passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (354) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1157 -0
  17. gap/pkg/semigroups/config.status +1132 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +354 -0
  349. passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +6 -0
  350. passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
  352. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  353. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  354. sage/libs/gap_pkg_semigroups.abi3.so +0 -0
@@ -0,0 +1,4236 @@
1
+ ###########################################################################
2
+ ##
3
+ #W extreme/misc.tst
4
+ #Y Copyright (C) 2011-15 James D. Mitchell
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+ ##
10
+
11
+ #@local D, H, K18g, L, P, a1, a2, a3, a4, a5, a6, acting, cosets, d, data, dd
12
+ #@local e, enum, f, g, gens, h, hh, i, iter, l, lambda_schutz, lambda_stab, m
13
+ #@local o, p, r, rep, reps, rho_schutz, rho_stab, rr, s, scc, schutz
14
+ gap> START_TEST("Semigroups package: extreme/misc.tst");
15
+ gap> LoadPackage("semigroups", false);;
16
+
17
+ #
18
+ gap> SEMIGROUPS.StartTest();
19
+ gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
20
+
21
+ # MiscTest0
22
+ gap> gens := [Transformation([2, 8, 3, 7, 1, 5, 2, 6]),
23
+ > Transformation([3, 5, 7, 2, 5, 6, 3, 8]),
24
+ > Transformation([4, 1, 8, 3, 5, 7, 3, 5]),
25
+ > Transformation([4, 3, 4, 5, 6, 4, 1, 2]),
26
+ > Transformation([5, 4, 8, 8, 5, 6, 1, 5]),
27
+ > Transformation([6, 7, 4, 1, 4, 1, 6, 2]),
28
+ > Transformation([7, 1, 2, 2, 2, 7, 4, 5]),
29
+ > Transformation([8, 8, 5, 1, 7, 5, 2, 8])];;
30
+ gap> s := Semigroup(gens);
31
+ <transformation semigroup of degree 8 with 8 generators>
32
+ gap> Size(s);
33
+ 597369
34
+ gap> f := Transformation([8, 1, 5, 5, 8, 3, 7, 8]);;
35
+ gap> l := LClassNC(s, f);
36
+ <Green's L-class: Transformation( [ 8, 1, 5, 5, 8, 3, 7, 8 ] )>
37
+ gap> Transformation([8, 1, 5, 5, 8, 3, 7, 8]) in last;
38
+ true
39
+ gap> RhoOrbStabChain(l);
40
+ true
41
+ gap> Size(l);
42
+ 4560
43
+ gap> RhoOrbSCC(l);
44
+ [ 1, 2, 5, 9, 10, 13, 14, 18, 24, 25, 22, 28, 34, 21, 11, 16, 12, 33, 32, 36,
45
+ 3, 6, 39, 35, 37, 38, 29, 17, 23, 4, 7, 15, 19, 26, 30, 31, 27, 20 ]
46
+ gap> SchutzenbergerGroup(l);
47
+ Sym( [ 1, 3, 5, 7, 8 ] )
48
+ gap> ForAll(l, x -> x in l);
49
+ true
50
+ gap> d := DClass(s, f);
51
+ <Green's D-class: Transformation( [ 8, 1, 5, 5, 8, 3, 7, 8 ] )>
52
+ gap> Transformation([8, 1, 5, 5, 8, 3, 7, 8]) in last;
53
+ true
54
+ gap> iter := Iterator(d);
55
+ <iterator>
56
+ gap> for i in iter do od;
57
+
58
+ # MiscTest1
59
+ gap> gens := [PartialPermNC([1, 2, 3, 5, 7, 10], [12, 3, 1, 11, 9, 5]),
60
+ > PartialPermNC([1, 2, 3, 4, 5, 7, 8], [4, 3, 11, 12, 6, 2, 1]),
61
+ > PartialPermNC([1, 2, 3, 4, 5, 9, 11], [11, 6, 9, 2, 4, 8, 12]),
62
