passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-macosx_14_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1157 -0
- gap/pkg/semigroups/config.status +1132 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,1025 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W extreme/inverse.tst
|
|
4
|
+
#Y Copyright (C) 2011-15 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local D, IsIsometryPP, L, R, S, acting, ccong, classx, classy, classz, cong
|
|
12
|
+
#@local d, f, gens, h, i, inv, iso, iter, j, k, l, m, n, pairs, q, r, s, x, y, z
|
|
13
|
+
gap> START_TEST("Semigroups package: extreme/inverse.tst");
|
|
14
|
+
gap> LoadPackage("semigroups", false);;
|
|
15
|
+
|
|
16
|
+
#
|
|
17
|
+
gap> SEMIGROUPS.StartTest();
|
|
18
|
+
gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
|
|
19
|
+
|
|
20
|
+
# InverseTest1
|
|
21
|
+
gap> gens := [PartialPermNC([1, 2, 4], [1, 5, 2]),
|
|
22
|
+
> PartialPermNC([1, 2, 3], [2, 3, 5]),
|
|
23
|
+
> PartialPermNC([1, 3, 4], [2, 5, 4]),
|
|
24
|
+
> PartialPermNC([1, 2, 4], [3, 1, 2]),
|
|
25
|
+
> PartialPermNC([1, 2, 3], [3, 1, 4]),
|
|
26
|
+
> PartialPermNC([1, 2, 4], [3, 5, 2]),
|
|
27
|
+
> PartialPermNC([1, 2, 3, 4], [4, 1, 5, 2]),
|
|
28
|
+
> PartialPermNC([1, 2, 4, 5], [4, 3, 5, 2]),
|
|
29
|
+
> PartialPermNC([1, 2, 3, 4, 5], [5, 2, 4, 3, 1]),
|
|
30
|
+
> PartialPermNC([1, 3, 5], [5, 4, 1])];;
|
|
31
|
+
gap> s := InverseSemigroup(gens);
|
|
32
|
+
<inverse partial perm semigroup of rank 5 with 10 generators>
|
|
33
|
+
gap> Size(s);
|
|
34
|
+
860
|
|
35
|
+
gap> NrRClasses(s);
|
|
36
|
+
31
|
|
37
|
+
gap> RClassReps(s);
|
|
38
|
+
[ <identity partial perm on [ 1, 2, 5 ]>, [4,2,5](1), [3,2,5,1], [4,1](2)(5),
|
|
39
|
+
[3,1,5](2), [3,5][4,1,2], [3,5,2][4,1], [4,5,1,2], [3,5,2](1),
|
|
40
|
+
[3,2,5][4,1], <identity partial perm on [ 1, 2, 4, 5 ]>, [3,2,5,4,1],
|
|
41
|
+
[3,5](1,4,2), [3,4](1,5)(2), <identity partial perm on [ 1, 2, 3, 4, 5 ]>,
|
|
42
|
+
<identity partial perm on [ 2, 3 ]>, [1,2][5,3], [4,3](2), [5,3,2],
|
|
43
|
+
[1,2][4,3], [4,2][5,3], [1,3,2], [4,2](3), [5,2,3], [1,2,3],
|
|
44
|
+
<identity partial perm on [ 2 ]>, [5,2], [1,2], [3,2], [4,2],
|
|
45
|
+
<empty partial perm> ]
|
|
46
|
+
gap> List(last, DomainOfPartialPerm);
|
|
47
|
+
[ [ 1, 2, 5 ], [ 1, 2, 4 ], [ 2, 3, 5 ], [ 2, 4, 5 ], [ 1, 2, 3 ],
|
|
48
|
+
[ 1, 3, 4 ], [ 3, 4, 5 ], [ 1, 4, 5 ], [ 1, 3, 5 ], [ 2, 3, 4 ],
|
|
49
|
+
[ 1, 2, 4, 5 ], [ 2, 3, 4, 5 ], [ 1, 2, 3, 4 ], [ 1, 2, 3, 5 ],
|
|
50
|
+
[ 1, 2, 3, 4, 5 ], [ 2, 3 ], [ 1, 5 ], [ 2, 4 ], [ 3, 5 ], [ 1, 4 ],
|
|
51
|
+
[ 4, 5 ], [ 1, 3 ], [ 3, 4 ], [ 2, 5 ], [ 1, 2 ], [ 2 ], [ 5 ], [ 1 ],
|
|
52
|
+
[ 3 ], [ 4 ], [ ] ]
|
|
53
|
+
gap> IsDuplicateFreeList(last);
|
|
54
|
+
true
|
|
55
|
+
|
|
56
|
+
# InverseTest2
|
|
57
|
+
gap> s := InverseSemigroup(PartialPermNC([1, 2], [1, 2]),
|
|
58
|
+
> PartialPermNC([1, 2], [1, 3]));;
|
|
59
|
+
gap> GreensHClasses(s);
|
|
60
|
+
[ <Green's H-class: <identity partial perm on [ 1, 2 ]>>,
|
|
61
|
+
<Green's H-class: [2,3](1)>, <Green's H-class: [3,2](1)>,
|
|
62
|
+
<Green's H-class: <identity partial perm on [ 1, 3 ]>>,
|
|
63
|
+
<Green's H-class: <identity partial perm on [ 1 ]>> ]
|
|
64
|
+
gap> s := InverseSemigroup(Generators(s));;
|
|
65
|
+
gap> HClassReps(s);
|
|
66
|
+
[ <identity partial perm on [ 1, 2 ]>, [2,3](1), [3,2](1),
|
|
67
|
+
<identity partial perm on [ 1, 3 ]>, <identity partial perm on [ 1 ]> ]
|
|
68
|
+
gap> GreensHClasses(s);
|
|
69
|
+
[ <Green's H-class: <identity partial perm on [ 1, 2 ]>>,
|
|
70
|
+
<Green's H-class: [2,3](1)>, <Green's H-class: [3,2](1)>,
|
|
71
|
+
<Green's H-class: <identity partial perm on [ 1, 3 ]>>,
|
|
72
|
+
<Green's H-class: <identity partial perm on [ 1 ]>> ]
|
|
73
|
+
|
|
74
|
+
# InverseTest3
|
|
75
|
+
gap> gens := [PartialPermNC([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],
|
|
76
|
+
> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),
|
|
77
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],
|
|
78
|
+
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 19])];;
|
|
79
|
+
gap> s := InverseSemigroup(gens);;
|
|
80
|
+
gap> d := DClass(s, Generators(s)[1]);
|
|
81
|
+
<Green's D-class: [2,18][3,20][6,5,11,19,1,9][7,16,13][12,14](8)>
|
|
82
|
+
gap> PartialPerm([1, 5, 8, 9, 11, 13, 14, 16, 18, 19, 20],
|
|
83
|
+
> [1, 5, 8, 9, 11, 13, 14, 16, 18, 19, 20]) in d;
|
|
84
|
+
true
|
|
85
|
+
gap> Size(s);
|
|
86
|
+
60880
|
|
87
|
+
gap> h := HClass(d, Generators(s)[1]);
|
|
88
|
+
<Green's H-class: [2,18][3,20][6,5,11,19,1,9][7,16,13][12,14](8)>
|
|
89
|
+
gap> Generators(s)[1] in h;
|
|
90
|
+
true
|
|
91
|
+
gap> Generators(s)[1] in h;
|
|
92
|
+
true
|
|
93
|
+
gap> DClassOfHClass(h) = d;
|
|
94
|
+
true
|
|
95
|
+
gap> DClassOfHClass(h);
|
|
96
|
+
<Green's D-class: [2,18][3,20][6,5,11,19,1,9][7,16,13][12,14](8)>
|
|
97
|
+
gap> PartialPerm([1, 5, 8, 9, 11, 13, 14, 16, 18, 19, 20],
|
|
98
|
+
> [1, 5, 8, 9, 11, 13, 14, 16, 18, 19, 20]) in last;
|
|
99
|
+
true
|
|
100
|
+
gap> r := RClassOfHClass(h);
|
|
101
|
+
<Green's R-class: [2,18][3,20][6,5,11,19,1,9][7,16,13][12,14](8)>
|
|
102
|
+
gap> Representative(h) in r;
|
|
103
|
+
true
|
|
104
|
+
gap> ForAll(h, x -> x in r);
|
|
105
|
+
true
|
|
106
|
+
gap> l := LClass(h);
|
|
107
|
+
<Green's L-class: [2,18][3,20][6,5,11,19,1,9][7,16,13][12,14](8)>
|
|
108
|
+
gap> PartialPerm([1, 5, 8, 9, 11, 13, 14, 16, 18, 19, 20],
|
|
109
|
+
> [1, 5, 8, 9, 11, 13, 14, 16, 18, 19, 20]) in l;
|
|
110
|
+
true
|
|
111
|
+
gap> ForAll(h, x -> x in l);
|
|
112
|
+
true
|
|
113
|
+
gap> Representative(l) in l;
|
|
114
|
+
true
|
|
115
|
+
gap> IsGreensLClass(l);
|
|
116
|
+
true
|
|
117
|
+
gap> DClassOfLClass(l) = d;
|
|
118
|
+
true
|
|
119
|
+
gap> DClassOfRClass(r) = d;
|
|
120
|
+
true
|
|
121
|
+
gap> S := InverseSemigroup(PartialPermNC([1, 2, 3, 6, 8, 10],
|
|
122
|
+
> [2, 6, 7, 9, 1, 5]), PartialPermNC([1, 2, 3, 4, 6, 7, 8, 10],
|
|
123
|
+
> [3, 8, 1, 9, 4, 10, 5, 6]));
|
|
124
|
+
<inverse partial perm semigroup of rank 10 with 2 generators>
|
|
125
|
+
gap> f := Generators(S)[1];
|
|
126
|
+
[3,7][8,1,2,6,9][10,5]
|
|
127
|
+
gap> h := HClass(S, f);
|
|
128
|
+
<Green's H-class: [3,7][8,1,2,6,9][10,5]>
|
|
129
|
+
gap> IsGreensHClass(h);
|
|
130
|
+
true
|
|
131
|
+
gap> RClassOfHClass(h);
|
|
132
|
+
<Green's R-class: [3,7][8,1,2,6,9][10,5]>
