715
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
716
|
+
[ "1" ]
|
|
717
|
+
gap> S := PlanarModularPartitionMonoid(2, 1);
|
|
718
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
719
|
+
gap> Size(S);
|
|
720
|
+
1
|
|
721
|
+
gap> Size(Generators(S));
|
|
722
|
+
1
|
|
723
|
+
gap> NrHClasses(S);
|
|
724
|
+
1
|
|
725
|
+
gap> NrRClasses(S);
|
|
726
|
+
1
|
|
727
|
+
gap> NrDClasses(S);
|
|
728
|
+
1
|
|
729
|
+
gap> NrIdempotents(S);
|
|
730
|
+
1
|
|
731
|
+
gap> IsBlockBijectionMonoid(S);
|
|
732
|
+
true
|
|
733
|
+
gap> IsHTrivial(S);
|
|
734
|
+
true
|
|
735
|
+
gap> IsInverseMonoid(S);
|
|
736
|
+
true
|
|
737
|
+
gap> IsRegularSemigroup(S);
|
|
738
|
+
true
|
|
739
|
+
gap> IsSimpleSemigroup(S);
|
|
740
|
+
true
|
|
741
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
742
|
+
[ "1" ]
|
|
743
|
+
gap> S := PlanarModularPartitionMonoid(2, 4);
|
|
744
|
+
<regular bipartition *-monoid of degree 4 with 6 generators>
|
|
745
|
+
gap> Size(S);
|
|
746
|
+
55
|
|
747
|
+
gap> Size(Generators(S));
|
|
748
|
+
6
|
|
749
|
+
gap> NrHClasses(S);
|
|
750
|
+
55
|
|
751
|
+
gap> NrRClasses(S);
|
|
752
|
+
17
|
|
753
|
+
gap> NrDClasses(S);
|
|
754
|
+
8
|
|
755
|
+
gap> NrIdempotents(S);
|
|
756
|
+
45
|
|
757
|
+
gap> IsBlockBijectionMonoid(S);
|
|
758
|
+
false
|
|
759
|
+
gap> IsHTrivial(S);
|
|
760
|
+
true
|
|
761
|
+
gap> IsInverseMonoid(S);
|
|
762
|
+
false
|
|
763
|
+
gap> IsRegularSemigroup(S);
|
|
764
|
+
true
|
|
765
|
+
gap> IsSimpleSemigroup(S);
|
|
766
|
+
false
|
|
767
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
768
|
+
[ "1" ]
|
|
769
|
+
gap> S := PlanarModularPartitionMonoid(3, 4);
|
|
770
|
+
<regular bipartition *-monoid of degree 4 with 5 generators>
|
|
771
|
+
gap> Size(S);
|
|
772
|
+
16
|
|
773
|
+
gap> Size(Generators(S));
|
|
774
|
+
5
|
|
775
|
+
gap> NrHClasses(S);
|
|
776
|
+
16
|
|
777
|
+
gap> NrRClasses(S);
|
|
778
|
+
10
|
|
779
|
+
gap> NrDClasses(S);
|
|
780
|
+
8
|
|
781
|
+
gap> NrIdempotents(S);
|
|
782
|
+
16
|
|
783
|
+
gap> IsBlockBijectionMonoid(S);
|
|
784
|
+
false
|
|
785
|
+
gap> IsHTrivial(S);
|
|
786
|
+
true
|
|
787
|
+
gap> IsInverseMonoid(S);
|
|
788
|
+
false
|
|
789
|
+
gap> IsRegularSemigroup(S);
|
|
790
|
+
true
|
|
791
|
+
gap> IsSimpleSemigroup(S);
|
|
792
|
+
false
|
|
793
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
794
|
+
[ "1" ]
|
|
795
|
+
gap> S := PlanarModularPartitionMonoid(5, 4);
|
|
796
|
+
<inverse block bijection monoid of degree 4 with 3 generators>
|
|
797
|
+
gap> Size(S);
|
|
798
|
+
8
|
|
799
|
+
gap> Size(Generators(S));
|
|
800
|
+
3
|
|
801
|
+
gap> NrHClasses(S);
|
|
802
|
+
8
|
|
803
|
+
gap> NrRClasses(S);
|
|
804
|
+
8
|
|
805
|
+
gap> NrDClasses(S);
|
|
806
|
+
8
|
|
807
|
+
gap> NrIdempotents(S);
|
|
808
|
+
8
|
|
809
|
+
gap> IsBlockBijectionMonoid(S);
|
|
810
|
+
true
|
|
811
|
+
gap> IsHTrivial(S);
|
|
812
|
+
true
|
|
813
|
+
gap> IsInverseMonoid(S);
|
|
814
|
+
true
|
|
815
|
+
gap> IsRegularSemigroup(S);
|
|
816
|
+
true
|
|
817
|
+
gap> IsSimpleSemigroup(S);
|
|
818
|
+
false
|
|
819
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
820
|
+
[ "1" ]
|
|
821
|
+
|
|
822
|
+
# singular planar modular partition monoid
|
|
823
|
+
gap> S := SingularPlanarModularPartitionMonoid(1, 1);
|
|
824
|
+
<commutative inverse bipartition semigroup ideal of degree 1 with 1 generator>
|
|
825
|
+
gap> Size(S);
|
|
826
|
+
1
|
|
827
|
+
gap> Size(Generators(S));
|
|
828
|
+
1
|
|
829
|
+
gap> NrHClasses(S);
|
|
830
|
+
1
|
|
831
|
+
gap> NrRClasses(S);
|
|
832
|
+
1
|
|
833
|
+
gap> NrDClasses(S);
|
|
834
|
+
1
|
|
835
|
+
gap> NrIdempotents(S);
|
|
836
|
+
1
|
|
837
|
+
gap> IsBlockBijectionMonoid(S);
|
|
838
|
+
false
|
|
839
|
+
gap> IsHTrivial(S);
|
|
840
|
+
true
|
|
841
|
+
gap> IsInverseMonoid(S);
|
|
842
|
+
false
|
|
843
|
+
gap> IsRegularSemigroup(S);
|
|
844
|
+
true
|
|
845
|
+
gap> IsSimpleSemigroup(S);
|
|
846
|
+
true
|
|
847
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
848
|
+
[ "1" ]
|
|
849
|
+
gap> S := SingularPlanarModularPartitionMonoid(2, 4);
|
|
850
|
+
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
|
|
851
|
+
gap> Size(S);
|
|
852
|
+
52
|
|
853
|
+
gap> Size(Generators(S));
|
|
854
|
+
1
|
|
855
|
+
gap> NrHClasses(S);
|
|
856
|
+
52
|
|
857
|
+
gap> NrRClasses(S);
|
|
858
|
+
14
|
|
859
|
+
gap> NrDClasses(S);
|
|
860
|
+
5
|
|
861
|
+
gap> NrIdempotents(S);
|
|
862
|
+
42
|
|
863
|
+
gap> IsBlockBijectionMonoid(S);
|
|
864
|
+
false
|
|
865
|
+
gap> IsHTrivial(S);
|
|
866
|
+
true
|
|
867
|
+
gap> IsInverseMonoid(S);
|
|
868
|
+
false
|
|
869
|
+
gap> IsRegularSemigroup(S);
|
|
870
|
+
true
|
|
871
|
+
gap> IsSimpleSemigroup(S);
|
|
872
|
+
false
|
|
873
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
874
|
+
[ "1" ]
|
|
875
|
+
gap> S := SingularPlanarModularPartitionMonoid(3, 4);
|
|
876
|
+
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
|
|
877
|
+
gap> Size(S);
|
|
878
|
+
12
|
|
879
|
+
gap> Size(Generators(S));
|
|
880
|
+
1
|
|
881
|
+
gap> NrHClasses(S);
|
|
882
|
+
12
|
|
883
|
+
gap> NrRClasses(S);
|
|
884
|
+
6
|
|
885
|
+
gap> NrDClasses(S);
|
|
886
|
+
4
|
|
887
|
+
gap> NrIdempotents(S);
|
|
888
|
+
12
|
|
889
|
+
gap> IsBlockBijectionMonoid(S);
|
|
890
|
+
false
|
|
891
|
+
gap> IsHTrivial(S);
|
|
892
|
+
true
|
|
893
|
+
gap> IsInverseMonoid(S);
|
|
894
|
+
false
|
|
895
|
+
gap> IsRegularSemigroup(S);
|
|
896
|
+
true
|
|
897
|
+
gap> IsSimpleSemigroup(S);
|
|
898
|
+
false
|
|
899
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
900
|
+
[ "1" ]
|
|
901
|
+
gap> S := SingularPlanarModularPartitionMonoid(5, 4);
|
|
902
|
+
<inverse bipartition semigroup ideal of degree 4 with 1 generator>
|
|
903
|
+
gap> Size(S);
|
|
904
|
+
4
|
|
905
|
+
gap> Size(Generators(S));
|
|
906
|
+
1
|
|
907
|
+
gap> NrHClasses(S);
|
|
908
|
+
4
|
|
909
|
+
gap> NrRClasses(S);
|
|
910
|
+
4
|
|
911
|
+
gap> NrDClasses(S);