+ > PartialPermNC([1, 2, 3, 4, 7, 9, 12], [7, 1, 12, 2, 9, 4, 5]),
63
+ > PartialPermNC([1, 2, 3, 5, 7, 8, 9], [5, 4, 8, 11, 6, 12, 1]),
64
+ > PartialPermNC([1, 2, 4, 6, 8, 9, 10], [8, 5, 2, 12, 4, 7, 11])];;
65
+ gap> s := Semigroup(gens);
66
+ <partial perm semigroup of rank 12 with 6 generators>
67
+ gap> f := PartialPermNC([3, 4, 5, 11], [4, 1, 2, 5]);;
68
+ gap> l := LClassNC(s, f);
69
+ <Green's L-class: [3,4,1][11,5,2]>
70
+ gap> l := LClass(s, f);
71
+ <Green's L-class: [3,4,1][11,5,2]>
72
+ gap> d := DClass(s, f);
73
+ <Green's D-class: [3,4,1][11,5,2]>
74
+ gap> Size(l);
75
+ 1
76
+ gap> Number(d, x -> x in l);
77
+ 1
78
+ gap> Number(s, x -> x in l);
79
+ 1
80
+ gap> s := Semigroup(gens);
81
+ <partial perm semigroup of rank 12 with 6 generators>
82
+ gap> l := LClass(s, f);
83
+ <Green's L-class: [3,4,1][11,5,2]>
84
+ gap> d := DClass(s, f);
85
+ <Green's D-class: [3,4,1][11,5,2]>
86
+ gap> Number(d, x -> x in l);
87
+ 1
88
+ gap> Number(s, x -> x in l);
89
+ 1
90
+ gap> SchutzenbergerGroup(l);
91
+ Group(())
92
+ gap> ForAll(l, x -> x in l);
93
+ true
94
+ gap> d := DClassNC(s, f);
95
+ <Green's D-class: [3,4,1][11,5,2]>
96
+ gap> d := DClassNC(s, Representative(l));
97
+ <Green's D-class: [3,4,1][11,5,2]>
98
+ gap> ForAll(l, x -> x in d);
99
+ true
100
+ gap> Number(d, x -> x in l);
101
+ 1
102
+ gap> Number(s, x -> x in l);
103
+ 1
104
+
105
+ # MiscTest2
106
+ gap> gens := [Transformation([2, 8, 3, 7, 1, 5, 2, 6]),
107
+ > Transformation([3, 5, 7, 2, 5, 6, 3, 8]),
108
+ > Transformation([6, 7, 4, 1, 4, 1, 6, 2]),
109
+ > Transformation([8, 8, 5, 1, 7, 5, 2, 8])];;
110
+ gap> s := Semigroup(gens);
111
+ <transformation semigroup of degree 8 with 4 generators>
112
+ gap> f := Transformation([5, 2, 7, 2, 7, 2, 5, 8]);;
113
+ gap> l := LClassNC(s, f);
114
+ <Green's L-class: Transformation( [ 5, 2, 7, 2, 7, 2, 5 ] )>
115
+ gap> Transformation([5, 2, 7, 2, 7, 2, 5]) in last;
116
+ true
117
+ gap> enum := Enumerator(l);
118
+ <enumerator of <Green's L-class: Transformation( [ 5, 2, 7, 2, 7, 2, 5 ] )>>
119
+ gap> enum[1];
120
+ Transformation( [ 5, 2, 7, 2, 7, 2, 5 ] )
121
+ gap> enum[2];
122
+ Transformation( [ 5, 8, 7, 8, 7, 8, 5, 2 ] )
123
+ gap> Position(enum, enum[2]);
124
+ 2
125
+ gap> Position(enum, enum[1]);
126
+ 1
127
+ gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
128
+ true
129
+ gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
130
+ true
131
+ gap> Length(enum);
132
+ 1728
133
+ gap> ForAll(enum, x -> x in s);
134
+ true
135
+ gap> ForAll(l, x -> x in enum);
136
+ true
137
+ gap> Number(s, x -> x in enum);
138
+ 1728
139
+ gap> Number(s, x -> x in l);
140
+ 1728
141
+ gap> AsSet(l) = AsSet(enum);
142
+ true
143
+ gap> f := Transformation([7, 2, 4, 2, 2, 1, 7, 6]);;
144
+ gap> Position(enum, f);
145
+ fail
146
+ gap> GreensHClasses(l);
147
+ [ <Green's H-class: Transformation( [ 5, 2, 7, 2, 7, 2, 5 ] )>,