|
|
133
|
+
gap> LClassOfHClass(h);
|
|
134
|
+
<Green's L-class: [3,7][8,1,2,6,9][10,5]>
|
|
135
|
+
gap> PartialPerm([1, 2, 5, 6, 7, 9], [1, 2, 5, 6, 7, 9]) in last;
|
|
136
|
+
true
|
|
137
|
+
gap> r := RClassOfHClass(h);
|
|
138
|
+
<Green's R-class: [3,7][8,1,2,6,9][10,5]>
|
|
139
|
+
gap> l := LClass(h);
|
|
140
|
+
<Green's L-class: [3,7][8,1,2,6,9][10,5]>
|
|
141
|
+
gap> PartialPerm([1, 2, 5, 6, 7, 9], [1, 2, 5, 6, 7, 9]) in last;
|
|
142
|
+
true
|
|
143
|
+
gap> DClass(r) = DClass(l);
|
|
144
|
+
true
|
|
145
|
+
gap> DClass(h) = DClass(l);
|
|
146
|
+
true
|
|
147
|
+
gap> f := PartialPermNC([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],
|
|
148
|
+
> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]);;
|
|
149
|
+
gap> h := HClass(s, f);
|
|
150
|
+
<Green's H-class: [2,18][3,20][6,5,11,19,1,9][7,16,13][12,14](8)>
|
|
151
|
+
gap> ForAll(h, x -> x in RClassOfHClass(h));
|
|
152
|
+
true
|
|
153
|
+
gap> Size(h);
|
|
154
|
+
1
|
|
155
|
+
gap> IsGroupHClass(h);
|
|
156
|
+
false
|
|
157
|
+
|
|
158
|
+
# InverseTest5
|
|
159
|
+
gap> s := Semigroup([Transformation([3, 2, 1, 6, 5, 4]),
|
|
160
|
+
> Transformation([4, 7, 3, 1, 6, 5, 7])]);
|
|
161
|
+
<transformation semigroup of degree 7 with 2 generators>
|
|
162
|
+
gap> iso := IsomorphismPartialPermSemigroup(s);;
|
|
163
|
+
gap> inv := InverseGeneralMapping(iso);;
|
|
164
|
+
gap> f := Transformation([1, 7, 3, 4, 5, 6, 7]);;
|
|
165
|
+
gap> f ^ iso;
|
|
166
|
+
<identity partial perm on [ 1, 3, 4, 5, 6, 7 ]>
|
|
167
|
+
gap> (f ^ iso) ^ inv;
|
|
168
|
+
Transformation( [ 1, 7, 3, 4, 5, 6, 7 ] )
|
|
169
|
+
gap> ForAll(s, f -> (f ^ iso) ^ inv = f);
|
|
170
|
+
true
|
|
171
|
+
|
|
172
|
+
# InverseTest6
|
|
173
|
+
gap> s := Semigroup(Transformation([2, 5, 1, 7, 3, 7, 7]),
|
|
174
|
+
> Transformation([3, 6, 5, 7, 2, 1, 7]));;
|
|
175
|
+
gap> iso := IsomorphismPartialPermSemigroup(s);;
|
|
176
|
+
gap> inv := InverseGeneralMapping(iso);;
|
|
177
|
+
gap> f := Transformation([7, 1, 7, 7, 7, 7, 7]);;
|
|
178
|
+
gap> f ^ iso;
|
|
179
|
+
[2,1](7)
|
|
180
|
+
gap> (f ^ iso) ^ inv = f;
|
|
181
|
+
true
|
|
182
|
+
gap> f := Random(s);;
|
|
183
|
+
gap> (f ^ iso) ^ inv = f;
|
|
184
|
+
true
|
|
185
|
+
gap> f := Random(s);;
|
|
186
|
+
gap> (f ^ iso) ^ inv = f;
|
|
187
|
+
true
|
|
188
|
+
gap> f := Random(s);;
|
|
189
|
+
gap> (f ^ iso) ^ inv = f;
|
|
190
|
+
true
|
|
191
|
+
gap> f := Random(s);;
|
|
192
|
+
gap> (f ^ iso) ^ inv = f;
|
|
193
|
+
true
|
|
194
|
+
gap> f := Random(s);;
|
|
195
|
+
gap> (f ^ iso) ^ inv = f;
|
|
196
|
+
true
|
|
197
|
+
gap> f := Random(s);;
|
|
198
|
+
gap> (f ^ iso) ^ inv = f;
|
|
199
|
+
true
|
|
200
|
+
gap> Size(Range(iso));
|
|
201
|
+
631
|
|
202
|
+
gap> ForAll(s, f -> f ^ iso in Range(iso));
|
|
203
|
+
true
|
|
204
|
+
gap> Size(s);
|
|
205
|
+
631
|
|
206
|
+
|
|
207
|
+
# InverseTest8
|
|
208
|
+
gap> s := InverseSemigroup(PartialPermNC([1, 2, 3], [2, 4, 1]),
|
|
209
|
+
> PartialPermNC([1, 3, 4], [3, 4, 1]));;
|
|
210
|
+
gap> GreensDClasses(s);
|
|
211
|
+
[ <Green's D-class: <identity partial perm on [ 1, 2, 4 ]>>,
|
|
212
|
+
<Green's D-class: <identity partial perm on [ 1, 3, 4 ]>>,
|
|
213
|
+
<Green's D-class: <identity partial perm on [ 1, 3 ]>>,
|
|
214
|
+
<Green's D-class: <identity partial perm on [ 4 ]>>,
|
|
215
|
+
<Green's D-class: <empty partial perm>> ]
|
|
216
|
+
gap> GreensHClasses(s);
|
|
217
|
+
[ <Green's H-class: <identity partial perm on [ 1, 2, 4 ]>>,
|
|
218
|
+
<Green's H-class: [4,2,1,3]>, <Green's H-class: [3,1,2,4]>,
|
|
219
|
+
<Green's H-class: <identity partial perm on [ 1, 2, 3 ]>>,
|
|
220
|
+
<Green's H-class: <identity partial perm on [ 1, 3, 4 ]>>,
|
|
221
|
+
<Green's H-class: <identity partial perm on [ 1, 3 ]>>,
|
|
222
|
+
<Green's H-class: [3,1,2]>, <Green's H-class: [1,4][3,2]>,
|
|
223
|
+
<Green's H-class: [1,3,4]>, <Green's H-class: [3,1,4]>,
|
|
224
|
+
<Green's H-class: [1,2](3)>, <Green's H-class: [2,1,3]>,
|
|
225
|
+
<Green's H-class: <identity partial perm on [ 1, 2 ]>>,
|
|
226
|
+
<Green's H-class: [1,2,4]>, <Green's H-class: [1,4][2,3]>,
|
|
227
|
+
<Green's H-class: [2,4](1)>, <Green's H-class: [1,3](2)>,
|
|
228
|
+
<Green's H-class: [2,3][4,1]>, <Green's H-class: [4,2,1]>,
|
|
229
|
+
<Green's H-class: <identity partial perm on [ 2, 4 ]>>,
|
|
230
|
+
<Green's H-class: [2,4,3]>, <Green's H-class: [2,1](4)>,
|
|
231
|
+
<Green's H-class: [4,2,3]>, <Green's H-class: [4,3,1]>,
|
|
232
|
+
<Green's H-class: [3,2][4,1]>, <Green's H-class: [3,4,2]>,
|
|
233
|
+
<Green's H-class: <identity partial perm on [ 3, 4 ]>>,
|
|
234
|
+
<Green's H-class: [3,4,1]>, <Green's H-class: [4,3,2]>,
|
|
235
|
+
<Green's H-class: [4,1,3]>, <Green's H-class: [4,2](1)>,
|
|
236
|
+
<Green's H-class: [1,2](4)>, <Green's H-class: [1,4,3]>,
|
|
237
|
+
<Green's H-class: <identity partial perm on [ 1, 4 ]>>,
|
|
238
|
+
<Green's H-class: [1,3][4,2]>, <Green's H-class: [2,1](3)>,
|
|
239
|
+
<Green's H-class: [3,1](2)>, <Green's H-class: [3,2,4]>,
|
|
240
|
+
<Green's H-class: [2,3,4]>, <Green's H-class: [2,4][3,1]>,
|
|
241
|
+
<Green's H-class: <identity partial perm on [ 2, 3 ]>>,
|
|
242
|
+
<Green's H-class: <identity partial perm on [ 4 ]>>,
|
|
243
|
+
<Green's H-class: [4,1]>, <Green's H-class: [4,3]>,
|
|
244
|
+
<Green's H-class: [4,2]>, <Green's H-class: [1,4]>,
|
|
245
|
+
<Green's H-class: <identity partial perm on [ 1 ]>>,
|
|
246
|
+
<Green's H-class: [1,3]>, <Green's H-class: [1,2]>,
|
|
247
|
+
<Green's H-class: [3,4]>, <Green's H-class: [3,1]>,
|
|
248
|
+
<Green's H-class: <identity partial perm on [ 3 ]>>,
|
|
249
|
+
<Green's H-class: [3,2]>, <Green's H-class: [2,4]>,
|
|
250
|
+
<Green's H-class: [2,1]>, <Green's H-class: [2,3]>,
|
|
251
|
+
<Green's H-class: <identity partial perm on [ 2 ]>>,
|
|
252
|
+
<Green's H-class: <empty partial perm>> ]
|
|
253
|
+
gap> IsDuplicateFree(last);
|
|
254
|
+
true
|
|
255
|
+
gap> GreensLClasses(s);
|
|
256
|
+
[ <Green's L-class: <identity partial perm on [ 1, 2, 4 ]>>,
|
|
257
|
+
<Green's L-class: [4,2,1,3]>,
|
|
258
|
+
<Green's L-class: <identity partial perm on [ 1, 3, 4 ]>>,
|
|
259
|
+
<Green's L-class: <identity partial perm on [ 1, 3 ]>>,
|
|
260
|
+
<Green's L-class: [3,1,2]>, <Green's L-class: [1,4][3,2]>,
|
|
261
|
+
<Green's L-class: [1,3,4]>, <Green's L-class: [3,1,4]>,
|
|
262
|
+
<Green's L-class: [1,2](3)>,