|
|
912
|
+
4
|
|
913
|
+
gap> NrIdempotents(S);
|
|
914
|
+
4
|
|
915
|
+
gap> IsBlockBijectionMonoid(S);
|
|
916
|
+
false
|
|
917
|
+
gap> IsHTrivial(S);
|
|
918
|
+
true
|
|
919
|
+
gap> IsInverseMonoid(S);
|
|
920
|
+
false
|
|
921
|
+
gap> IsRegularSemigroup(S);
|
|
922
|
+
true
|
|
923
|
+
gap> IsSimpleSemigroup(S);
|
|
924
|
+
false
|
|
925
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
926
|
+
[ "1" ]
|
|
927
|
+
gap> SingularPlanarModularPartitionMonoid(2, 1);
|
|
928
|
+
Error, the 2nd argument (a pos. int.) must be > 1 when the 1st argument (a pos\
|
|
929
|
+
. int.) is also > 1
|
|
930
|
+
|
|
931
|
+
# planar partition monoid
|
|
932
|
+
gap> S := PlanarPartitionMonoid(1);
|
|
933
|
+
<commutative inverse bipartition monoid of degree 1 with 1 generator>
|
|
934
|
+
gap> Size(S);
|
|
935
|
+
2
|
|
936
|
+
gap> Size(Generators(S));
|
|
937
|
+
1
|
|
938
|
+
gap> NrHClasses(S);
|
|
939
|
+
2
|
|
940
|
+
gap> NrRClasses(S);
|
|
941
|
+
2
|
|
942
|
+
gap> NrDClasses(S);
|
|
943
|
+
2
|
|
944
|
+
gap> NrIdempotents(S);
|
|
945
|
+
2
|
|
946
|
+
gap> IsBlockBijectionMonoid(S);
|
|
947
|
+
false
|
|
948
|
+
gap> IsHTrivial(S);
|
|
949
|
+
true
|
|
950
|
+
gap> IsInverseMonoid(S);
|
|
951
|
+
true
|
|
952
|
+
gap> IsRegularSemigroup(S);
|
|
953
|
+
true
|
|
954
|
+
gap> IsSimpleSemigroup(S);
|
|
955
|
+
false
|
|
956
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
957
|
+
[ "1" ]
|
|
958
|
+
gap> S := PlanarPartitionMonoid(4);
|
|
959
|
+
<regular bipartition *-monoid of degree 4 with 7 generators>
|
|
960
|
+
gap> Size(S);
|
|
961
|
+
1430
|
|
962
|
+
gap> Size(Generators(S));
|
|
963
|
+
7
|
|
964
|
+
gap> NrHClasses(S);
|
|
965
|
+
1430
|
|
966
|
+
gap> NrRClasses(S);
|
|
967
|
+
70
|
|
968
|
+
gap> NrDClasses(S);
|
|
969
|
+
5
|
|
970
|
+
gap> NrIdempotents(S);
|
|
971
|
+
886
|
|
972
|
+
gap> IsBlockBijectionMonoid(S);
|
|
973
|
+
false
|
|
974
|
+
gap> IsHTrivial(S);
|
|
975
|
+
true
|
|
976
|
+
gap> IsInverseMonoid(S);
|
|
977
|
+
false
|
|
978
|
+
gap> IsRegularSemigroup(S);
|
|
979
|
+
true
|
|
980
|
+
gap> IsSimpleSemigroup(S);
|
|
981
|
+
false
|
|
982
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
983
|
+
[ "1" ]
|
|
984
|
+
|
|
985
|
+
# singular planar partition monoid
|
|
986
|
+
gap> S := SingularPlanarPartitionMonoid(1);
|
|
987
|
+
<commutative inverse bipartition semigroup ideal of degree 1 with 1 generator>
|
|
988
|
+
gap> Size(S);
|
|
989
|
+
1
|
|
990
|
+
gap> Size(Generators(S));
|
|
991
|
+
1
|
|
992
|
+
gap> NrHClasses(S);
|
|
993
|
+
1
|
|
994
|
+
gap> NrRClasses(S);
|
|
995
|
+
1
|
|
996
|
+
gap> NrDClasses(S);
|
|
997
|
+
1
|
|
998
|
+
gap> NrIdempotents(S);
|
|
999
|
+
1
|
|
1000
|
+
gap> IsBlockBijectionMonoid(S);
|
|
1001
|
+
false
|
|
1002
|
+
gap> IsHTrivial(S);
|
|
1003
|
+
true
|
|
1004
|
+
gap> IsInverseMonoid(S);
|
|
1005
|
+
false
|
|
1006
|
+
gap> IsRegularSemigroup(S);
|
|
1007
|
+
true
|
|
1008
|
+
gap> IsSimpleSemigroup(S);
|
|
1009
|
+
true
|
|
1010
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
1011
|
+
[ "1" ]
|
|
1012
|
+
gap> S := SingularPlanarPartitionMonoid(4);
|
|
1013
|
+
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
|
|
1014
|
+
gap> Size(S);
|
|
1015
|
+
1429
|
|
1016
|
+
gap> Size(Generators(S));
|
|
1017
|
+
1
|
|
1018
|
+
gap> NrHClasses(S);
|
|
1019
|
+
1429
|
|
1020
|
+
gap> NrRClasses(S);
|
|
1021
|
+
69
|
|
1022
|
+
gap> NrDClasses(S);
|
|
1023
|
+
4
|
|
1024
|
+
gap> NrIdempotents(S);
|
|
1025
|
+
885
|
|
1026
|
+
gap> IsBlockBijectionMonoid(S);
|
|
1027
|
+
false
|
|
1028
|
+
gap> IsHTrivial(S);
|
|
1029
|
+
true
|
|
1030
|
+
gap> IsInverseMonoid(S);
|
|
1031
|
+
false
|
|
1032
|
+
gap> IsRegularSemigroup(S);
|
|
1033
|
+
true
|
|
1034
|
+
gap> IsSimpleSemigroup(S);
|
|
1035
|
+
false
|
|
1036
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
1037
|
+
[ "1" ]
|
|
1038
|
+
|
|
1039
|
+
# modular partition monoid
|
|
1040
|
+
gap> S := ModularPartitionMonoid(1, 1);
|
|
1041
|
+
<commutative inverse bipartition monoid of degree 1 with 1 generator>
|
|
1042
|
+
gap> Size(S);
|
|
1043
|
+
2
|
|
1044
|
+
gap> Size(Generators(S));
|
|
1045
|
+
1
|
|
1046
|
+
gap> NrHClasses(S);
|
|
1047
|
+
2
|
|
1048
|
+
gap> NrRClasses(S);
|
|
1049
|
+
2
|
|
1050
|
+
gap> NrDClasses(S);
|
|
1051
|
+
2
|
|
1052
|
+
gap> NrIdempotents(S);
|
|
1053
|
+
2
|
|
1054
|
+
gap> IsBlockBijectionMonoid(S);
|
|
1055
|
+
false
|
|
1056
|
+
gap> IsHTrivial(S);
|
|
1057
|
+
true
|
|
1058
|
+
gap> IsInverseMonoid(S);
|
|
1059
|
+
true
|
|
1060
|
+
gap> IsRegularSemigroup(S);
|
|
1061
|
+
true
|
|
1062
|
+
gap> IsSimpleSemigroup(S);
|
|
1063
|
+
false
|
|
1064
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
1065
|
+
[ "1" ]
|
|
1066
|
+
gap> S := ModularPartitionMonoid(2, 1);
|
|
1067
|
+
<commutative inverse bipartition monoid of degree 1 with 1 generator>
|
|
1068
|
+
gap> Size(S);
|
|
1069
|
+
2
|
|
1070
|
+
gap> Size(Generators(S));
|
|
1071
|
+
1
|
|
1072
|
+
gap> NrHClasses(S);
|
|
1073
|
+
2
|
|
1074
|
+
gap> NrRClasses(S);
|
|
1075
|
+
2
|
|
1076
|
+
gap> NrDClasses(S);
|
|
1077
|
+
2
|
|
1078
|
+
gap> NrIdempotents(S);
|
|
1079
|
+
2
|
|
1080
|
+
gap> IsBlockBijectionMonoid(S);
|
|
1081
|
+
false
|
|
1082
|
+
gap> IsHTrivial(S);
|
|
1083
|
+
true
|
|
1084
|
+
gap> IsInverseMonoid(S);
|
|
1085
|
+
true
|
|
1086
|
+
gap> IsRegularSemigroup(S);
|
|
1087
|
+
true
|
|
1088
|
+
gap> IsSimpleSemigroup(S);
|
|
1089
|
+
false
|
|
1090
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
1091
|
+
[ "1" ]
|
|
1092
|
+
gap> S := ModularPartitionMonoid(2, 4);
|
|
1093
|
+
<regular bipartition *-monoid of degree 4 with 4 generators>
|
|
1094
|
+
gap> Size(S);
|
|
1095
|
+
379
|
|
1096
|
+
gap> Size(Generators(S));
|
|
1097
|
+
4
|
|
1098
|
+
gap> NrHClasses(S);
|
|
1099
|
+
211
|
|
1100
|
+
gap> NrRClasses(S);
|
|
1101
|
+
31
|
|
1102
|
+
gap> NrDClasses(S);
|
|
1103
|
+
6
|
|
1104
|
+
gap> NrIdempotents(S);
|
|
1105
|
+