148
+ <Green's H-class: Transformation( [ 2, 8, 7, 5, 5, 7, 2, 2 ] )>,
149
+ <Green's H-class: Transformation( [ 8, 2, 7, 2, 2, 5, 8, 7 ] )>,
150
+ <Green's H-class: Transformation( [ 2, 7, 7, 8, 8, 2, 2, 5 ] )>,
151
+ <Green's H-class: Transformation( [ 8, 8, 7, 5, 5, 7, 2, 8 ] )>,
152
+ <Green's H-class: Transformation( [ 7, 5, 2, 8, 5, 7, 7, 8 ] )>,
153
+ <Green's H-class: Transformation( [ 5, 8, 2, 7, 7, 5, 5, 7 ] )>,
154
+ <Green's H-class: Transformation( [ 8, 7, 2, 5, 5, 7, 8, 5 ] )>,
155
+ <Green's H-class: Transformation( [ 7, 5, 2, 8, 8, 5, 7, 7 ] )>,
156
+ <Green's H-class: Transformation( [ 7, 2, 8, 2, 2, 5, 7, 7 ] )>,
157
+ <Green's H-class: Transformation( [ 2, 7, 8, 7, 7, 2, 2, 5 ] )>,
158
+ <Green's H-class: Transformation( [ 2, 5, 7, 5, 5, 7, 2 ] )>,
159
+ <Green's H-class: Transformation( [ 5, 8, 7, 2, 2, 5, 5, 7 ] )>,
160
+ <Green's H-class: Transformation( [ 8, 7, 7, 5, 5, 2, 8, 5 ] )>,
161
+ <Green's H-class: Transformation( [ 7, 5, 7, 8, 8, 5, 7, 2 ] )>,
162
+ <Green's H-class: Transformation( [ 5, 2, 7, 7, 7, 8, 5, 5 ] )>,
163
+ <Green's H-class: Transformation( [ 7, 8, 7, 5, 8, 5, 7, 2 ] )>,
164
+ <Green's H-class: Transformation( [ 8, 2, 7, 7, 7, 8, 8, 5 ] )>,
165
+ <Green's H-class: Transformation( [ 2, 5, 7, 8, 8, 7, 2, 8 ] )>,
166
+ <Green's H-class: Transformation( [ 5, 8, 7, 2, 2, 8, 5, 7 ] )>,
167
+ <Green's H-class: Transformation( [ 8, 7, 7, 5, 5, 2, 8, 8 ] )>,
168
+ <Green's H-class: Transformation( [ 7, 8, 7, 8, 8, 5, 7, 2 ] )>,
169
+ <Green's H-class: Transformation( [ 7, 5, 8, 7, 5, 2, 7, 8 ] )>,
170
+ <Green's H-class: Transformation( [ 7, 2, 5, 8, 2, 8, 7, 7 ] )>,
171
+ <Green's H-class: Transformation( [ 7, 5, 8, 7, 5, 2, 7, 5 ] )>,
172
+ <Green's H-class: Transformation( [ 5, 5, 8, 2, 2, 5, 5, 7 ] )>,
173
+ <Green's H-class: Transformation( [ 5, 7, 8, 5, 5, 2, 5, 5 ] )>,
174
+ <Green's H-class: Transformation( [ 7, 5, 8, 5, 5, 5, 7, 2 ] )>,
175
+ <Green's H-class: Transformation( [ 5, 2, 8, 7, 7, 5, 5, 5 ] )>,
176
+ <Green's H-class: Transformation( [ 8, 5, 2, 5, 5, 7, 8, 5 ] )>,
177
+ <Green's H-class: Transformation( [ 8, 7, 5, 2, 7, 5, 8, 5 ] )>,
178
+ <Green's H-class: Transformation( [ 8, 5, 5, 7, 5, 2, 8, 5 ] )>,
179
+ <Green's H-class: Transformation( [ 8, 2, 5, 5, 2, 5, 8, 7 ] )>,
180
+ <Green's H-class: Transformation( [ 7, 2, 5, 8, 2, 5, 7, 7 ] )>,
181
+ <Green's H-class: Transformation( [ 2, 8, 7, 5, 8, 5, 2, 7 ] )>,
182
+ <Green's H-class: Transformation( [ 2, 5, 8, 7, 5, 7, 2, 5 ] )>,
183
+ <Green's H-class: Transformation( [ 2, 7, 5, 8, 7, 5, 2, 7 ] )>,
184
+ <Green's H-class: Transformation( [ 7, 2, 5, 8, 5, 8, 7, 8 ] )>,
185
+ <Green's H-class: Transformation( [ 2, 8, 5, 7, 7, 5, 2, 8 ] )>,
186
+ <Green's H-class: Transformation( [ 8, 8, 5, 2, 2, 7, 8, 5 ] )>,
187
+ <Green's H-class: Transformation( [ 8, 5, 5, 8, 8, 2, 8, 7 ] )>,
188
+ <Green's H-class: Transformation( [ 5, 7, 5, 8, 8, 8, 5, 2 ] )>,