|
|
263
|
+
<Green's L-class: <identity partial perm on [ 4 ]>>,
|
|
264
|
+
<Green's L-class: [4,1]>, <Green's L-class: [4,3]>,
|
|
265
|
+
<Green's L-class: [4,2]>, <Green's L-class: <empty partial perm>> ]
|
|
266
|
+
gap> GreensRClasses(s);
|
|
267
|
+
[ <Green's R-class: <identity partial perm on [ 1, 2, 4 ]>>,
|
|
268
|
+
<Green's R-class: [3,1,2,4]>,
|
|
269
|
+
<Green's R-class: <identity partial perm on [ 1, 3, 4 ]>>,
|
|
270
|
+
<Green's R-class: <identity partial perm on [ 1, 3 ]>>,
|
|
271
|
+
<Green's R-class: [2,1,3]>, <Green's R-class: [2,3][4,1]>,
|
|
272
|
+
<Green's R-class: [4,3,1]>, <Green's R-class: [4,1,3]>,
|
|
273
|
+
<Green's R-class: [2,1](3)>,
|
|
274
|
+
<Green's R-class: <identity partial perm on [ 4 ]>>,
|
|
275
|
+
<Green's R-class: [1,4]>, <Green's R-class: [3,4]>,
|
|
276
|
+
<Green's R-class: [2,4]>, <Green's R-class: <empty partial perm>> ]
|
|
277
|
+
gap> D := GreensDClasses(s)[2];
|
|
278
|
+
<Green's D-class: <identity partial perm on [ 1, 3, 4 ]>>
|
|
279
|
+
gap> GreensLClasses(D);
|
|
280
|
+
[ <Green's L-class: <identity partial perm on [ 1, 3, 4 ]>> ]
|
|
281
|
+
gap> GreensRClasses(D);
|
|
282
|
+
[ <Green's R-class: <identity partial perm on [ 1, 3, 4 ]>> ]
|
|
283
|
+
gap> GreensHClasses(D);
|
|
284
|
+
[ <Green's H-class: <identity partial perm on [ 1, 3, 4 ]>> ]
|
|
285
|
+
gap> D := GreensDClasses(s)[3];
|
|
286
|
+
<Green's D-class: <identity partial perm on [ 1, 3 ]>>
|
|
287
|
+
gap> PartialPerm([1, 3], [1, 3]) in last;
|
|
288
|
+
true
|
|
289
|
+
gap> GreensLClasses(D);
|
|
290
|
+
[ <Green's L-class: <identity partial perm on [ 1, 3 ]>>,
|
|
291
|
+
<Green's L-class: [3,1,2]>, <Green's L-class: [1,4][3,2]>,
|
|
292
|
+
<Green's L-class: [1,3,4]>, <Green's L-class: [3,1,4]>,
|
|
293
|
+
<Green's L-class: [1,2](3)> ]
|
|
294
|
+
gap> GreensRClasses(D);
|
|
295
|
+
[ <Green's R-class: <identity partial perm on [ 1, 3 ]>>,
|
|
296
|
+
<Green's R-class: [2,1,3]>, <Green's R-class: [2,3][4,1]>,
|
|
297
|
+
<Green's R-class: [4,3,1]>, <Green's R-class: [4,1,3]>,
|
|
298
|
+
<Green's R-class: [2,1](3)> ]
|
|
299
|
+
gap> GreensHClasses(D);
|
|
300
|
+
[ <Green's H-class: <identity partial perm on [ 1, 3 ]>>,
|
|
301
|
+
<Green's H-class: [3,1,2]>, <Green's H-class: [1,4][3,2]>,
|
|
302
|
+
<Green's H-class: [1,3,4]>, <Green's H-class: [3,1,4]>,
|
|
303
|
+
<Green's H-class: [1,2](3)>, <Green's H-class: [2,1,3]>,
|
|
304
|
+
<Green's H-class: <identity partial perm on [ 1, 2 ]>>,
|
|
305
|
+
<Green's H-class: [1,2,4]>, <Green's H-class: [1,4][2,3]>,
|
|
306
|
+
<Green's H-class: [2,4](1)>, <Green's H-class: [1,3](2)>,
|
|
307
|
+
<Green's H-class: [2,3][4,1]>, <Green's H-class: [4,2,1]>,
|
|
308
|
+
<Green's H-class: <identity partial perm on [ 2, 4 ]>>,
|
|
309
|
+
<Green's H-class: [2,4,3]>, <Green's H-class: [2,1](4)>,
|
|
310
|
+
<Green's H-class: [4,2,3]>, <Green's H-class: [4,3,1]>,
|
|
311
|
+
<Green's H-class: [3,2][4,1]>, <Green's H-class: [3,4,2]>,
|
|
312
|
+
<Green's H-class: <identity partial perm on [ 3, 4 ]>>,
|
|
313
|
+
<Green's H-class: [3,4,1]>, <Green's H-class: [4,3,2]>,
|
|
314
|
+
<Green's H-class: [4,1,3]>, <Green's H-class: [4,2](1)>,
|
|
315
|
+
<Green's H-class: [1,2](4)>, <Green's H-class: [1,4,3]>,
|
|
316
|
+
<Green's H-class: <identity partial perm on [ 1, 4 ]>>,
|
|
317
|
+
<Green's H-class: [1,3][4,2]>, <Green's H-class: [2,1](3)>,
|
|
318
|
+
<Green's H-class: [3,1](2)>, <Green's H-class: [3,2,4]>,
|
|
319
|
+
<Green's H-class: [2,3,4]>, <Green's H-class: [2,4][3,1]>,
|
|
320
|
+
<Green's H-class: <identity partial perm on [ 2, 3 ]>> ]
|
|
321
|
+
gap> h := last[9];;
|
|
322
|
+
gap> L := LClass(D, Representative(h));
|
|
323
|
+
<Green's L-class: [1,2,4]>
|
|
324
|
+
gap> Position(HClasses(L), h);
|
|
325
|
+
2
|
|
326
|
+
gap> DClassOfLClass(L) = D;
|
|
327
|
+
true
|
|
328
|
+
gap> LClassOfHClass(h) = L;
|
|
329
|
+
true
|
|
330
|
+
gap> R := RClassOfHClass(h);
|
|
331
|
+
<Green's R-class: [1,2,4]>
|
|
332
|
+
gap> Position(HClasses(R), h);
|
|
333
|
+
3
|
|
334
|
+
gap> DClassOfRClass(R) = D;
|
|
335
|
+
true
|
|
336
|
+
|
|
337
|
+
# InverseTest9
|
|
338
|
+
gap> s := InverseSemigroup(
|
|
339
|
+
> PartialPermNC([1, 2, 3, 5], [1, 4, 6, 3]),
|
|
340
|
+
> PartialPermNC([1, 2, 3, 4, 6], [3, 6, 4, 5, 1]));;
|
|
341
|
+
gap> f := PartialPermNC([1, 4, 6], [6, 3, 1]);;
|
|
342
|
+
gap> D := DClass(s, f);
|
|
343
|
+
<Green's D-class: [4,3](1,6)>
|
|
344
|
+
gap> PartialPerm([3, 4, 6], [3, 4, 6]) in last;
|
|
345
|
+
true
|
|
346
|
+
gap> LClass(s, f) = LClass(D, f);
|
|
347
|
+
true
|
|
348
|
+
gap> RClass(s, f) = RClass(D, f);
|
|
349
|
+
true
|
|
350
|
+
gap> R := RClass(s, f);
|
|
351
|
+
<Green's R-class: [4,3](1,6)>
|
|
352
|
+
gap> HClass(s, f) = HClass(R, f);
|
|
353
|
+
true
|
|
354
|
+
gap> HClass(D, f) = HClass(R, f);
|
|
355
|
+
true
|
|
356
|
+
gap> L := LClass(s, f);
|
|
357
|
+
<Green's L-class: [4,3](1,6)>
|
|
358
|
+
gap> HClass(D, f) = HClass(L, f);
|
|
359
|
+
true
|
|
360
|
+
gap> HClass(s, f) = HClass(L, f);
|
|
361
|
+
true
|
|
362
|
+
|
|
363
|
+
# InverseTest10
|
|
364
|
+
gap> s := POI(10);
|
|
365
|
+
<inverse partial perm monoid of rank 10 with 10 generators>
|
|
366
|
+
gap> f := PartialPermNC([2, 4, 5, 7], [2, 3, 5, 7]);;
|
|
367
|
+
gap> l := LClassNC(s, f);
|
|
368
|
+
<Green's L-class: [4,3](2)(5)(7)>
|
|
369
|
+
gap> PartialPerm([2, 3, 5, 7], [2, 3, 5, 7]) in last;
|
|
370
|
+
true
|
|
371
|
+
gap> l := LClass(s, f);
|
|
372
|
+
<Green's L-class: [4,3](2)(5)(7)>
|
|
373
|
+
gap> s := POI(15);
|
|
374
|
+
<inverse partial perm monoid of rank 15 with 15 generators>
|
|
375
|
+
gap> f := PartialPermNC([1, 3, 5, 8, 9, 10, 12, 13, 14],
|
|
376
|
+
> [2, 3, 4, 7, 9, 11, 12, 13, 15]);;
|
|
377
|
+
gap> l := LClass(s, f);
|
|
378
|
+
<Green's L-class: [1,2][5,4][8,7][10,11][14,15](3)(9)(12)(13)>
|
|
379
|
+
gap> l := LClassNC(s, f);
|
|
380
|
+
<Green's L-class: [1,2][5,4][8,7][10,11][14,15](3)(9)(12)(13)>
|
|
381
|
+
gap> PartialPerm([2, 3, 4, 7, 9, 11, 12, 13, 15], [2, 3, 4, 7, 9, 11, 12, 13, 15]) in last;
|
|
382
|
+
true
|
|
383
|
+
gap> s := POI(15);;
|
|
384
|
+
gap> l := LClassNC(s, f);
|
|
385
|
+
<Green's L-class: [1,2][5,4][8,7][10,11][14,15](3)(9)(12)(13)>
|
|
386
|
+
gap> PartialPerm([2, 3, 4, 7, 9, 11, 12, 13, 15], [2, 3, 4, 7, 9, 11, 12, 13, 15]) in last;
|
|
387
|
+
true
|
|
388
|
+
gap> l = LClass(s, f);