127
|
|
1106
|
+
gap> IsBlockBijectionMonoid(S);
|
|
1107
|
+
false
|
|
1108
|
+
gap> IsHTrivial(S);
|
|
1109
|
+
false
|
|
1110
|
+
gap> IsInverseMonoid(S);
|
|
1111
|
+
false
|
|
1112
|
+
gap> IsRegularSemigroup(S);
|
|
1113
|
+
true
|
|
1114
|
+
gap> IsSimpleSemigroup(S);
|
|
1115
|
+
false
|
|
1116
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
1117
|
+
[ "1", "C2", "S4" ]
|
|
1118
|
+
gap> S := ModularPartitionMonoid(3, 4);
|
|
1119
|
+
<regular bipartition *-monoid of degree 4 with 4 generators>
|
|
1120
|
+
gap> Size(S);
|
|
1121
|
+
155
|
|
1122
|
+
gap> Size(Generators(S));
|
|
1123
|
+
4
|
|
1124
|
+
gap> NrHClasses(S);
|
|
1125
|
+
87
|
|
1126
|
+
gap> NrRClasses(S);
|
|
1127
|
+
19
|
|
1128
|
+
gap> NrDClasses(S);
|
|
1129
|
+
5
|
|
1130
|
+
gap> NrIdempotents(S);
|
|
1131
|
+
39
|
|
1132
|
+
gap> IsBlockBijectionMonoid(S);
|
|
1133
|
+
false
|
|
1134
|
+
gap> IsHTrivial(S);
|
|
1135
|
+
false
|
|
1136
|
+
gap> IsInverseMonoid(S);
|
|
1137
|
+
false
|
|
1138
|
+
gap> IsRegularSemigroup(S);
|
|
1139
|
+
true
|
|
1140
|
+
gap> IsSimpleSemigroup(S);
|
|
1141
|
+
false
|
|
1142
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
1143
|
+
[ "1", "C2", "S4" ]
|
|
1144
|
+
gap> S := ModularPartitionMonoid(5, 4);
|
|
1145
|
+
<inverse block bijection monoid of degree 4 with 3 generators>
|
|
1146
|
+
gap> Size(S);
|
|
1147
|
+
131
|
|
1148
|
+
gap> Size(Generators(S));
|
|
1149
|
+
3
|
|
1150
|
+
gap> NrHClasses(S);
|
|
1151
|
+
63
|
|
1152
|
+
gap> NrRClasses(S);
|
|
1153
|
+
15
|
|
1154
|
+
gap> NrDClasses(S);
|
|
1155
|
+
5
|
|
1156
|
+
gap> NrIdempotents(S);
|
|
1157
|
+
15
|
|
1158
|
+
gap> IsBlockBijectionMonoid(S);
|
|
1159
|
+
true
|
|
1160
|
+
gap> IsHTrivial(S);
|
|
1161
|
+
false
|
|
1162
|
+
gap> IsInverseMonoid(S);
|
|
1163
|
+
true
|
|
1164
|
+
gap> IsRegularSemigroup(S);
|
|
1165
|
+
true
|
|
1166
|
+
gap> IsSimpleSemigroup(S);
|
|
1167
|
+
false
|
|
1168
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
1169
|
+
[ "1", "C2", "S4" ]
|
|
1170
|
+
|
|
1171
|
+
# singular modular partition monoid
|
|
1172
|
+
gap> S := SingularModularPartitionMonoid(2, 4);
|
|
1173
|
+
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
|
|
1174
|
+
gap> Size(S);
|
|
1175
|
+
355
|
|
1176
|
+
gap> Size(Generators(S));
|
|
1177
|
+
1
|
|
1178
|
+
gap> NrHClasses(S);
|
|
1179
|
+
210
|
|
1180
|
+
gap> NrRClasses(S);
|
|
1181
|
+
30
|
|
1182
|
+
gap> NrDClasses(S);
|
|
1183
|
+
5
|
|
1184
|
+
gap> NrIdempotents(S);
|
|
1185
|
+
126
|
|
1186
|
+
gap> IsBlockBijectionMonoid(S);
|
|
1187
|
+
false
|
|
1188
|
+
gap> IsHTrivial(S);
|
|
1189
|
+
false
|
|
1190
|
+
gap> IsInverseMonoid(S);
|
|
1191
|
+
false
|
|
1192
|
+
gap> IsRegularSemigroup(S);
|
|
1193
|
+
true
|
|
1194
|
+
gap> IsSimpleSemigroup(S);
|
|
1195
|
+
false
|
|
1196
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
1197
|
+
[ "1", "C2" ]
|
|
1198
|
+
gap> S := SingularModularPartitionMonoid(3, 4);
|
|
1199
|
+
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
|
|
1200
|
+
gap> Size(S);
|
|
1201
|
+
131
|
|
1202
|
+
gap> Size(Generators(S));
|
|
1203
|
+
1
|
|
1204
|
+
gap> NrHClasses(S);
|
|
1205
|
+
86
|
|
1206
|
+
gap> NrRClasses(S);
|
|
1207
|
+
18
|
|
1208
|
+
gap> NrDClasses(S);
|
|
1209
|
+
4
|
|
1210
|
+
gap> NrIdempotents(S);
|
|
1211
|
+
38
|
|
1212
|
+
gap> IsBlockBijectionMonoid(S);
|
|
1213
|
+
false
|
|
1214
|
+
gap> IsHTrivial(S);
|
|
1215
|
+
false
|
|
1216
|
+
gap> IsInverseMonoid(S);
|
|
1217
|
+
false
|
|
1218
|
+
gap> IsRegularSemigroup(S);
|
|
1219
|
+
true
|
|
1220
|
+
gap> IsSimpleSemigroup(S);
|
|
1221
|
+
false
|
|
1222
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
1223
|
+
[ "1", "C2" ]
|
|
1224
|
+
gap> S := SingularModularPartitionMonoid(5, 4);
|
|
1225
|
+
<inverse bipartition semigroup ideal of degree 4 with 1 generator>
|
|
1226
|
+
gap> Size(S);
|
|
1227
|
+
107
|
|
1228
|
+
gap> Size(Generators(S));
|
|
1229
|
+
1
|
|
1230
|
+
gap> NrHClasses(S);
|
|
1231
|
+
62
|
|
1232
|
+
gap> NrRClasses(S);
|
|
1233
|
+
14
|
|
1234
|
+
gap> NrDClasses(S);
|
|
1235
|
+
4
|
|
1236
|
+
gap> NrIdempotents(S);
|
|
1237
|
+
14
|
|
1238
|
+
gap> IsBlockBijectionMonoid(S);
|
|
1239
|
+
false
|
|
1240
|
+
gap> IsHTrivial(S);
|
|
1241
|
+
false
|
|
1242
|
+
gap> IsInverseMonoid(S);
|
|
1243
|
+
false
|
|
1244
|
+
gap> IsRegularSemigroup(S);
|
|
1245
|
+
true
|
|
1246
|
+
gap> IsSimpleSemigroup(S);
|
|
1247
|
+
false
|
|
1248
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
1249
|
+
[ "1", "C2" ]
|
|
1250
|
+
gap> SingularModularPartitionMonoid(1, 1);
|
|
1251
|
+
<commutative inverse bipartition semigroup ideal of degree 1 with 1 generator>
|
|
1252
|
+
gap> SingularModularPartitionMonoid(2, 1);
|
|
1253
|
+
Error, the 2nd argument (a pos. int.) must be > 1 when the 1st argument (a pos\
|
|
1254
|
+
. int.) is also > 1
|
|
1255
|
+
|
|
1256
|
+
# Catalan monoid
|
|
1257
|
+
gap> S := CatalanMonoid(1);
|
|
1258
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
1259
|
+
gap> S := CatalanMonoid(2);
|
|
1260
|
+
<commutative transformation monoid of degree 2 with 1 generator>
|
|
1261
|
+
gap> Size(S);
|
|
1262
|
+
2
|
|
1263
|
+
gap> S := CatalanMonoid(3);
|
|
1264
|
+
<transformation monoid of degree 3 with 2 generators>
|
|
1265
|
+
gap> Size(S);
|
|
1266
|
+
5
|
|
1267
|
+
gap> S := CatalanMonoid(4);
|
|
1268
|
+
<transformation monoid of degree 4 with 3 generators>
|
|
1269
|
+
gap> Size(S);
|
|
1270
|
+
14
|
|
1271
|
+
|
|
1272
|
+
# Example from Semigroupe manual, Section 5.18: Knast's counterexample
|
|
1273
|
+
gap> S := Semigroup(Transformation([4, 4, 8, 8, 8, 8, 4, 8]),
|
|
1274
|
+
> Transformation([8, 2, 8, 2, 5, 5, 8, 8]),
|
|
1275
|
+
> Transformation([8, 8, 3, 7, 8, 3, 7, 8]),
|
|
1276
|
+
> Transformation([8, 6, 6, 8, 6, 8, 8, 8]));;
|
|
1277
|
+
gap> Size(S);
|
|
1278
|
+
30
|
|
1279
|
+
gap> NrDClasses(S);
|
|
1280
|
+
6
|
|
1281
|
+
gap> NrRClasses(S);
|
|
1282
|
+
12
|