189
+ <Green's H-class: Transformation( [ 7, 2, 5, 5, 5, 8, 7, 8 ] )>,
190
+ <Green's H-class: Transformation( [ 5, 8, 8, 5, 8, 2, 5, 7 ] )>,
191
+ <Green's H-class: Transformation( [ 7, 8, 7, 5, 5, 7, 7, 2 ] )>,
192
+ <Green's H-class: Transformation( [ 8, 2, 7, 7, 7, 5, 8, 7 ] )>,
193
+ <Green's H-class: Transformation( [ 2, 7, 7, 8, 8, 7, 2, 5 ] )>,
194
+ <Green's H-class: Transformation( [ 7, 5, 7, 2, 2, 8, 7, 7 ] )>,
195
+ <Green's H-class: Transformation( [ 5, 7, 7, 7, 7, 2, 5 ] )>,
196
+ <Green's H-class: Transformation( [ 7, 7, 5, 7, 7, 2, 7 ] )>,
197
+ <Green's H-class: Transformation( [ 7, 8, 5, 7, 7, 7, 7, 2 ] )>,
198
+ <Green's H-class: Transformation( [ 8, 2, 5, 7, 7, 7, 8, 7 ] )>,
199
+ <Green's H-class: Transformation( [ 2, 7, 5, 8, 8, 7, 2, 7 ] )>,
200
+ <Green's H-class: Transformation( [ 7, 7, 5, 2, 2, 8, 7, 7 ] )>,
201
+ <Green's H-class: Transformation( [ 5, 2, 7, 7, 2, 8, 5, 7 ] )>,
202
+ <Green's H-class: Transformation( [ 5, 8, 2, 7, 8, 7, 5, 7 ] )>,
203
+ <Green's H-class: Transformation( [ 8, 7, 2, 5, 5, 8, 8, 7 ] )>,
204
+ <Green's H-class: Transformation( [ 7, 7, 2, 8, 8, 5, 7, 8 ] )>,
205
+ <Green's H-class: Transformation( [ 7, 8, 2, 7, 7, 8, 7, 5 ] )>,
206
+ <Green's H-class: Transformation( [ 8, 5, 2, 7, 7, 7, 8, 8 ] )>,
207
+ <Green's H-class: Transformation( [ 2, 8, 5, 8, 8, 7, 2, 7 ] )>,
208
+ <Green's H-class: Transformation( [ 2, 7, 7, 8, 7, 8, 2, 5 ] )>,
209
+ <Green's H-class: Transformation( [ 2, 8, 7, 7, 8, 5, 2, 8 ] )>,
210
+ <Green's H-class: Transformation( [ 2, 5, 8, 7, 5, 8, 2, 7 ] )>,
211
+ <Green's H-class: Transformation( [ 7, 2, 7, 5, 2, 8, 7, 7 ] )>,
212
+ <Green's H-class: Transformation( [ 7, 8, 2, 7, 8, 7, 7, 5 ] )>,
213
+ <Green's H-class: Transformation( [ 5, 2, 8, 8, 2, 7, 5, 5 ] )>,
214
+ <Green's H-class: Transformation( [ 7, 5, 7, 2, 2, 8, 7, 2 ] )>,
215
+ <Green's H-class: Transformation( [ 5, 2, 7, 7, 7, 2, 5 ] )>,
216
+ <Green's H-class: Transformation( [ 7, 7, 5, 2, 7, 2, 7 ] )>,
217
+ <Green's H-class: Transformation( [ 7, 2, 7, 5, 2, 8, 7, 2 ] )>,
218
+ <Green's H-class: Transformation( [ 7, 8, 2, 7, 8, 2, 7, 5 ] )> ]
219
+ gap> Length(last);
220
+ 72
221
+
222
+ # MiscTest3
223
+ gap> gens := [
224
+ > PartialPermNC([1, 2, 3, 5, 7, 10], [12, 3, 1, 11, 9, 5]),
225
+ > PartialPermNC([1, 2, 3, 4, 5, 7, 8], [4, 3, 11, 12, 6, 2, 1]),
226
+ > PartialPermNC([1, 2, 3, 4, 5, 9, 11], [11, 6, 9, 2, 4, 8, 12]),
227
+ > PartialPermNC([1, 2, 3, 4, 7, 9, 12], [7, 1, 12, 2, 9, 4, 5]),
228
+ > PartialPermNC([1, 2, 3, 5, 7, 8, 9], [5, 4, 8, 11, 6, 12, 1]),
229
+ > PartialPermNC([1, 2, 4, 6, 8, 9, 10], [8, 5, 2, 12, 4, 7, 11])];;
230
+ gap> s := Semigroup(gens);
231
+ <partial perm semigroup of rank 12 with 6 generators>
232
+ gap> Size(s);
233
+ 4857
234
+ gap> f := PartialPerm([6, 9], [12, 6]);;
235
+ gap> l := LClass(s, f);
236