|
|
389
|
+
true
|
|
390
|
+
gap> f := PartialPermNC([1, 2, 4, 7, 8, 11, 12], [1, 2, 6, 7, 9, 10, 11]);;
|
|
391
|
+
gap> l := LClass(POI(12), f);
|
|
392
|
+
<Green's L-class: [4,6][8,9][12,11,10](1)(2)(7)>
|
|
393
|
+
gap> f := PartialPermNC([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13],
|
|
394
|
+
> [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13]);;
|
|
395
|
+
gap> l := LClass(POI(13), f);
|
|
396
|
+
<Green's L-class: [6,5][11,12](1)(2)(3)(4)(7)(8)(9)(10)(13)>
|
|
397
|
+
gap> f := PartialPermNC([1, 2, 3, 4, 7, 8, 9, 10],
|
|
398
|
+
> [2, 3, 4, 5, 6, 8, 10, 11]);;
|
|
399
|
+
gap> l := LClass(POI(13), f);
|
|
400
|
+
<Green's L-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
401
|
+
gap> LClassNC(POI(13), f);
|
|
402
|
+
<Green's L-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
403
|
+
gap> PartialPerm([2, 3, 4, 5, 6, 8, 10, 11], [2, 3, 4, 5, 6, 8, 10, 11]) in last;
|
|
404
|
+
true
|
|
405
|
+
gap> RClassNC(POI(13), f);
|
|
406
|
+
<Green's R-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
407
|
+
gap> HClassNC(POI(13), f);
|
|
408
|
+
<Green's H-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
409
|
+
gap> DClassNC(POI(13), f);
|
|
410
|
+
<Green's D-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
411
|
+
gap> PartialPerm([2, 3, 4, 5, 6, 8, 10, 11], [2, 3, 4, 5, 6, 8, 10, 11]) in last;
|
|
412
|
+
true
|
|
413
|
+
gap> s := POI(13);
|
|
414
|
+
<inverse partial perm monoid of rank 13 with 13 generators>
|
|
415
|
+
gap> D := DClassNC(s, f);
|
|
416
|
+
<Green's D-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
417
|
+
gap> PartialPerm([2, 3, 4, 5, 6, 8, 10, 11], [2, 3, 4, 5, 6, 8, 10, 11]) in last;
|
|
418
|
+
true
|
|
419
|
+
gap> l := LClassNC(s, f);
|
|
420
|
+
<Green's L-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
421
|
+
gap> PartialPerm([2, 3, 4, 5, 6, 8, 10, 11], [2, 3, 4, 5, 6, 8, 10, 11]) in last;
|
|
422
|
+
true
|
|
423
|
+
gap> l := LClass(s, f);
|
|
424
|
+
<Green's L-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
425
|
+
gap> s := POI(15);
|
|
426
|
+
<inverse partial perm monoid of rank 15 with 15 generators>
|
|
427
|
+
gap> f := PartialPermNC([1, 3, 5, 8, 9, 10, 12, 13, 14],
|
|
428
|
+
> [2, 3, 4, 7, 9, 11, 12, 13, 15]);;
|
|
429
|
+
gap> l := LClass(s, f);
|
|
430
|
+
<Green's L-class: [1,2][5,4][8,7][10,11][14,15](3)(9)(12)(13)>
|
|
431
|
+
gap> l := LClassNC(s, f);
|
|
432
|
+
<Green's L-class: [1,2][5,4][8,7][10,11][14,15](3)(9)(12)(13)>
|
|
433
|
+
gap> PartialPerm([2, 3, 4, 7, 9, 11, 12, 13, 15], [2, 3, 4, 7, 9, 11, 12, 13, 15]) in last;
|
|
434
|
+
true
|
|
435
|
+
gap> s := POI(15);;
|
|
436
|
+
gap> l := LClassNC(s, f);
|
|
437
|
+
<Green's L-class: [1,2][5,4][8,7][10,11][14,15](3)(9)(12)(13)>
|
|
438
|
+
gap> PartialPerm([2, 3, 4, 7, 9, 11, 12, 13, 15], [2, 3, 4, 7, 9, 11, 12, 13, 15]) in last;
|
|
439
|
+
true
|
|
440
|
+
gap> l = LClass(s, f);
|
|
441
|
+
true
|
|
442
|
+
gap> f := PartialPermNC([1, 2, 4, 7, 8, 11, 12], [1, 2, 6, 7, 9, 10, 11]);;
|
|
443
|
+
gap> l := LClass(POI(12), f);
|
|
444
|
+
<Green's L-class: [4,6][8,9][12,11,10](1)(2)(7)>
|
|
445
|
+
gap> f := PartialPermNC([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13],
|
|
446
|
+
> [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13]);;
|
|
447
|
+
gap> l := LClass(POI(13), f);
|
|
448
|
+
<Green's L-class: [6,5][11,12](1)(2)(3)(4)(7)(8)(9)(10)(13)>
|
|
449
|
+
gap> f := PartialPermNC([1, 2, 3, 4, 7, 8, 9, 10],
|
|
450
|
+
> [2, 3, 4, 5, 6, 8, 10, 11]);;
|
|
451
|
+
gap> l := LClass(POI(13), f);
|
|
452
|
+
<Green's L-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
453
|
+
gap> LClassNC(POI(13), f);
|
|
454
|
+
<Green's L-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
455
|
+
gap> PartialPerm([2, 3, 4, 5, 6, 8, 10, 11], [2, 3, 4, 5, 6, 8, 10, 11]) in last;
|
|
456
|
+
true
|
|
457
|
+
gap> RClassNC(POI(13), f);
|
|
458
|
+
<Green's R-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
459
|
+
gap> HClassNC(POI(13), f);
|
|
460
|
+
<Green's H-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
461
|
+
gap> DClassNC(POI(13), f);
|
|
462
|
+
<Green's D-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
463
|
+
gap> PartialPerm([2, 3, 4, 5, 6, 8, 10, 11], [2, 3, 4, 5, 6, 8, 10, 11]) in last;
|
|
464
|
+
true
|
|
465
|
+
gap> s := POI(13);
|
|
466
|
+
<inverse partial perm monoid of rank 13 with 13 generators>
|
|
467
|
+
gap> D := DClassNC(s, f);
|
|
468
|
+
<Green's D-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
469
|
+
gap> PartialPerm([2, 3, 4, 5, 6, 8, 10, 11], [2, 3, 4, 5, 6, 8, 10, 11]) in last;
|
|
470
|
+
true
|
|
471
|
+
gap> LClassNC(s, f) = LClass(D, f);
|
|
472
|
+
true
|
|
473
|
+
gap> LClass(s, f) = LClassNC(D, f);
|
|
474
|
+
true
|
|
475
|
+
gap> LClassNC(s, f) = LClassNC(D, f);
|
|
476
|
+
true
|
|
477
|
+
gap> LClassNC(s, f) = LClassNC(D, f);
|
|
478
|
+
true
|
|
479
|
+
gap> RClass(s, f) = RClassNC(D, f);
|
|
480
|
+
true
|
|
481
|
+
gap> RClassNC(s, f) = RClassNC(D, f);
|
|
482
|
+
true
|
|
483
|
+
gap> RClassNC(s, f) = RClass(D, f);
|
|
484
|
+
true
|
|
485
|
+
gap> R := RClassNC(s, f);
|
|
486
|
+
<Green's R-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
487
|
+
gap> HClass(s, f) = HClass(R, f);
|
|
488
|
+
true
|
|
489
|
+
gap> HClassNC(s, f) = HClass(R, f);
|
|
490
|
+
true
|
|
491
|
+
gap> HClassNC(s, f) = HClassNC(R, f);
|
|
492
|
+
true
|
|
493
|
+
gap> HClass(s, f) = HClassNC(R, f);
|
|
494
|
+
true
|
|
495
|
+
gap> L := LClassNC(s, f);
|
|
496
|
+
<Green's L-class: [1,2,3,4,5][7,6][9,10,11](8)>
|
|
497
|
+
gap> PartialPerm([2, 3, 4, 5, 6, 8, 10, 11], [2, 3, 4, 5, 6, 8, 10, 11]) in last;
|
|
498
|
+
true
|
|
499
|
+
gap> HClass(s, f) = HClassNC(L, f);
|
|
500
|
+
true
|
|
501
|
+
gap> HClass(s, f) = HClass(L, f);
|
|
502
|
+
true
|
|
503
|
+
gap> HClassNC(L, f) = HClass(D, f);
|
|
504
|
+
true
|
|
505
|
+
gap> HClassNC(L, f) = HClassNC(s, f);
|
|
506
|
+
true
|
|
507
|
+
gap> HClass(D, f) = HClassNC(s, f);
|
|
508
|
+
true
|
|
509
|
+
|
|
510
|
+
# InverseTest11
|
|
511
|
+
gap> m := InverseSemigroup(
|
|
512
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
513
|
+
> 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
|
514
|
+
> 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
|
|
515
|
+
> 56, 57, 58, 59, 60, 61, 62, 63, 64], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