|
1283
|
+
gap> NrLClasses(S);
|
|
1284
|
+
12
|
|
1285
|
+
gap> NrHClasses(S);
|
|
1286
|
+
30
|
|
1287
|
+
gap> NrIdempotents(S);
|
|
1288
|
+
15
|
|
1289
|
+
gap> S.1 ^ 2 = MultiplicativeZero(S);
|
|
1290
|
+
true
|
|
1291
|
+
gap> IsCommutative(S);
|
|
1292
|
+
false
|
|
1293
|
+
gap> IsBand(S);
|
|
1294
|
+
false
|
|
1295
|
+
gap> IsNilpotentSemigroup(S);
|
|
1296
|
+
false
|
|
1297
|
+
gap> IsAperiodicSemigroup(S);
|
|
1298
|
+
true
|
|
1299
|
+
gap> IsGroupAsSemigroup(S);
|
|
1300
|
+
false
|
|
1301
|
+
gap> IsSemigroupWithCommutingIdempotents(S);
|
|
1302
|
+
false
|
|
1303
|
+
|
|
1304
|
+
# Example from Semigroupe manual, Section 5.19
|
|
1305
|
+
gap> S := Semigroup(Transformation([3, 5, 3, 3, 5]),
|
|
1306
|
+
> Transformation([6, 2, 4, 2, 2, 6]));;
|
|
1307
|
+
gap> Size(S);
|
|
1308
|
+
8
|
|
1309
|
+
gap> IsomorphismFpSemigroup(S);;
|
|
1310
|
+
gap> Length(RelationsOfFpSemigroup(Range(last)));
|
|
1311
|
+
4
|
|
1312
|
+
gap> Length(MinimalFactorization(S, Enumerator(S)[Size(S)]));
|
|
1313
|
+
4
|
|
1314
|
+
gap> NrDClasses(S);
|
|
1315
|
+
2
|
|
1316
|
+
gap> NrRClasses(S);
|
|
1317
|
+
4
|
|
1318
|
+
gap> NrLClasses(S);
|
|
1319
|
+
4
|
|
1320
|
+
gap> NrHClasses(S);
|
|
1321
|
+
8
|
|
1322
|
+
gap> NrIdempotents(S);
|
|
1323
|
+
7
|
|
1324
|
+
gap> MultiplicativeZero(S);
|
|
1325
|
+
fail
|
|
1326
|
+
gap> IsCommutative(S);
|
|
1327
|
+
false
|
|
1328
|
+
gap> IsBand(S);
|
|
1329
|
+
false
|
|
1330
|
+
gap> IsNilpotentSemigroup(S);
|
|
1331
|
+
false
|
|
1332
|
+
gap> IsAperiodicSemigroup(S);
|
|
1333
|
+
true
|
|
1334
|
+
gap> IsGroupAsSemigroup(S);
|
|
1335
|
+
false
|
|
1336
|
+
gap> IsSemigroupWithCommutingIdempotents(S);
|
|
1337
|
+
false
|
|
1338
|
+
|
|
1339
|
+
# Example from Semigroupe manual, Section 5.20
|
|
1340
|
+
gap> S := Monoid(Matrix(IsBooleanMat, [[0, 1, 0],
|
|
1341
|
+
> [1, 1, 0],
|
|
1342
|
+
> [0, 1, 0]]),
|
|
1343
|
+
> Matrix(IsBooleanMat, [[1, 0, 0],
|
|
1344
|
+
> [1, 0, 1],
|
|
1345
|
+
> [1, 0, 0]]));
|
|
1346
|
+
<monoid of 3x3 boolean matrices with 2 generators>
|
|
1347
|
+
gap> Size(S);
|
|
1348
|
+
7
|
|
1349
|
+
gap> Length(RelationsOfFpMonoid(Range(IsomorphismFpMonoid(S))));
|
|
1350
|
+
8
|
|
1351
|
+
gap> Length(MinimalFactorization(S, Enumerator(S)[Size(S)]));
|
|
1352
|
+
2
|
|
1353
|
+
gap> NrDClasses(S);
|
|
1354
|
+
4
|
|
1355
|
+
gap> NrRClasses(S);
|
|
1356
|
+
4
|
|
1357
|
+
gap> NrLClasses(S);
|
|
1358
|
+
7
|
|
1359
|
+
gap> NrHClasses(S);
|
|
1360
|
+
7
|
|
1361
|
+
gap> NrIdempotents(S);
|
|
1362
|
+
5
|
|
1363
|
+
gap> MultiplicativeZero(S);
|
|
1364
|
+
fail
|
|
1365
|
+
gap> IsCommutative(S);
|
|
1366
|
+
false
|
|
1367
|
+
gap> IsBand(S);
|
|
1368
|
+
false
|
|
1369
|
+
gap> IsNilpotentSemigroup(S);
|
|
1370
|
+
false
|
|
1371
|
+
gap> IsAperiodicSemigroup(S);
|
|
1372
|
+
true
|
|
1373
|
+
gap> IsGroupAsSemigroup(S);
|
|
1374
|
+
false
|
|
1375
|
+
gap> IsLTrivial(S);
|
|
1376
|
+
true
|
|
1377
|
+
gap> IsSemigroupWithCommutingIdempotents(S);
|
|
1378
|
+
false
|
|
1379
|
+
|
|
1380
|
+
# Example from Semigroupe manual, Section 5.21
|
|
1381
|
+
gap> S := Monoid(Matrix(IsNTPMatrix, [[0, 1, 0],
|
|
1382
|
+
> [1, 1, 0],
|
|
1383
|
+
> [0, 1, 0]],
|
|
1384
|
+
> 1, 2),
|
|
1385
|
+
> Matrix(IsNTPMatrix, [[1, 0, 0],
|
|
1386
|
+
> [1, 0, 1],
|
|
1387
|
+
> [1, 0, 0]],
|
|
1388
|
+
> 1, 2));
|
|
1389
|
+
<monoid of 3x3 ntp matrices with 2 generators>
|
|
1390
|
+
gap> Size(S);
|
|
1391
|
+
37
|
|
1392
|
+
gap> Length(RelationsOfFpMonoid(Range(IsomorphismFpMonoid(S))));
|
|
1393
|
+
12
|
|
1394
|
+
gap> Length(MinimalFactorization(S, Enumerator(S)[Size(S)]));
|
|
1395
|
+
7
|
|
1396
|
+
gap> NrDClasses(S);
|
|
1397
|
+
8
|
|
1398
|
+
gap> NrRClasses(S);
|
|
1399
|
+
14
|
|
1400
|
+
gap> NrLClasses(S);
|
|
1401
|
+
17
|
|
1402
|
+
gap> NrHClasses(S);
|
|
1403
|
+
35
|
|
1404
|
+
gap> NrIdempotents(S);
|
|
1405
|
+
20
|
|
1406
|
+
gap> MultiplicativeZero(S);
|
|
1407
|
+
fail
|
|
1408
|
+
gap> IsCommutative(S);
|
|
1409
|
+
false
|
|
1410
|
+
gap> IsBand(S);
|
|
1411
|
+
false
|
|
1412
|
+
gap> IsNilpotentSemigroup(S);
|
|
1413
|
+
false
|
|
1414
|
+
gap> IsAperiodicSemigroup(S);
|
|
1415
|
+
false
|
|
1416
|
+
gap> IsGroupAsSemigroup(S);
|
|
1417
|
+
false
|
|
1418
|
+
gap> IsLTrivial(S);
|
|
1419
|
+
false
|
|
1420
|
+
gap> IsRTrivial(S);
|
|
1421
|
+
false
|
|
1422
|
+
gap> IsSemigroupWithCommutingIdempotents(S);
|
|
1423
|
+
false
|
|
1424
|
+
|
|
1425
|
+
# Example from Semigroupe manual, Section 5.22
|
|
1426
|
+
gap> S := Semigroup(Matrix(IsMaxPlusMatrix, [[0, -4],
|
|
1427
|
+
> [-4, -1]]),
|
|
1428
|
+
> Matrix(IsMaxPlusMatrix, [[0, -3],
|
|
1429
|
+
> [-3, -1]]));
|
|
1430
|
+
<semigroup of 2x2 max-plus matrices with 2 generators>
|
|
1431
|
+
gap> Size(S);
|
|
1432
|
+
26
|
|
1433
|
+
gap> Length(RelationsOfFpSemigroup(Range(IsomorphismFpSemigroup(S))));
|
|
1434
|
+
9
|
|
1435
|
+
gap> Length(MinimalFactorization(S, Enumerator(S)[Size(S)]));
|
|
1436
|
+
8
|
|
1437
|
+
gap> NrDClasses(S);
|
|
1438
|
+
23
|
|
1439
|
+
gap> NrRClasses(S);
|
|
1440
|
+
24
|
|
1441
|
+
gap> NrLClasses(S);
|
|
1442
|
+
24
|
|
1443
|
+
gap> NrHClasses(S);
|
|
1444
|
+
26
|
|
1445
|
+
gap> NrIdempotents(S);
|
|
1446
|
+
4
|
|
1447
|
+
gap> MultiplicativeZero(S);
|
|
1448
|
+
fail
|
|
1449
|
+
gap> IsCommutative(S);
|
|
1450
|
+
false
|
|
1451
|
+
gap> IsBand(S);
|
|
1452
|
+
false
|
|
1453
|
+
gap> IsNilpotentSemigroup(S);
|
|
1454
|
+
false
|
|
1455
|
+
gap> IsAperiodicSemigroup(S);
|
|
1456
|
+
true
|
|
1457
|
+
gap> IsGroupAsSemigroup(S);
|
|
1458
|
+
false
|
|
1459
|
+
gap> IsLTrivial(S);
|
|
1460
|
+
false
|
|
1461
|
+
gap> IsRTrivial(S);
|
|
1462
|
+
false
|
|
1463
|
+
gap> IsSemigroupWithCommutingIdempotents(S);
|
|
1464
|
+
false
|
|
1465
|
+
|
|
1466
|
+
# Example from Semigroupe manual, Section 6
|
|
1467
|
+
gap> S := Monoid(Transformation([2, 3, 4, 4]),
|
|
1468
|
+
> Transformation([4, 1, 2, 4]), rec(acting := false));;
|