+ <Green's L-class: [9,6,12]>
237
+ gap> NrHClasses(l);
238
+ 66
239
+ gap> Size(l);
240
+ 66
241
+ gap> SchutzenbergerGroup(l);
242
+ Group([ (6,12) ])
243
+ gap> o := RhoOrb(l);
244
+ <closed orbit, 147 points with Schreier tree with log>
245
+ gap> d := DClassOfLClass(l);
246
+ <Green's D-class: [2,6][7,12]>
247
+ gap> Size(d);
248
+ 66
249
+ gap> NrLClasses(d);
250
+ 1
251
+ gap> NrRClasses(d);
252
+ 66
253
+ gap> SchutzenbergerGroup(d);
254
+ Group(())
255
+ gap> Length(RhoOrbSCC(l));
256
+ 33
257
+ gap> HClasses(l);
258
+ [ <Green's H-class: [2,6][7,12]>, <Green's H-class: [4,6][9,12]>,
259
+ <Green's H-class: [7,12][9,6]>, <Green's H-class: [1,12][7,6]>,
260
+ <Green's H-class: [1,12][2,6]>, <Green's H-class: [7,6][8,12]>,
261
+ <Green's H-class: [1,6][9,12]>, <Green's H-class: [2,12][4,6]>,
262
+ <Green's H-class: [4,12][8,6]>, <Green's H-class: [2,12][3,6]>,
263
+ <Green's H-class: [1,6][8,12]>, <Green's H-class: [3,12][9,6]>,
264
+ <Green's H-class: [5,12][9,6]>, <Green's H-class: [7,6](12)>,
265
+ <Green's H-class: [1,6][3,12]>, <Green's H-class: [2,6][8,12]>,
266
+ <Green's H-class: [1,12][4,6]>, <Green's H-class: [2,12][9,6]>,
267
+ <Green's H-class: [3,6][4,12]>, <Green's H-class: [4,12][7,6]>,
268
+ <Green's H-class: [8,12][9,6]>, <Green's H-class: [9,6,12]>,
269
+ <Green's H-class: [4,12][5,6]>, <Green's H-class: [9,12,6]>,
270
+ <Green's H-class: [3,12][11,6]>, <Green's H-class: [2,12][5,6]>,
271
+ <Green's H-class: [4,12,6]>, <Green's H-class: [5,12][11,6]>,
272
+ <Green's H-class: [1,12][5,6]>, <Green's H-class: [2,12,6]>,
273
+ <Green's H-class: [4,12](6)>, <Green's H-class: [4,12][11,6]>,
274
+ <Green's H-class: [8,12](6)>, <Green's H-class: [2,12][7,6]>,
275
+ <Green's H-class: [4,12][9,6]>, <Green's H-class: [7,6][9,12]>,
276
+ <Green's H-class: [1,6][7,12]>, <Green's H-class: [1,6][2,12]>,
277
+ <Green's H-class: [7,12][8,6]>, <Green's H-class: [1,12][9,6]>,
278
+ <Green's H-class: [2,6][4,12]>, <Green's H-class: [4,6][8,12]>,
279
+ <Green's H-class: [2,6][3,12]>, <Green's H-class: [1,12][8,6]>,
280
+ <Green's H-class: [3,6][9,12]>, <Green's H-class: [5,6][9,12]>,
281
+ <Green's H-class: [7,12,6]>, <Green's H-class: [1,12][3,6]>,
282
+ <Green's H-class: [2,12][8,6]>, <Green's H-class: [1,6][4,12]>,
283
+ <Green's H-class: [2,6][9,12]>, <Green's H-class: [3,12][4,6]>,
284
+ <Green's H-class: [4,6][7,12]>, <Green's H-class: [8,6][9,12]>,
285
+ <Green's H-class: [9,12](6)>, <Green's H-class: [4,6][5,12]>,
286
+ <Green's H-class: [9,6](12)>, <Green's H-class: [3,6][11,12]>,
287
+ <Green's H-class: [2,6][5,12]>, <Green's H-class: [4,6](12)>,
288
+ <Green's H-class: [5,6][11,12]>, <Green's H-class: [1,6][5,12]>,
289
+ <Green's H-class: [2,6](12)>, <Green's H-class: [4,6,12]>,
290
+ <Green's H-class: [4,6][11,12]>, <Green's H-class: [8,6,12]> ]
291
+ gap> IsDuplicateFreeList(last);
292
+ true
293
+ gap> IsRegularGreensClass(l);