|
|
516
|
+
> 12, 13, 14, 15, 16, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 49, 50, 52,
|
|
517
|
+
> 55, 59, 17, 18, 19, 20, 21, 38, 22, 23, 24, 42, 25, 26, 45, 27, 47, 48, 28,
|
|
518
|
+
> 29, 51, 30, 53, 54, 31, 56, 57, 58, 32, 60, 61, 62, 63, 64]),
|
|
519
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
520
|
+
> 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
|
521
|
+
> 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
|
|
522
|
+
> 56, 57, 58, 59, 60, 61, 62, 63, 64], [1, 2, 3, 4, 9, 10, 11, 13, 5, 6, 7,
|
|
523
|
+
> 12, 8, 14, 15, 16, 17, 18, 19, 21, 20, 22, 24, 23, 26, 25, 27, 29, 28, 30,
|
|
524
|
+
> 31, 32, 33, 34, 35, 37, 36, 38, 39, 41, 40, 42, 44, 43, 45, 46, 48, 47, 50,
|
|
525
|
+
> 49, 51, 52, 54, 53, 55, 57, 56, 58, 59, 61, 60, 62, 63, 64]),
|
|
526
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
527
|
+
> 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
|
528
|
+
> 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
|
|
529
|
+
> 56, 57, 58, 59, 60, 61, 62, 63, 64], [1, 2, 3, 4, 5, 6, 7, 8, 17, 18, 19,
|
|
530
|
+
> 20, 22, 23, 25, 28, 9, 10, 11, 12, 21, 13, 14, 24, 15, 26, 27, 16, 29, 30,
|
|
531
|
+
> 31, 32, 33, 34, 35, 36, 38, 37, 39, 40, 42, 41, 43, 45, 44, 47, 46, 48, 49,
|
|
532
|
+
> 51, 50, 53, 52, 54, 56, 55, 57, 58, 60, 59, 61, 62, 63, 64]),
|
|
533
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
534
|
+
> 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
|
535
|
+
> 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
|
|
536
|
+
> 56, 57, 58, 59, 60, 61, 62, 63, 64], [1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10,
|
|
537
|
+
> 12, 13, 15, 14, 16, 17, 19, 18, 20, 21, 22, 25, 26, 23, 24, 27, 28, 29, 31,
|
|
538
|
+
> 30, 32, 33, 35, 34, 36, 37, 38, 39, 43, 44, 45, 40, 41, 42, 46, 47, 48, 49,
|
|
539
|
+
> 50, 51, 55, 56, 57, 52, 53, 54, 58, 59, 60, 61, 63, 62, 64]),
|
|
540
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
541
|
+
> 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
|
542
|
+
> 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
|
|
543
|
+
> 56, 57, 58, 59, 60, 61, 62, 63, 64], [1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 12,
|
|
544
|
+
> 11, 14, 13, 15, 16, 17, 18, 20, 19, 21, 23, 22, 24, 25, 27, 26, 28, 30, 29,
|
|
545
|
+
> 31, 32, 33, 34, 36, 35, 37, 38, 40, 39, 41, 42, 43, 46, 47, 44, 45, 48, 49,
|
|
546
|
+
> 52, 53, 50, 51, 54, 55, 56, 58, 57, 59, 60, 62, 61, 63, 64]),
|
|
547
|
+
> PartialPermNC([2, 4, 6, 8, 10, 13, 14, 16, 18, 22, 23, 24, 28, 29, 30, 32,
|
|
548
|
+
> 34, 39, 40, 41, 42, 49, 50, 51, 52, 53, 54, 59, 60, 61, 62, 64],
|
|
549
|
+
> [3, 4, 7, 8, 11, 13, 15, 16, 19, 22, 25, 26, 28, 29, 31, 32, 35, 39, 43, 44,
|
|
550
|
+
> 45, 49, 50, 51, 55, 56, 57, 59, 60, 61, 63, 64]));;
|
|
551
|
+
gap> DClassReps(m);
|
|
552
|
+
[ <identity partial perm on
|
|
553
|
+
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2\
|
|
554
|
+
1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\
|
|
555
|
+
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 6\
|
|
556
|
+
0, 61, 62, 63, 64 ]>,
|
|
557
|
+
<identity partial perm on
|
|
558
|
+
[ 3, 4, 7, 8, 11, 13, 15, 16, 19, 22, 25, 26, 28, 29, 31, 32, 35, 39, 43, \
|
|
559
|
+
44, 45, 49, 50, 51, 55, 56, 57, 59, 60, 61, 63, 64 ]>,
|
|
560
|
+
<identity partial perm on
|
|
561
|
+
[ 4, 8, 13, 16, 22, 28, 29, 32, 39, 49, 50, 51, 59, 60, 61, 64 ]>,
|
|
562
|
+
<identity partial perm on [ 39, 49, 50, 51, 59, 60, 61, 64 ]>,
|
|
563
|
+
<identity partial perm on [ 31, 32, 63, 64 ]>,
|
|
564
|
+
<identity partial perm on [ 61, 64 ]>, <identity partial perm on [ 64 ]> ]
|
|
565
|
+
gap> NrLClasses(m);
|
|
566
|
+
64
|
|
567
|
+
gap> IsRTrivial(m);
|
|
568
|
+
false
|
|
569
|
+
gap> Size(m);
|
|
570
|
+
13327
|
|
571
|
+
gap> f := PartialPermNC([27, 30, 31, 32, 58, 62, 63, 64],
|
|
572
|
+
> [8, 16, 28, 60, 49, 59, 32, 64]);;
|
|
573
|
+
gap> d := DClassNC(m, f);
|
|
574
|
+
<Green's D-class: [27,8][30,16][31,28][58,49][62,59][63,32,60](64)>
|
|
575
|
+
gap> PartialPerm([8, 16, 28, 32, 49, 59, 60, 64], [8, 16, 28, 32, 49, 59, 60, 64]) in last;
|
|
576
|
+
true
|
|
577
|
+
gap> LClassReps(d);
|
|
578
|
+
[ <identity partial perm on [ 8, 16, 28, 32, 49, 59, 60, 64 ]>,
|
|
579
|
+
[8,13][28,29][49,50][60,61](16)(32)(59)(64),
|
|
580
|
+
[8,22][16,28,29][49,51][59,60,61](32)(64),
|
|
581
|
+
[8,39][16,49,51][28,50][32,59,60,61](64),
|
|
582
|
+
[8,40][16,49,53][28,52][32,59,60,62](64), [8,23][16,28,30][49,53][59,60,62]
|
|
583
|
+
(32)(64), [8,14][28,30][49,52][60,62](16)(32)(59)(64),
|
|
584
|
+
[8,15][28,31][49,55][60,63](16)(32)(59)(64),
|
|
585
|
+
[8,25][16,28,31][49,56][59,60,63](32)(64),
|
|
586
|
+
[8,43][16,49,56][28,55][32,59,60,63](64),
|
|
587
|
+
[8,44][16,50][28,55][32,59,61][49,57][60,63](64),
|
|
588
|
+
[8,41][16,50][28,52][32,59,61][49,54][60,62](64),
|
|
589
|
+
[8,24][16,29][28,30][49,54][59,61][60,62](32)(64),
|
|
590
|
+
[8,26][16,29][28,31][49,57][59,61][60,63](32)(64),
|
|
591
|
+
[8,27][16,30][28,31][49,58][59,62][60,63](32)(64),
|
|
592
|
+
[8,46][16,52][28,55][32,59,62][49,58][60,63](64),
|
|
593
|
+
[8,47][16,53][28,56][32,60,63][49,58][59,62](64),
|
|
594
|
+
[8,45][16,51][28,56][32,60,63][49,57][59,61](64),
|
|
595
|
+
[8,42][16,51][28,53][32,60,62][49,54][59,61](64),
|
|
596
|
+
[8,48][16,54][28,57][32,61][49,58][59,62][60,63](64) ]
|
|
597
|
+
gap> List(DClasses(m), NrRClasses);
|
|
598
|
+
[ 1, 6, 15, 20, 15, 6, 1 ]
|
|
599
|
+
gap> d := DClasses(m)[6];
|
|
600
|
+
<Green's D-class: <identity partial perm on [ 61, 64 ]>>
|
|
601
|
+
gap> PartialPerm([61, 64], [61, 64]) in last;
|
|
602
|
+
true
|
|
603
|
+
gap> LClassReps(d);
|
|
604
|
+
[ <identity partial perm on [ 61, 64 ]>, [61,60](64), [61,59](64),
|
|
605
|
+
[61,32](64), [61,62](64), [61,63](64) ]
|
|
606
|
+
gap> RClassReps(d);
|
|
607
|
+
[ <identity partial perm on [ 61, 64 ]>, [60,61](64), [59,61](64),
|
|
608
|
+
[32,61](64), [62,61](64), [63,61](64) ]
|
|
609
|
+
gap> d := DClassNC(m, Representative(d));
|
|
610
|
+
<Green's D-class: <identity partial perm on [ 61, 64 ]>>
|
|
611
|
+
gap> PartialPerm([61, 64], [61, 64]) in last;
|
|
612
|
+
true
|
|
613
|
+
gap> LClassReps(d);
|
|
614
|
+
[ <identity partial perm on [ 61, 64 ]>, [61,60](64), [61,59](64),
|
|
615
|
+
[61,32](64), [61,62](64), [61,63](64) ]
|
|
616
|
+
gap> RClassReps(m);