|
1469
|
+
gap> Size(S);
|
|
1470
|
+
15
|
|
1471
|
+
gap> Length(RelationsOfFpMonoid(Range(IsomorphismFpMonoid(S))));
|
|
1472
|
+
9
|
|
1473
|
+
gap> Length(MinimalFactorization(S, Enumerator(S)[Size(S)]));
|
|
1474
|
+
4
|
|
1475
|
+
gap> NrDClasses(S);
|
|
1476
|
+
4
|
|
1477
|
+
gap> NrRClasses(S);
|
|
1478
|
+
7
|
|
1479
|
+
gap> NrLClasses(S);
|
|
1480
|
+
7
|
|
1481
|
+
gap> NrHClasses(S);
|
|
1482
|
+
15
|
|
1483
|
+
gap> NrIdempotents(S);
|
|
1484
|
+
7
|
|
1485
|
+
gap> MultiplicativeZero(S) = S.2 ^ 3;
|
|
1486
|
+
true
|
|
1487
|
+
gap> IsCommutative(S);
|
|
1488
|
+
false
|
|
1489
|
+
gap> IsBand(S);
|
|
1490
|
+
false
|
|
1491
|
+
gap> IsNilpotentSemigroup(S);
|
|
1492
|
+
false
|
|
1493
|
+
gap> IsAperiodicSemigroup(S);
|
|
1494
|
+
true
|
|
1495
|
+
gap> IsGroupAsSemigroup(S);
|
|
1496
|
+
false
|
|
1497
|
+
gap> IsLTrivial(S);
|
|
1498
|
+
false
|
|
1499
|
+
gap> IsRTrivial(S);
|
|
1500
|
+
false
|
|
1501
|
+
gap> IsSemigroupWithCommutingIdempotents(S);
|
|
1502
|
+
true
|
|
1503
|
+
|
|
1504
|
+
# Test PartialUniformBlockBijectionMonoid
|
|
1505
|
+
gap> S := PartialUniformBlockBijectionMonoid(5);
|
|
1506
|
+
<inverse block bijection monoid of degree 6 with 4 generators>
|
|
1507
|
+
gap> S := PartialUniformBlockBijectionMonoid(2);
|
|
1508
|
+
<inverse block bijection monoid of degree 3 with 3 generators>
|
|
1509
|
+
gap> Size(S);
|
|
1510
|
+
8
|
|
1511
|
+
gap> List([1 .. 5], n -> NrIdempotents(PartialUniformBlockBijectionMonoid(n)));
|
|
1512
|
+
[ 2, 5, 15, 52, 203 ]
|
|
1513
|
+
gap> List([1 .. 5], n -> Size(PartialUniformBlockBijectionMonoid(n)));
|
|
1514
|
+
[ 2, 8, 53, 512, 6697 ]
|
|
1515
|
+
gap> S := PartialUniformBlockBijectionMonoid(1);
|
|
1516
|
+
<commutative inverse block bijection monoid of degree 2 with 1 generator>
|
|
1517
|
+
gap> List([1 .. 5], n -> NrDClasses(PartialUniformBlockBijectionMonoid(n)));
|
|
1518
|
+
[ 2, 4, 7, 12, 19 ]
|
|
1519
|
+
|
|
1520
|
+
# Test PartialDualSymmetricInverseMonoid
|
|
1521
|
+
gap> S := PartialDualSymmetricInverseMonoid(4);
|
|
1522
|
+
<inverse block bijection monoid of degree 5 with 4 generators>
|
|
1523
|
+
gap> S := PartialDualSymmetricInverseMonoid(1);
|
|
1524
|
+
<commutative inverse block bijection monoid of degree 2 with 1 generator>
|
|
1525
|
+
gap> S := PartialDualSymmetricInverseMonoid(0);
|
|
1526
|
+
<trivial block bijection group of degree 0 with 1 generator>
|
|
1527
|
+
gap> S := PartialDualSymmetricInverseMonoid(2);
|
|
1528
|
+
<inverse block bijection monoid of degree 3 with 3 generators>
|
|
1529
|
+
gap> List([0 .. 5], n -> NrIdempotents(PartialDualSymmetricInverseMonoid(n)));
|
|
1530
|
+
[ 1, 2, 5, 15, 52, 203 ]
|
|
1531
|
+
gap> List([0 .. 5], n -> Size(PartialDualSymmetricInverseMonoid(n)));
|
|
1532
|
+
[ 1, 2, 8, 80, 1280, 29072 ]
|
|
1533
|
+
gap> List([0 .. 5], n -> NrDClasses(PartialDualSymmetricInverseMonoid(n)));
|
|
1534
|
+
[ 1, 2, 4, 6, 8, 10 ]
|
|
1535
|
+
gap> PartialDualSymmetricInverseMonoid(-1);
|
|
1536
|
+
Error, the argument (an int) is not >= 0
|
|
1537
|
+
|
|
1538
|
+
# Test RookPartitionMonoid
|
|
1539
|
+
gap> S := RookPartitionMonoid(4);
|
|
1540
|
+
<regular bipartition *-monoid of degree 5 with 5 generators>
|
|
1541
|
+
gap> Size(S);
|
|
1542
|
+
21147
|
|
1543
|
+
gap> NrLClasses(S);
|
|
1544
|
+
227
|
|
1545
|
+
gap> NrRClasses(S);
|
|
1546
|
+
227
|
|
1547
|
+
gap> NrDClasses(S);
|
|
1548
|
+
5
|
|
1549
|
+
gap> NrHClasses(S);
|
|
1550
|
+
16423
|
|
1551
|
+
gap> NrIdempotents(S);
|
|
1552
|
+
6255
|
|
1553
|
+
gap> IsStarSemigroup(S);
|
|
1554
|
+
true
|
|
1555
|
+
gap> List([1 .. 3], x -> Size(RookPartitionMonoid(x)));
|
|
1556
|
+
[ 5, 52, 877 ]
|
|
1557
|
+
|
|
1558
|
+
# Test GLM
|
|
1559
|
+
gap> S := GLM(3, 3);
|
|
1560
|
+
<general linear monoid 3x3 over GF(3)>
|
|
1561
|
+
gap> Size(S);
|
|
1562
|
+
19683
|
|
1563
|
+
gap> NrLClasses(S);
|
|
1564
|
+
28
|
|
1565
|
+
gap> NrRClasses(S);
|
|
1566
|
+
28
|
|
1567
|
+
gap> NrDClasses(S);
|
|
1568
|
+
4
|
|
1569
|
+
gap> NrHClasses(S);
|
|
1570
|
+
340
|
|
1571
|
+
gap> NrIdempotents(S);
|
|
1572
|
+
236
|
|
1573
|
+
gap> IsRegularSemigroup(S);
|
|
1574
|
+
true
|
|
1575
|
+
gap> IsFullMatrixMonoid(S);
|
|
1576
|
+
true
|
|
1577
|
+
|
|
1578
|
+
# Test SLM
|
|
1579
|
+
gap> S := SLM(3, 3);
|
|
1580
|
+
<regular monoid of 3x3 matrices over GF(3) with 3 generators>
|
|
1581
|
+
gap> Size(S);
|
|
1582
|
+
14067
|
|
1583
|
+
gap> NrLClasses(S);
|
|
1584
|
+
28
|
|
1585
|
+
gap> NrRClasses(S);
|
|
1586
|
+
28
|
|
1587
|
+
gap> NrDClasses(S);
|
|
1588
|
+
4
|
|
1589
|
+
gap> NrHClasses(S);
|
|
1590
|
+
340
|
|
1591
|
+
gap> NrIdempotents(S);
|
|
1592
|
+
236
|
|
1593
|
+
gap> IsRegularSemigroup(S);
|
|
1594
|
+
true
|
|
1595
|
+
gap> IsFullMatrixMonoid(S);
|
|
1596
|
+
false
|
|
1597
|
+
|
|
1598
|
+
# Test MunnSemigroup
|
|
1599
|
+
gap> S := InverseSemigroup(PartialPerm([1, 2, 3, 4, 5, 6, 7, 10],
|
|
1600
|
+
> [4, 6, 7, 3, 8, 2, 9, 5]),
|
|
1601
|
+
> PartialPerm([1, 2, 7, 9],
|
|
1602
|
+
> [5, 6, 4, 3]));;
|
|
1603
|
+
gap> T := IdempotentGeneratedSubsemigroup(S);;
|
|
1604
|
+
gap> M := MunnSemigroup(T);;
|
|
1605
|
+
gap> NrIdempotents(M);
|
|
1606
|
+
60
|
|
1607
|
+
gap> NrIdempotents(S);
|
|
1608
|
+
60
|
|
1609
|
+
gap> MunnSemigroup(S);
|
|
1610
|
+
Error, the argument (a semigroup) is not a semilattice
|
|
1611
|
+
|
|
1612
|
+
# Test OrderEndomorphisms
|
|
1613
|
+
gap> S := OrderEndomorphisms(4);
|
|
1614
|
+
<regular transformation monoid of degree 4 with 4 generators>
|
|
1615
|
+
gap> Size(S);
|
|
1616
|
+
35
|
|
1617
|
+
gap> NrLClasses(S);
|
|
1618
|
+
15
|
|
1619
|
+
gap> NrRClasses(S);
|
|
1620
|
+
8
|
|
1621
|
+
gap> NrDClasses(S);
|
|
1622
|
+
4
|
|
1623
|
+
gap> NrHClasses(S);
|
|
1624
|
+
35
|
|
1625
|
+
gap> NrIdempotents(S);
|
|
1626
|
+
21
|
|
1627
|
+
gap> IsRegularSemigroup(S);
|
|
1628
|
+
true
|
|
1629
|
+
gap> S := OrderEndomorphisms(1);
|
|
1630
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