294
+ false
295
+ gap> H := HClasses(l);;
296
+ gap> ForAll(H, x -> Representative(x) in l);
297
+ true
298
+ gap> ForAll(H, x -> Representative(x) in d);
299
+ true
300
+ gap> d;
301
+ <Green's D-class: [2,6][7,12]>
302
+ gap> Representative(l) in d;
303
+ true
304
+ gap> First(H, x -> not Representative(x) in d);
305
+ fail
306
+ gap> ForAll(l, x -> x in d);
307
+ true
308
+ gap> rep := Representative(d);
309
+ [2,6][7,12]
310
+ gap> s := Parent(d);
311
+ <partial perm semigroup of size 4857, rank 12 with 6 generators>
312
+ gap> ElementsFamily(FamilyObj(s)) <> FamilyObj(f)
313
+ > or RankOfPartialPerm(f) <> RankOfPartialPerm(rep);
314
+ false
315
+ gap> g := f;
316
+ [9,6,12]
317
+ gap> m := LambdaOrbSCCIndex(d);
318
+ 54
319
+ gap> o := LambdaOrb(d);
320
+ <closed orbit, 184 points with Schreier tree with log>
321
+ gap> scc := OrbSCC(o);
322
+ [ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ 8 ], [ 9 ], [ 10 ],
323
+ [ 11 ], [ 12 ], [ 14 ], [ 15 ], [ 16 ], [ 17 ], [ 18 ], [ 19 ], [ 21 ],
324
+ [ 22 ], [ 23 ], [ 24 ], [ 25 ], [ 26 ], [ 27 ], [ 28 ], [ 29 ], [ 30 ],
325
+ [ 31 ], [ 32 ], [ 33 ], [ 34 ], [ 35 ], [ 36 ], [ 37 ], [ 38 ], [ 39 ],
326
+ [ 40 ], [ 41 ], [ 42 ], [ 43, 46, 44, 50, 20, 47, 69, 61, 63, 86, 78 ],
327
+ [ 45 ], [ 48 ],
328
+ [ 49, 83, 66, 82, 108, 87, 99, 80, 145, 84, 56, 64, 133, 147, 74, 96, 85,
329
+ 146, 135, 62, 107, 110, 13, 154, 125, 101, 168, 159, 152, 137, 134,
330
+ 171, 175 ], [ 51 ], [ 52 ], [ 53, 127, 121, 164, 177 ], [ 54 ], [ 55 ],
331
+ [ 57 ], [ 58 ], [ 59 ], [ 60 ], [ 65 ], [ 67 ], [ 68 ], [ 70 ], [ 71 ],
332
+ [ 72 ], [ 73 ], [ 75 ], [ 76 ], [ 77 ], [ 79 ], [ 81 ], [ 88 ], [ 89 ],
333
+ [ 90 ], [ 91 ], [ 94 ], [ 95 ], [ 97 ], [ 98 ], [ 100 ], [ 102 ], [ 103 ],
334
+ [ 104 ], [ 105 ], [ 106 ], [ 109 ], [ 111 ], [ 113 ], [ 114 ], [ 115 ],
335
+ [ 116 ], [ 117 ], [ 118 ], [ 119 ], [ 120 ], [ 122 ], [ 123 ], [ 124 ],
336
+ [ 126 ], [ 128 ], [ 129 ], [ 130 ], [ 131 ], [ 132 ], [ 136 ], [ 138 ],
337
+ [ 139 ], [ 140 ], [ 141 ], [ 142, 173, 179, 92, 150 ], [ 143 ],
338
+ [ 144, 112, 93 ], [ 148 ], [ 149 ], [ 151 ], [ 153 ], [ 155 ], [ 156 ],
339
+ [ 157 ], [ 158 ], [ 160 ], [ 161 ], [ 162 ], [ 163 ], [ 165 ], [ 166 ],
340
+ [ 167 ], [ 169 ], [ 170 ], [ 172 ], [ 174 ], [ 176 ], [ 178 ], [ 180 ],
341
+ [ 181 ], [ 182 ], [ 183 ], [ 184 ] ]
342
+ gap> l := Position(o, LambdaFunc(s)(g));
343
+ 65
344
+ gap> l = fail or OrbSCCLookup(o)[l] <> m ;
345
+ false
346
+ gap> l <> scc[m][1];
347
+ false
348
+ gap> m := RhoOrbSCCIndex(d);
349
+ 38
350
+ gap> o := RhoOrb(d);
351
+ <closed orbit, 147 points with Schreier tree with log>
352
+ gap> scc := OrbSCC(o);
353
+ [ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ 8 ], [ 9 ],
354
+ [ 10, 42, 45, 50, 48, 52, 53, 51, 115, 134, 144 ], [ 11 ], [ 14 ], [ 15 ],
355
+ [ 16 ], [ 17 ], [ 18 ], [ 19 ], [ 20 ], [ 21 ], [ 22 ], [ 23 ], [ 24 ],