|
|
617
|
+
[ <identity partial perm on
|
|
618
|
+
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2\
|
|
619
|
+
1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\
|
|
620
|
+
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 6\
|
|
621
|
+
0, 61, 62, 63, 64 ]>,
|
|
622
|
+
<identity partial perm on
|
|
623
|
+
[ 3, 4, 7, 8, 11, 13, 15, 16, 19, 22, 25, 26, 28, 29, 31, 32, 35, 39, 43, \
|
|
624
|
+
44, 45, 49, 50, 51, 55, 56, 57, 59, 60, 61, 63, 64 ]>,
|
|
625
|
+
[2,3][6,7][10,11][14,15][18,19][23,25][24,26][30,31][34,35][40,43][41,44]
|
|
626
|
+
[42,45][52,55][53,56][54,57][62,63](4)(8)(13)(16)(22)(28)(29)(32)(39)(49)
|
|
627
|
+
(50)(51)(59)(60)(61)(64), [5,3][6,4][12,11][14,13][20,19][23,22][27,26]
|
|
628
|
+
[30,29][36,35][40,39][46,44][47,45][52,50][53,51][58,57][62,61](7)(8)(15)
|
|
629
|
+
(16)(25)(28)(31)(32)(43)(49)(55)(56)(59)(60)(63)(64),
|
|
630
|
+
[9,3][10,4][12,11,7][14,13,8][21,19][24,22][27,26,25][30,29,28][37,35]
|
|
631
|
+
[41,39][46,44,43][48,45][52,50,49][54,51][58,57,56][62,61,60](15)(16)(31)
|
|
632
|
+
(32)(55)(59)(63)(64), [17,3][18,4][20,11][21,19,7][23,13][24,22,8]
|
|
633
|
+
[27,26,25,15][30,29,28,16][38,35][42,39][47,44][48,45,43][53,50][54,51,49]
|
|
634
|
+
[58,57,56,55][62,61,60,59](31)(32)(63)(64),
|
|
635
|
+
[33,3][34,4][36,11][37,19][38,35,7][40,13][41,22][42,39,8][46,26][47,44,25]
|
|
636
|
+
[48,45,43,15][52,29][53,50,28][54,51,49,16][58,57,56,55,31]
|
|
637
|
+
[62,61,60,59,32](63)(64),
|
|
638
|
+
<identity partial perm on
|
|
639
|
+
[ 4, 8, 13, 16, 22, 28, 29, 32, 39, 49, 50, 51, 59, 60, 61, 64 ]>,
|
|
640
|
+
[6,4][14,13][23,22][30,29][40,39][52,50][53,51][62,61](8)(16)(28)(32)(49)
|
|
641
|
+
(59)(60)(64), [7,4][15,13][25,22][31,29][43,39][55,50][56,51][63,61](8)
|
|
642
|
+
(16)(28)(32)(49)(59)(60)(64), [11,4][15,13,8][26,22][31,29,28][44,39]
|
|
643
|
+
[55,50,49][57,51][63,61,60](16)(32)(59)(64),
|
|
644
|
+
[10,4][14,13,8][24,22][30,29,28][41,39][52,50,49][54,51][62,61,60](16)(32)
|
|
645
|
+
(59)(64), [18,4][23,13][24,22,8][30,29,28,16][42,39][53,50][54,51,49]
|
|
646
|
+
[62,61,60,59](32)(64), [19,4][25,13][26,22,8][31,29,28,16][45,39][56,50]
|
|
647
|
+
[57,51,49][63,61,60,59](32)(64), [35,4][43,13][44,22][45,39,8][55,29]
|
|
648
|
+
[56,50,28][57,51,49,16][63,61,60,59,32](64),
|
|
649
|
+
[34,4][40,13][41,22][42,39,8][52,29][53,50,28][54,51,49,16][62,61,60,59,32]
|
|
650
|
+
(64), [36,4][40,8][43,13][46,22][47,39][52,28][53,49,16][55,29][56,50]
|
|
651
|
+
[58,51][62,60,59,32][63,61](64), [20,4][23,8][25,13][27,22][30,28,16]
|
|
652
|
+
[31,29][47,39][53,49][56,50][58,51][62,60,59][63,61](32)(64),
|
|
653
|
+
[12,4][14,8][15,13][27,22][30,28][31,29][46,39][52,49][55,50][58,51][62,60]
|
|
654
|
+
[63,61](16)(32)(59)(64), [21,4][24,8][26,13][27,22][30,28][31,29,16]
|
|
655
|
+
[48,39][54,49][57,50][58,51][62,60][63,61,59](32)(64),
|
|
656
|
+
[37,4][41,8][44,13][46,22][48,39][52,28][54,49][55,29][57,50,16][58,51]
|
|
657
|
+
[62,60][63,61,59,32](64), [38,4][42,8][45,13][47,22][48,39][53,28][54,49]
|
|
658
|
+
[56,29][57,50][58,51,16][62,60,32][63,61,59](64),
|
|
659
|
+
<identity partial perm on [ 39, 49, 50, 51, 59, 60, 61, 64 ]>,
|
|
660
|
+
[22,39][28,49][29,50][32,59](51)(60)(61)(64),
|
|
661
|
+
[13,39][16,49][29,50,51][32,59,60](61)(64),
|
|
662
|
+
[8,39][16,49,51][28,50][32,59,60,61](64),
|
|
663
|
+
[14,39][16,49][30,50][32,59,60][52,51][62,61](64),
|
|
664
|
+
[15,39][16,49][31,50][32,59,60][55,51][63,61](64),
|
|
665
|
+
[25,39][28,49][31,50][32,59][56,51][63,61](60)(64),
|
|
666
|
+
[23,39][28,49][30,50][32,59][53,51][62,61](60)(64),
|
|
667
|
+
[40,39][52,50][53,51][62,61](49)(59)(60)(64),
|
|
668
|
+
[43,39][55,50][56,51][63,61](49)(59)(60)(64),
|
|
669
|
+
[44,39][55,50,49][57,51][63,61,60](59)(64),
|
|
670
|
+
[26,39][29,49][31,50][32,59][57,51][63,61,60](64),
|
|
671
|
+
[24,39][29,49][30,50][32,59][54,51][62,61,60](64),
|
|
672
|
+
[41,39][52,50,49][54,51][62,61,60](59)(64),
|
|
673
|
+
[42,39][53,50][54,51,49][62,61,60,59](64),
|
|
674
|
+
[45,39][56,50][57,51,49][63,61,60,59](64),
|
|
675
|
+
[47,39][53,49][56,50][58,51][62,60,59][63,61](64),
|
|
676
|
+
[46,39][52,49][55,50][58,51][62,60][63,61](59)(64),
|
|
677
|
+
[27,39][30,49][31,50][32,59][58,51][62,60][63,61](64),
|
|
678
|
+
[48,39][54,49][57,50][58,51][62,60][63,61,59](64),
|
|
679
|
+
<identity partial perm on [ 31, 32, 63, 64 ]>, [30,31][62,63](32)(64),
|
|
680
|
+
[29,31][61,63](32)(64), [28,31][60,63](32)(64), [16,31][59,63](32)(64),
|
|
681
|
+
[49,31][59,32][60,63](64), [50,31][59,32][61,63](64),
|
|
682
|
+
[51,31][60,32][61,63](64), [53,31][60,32][62,63](64),
|
|
683
|
+
[52,31][59,32][62,63](64), [55,31][59,32](63)(64), [56,31][60,32](63)(64),
|
|
684
|
+
[57,31][61,32](63)(64), [54,31][61,32][62,63](64), [58,31][62,32](63)(64),
|
|
685
|
+
<identity partial perm on [ 61, 64 ]>, [60,61](64), [59,61](64),
|
|
686
|
+
[32,61](64), [62,61](64), [63,61](64), <identity partial perm on [ 64 ]> ]
|
|
687
|
+
gap> RClassReps(d);
|
|
688
|
+
[ <identity partial perm on [ 61, 64 ]>, [60,61](64), [59,61](64),
|
|
689
|
+
[32,61](64), [62,61](64), [63,61](64) ]
|
|
690
|
+
gap> Size(d);
|
|
691
|
+
36
|
|
692
|
+
gap> Size(DClasses(m)[6]);
|
|
693
|
+
36
|
|
694
|
+
|
|
695
|
+
# InverseTest12
|
|
696
|
+
gap> s := InverseSemigroup([PartialPermNC([1, 2, 3, 5], [2, 1, 6, 3]),
|
|
697
|
+
> PartialPermNC([1, 2, 3, 6], [3, 5, 2, 6])]);;
|
|
698
|
+
gap> f := PartialPermNC([1 .. 3], [6, 3, 1]);;
|
|
699
|
+
gap> d := DClassNC(s, f);
|
|
700
|
+
<Green's D-class: [2,3,1,6]>
|
|
701
|
+
gap> PartialPerm([1, 3, 6], [1, 3, 6]) in last;
|
|
702
|
+
true
|
|
703
|
+
gap> GroupHClass(d);
|
|
704
|
+
<Green's H-class: <identity partial perm on [ 1, 3, 6 ]>>
|
|
705
|
+
gap> PartialPerm([1, 3, 6], [1, 3, 6]) in last;
|
|
706
|
+
true
|
|
707
|
+
gap> StructureDescription(GroupHClass(d));
|
|
708
|
+
"1"
|
|
709
|
+
gap> ForAny(DClasses(s), x -> not IsTrivial(GroupHClass(x)));
|
|
710
|
+
true
|
|
711
|
+
gap> D := First(DClasses(s), x -> not IsTrivial(GroupHClass(x)));
|
|
712
|
+
<Green's D-class: <identity partial perm on [ 1, 2 ]>>
|
|
713
|
+
gap> PartialPerm([1, 2], [1, 2]) in D;
|
|
714
|
+
true
|
|
715
|
+
gap> StructureDescription(GroupHClass(D));
|
|
716
|
+
"C2"
|
|
717
|
+
|
|
718
|
+
# InverseTest13
|
|
719
|
+
gap> s := InverseSemigroup(
|
|
720
|
+