1631
|
+
gap> Size(S);
|
|
1632
|
+
1
|
|
1633
|
+
gap> NrLClasses(S);
|
|
1634
|
+
1
|
|
1635
|
+
gap> NrRClasses(S);
|
|
1636
|
+
1
|
|
1637
|
+
gap> NrDClasses(S);
|
|
1638
|
+
1
|
|
1639
|
+
gap> NrHClasses(S);
|
|
1640
|
+
1
|
|
1641
|
+
gap> NrIdempotents(S);
|
|
1642
|
+
1
|
|
1643
|
+
gap> IsRegularSemigroup(S);
|
|
1644
|
+
true
|
|
1645
|
+
|
|
1646
|
+
# Test PartialOrderEndomorphisms
|
|
1647
|
+
gap> S := PartialOrderEndomorphisms(4);
|
|
1648
|
+
<regular transformation monoid of degree 5 with 8 generators>
|
|
1649
|
+
gap> Size(S);
|
|
1650
|
+
192
|
|
1651
|
+
gap> NrLClasses(S);
|
|
1652
|
+
16
|
|
1653
|
+
gap> NrRClasses(S);
|
|
1654
|
+
41
|
|
1655
|
+
gap> NrDClasses(S);
|
|
1656
|
+
5
|
|
1657
|
+
gap> NrHClasses(S);
|
|
1658
|
+
192
|
|
1659
|
+
gap> NrIdempotents(S);
|
|
1660
|
+
76
|
|
1661
|
+
gap> IsRegularSemigroup(S);
|
|
1662
|
+
true
|
|
1663
|
+
gap> S := PartialOrderEndomorphisms(1);
|
|
1664
|
+
<commutative inverse transformation monoid of degree 2 with 1 generator>
|
|
1665
|
+
|
|
1666
|
+
# Test OrderAntiEndomorphisms
|
|
1667
|
+
gap> S := OrderAntiEndomorphisms(4);
|
|
1668
|
+
<regular transformation monoid of degree 4 with 5 generators>
|
|
1669
|
+
gap> Size(S);
|
|
1670
|
+
66
|
|
1671
|
+
gap> NrLClasses(S);
|
|
1672
|
+
15
|
|
1673
|
+
gap> NrRClasses(S);
|
|
1674
|
+
8
|
|
1675
|
+
gap> NrDClasses(S);
|
|
1676
|
+
4
|
|
1677
|
+
gap> NrHClasses(S);
|
|
1678
|
+
35
|
|
1679
|
+
gap> NrIdempotents(S);
|
|
1680
|
+
21
|
|
1681
|
+
gap> IsRegularSemigroup(S);
|
|
1682
|
+
true
|
|
1683
|
+
gap> S := OrderAntiEndomorphisms(1);
|
|
1684
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
1685
|
+
|
|
1686
|
+
# Test PartialOrderAntiEndomorphisms
|
|
1687
|
+
gap> S := PartialOrderAntiEndomorphisms(4);
|
|
1688
|
+
<regular transformation monoid of degree 5 with 9 generators>
|
|
1689
|
+
gap> Size(S);
|
|
1690
|
+
323
|
|
1691
|
+
gap> NrLClasses(S);
|
|
1692
|
+
16
|
|
1693
|
+
gap> NrRClasses(S);
|
|
1694
|
+
41
|
|
1695
|
+
gap> NrDClasses(S);
|
|
1696
|
+
5
|
|
1697
|
+
gap> NrHClasses(S);
|
|
1698
|
+
192
|
|
1699
|
+
gap> NrIdempotents(S);
|
|
1700
|
+
76
|
|
1701
|
+
gap> IsRegularSemigroup(S);
|
|
1702
|
+
true
|
|
1703
|
+
gap> S := PartialOrderAntiEndomorphisms(1);
|
|
1704
|
+
<regular transformation monoid of degree 2 with 2 generators>
|
|
1705
|
+
|
|
1706
|
+
# Test PartialTranformationMonoid
|
|
1707
|
+
gap> S := PartialTransformationMonoid(1);
|
|
1708
|
+
<commutative inverse transformation monoid of degree 2 with 1 generator>
|
|
1709
|
+
gap> Size(S);
|
|
1710
|
+
2
|
|
1711
|
+
gap> NrLClasses(S);
|
|
1712
|
+
2
|
|
1713
|
+
gap> NrRClasses(S);
|
|
1714
|
+
2
|
|
1715
|
+
gap> NrDClasses(S);
|
|
1716
|
+
2
|
|
1717
|
+
gap> NrHClasses(S);
|
|
1718
|
+
2
|
|
1719
|
+
gap> NrIdempotents(S);
|
|
1720
|
+
2
|
|
1721
|
+
gap> IsRegularSemigroup(S);
|
|
1722
|
+
true
|
|
1723
|
+
gap> S := PartialTransformationMonoid(2);
|
|
1724
|
+
<regular transformation monoid of degree 3 with 3 generators>
|
|
1725
|
+
gap> Size(S);
|
|
1726
|
+
9
|
|
1727
|
+
gap> NrLClasses(S);
|
|
1728
|
+
4
|
|
1729
|
+
gap> NrRClasses(S);
|
|
1730
|
+
5
|
|
1731
|
+
gap> NrDClasses(S);
|
|
1732
|
+
3
|
|
1733
|
+
gap> NrHClasses(S);
|
|
1734
|
+
8
|
|
1735
|
+
gap> NrIdempotents(S);
|
|
1736
|
+
6
|
|
1737
|
+
gap> IsRegularSemigroup(S);
|
|
1738
|
+
true
|
|
1739
|
+
gap> S := PartialTransformationMonoid(4);
|
|
1740
|
+
<regular transformation monoid of degree 5 with 4 generators>
|
|
1741
|
+
gap> Size(S);
|
|
1742
|
+
625
|
|
1743
|
+
gap> NrLClasses(S);
|
|
1744
|
+
16
|
|
1745
|
+
gap> NrRClasses(S);
|
|
1746
|
+
52
|
|
1747
|
+
gap> NrDClasses(S);
|
|
1748
|
+
5
|
|
1749
|
+
gap> NrHClasses(S);
|
|
1750
|
+
252
|
|
1751
|
+
gap> NrIdempotents(S);
|
|
1752
|
+
104
|
|
1753
|
+
gap> IsRegularSemigroup(S);
|
|
1754
|
+
true
|
|
1755
|
+
|
|
1756
|
+
# PartitionMonoid
|
|
1757
|
+
gap> PartitionMonoid(-1);
|
|
1758
|
+
Error, the argument (an int) is not >= 0
|
|
1759
|
+
gap> PartitionMonoid(0);
|
|
1760
|
+
<trivial block bijection group of degree 0 with 1 generator>
|
|
1761
|
+
gap> PartitionMonoid(1);
|
|
1762
|
+
<commutative bipartition monoid of degree 1 with 1 generator>
|
|
1763
|
+
gap> PartitionMonoid(5);
|
|
1764
|
+
<regular bipartition *-monoid of size 115975, degree 5 with 4 generators>
|
|
1765
|
+
|
|
1766
|
+
# DualSymmetricInverseMonoid
|
|
1767
|
+
gap> DualSymmetricInverseMonoid(-1);
|
|
1768
|
+
Error, the argument (an int) is not >= 0
|
|
1769
|
+
gap> DualSymmetricInverseMonoid(0);
|
|
1770
|
+
<trivial block bijection group of degree 0 with 1 generator>
|
|
1771
|
+
gap> DualSymmetricInverseMonoid(1);
|
|
1772
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
1773
|
+
gap> DualSymmetricInverseMonoid(2);
|
|
1774
|
+
<inverse block bijection monoid of degree 2 with 2 generators>
|
|
1775
|
+
gap> DualSymmetricInverseMonoid(5);
|
|
1776
|
+
<inverse block bijection monoid of degree 5 with 3 generators>
|
|
1777
|
+
|
|
1778
|
+
# BrauerMonoid
|
|
1779
|
+
gap> BrauerMonoid(-1);
|
|
1780
|
+
Error, the argument (an int) is not >= 0
|
|
1781
|
+
gap> BrauerMonoid(0);
|
|
1782
|
+
<trivial block bijection group of degree 0 with 1 generator>
|
|
1783
|
+
gap> BrauerMonoid(1);
|
|
1784
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
1785
|
+
gap> BrauerMonoid(2);
|
|
1786
|
+
<regular bipartition *-monoid of degree 2 with 2 generators>
|
|
1787
|
+
gap> BrauerMonoid(5);
|
|
1788
|
+
<regular bipartition *-monoid of degree 5 with 3 generators>
|
|
1789
|
+
|
|
1790
|
+
# PartialBrauerMonoid
|
|
1791
|
+
gap> PartialBrauerMonoid(-1);
|
|
1792
|
+
Error, the argument (an int) is not >= 0
|
|
1793
|
+
gap> PartialBrauerMonoid(0);
|
|
1794
|
+
<trivial block bijection group of degree 0 with 1 generator>
|
|
1795
|
+
gap> PartialBrauerMonoid(1);
|
|
1796
|
+
<regular bipartition *-monoid of degree 1 with 2 generators>