356
+ [ 25 ], [ 26 ], [ 27 ], [ 28 ], [ 29 ], [ 30 ], [ 31 ], [ 32 ], [ 33 ],
357
+ [ 34 ], [ 36 ], [ 37 ], [ 38 ], [ 40 ], [ 41 ],
358
+ [ 43, 46, 102, 59, 69, 63, 12, 89, 62, 81, 103, 65, 112, 143, 54, 70, 47,
359
+ 98, 74, 100, 120, 123, 121, 94, 122, 145, 132, 124, 93, 133, 128, 138,
360
+ 125 ], [ 44 ], [ 49, 113, 85, 84, 75 ], [ 55 ], [ 56, 95, 135 ],
361
+ [ 57 ], [ 58 ], [ 60 ], [ 61, 119, 108, 64, 13 ], [ 66 ], [ 67 ], [ 68 ],
362
+ [ 71 ], [ 72 ], [ 73 ], [ 76 ], [ 77 ], [ 78 ], [ 79 ], [ 80 ], [ 82 ],
363
+ [ 83 ], [ 86 ], [ 87 ], [ 88 ], [ 90 ], [ 91 ], [ 92 ], [ 96 ], [ 97 ],
364
+ [ 99 ], [ 101 ], [ 104 ], [ 105 ], [ 106 ], [ 107 ], [ 109 ], [ 110 ],
365
+ [ 111, 129, 147, 35, 39 ], [ 114 ], [ 116 ], [ 117 ], [ 118 ], [ 126 ],
366
+ [ 127 ], [ 130 ], [ 131 ], [ 136 ], [ 137 ], [ 139 ], [ 140 ], [ 141 ],
367
+ [ 142 ], [ 146 ] ]
368
+ gap> l := Position(o, RhoFunc(s)(g));
369
+ 123
370
+ gap> l = fail or OrbSCCLookup(o)[l] <> m;
371
+ false
372
+ gap> g := RhoOrbMult(o, m, l)[2] * g;;
373
+ gap> schutz := RhoOrbStabChain(d);
374
+ <stabilizer chain record, Base [ 12 ], Orbit length 2, Size: 2>
375
+ gap> l <> scc[m][1];
376
+ true
377
+ gap> cosets := LambdaCosets(d);
378
+ <enumerator of perm group>
379
+ gap> LambdaOrbStabChain(LambdaOrb(d), LambdaOrbSCCIndex(d));
380
+ false
381
+ gap> g := LambdaPerm(s)(rep, g);
382
+ ()
383
+ gap> schutz <> false;
384
+ true
385
+ gap> o := LambdaOrb(d);
386
+ <closed orbit, 184 points with Schreier tree with log>
387
+ gap> m := LambdaOrbSCCIndex(d);
388
+ 54
389
+ gap> lambda_schutz := LambdaOrbSchutzGp(o, m);
390
+ Group(())
391
+ gap> lambda_stab := LambdaOrbStabChain(o, m);
392
+ false
393
+ gap> o := RhoOrb(d);
394
+ <closed orbit, 147 points with Schreier tree with log>
395
+ gap> m := RhoOrbSCCIndex(d);
396
+ 38
397
+ gap> rho_schutz := RhoOrbSchutzGp(o, m);
398
+ Group([ (1,12) ])
399
+ gap> rho_stab := RhoOrbStabChain(o, m);
400
+ true
401
+ gap> rho_stab = true;
402
+ true
403
+ gap> schutz := lambda_schutz;
404
+ Group(())
405
+ gap> lambda_stab = true;
406
+ false
407
+ gap> Parent(d) = s;
408
+ true
409
+ gap> PartialPerm([1, 9], [6, 12]) in d;
410
+ true
411
+ gap> RhoOrbRep(o, m);
412
+ [2,12][7,1]
413
+ gap> Representative(d);
414
+ [2,6][7,12]
415
+ gap> p := LambdaConjugator(Parent(d))(RhoOrbRep(o, m), Representative(d));;
416
+ gap> LambdaFunc(s)(RhoOrbRep(o, m));
417
+ [ 1, 12 ]
418
+ gap> OnSets(last, p);
419
+ [ 6, 12 ]
420
+ gap> LambdaFunc(s)(Representative(d));
421
+ [ 6, 12 ]
422
+ gap> rho_schutz := rho_schutz ^ p;
423
+ Group([ (6,12) ])
424
+ gap> f := PartialPermNC([6, 9], [12, 6]);
425
+ [9,6,12]
426
+ gap> s := Semigroup(gens);
427
+ <partial perm semigroup of rank 12 with 6 generators>
428
+ gap> l := LClass(s, f);
429
+ <Green's L-class: [9,6,12]>
430
+ gap> d := DClassOfLClass(l);
431
+ <Green's D-class: [9,6,12]>
432
+ gap> ForAll(l, x -> x in d);