> [PartialPermNC([1, 2, 3, 4, 5, 7], [10, 6, 3, 4, 9, 1]),
|
|
721
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8], [6, 10, 7, 4, 8, 2, 9, 1])]);;
|
|
722
|
+
gap> Idempotents(s, 1);
|
|
723
|
+
[ <identity partial perm on [ 4 ]> ]
|
|
724
|
+
gap> Idempotents(s, 0);
|
|
725
|
+
[ ]
|
|
726
|
+
gap> PartialPermNC([]) in s;
|
|
727
|
+
false
|
|
728
|
+
gap> Idempotents(s, 2);
|
|
729
|
+
[ <identity partial perm on [ 3, 4 ]>, <identity partial perm on [ 4, 7 ]>,
|
|
730
|
+
<identity partial perm on [ 2, 4 ]>, <identity partial perm on [ 4, 10 ]>,
|
|
731
|
+
<identity partial perm on [ 1, 4 ]>, <identity partial perm on [ 4, 9 ]>,
|
|
732
|
+
<identity partial perm on [ 4, 8 ]>, <identity partial perm on [ 4, 6 ]>,
|
|
733
|
+
<identity partial perm on [ 4, 5 ]> ]
|
|
734
|
+
gap> Idempotents(s, 10);
|
|
735
|
+
[ ]
|
|
736
|
+
gap> f := PartialPermNC([2, 4, 9, 10], [7, 4, 3, 2]);;
|
|
737
|
+
gap> r := RClassNC(s, f);
|
|
738
|
+
<Green's R-class: [9,3][10,2,7](4)>
|
|
739
|
+
gap> Idempotents(r);
|
|
740
|
+
[ <identity partial perm on [ 2, 4, 9, 10 ]> ]
|
|
741
|
+
|
|
742
|
+
# InverseTest14
|
|
743
|
+
gap> s := InverseSemigroup([
|
|
744
|
+
> PartialPerm([1, 2, 3, 4, 5, 6, 9], [1, 5, 9, 2, 6, 10, 7]),
|
|
745
|
+
> PartialPerm([1, 3, 4, 7, 8, 9], [9, 4, 1, 6, 2, 8])]);
|
|
746
|
+
<inverse partial perm semigroup of rank 10 with 2 generators>
|
|
747
|
+
gap> ForAll(RClasses(s), IsRegularGreensClass);
|
|
748
|
+
true
|
|
749
|
+
|
|
750
|
+
# InverseTest15
|
|
751
|
+
gap> s := InverseSemigroup(
|
|
752
|
+
> PartialPermNC([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15],
|
|
753
|
+
> [6, 4, 18, 3, 11, 8, 5, 14, 19, 13, 12, 20, 1]),
|
|
754
|
+
> PartialPermNC([1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16, 18, 20],
|
|
755
|
+
> [1, 18, 3, 7, 4, 9, 19, 5, 14, 16, 12, 17, 15, 6]));;
|
|
756
|
+
gap> iter := IteratorOfDClassReps(s);
|
|
757
|
+
<iterator>
|
|
758
|
+
gap> NextIterator(iter);
|
|
759
|
+
[2,4,3,18][7,8,5][9,14,20][10,19][15,1,6,11,13,12]
|
|
760
|
+
gap> NextIterator(iter);
|
|
761
|
+
[2,18,15,12,16,17][10,5,7,9,19][11,14][20,6,4,3](1)
|
|
762
|
+
gap> NextIterator(iter);
|
|
763
|
+
[1,11,12][2,3][4,18][7,5][9,20][15,6,13]
|
|
764
|
+
gap> NextIterator(iter);
|
|
765
|
+
[2,3,15,1,4][8,7][13,16](6,14)
|
|
766
|
+
gap> NextIterator(iter);
|
|
767
|
+
[3,2,6][8,10,9,11][13,15,1,20](4)
|
|
768
|
+
gap> NextIterator(iter);
|
|
769
|
+
[6,1,12][8,9][11,4,18][13,14,19,5](3)
|
|
770
|
+
gap> NextIterator(iter);
|
|
771
|
+
[3,6,1,18,4][8,5][14,7](11,20)
|
|
772
|
+
gap> NextIterator(iter);
|
|
773
|
+
[3,6][4,20][9,5][16,15,2][17,12,18][19,7,10](1)
|
|
774
|
+
gap> NextIterator(iter);
|
|
775
|
+
[1,14][9,6][11,16](4,15)(7)
|
|
776
|
+
gap> NextIterator(iter);
|
|
777
|
+
[7,10][11,15,20](2,4)
|
|
778
|
+
gap> NextIterator(iter);
|
|
779
|
+
[8,9][13,17][14,4][15,1,3,12]
|
|
780
|
+
gap> NextIterator(iter);
|
|
781
|
+
[4,2,1,14][9,6](15)
|
|
782
|
+
gap> NextIterator(iter);
|
|
783
|
+
[2,20][4,6][10,7][13,18][15,1]
|
|
784
|
+
gap> NextIterator(iter);
|
|
785
|
+
[11,6][18,1,4,15][20,14]
|
|
786
|
+
gap> NextIterator(iter);
|
|
787
|
+
[6,4,2][7,11][18,1,20]
|
|
788
|
+
gap> NextIterator(iter);
|
|
789
|
+
[2,12][5,19][10,9][15,17][18,16][20,3](1)
|
|
790
|
+
gap> NextIterator(iter);
|
|
791
|
+
[8,14][11,3,18][13,20](6)
|
|
792
|
+
gap> NextIterator(iter);
|
|
793
|
+
[4,15][6,1,16][8,19,7][11,3]
|
|
794
|
+
gap> NextIterator(iter);
|
|
795
|
+
[1,13,9][6,15][11,2][14,10][19,8](3,4)
|
|
796
|
+
gap> NextIterator(iter);
|
|
797
|
+
[11,15][12,6][13,1][18,2]
|
|
798
|
+
gap> NextIterator(iter);
|
|
799
|
+
[11,1][13,20,7](5)(6,18)
|
|
800
|
+
gap> NextIterator(iter);
|
|
801
|
+
[11,14][18,2][20,6,15](1,3)(8)
|
|
802
|
+
gap> NextIterator(iter);
|
|
803
|
+
[3,20][8,10][14,5][18,6,1,2]
|
|
804
|
+
gap> NextIterator(iter);
|
|
805
|
+
[3,4][5,9][12,1,20][18,6][19,11]
|
|
806
|
+
gap> NextIterator(iter);
|
|
807
|
+
[4,1,20][7,8][9,11][15,3]
|
|
808
|
+
gap> NextIterator(iter);
|
|
809
|
+
[7,9,4,12][11,17][15,3]
|
|
810
|
+
gap> NextIterator(iter);
|
|
811
|
+
[2,6,7][14,1][15,18]
|
|
812
|
+
gap> NextIterator(iter);
|
|
813
|
+
[3,2,6][8,10][13,15,1,20]
|
|
814
|
+
gap> NextIterator(iter);
|
|
815
|
+
[2,13,6][4,18][9,12][10,20][15,11](3)
|
|
816
|
+
gap> NextIterator(iter);
|
|
817
|
+
[2,1,11][9,20][15,18]
|
|
818
|
+
gap> NextIterator(iter);
|
|
819
|
+
[2,14][4,1][13,3](15)
|
|
820
|
+
gap> NextIterator(iter);
|
|
821
|
+
[5,10][6,2][18,20]
|
|
822
|
+
gap> NextIterator(iter);
|
|
823
|
+
[2,16][10,19][18,17](1)
|
|
824
|
+
gap> NextIterator(iter);
|
|
825
|
+
[4,1,3][20,15](2)
|
|
826
|
+
gap> NextIterator(iter);
|
|
827
|
+
[6,11,18][8,20]
|
|
828
|
+
gap> NextIterator(iter);
|
|
829
|
+
[3,15][13,6,4]
|
|
830
|
+
gap> NextIterator(iter);
|
|
831
|
+
[4,1][11,18][19,8](6)
|
|
832
|
+
gap> NextIterator(iter);
|
|
833
|
+
[4,12][6,1,17][19,9]
|
|
834
|
+
gap> NextIterator(iter);
|
|
835
|
+
[3,6,18][13,7](4)
|
|
836
|
+
gap> NextIterator(iter);
|
|
837
|
+
[11,18][12,20][13,1]
|
|
838
|
+
gap> NextIterator(iter);
|
|
839
|
+
[5,8][6,3][11,15][13,14][18,1]
|
|
840
|
+
gap> NextIterator(iter);
|
|
841
|
+
[5,14][12,6][18,11][19,13](3)
|
|
842
|
+
gap> NextIterator(iter);
|
|
843
|
+
[3,6][5,7][12,1][18,20]
|
|
844
|
+
gap> NextIterator(iter);
|
|
845
|
+
[1,11][15,3,13][16,6][19,5]
|
|
846
|
+
gap> NextIterator(iter);
|
|
847
|
+
<empty partial perm>
|
|
848
|
+
gap> NextIterator(iter);
|
|
849
|
+
[4,2][7,10][11,15,20]
|
|
850
|
+
gap> s := RandomInverseSemigroup(IsPartialPermSemigroup, 2, 20);;
|
|
851
|
+
gap> iter := IteratorOfDClassReps(s);
|
|
852
|
+
<iterator>
|
|
853
|
+
gap> s := RandomInverseSemigroup(IsPartialPermSemigroup, 2, 100);;
|
|
854
|
+
gap> iter := IteratorOfLClassReps(s);
|
|
855
|
+
Error, Variable: 'IteratorOfLClassReps' must have a value
|
|
856
|
+
gap> for i in [1 .. 10000] do NextIterator(iter); od;
|
|
857
|
+
Error, <iter> is exhausted
|
|
858
|
+
gap> s := RandomInverseSemigroup(IsPartialPermSemigroup, 2, 10);;
|
|
859
|
+
gap> iter := IteratorOfLClassReps(s);
|
|
860
|
+
Error, Variable: 'IteratorOfLClassReps' must have a value
|
|
861
|
+
gap> for i in iter do od;
|
|
862
|
+
gap> iter := IteratorOfDClassReps(s);
|
|
863
|
+
<iterator>
|
|
864
|
+
gap> for i in iter do od;
|
|
865
|
+
|
|
866
|
+
# InverseTest17
|
|
867
|
+
gap> s := InverseSemigroup(
|
|
868
|
+