|
|
1797
|
+
gap> PartialBrauerMonoid(2);
|
|
1798
|
+
<regular bipartition *-monoid of degree 2 with 5 generators>
|
|
1799
|
+
gap> PartialBrauerMonoid(5);
|
|
1800
|
+
<regular bipartition *-monoid of degree 5 with 8 generators>
|
|
1801
|
+
|
|
1802
|
+
# JonesMonoid
|
|
1803
|
+
gap> JonesMonoid(-1);
|
|
1804
|
+
Error, the argument (an int) is not >= 0
|
|
1805
|
+
gap> JonesMonoid(0);
|
|
1806
|
+
<trivial block bijection group of degree 0 with 1 generator>
|
|
1807
|
+
gap> JonesMonoid(1);
|
|
1808
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
1809
|
+
gap> JonesMonoid(2);
|
|
1810
|
+
<commutative inverse bipartition monoid of degree 2 with 1 generator>
|
|
1811
|
+
gap> JonesMonoid(5);
|
|
1812
|
+
<regular bipartition *-monoid of degree 5 with 4 generators>
|
|
1813
|
+
|
|
1814
|
+
# AnnularJonesMonoid
|
|
1815
|
+
gap> AnnularJonesMonoid(-1);
|
|
1816
|
+
Error, the argument (an int) is not >= 0
|
|
1817
|
+
gap> AnnularJonesMonoid(0);
|
|
1818
|
+
<trivial block bijection group of degree 0 with 1 generator>
|
|
1819
|
+
gap> AnnularJonesMonoid(1);
|
|
1820
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
1821
|
+
gap> AnnularJonesMonoid(2);
|
|
1822
|
+
<regular bipartition *-monoid of degree 2 with 2 generators>
|
|
1823
|
+
gap> AnnularJonesMonoid(5);
|
|
1824
|
+
<regular bipartition *-monoid of degree 5 with 2 generators>
|
|
1825
|
+
|
|
1826
|
+
# PartialJonesMonoid
|
|
1827
|
+
gap> PartialJonesMonoid(-1);
|
|
1828
|
+
Error, the argument (an int) is not >= 0
|
|
1829
|
+
gap> PartialJonesMonoid(0);
|
|
1830
|
+
<trivial block bijection group of degree 0 with 1 generator>
|
|
1831
|
+
gap> PartialJonesMonoid(1);
|
|
1832
|
+
<commutative bipartition monoid of degree 1 with 1 generator>
|
|
1833
|
+
gap> PartialJonesMonoid(2);
|
|
1834
|
+
<regular bipartition *-monoid of degree 2 with 3 generators>
|
|
1835
|
+
gap> PartialJonesMonoid(5);
|
|
1836
|
+
<regular bipartition *-monoid of degree 5 with 9 generators>
|
|
1837
|
+
|
|
1838
|
+
# MotzkinMonoid
|
|
1839
|
+
gap> MotzkinMonoid(-1);
|
|
1840
|
+
Error, the argument (an int) is not >= 0
|
|
1841
|
+
gap> MotzkinMonoid(0);
|
|
1842
|
+
<trivial block bijection group of degree 0 with 1 generator>
|
|
1843
|
+
gap> MotzkinMonoid(1);
|
|
1844
|
+
<regular bipartition *-monoid of degree 1 with 2 generators>
|
|
1845
|
+
gap> MotzkinMonoid(2);
|
|
1846
|
+
<regular bipartition *-monoid of degree 2 with 4 generators>
|
|
1847
|
+
gap> MotzkinMonoid(5);
|
|
1848
|
+
<regular bipartition *-monoid of degree 5 with 10 generators>
|
|
1849
|
+
|
|
1850
|
+
# POI
|
|
1851
|
+
gap> POI(1);
|
|
1852
|
+
<symmetric inverse monoid of degree 1>
|
|
1853
|
+
gap> POI(2);
|
|
1854
|
+
<inverse partial perm monoid of rank 2 with 2 generators>
|
|
1855
|
+
gap> POI(5);
|
|
1856
|
+
<inverse partial perm monoid of rank 5 with 5 generators>
|
|
1857
|
+
|
|
1858
|
+
# POPI
|
|
1859
|
+
gap> POPI(1);
|
|
1860
|
+
<symmetric inverse monoid of degree 1>
|
|
1861
|
+
gap> POPI(2);
|
|
1862
|
+
<symmetric inverse monoid of degree 2>
|
|
1863
|
+
gap> POPI(5);
|
|
1864
|
+
<inverse partial perm monoid of rank 5 with 2 generators>
|
|
1865
|
+
|
|
1866
|
+
# PODI
|
|
1867
|
+
gap> PODI(1);
|
|
1868
|
+
<symmetric inverse monoid of degree 1>
|
|
1869
|
+
gap> PODI(2);
|
|
1870
|
+
<symmetric inverse monoid of degree 2>
|
|
1871
|
+
gap> PODI(5);
|
|
1872
|
+
<inverse partial perm monoid of rank 5 with 6 generators>
|
|
1873
|
+
|
|
1874
|
+
# PORI
|
|
1875
|
+
gap> PORI(1);
|
|
1876
|
+
<symmetric inverse monoid of degree 1>
|
|
1877
|
+
gap> PORI(2);
|
|
1878
|
+
<symmetric inverse monoid of degree 2>
|
|
1879
|
+
gap> PORI(5);
|
|
1880
|
+
<inverse partial perm monoid of rank 5 with 3 generators>
|
|
1881
|
+
|
|
1882
|
+
# SingularPartitionMonoid
|
|
1883
|
+
gap> SingularPartitionMonoid(1);;
|
|
1884
|
+
gap> SingularPartitionMonoid(2);
|
|
1885
|
+
<regular bipartition *-semigroup ideal of degree 2 with 1 generator>
|
|
1886
|
+
gap> SingularPartitionMonoid(5);
|
|
1887
|
+
<regular bipartition *-semigroup ideal of degree 5 with 1 generator>
|
|
1888
|
+
|
|
1889
|
+
# SingularTransformationMonoid
|
|
1890
|
+
gap> SingularTransformationMonoid(1);
|
|
1891
|
+
Error, the argument (an int) is not > 1
|
|
1892
|
+
gap> SingularTransformationMonoid(2);
|
|
1893
|
+
<regular transformation semigroup ideal of degree 2 with 1 generator>
|
|
1894
|
+
gap> SingularTransformationMonoid(5);
|
|
1895
|
+
<regular transformation semigroup ideal of degree 5 with 1 generator>
|
|
1896
|
+
|
|
1897
|
+
# SingularOrderEndomorphisms
|
|
1898
|
+
gap> SingularOrderEndomorphisms(1);
|
|
1899
|
+
Error, the argument (an int) is not > 1
|
|
1900
|
+
gap> SingularOrderEndomorphisms(2);
|
|
1901
|
+
<regular transformation semigroup ideal of degree 2 with 1 generator>
|
|
1902
|
+
gap> SingularOrderEndomorphisms(5);
|
|
1903
|
+
<regular transformation semigroup ideal of degree 5 with 1 generator>
|
|
1904
|
+
|
|
1905
|
+
# SingularBrauerMonoid
|
|
1906
|
+
gap> SingularBrauerMonoid(1);
|
|
1907
|
+
Error, the argument (an int) is not > 1
|
|
1908
|
+
gap> SingularBrauerMonoid(2);
|
|
1909
|
+
<regular bipartition *-semigroup ideal of degree 2 with 1 generator>
|
|
1910
|
+
gap> SingularBrauerMonoid(5);
|
|
1911
|
+
<regular bipartition *-semigroup ideal of degree 5 with 1 generator>
|
|
1912
|
+
|
|
1913
|
+
# SingularJonesMonoid
|
|
1914
|
+
gap> SingularJonesMonoid(1);
|
|
1915
|
+
Error, the argument (an int) is not > 1
|
|
1916
|
+
gap> SingularJonesMonoid(2);
|
|
1917
|
+
<commutative inverse bipartition semigroup ideal of degree 2 with 1 generator>
|
|
1918
|
+
gap> SingularJonesMonoid(5);
|
|
1919
|
+
<regular bipartition *-semigroup ideal of degree 5 with 1 generator>
|
|
1920
|
+
|
|
1921
|
+
# SingularDualSymmetricInverseMonoid
|
|
1922
|
+
gap> SingularDualSymmetricInverseMonoid(1);
|
|
1923
|
+
Error, the argument (an int) is not > 1
|
|
1924
|
+
gap> SingularDualSymmetricInverseMonoid(2);
|
|
1925
|
+
<inverse bipartition semigroup ideal of degree 2 with 1 generator>
|
|
1926
|
+
gap> SingularDualSymmetricInverseMonoid(5);
|
|
1927
|
+
<inverse bipartition semigroup ideal of degree 5 with 1 generator>
|
|
1928
|
+
|
|
1929
|
+
# FullTropicalMinPlusMonoid
|
|
1930
|
+
gap> FullTropicalMinPlusMonoid(3, 10);
|
|
1931
|
+
<monoid of 3x3 tropical min-plus matrices with 521 generators>
|
|
1932
|
+
gap> FullTropicalMinPlusMonoid(10, 10);
|
|
1933
|
+
Error, the 1st argument (dimension) must be 2 or 3
|
|
1934
|
+
|
|
1935
|
+
# FullPBRMonoid
|
|
1936
|
+
gap> FullPBRMonoid(1);
|
|
1937
|
+
<pbr monoid of degree 1 with 4 generators>
|
|
1938
|
+
gap> FullPBRMonoid(2);
|
|
1939
|
+
<pbr monoid of degree 2 with 10 generators>
|
|
1940
|
+
gap> FullPBRMonoid(3);
|
|
1941
|
+
Error, the argument (a pos. int.) must be at most 2
|
|
1942
|
+
|
|
1943
|
+
# Test RegularBooleanMatMonoid
|
|
1944
|
+
gap> S := RegularBooleanMatMonoid(1);
|
|
1945
|
+
<commutative monoid of 1x1 boolean matrices with 1 generator>
|
|
1946
|
+
gap> S = FullBooleanMatMonoid(1);
|
|
1947
|
+
true
|
|
1948
|
+
gap> Size(S);
|
|
1949
|
+
2
|
|
1950
|
+
gap> S := RegularBooleanMatMonoid(2);
|
|
1951
|
+
<monoid of 2x2 boolean matrices with 3 generators>
|
|
1952
|
+
gap> Size(S);
|
|
1953
|
+
16
|
|
1954
|
+
gap> S = FullBooleanMatMonoid(2);
|
|
1955
|
+
true
|
|
1956
|
+
gap> S := RegularBooleanMatMonoid(3);
|
|
1957
|
+
<monoid of 3x3 boolean matrices with 4 generators>
|
|
1958
|
+
gap> T := FullBooleanMatMonoid(3);
|
|
1959
|
+
<monoid of 3x3 boolean matrices with 5 generators>
|
|
1960
|
+
gap> Size(S);
|
|
1961
|
+
506
|
|
1962
|
+
gap> S = T;
|
|
1963
|
+
false
|
|
1964
|
+
gap> S = SubsemigroupByProperty(T, x -> IsRegularSemigroupElement(T, x));
|
|
1965
|
+
true
|
|
1966
|
+
|
|
1967
|
+
# Test GossipMonoid
|
|
1968
|
+
gap> S := GossipMonoid(1);
|
|
1969
|
+
<trivial group of 1x1 boolean matrices with 1 generator>
|
|
1970
|
+
gap> Size(S);
|
|
1971
|
+
1
|
|
1972
|
+
gap> T := SubsemigroupByProperty(FullBooleanMatMonoid(2),
|
|
1973
|
+
> IsEquivalenceBooleanMat);
|
|
1974
|
+
<commutative monoid of size 2, 2x2 boolean matrices with 1 generator>
|
|
1975
|
+
gap> GossipMonoid(3) = SubsemigroupByProperty(FullBooleanMatMonoid(3),
|
|
1976
|
+
> IsEquivalenceBooleanMat);
|
|
1977
|
+
true
|
|
1978
|
+
|
|
1979
|
+
# Test UnitriangularBooleanMatMonoid
|
|
1980
|
+
gap> UnitriangularBooleanMatMonoid(1);
|
|
1981
|
+
<trivial group of 1x1 boolean matrices with 1 generator>
|
|
1982
|
+
gap> n := 2;;
|
|
1983
|
+
gap> S := UnitriangularBooleanMatMonoid(n);
|
|
1984
|
+
<commutative monoid of 2x2 boolean matrices with 1 generator>
|
|
1985
|
+
gap> Size(S) = 2 ^ (n * (n - 1) / 2);
|
|
1986
|
+
true
|
|
1987
|
+
gap> IsDTrivial(S);
|
|
1988
|
+
true
|
|
1989
|
+
gap> n := 3;;
|
|
1990
|
+
gap> S := UnitriangularBooleanMatMonoid(n);
|
|
1991
|
+
<monoid of 3x3 boolean matrices with 3 generators>
|
|
1992
|
+
gap> Size(S) = 2 ^ (n * (n - 1) / 2);
|
|
1993
|
+
true
|
|
1994
|
+
gap> IsDTrivial(S);
|
|
1995
|
+
true
|
|
1996
|
+
|
|
1997
|
+
# Test TriangularBooleanMatMonoid
|
|
1998
|
+
gap> TriangularBooleanMatMonoid(1);
|
|
1999
|
+
<trivial group of 1x1 boolean matrices with 1 generator>
|
|
2000
|
+
gap> n := 2;;
|
|
2001
|
+
gap> S := TriangularBooleanMatMonoid(n);
|
|
2002
|
+
<monoid of 2x2 boolean matrices with 3 generators>
|
|
2003
|
+
gap> Size(S);
|
|
2004
|
+
8
|
|
2005
|
+
gap> n := 3;;
|
|
2006
|
+
gap> S := TriangularBooleanMatMonoid(n);
|
|
2007
|
+
<monoid of 3x3 boolean matrices with 6 generators>
|
|
2008
|
+
gap> Size(S);
|
|
2009
|
+
64
|
|
2010
|
+
|
|
2011
|
+
# Test ReflexiveBooleanMatMonoid
|
|
2012
|
+
gap> ReflexiveBooleanMatMonoid(1);
|
|
2013
|
+
<trivial group of 1x1 boolean matrices with 1 generator>
|
|
2014
|
+
gap> S := ReflexiveBooleanMatMonoid(3);
|
|
2015
|
+
<monoid of 3x3 boolean matrices with 8 generators>
|
|
2016
|
+
gap> S := ReflexiveBooleanMatMonoid(5);
|
|
2017
|
+
<monoid of 5x5 boolean matrices with 1414 generators>
|
|
2018
|
+
gap> S := ReflexiveBooleanMatMonoid(7);
|
|
2019
|
+
Error, generators for this monoid are only provided up to dimension 6
|
|
2020
|
+
|
|
2021
|
+
# Test HallMonoid
|
|
2022
|
+
gap> HallMonoid(1);
|
|
2023
|
+
<trivial group of 1x1 boolean matrices with 1 generator>
|
|
2024
|
+
gap> S := HallMonoid(3);
|
|
2025
|
+
<monoid of 3x3 boolean matrices with 4 generators>
|
|
2026
|
+
gap> Size(S);
|
|
2027
|
+
247
|
|
2028
|
+
gap> S := HallMonoid(5);
|
|
2029
|
+
<monoid of 5x5 boolean matrices with 12 generators>
|
|
2030
|
+
gap> S := HallMonoid(6);
|
|
2031
|
+
<monoid of 6x6 boolean matrices with 67 generators>
|
|
2032
|
+
gap> S := HallMonoid(7);
|
|
2033
|
+
<monoid of 7x7 boolean matrices with 2141 generators>
|
|
2034
|
+
gap> S := HallMonoid(9);
|
|
2035
|
+
Error, generators for this monoid are only known up to dimension 8
|
|
2036
|
+
|
|
2037
|
+
# Test FullBooleanMatMonoid
|
|
2038
|
+
gap> FullBooleanMatMonoid(1);
|
|
2039
|
+
<commutative monoid of 1x1 boolean matrices with 1 generator>
|
|
2040
|
+
gap> S := FullBooleanMatMonoid(3);
|
|
2041
|
+
<monoid of 3x3 boolean matrices with 5 generators>
|
|
2042
|
+
gap> Size(S) = 2 ^ (3 ^ 2);
|
|
2043
|
+
true
|
|
2044
|
+
gap> S := FullBooleanMatMonoid(5);
|
|
2045
|
+
<monoid of 5x5 boolean matrices with 13 generators>
|
|
2046
|
+
gap> S := FullBooleanMatMonoid(6);
|
|
2047
|
+
<monoid of 6x6 boolean matrices with 68 generators>
|
|
2048
|
+
gap> S := FullBooleanMatMonoid(7);
|
|
2049
|
+
<monoid of 7x7 boolean matrices with 2142 generators>
|
|
2050
|
+
gap> S := FullBooleanMatMonoid(9);
|
|
2051
|
+
Error, generators for this monoid are only known up to dimension 8
|
|
2052
|
+
|
|
2053
|
+
#
|
|
2054
|
+
gap> SEMIGROUPS.StopTest();
|
|
2055
|
+
gap> STOP_TEST("Semigroups package: standard/semigroups/semiex.tst");
|