> [PartialPermNC([1, 2, 3, 5, 7, 9, 10], [6, 7, 2, 9, 1, 5, 3]),
|
|
869
|
+
> PartialPermNC([1, 2, 3, 5, 6, 7, 9, 10], [8, 1, 9, 4, 10, 5, 6, 7])]);;
|
|
870
|
+
gap> NrIdempotents(s);
|
|
871
|
+
236
|
|
872
|
+
gap> f := PartialPermNC([2, 3, 7, 9, 10], [7, 2, 1, 5, 3]);;
|
|
873
|
+
gap> d := DClassNC(s, f);;
|
|
874
|
+
gap> NrIdempotents(d);
|
|
875
|
+
13
|
|
876
|
+
gap> l := LClass(d, f);
|
|
877
|
+
<Green's L-class: [9,5][10,3,2,7,1]>
|
|
878
|
+
gap> PartialPerm([1, 2, 3, 5, 7], [1, 2, 3, 5, 7]) in last;
|
|
879
|
+
true
|
|
880
|
+
gap> NrIdempotents(l);
|
|
881
|
+
1
|
|
882
|
+
gap> DClass(l);
|
|
883
|
+
<Green's D-class: [9,5][10,3,2,7,1]>
|
|
884
|
+
gap> PartialPerm([1, 2, 3, 5, 7], [1, 2, 3, 5, 7]) in last;
|
|
885
|
+
true
|
|
886
|
+
gap> DClass(l) = d;
|
|
887
|
+
true
|
|
888
|
+
gap> NrIdempotents(DClass(l));
|
|
889
|
+
13
|
|
890
|
+
|
|
891
|
+
# InverseTest18
|
|
892
|
+
gap> S := InverseSemigroup(
|
|
893
|
+
> PartialPermNC([1, 2, 3], [1, 3, 5]),
|
|
894
|
+
> PartialPermNC([1, 2, 4], [1, 2, 3]),
|
|
895
|
+
> PartialPermNC([1, 2, 5], [4, 5, 2]));;
|
|
896
|
+
gap> f := PartialPermNC([1, 5], [3, 2]);;
|
|
897
|
+
gap> SchutzenbergerGroup(LClass(S, f));
|
|
898
|
+
Group(())
|
|
899
|
+
gap> SchutzenbergerGroup(RClass(S, f));
|
|
900
|
+
Group(())
|
|
901
|
+
gap> SchutzenbergerGroup(HClass(S, f));
|
|
902
|
+
Group(())
|
|
903
|
+
gap> SchutzenbergerGroup(DClass(S, f));
|
|
904
|
+
Group(())
|
|
905
|
+
gap> List(DClasses(S), SchutzenbergerGroup);
|
|
906
|
+
[ Group(()), Group(()), Group(()), Group(()), Group([ (2,5) ]), Group(()) ]
|
|
907
|
+
|
|
908
|
+
# InverseTest19
|
|
909
|
+
gap> s := InverseSemigroup(
|
|
910
|
+
> [PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9]),
|
|
911
|
+
> PartialPerm([1, 2, 3, 4, 5, 7, 8, 9], [1, 2, 3, 4, 5, 7, 8, 9]),
|
|
912
|
+
> PartialPerm([1, 3, 4, 7, 8, 9], [1, 3, 4, 7, 8, 9]),
|
|
913
|
+
> PartialPerm([3, 7, 8, 9], [2, 7, 8, 9]),
|
|
914
|
+
> PartialPerm([1, 7, 9], [1, 7, 9]),
|
|
915
|
+
> PartialPerm([1, 7, 9], [8, 7, 9])]);;
|
|
916
|
+
gap> Size(s);
|
|
917
|
+
12
|
|
918
|
+
gap> IsDTrivial(s);
|
|
919
|
+
false
|
|
920
|
+
|
|
921
|
+
# InverseTest20
|
|
922
|
+
gap> IsIsometryPP := function(f)
|
|
923
|
+
> local n, i, j, k, l;
|
|
924
|
+
> n := RankOfPartialPerm(f);
|
|
925
|
+
> for i in [1 .. n - 1] do
|
|
926
|
+
> k := DomainOfPartialPerm(f)[i];
|
|
927
|
+
> for j in [i + 1 .. n] do
|
|
928
|
+
> l := DomainOfPartialPerm(f)[j];
|
|
929
|
+
> if not AbsInt(k ^ f - l ^ f) = AbsInt(k - l) then
|
|
930
|
+
> return false;
|
|
931
|
+
> fi;
|
|
932
|
+
> od;
|
|
933
|
+
> od;
|
|
934
|
+
> return true;
|
|
935
|
+
> end;;
|
|
936
|
+
gap> s := InverseSubsemigroupByProperty(SymmetricInverseSemigroup(5),
|
|
937
|
+
> IsIsometryPP);;
|
|
938
|
+
gap> Size(s);
|
|
939
|
+
142
|
|
940
|
+
gap> s := InverseSubsemigroupByProperty(SymmetricInverseSemigroup(6),
|
|
941
|
+
> IsIsometryPP);;
|
|
942
|
+
gap> Size(s);
|
|
943
|
+
319
|
|
944
|
+
gap> s := InverseSubsemigroupByProperty(SymmetricInverseSemigroup(7),
|
|
945
|
+
> IsIsometryPP);;
|
|
946
|
+
gap> Size(s);
|
|
947
|
+
686
|
|
948
|
+
|
|
949
|
+
# InverseCongTest1: Create an inverse semigroup
|
|
950
|
+
gap> s := InverseSemigroup([PartialPerm([1, 2, 3, 5], [2, 7, 3, 4]),
|
|
951
|
+
> PartialPerm([1, 3, 4, 5], [7, 2, 4, 6]),
|
|
952
|
+
> PartialPerm([1, 2, 3, 4, 6], [2, 3, 4, 6, 1]),
|
|
953
|
+
> PartialPerm([1, 2, 4, 6], [2, 4, 3, 7]),
|
|
954
|
+
> PartialPerm([1, 2, 4, 6], [3, 1, 7, 2]),
|
|
955
|
+
> PartialPerm([1, 2, 5, 6], [5, 1, 6, 3]),
|
|
956
|
+
> PartialPerm([1, 2, 3, 6], [7, 3, 4, 2])]);;
|
|
957
|
+
gap> cong := SemigroupCongruence(s,
|
|
958
|
+
> [PartialPerm([4], [7]), PartialPerm([2], [1])]);
|
|
959
|
+
<2-sided semigroup congruence over <inverse partial perm semigroup
|
|
960
|
+
of size 4165, rank 7 with 7 generators> with 1 generating pairs>
|
|
961
|
+
|
|
962
|
+
# InverseCongTest3: Try some methods
|
|
963
|
+
gap> x := PartialPerm([4], [5]);;
|
|
964
|
+
gap> y := PartialPerm([1, 2, 5], [5, 1, 6]);;
|
|
965
|
+
gap> z := PartialPerm([6], [1]);;
|
|
966
|
+
gap> [x, y] in cong;
|
|
967
|
+
false
|
|
968
|
+
gap> [x, z] in cong;
|
|
969
|
+
true
|
|
970
|
+
gap> [y, z] in cong;
|
|
971
|
+
false
|
|
972
|
+
|
|
973
|
+
# InverseCongTest4: Congruence classes
|
|
974
|
+
gap> classx := EquivalenceClassOfElement(cong, x);
|
|
975
|
+
<2-sided congruence class of [4,5]>
|
|
976
|
+
gap> classy := EquivalenceClassOfElement(cong, y);;
|
|
977
|
+
gap> classz := EquivalenceClassOfElement(cong, z);;
|
|
978
|
+
gap> classx = classy;
|
|
979
|
+
false
|
|
980
|
+
gap> classz = classx;
|
|
981
|
+
true
|
|
982
|
+
gap> x in classx;
|
|
983
|
+
true
|
|
984
|
+
gap> y in classx;
|
|
985
|
+
false
|
|
986
|
+
gap> x in classz;
|
|
987
|
+
true
|
|
988
|
+
gap> z * y in classz * classy;
|
|
989
|
+
true
|
|
990
|
+
gap> y * x in classy * classx;
|
|
991
|
+
true
|
|
992
|
+
gap> Size(classx);
|
|
993
|
+
50
|
|
994
|
+
|
|
995
|
+
# InverseCongTest5: Quotients
|
|
996
|
+
gap> q := s / cong;;
|
|
997
|
+
|
|
998
|
+
# InverseCongTest6:
|
|
999
|
+
# Convert to and from semigroup congruence by generating pairs
|
|
1000
|
+
gap> pairs := GeneratingPairsOfSemigroupCongruence(cong);;
|
|
1001
|
+
gap> ccong := SemigroupCongruence(s, pairs);;
|
|
1002
|
+
gap> ccong = cong;
|
|
1003
|
+
true
|
|
1004
|
+
gap> ccong := AsSemigroupCongruenceByGeneratingPairs(cong);
|
|
1005
|
+
<2-sided semigroup congruence over <inverse partial perm semigroup
|
|
1006
|
+
of size 4165, rank 7 with 7 generators> with 1 generating pairs>
|
|
1007
|
+
gap> [x, y] in ccong;
|
|
1008
|
+
false
|
|
1009
|
+
gap> [x, z] in ccong;
|
|
1010
|
+
true
|
|
1011
|
+
gap> [y, z] in ccong;
|
|
1012
|
+
false
|
|
1013
|
+
|
|
1014
|
+
# InverseCongTest7: Universal congruence
|
|
1015
|
+
gap> s := InverseSemigroup(PartialPerm([1], [2]), PartialPerm([2], [1]));
|
|
1016
|
+
<inverse partial perm semigroup of rank 2 with 2 generators>
|
|
1017
|
+
gap> Size(s);
|
|
1018
|
+
5
|
|
1019
|
+
gap> SemigroupCongruence(s, [s.1, s.1 * s.2]);
|
|
1020
|
+
<universal semigroup congruence over <0-simple inverse partial perm semigroup
|
|
1021
|
+
of size 5, rank 2 with 2 generators>>
|
|
1022
|
+
|
|
1023
|
+
#
|
|
1024
|
+
gap> SEMIGROUPS.StopTest();
|
|
1025
|
+
gap> STOP_TEST("Semigroups package: extreme/inverse.tst");
|