433
+ true
434
+ gap> NrHClasses(l);
435
+ 66
436
+ gap> RhoCosets(d);
437
+ <enumerator of perm group>
438
+ gap> Length(last);
439
+ 2
440
+ gap> H := HClasses(l);;
441
+ gap> ForAll(H, x -> Representative(x) in l);
442
+ true
443
+ gap> ForAll(H, x -> Representative(x) in d);
444
+ true
445
+ gap> ForAll(H, x -> Representative(x) in s);
446
+ true
447
+ gap> ForAll(l, x -> x in l);
448
+ true
449
+
450
+ # MiscTest4
451
+ gap> gens := [Transformation([2, 8, 3, 7, 1, 5, 2, 6]),
452
+ > Transformation([3, 5, 7, 2, 5, 6, 3, 8]),
453
+ > Transformation([6, 7, 4, 1, 4, 1, 6, 2]),
454
+ > Transformation([8, 8, 5, 1, 7, 5, 2, 8])];;
455
+ gap> s := Semigroup(gens);
456
+ <transformation semigroup of degree 8 with 4 generators>
457
+ gap> Size(s);
458
+ 95540
459
+ gap> f := Transformation([2, 2, 7, 7, 7, 1, 2, 7]);;
460
+ gap> l := LClassNC(s, f);
461
+ <Green's L-class: Transformation( [ 2, 2, 7, 7, 7, 1, 2, 7 ] )>
462
+ gap> Transformation([2, 2, 7, 7, 7, 1, 2, 7]) in last;
463
+ true
464
+ gap> g := Transformation([2, 2, 7, 7, 7, 1, 2, 1]);;
465
+ gap> Size(l);
466
+ 936
467
+ gap> h := GreensHClassOfElement(l, g);
468
+ <Green's H-class: Transformation( [ 2, 2, 7, 7, 7, 1, 2, 1 ] )>
469
+ gap> Transformation([2, 2, 7, 7, 7, 1, 2, 1]) in last;
470
+ true
471
+ gap> Size(h);
472
+ 1
473
+ gap> SchutzenbergerGroup(l);
474
+ Sym( [ 1, 2, 7 ] )
475
+ gap> IsRegularGreensClass(l);
476
+ false
477
+ gap> IsGreensClassNC(h);
478
+ true
479
+ gap> ForAll(h, x -> x in l);
480
+ true
481
+ gap> ForAll(h, x -> x in s);
482
+ true
483
+ gap> SchutzenbergerGroup(h);
484
+ Group(())
485
+ gap> Idempotents(h);
486
+ [ ]
487
+ gap> IsGroupHClass(h);
488
+ false
489
+ gap> IsGreensHClass(h);
490
+ true
491
+ gap> GreensHRelation(s) = EquivalenceClassRelation(h);
492
+ true
493
+ gap> gens := [PartialPermNC([1, 2, 4, 5, 9], [3, 6, 2, 10, 5]),
494
+ > PartialPermNC([1, 2, 3, 4, 7, 8], [10, 6, 7, 9, 4, 1]),
495
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 9], [7, 2, 5, 6, 9, 3, 8, 10]),
496
+ > PartialPermNC([1, 2, 3, 5, 6, 7, 8, 9], [10, 3, 7, 1, 5, 9, 2, 6]),
497
+ > PartialPermNC([2, 3, 5, 6, 10], [4, 1, 9, 2, 5]),
498
+ > PartialPermNC([1, 4, 6, 7, 9, 10], [8, 7, 2, 3, 4, 1])];;
499
+ gap> s := Semigroup(gens);
500
+ <partial perm semigroup of rank 10 with 6 generators>
501
+ gap> f := PartialPerm([]);;
502
+ gap> l := LClass(s, f);
503
+ <Green's L-class: <empty partial perm>>
504
+ gap> Size(s);
505
+ 55279
506
+ gap> NrIdempotents(s);
507
+ 141
508
+ gap> NrDClasses(s);
509
+ 2064
510
+ gap> NrRClasses(s);
511
+ 9568
512
+ gap> NrLClasses(s);
513
+ 8369
514
+ gap> NrHClasses(s);
515
+ 25175
516
+ gap> IsRegularSemigroup(s);
517
+ false
518
+ gap> l := LClass(s, f);
519
+ <Green's L-class: <empty partial perm>>
520
+ gap> h := HClassNC(l, f);
521
+ <Green's H-class: <empty partial perm>>
522
+ gap> Size(h);
523
+ 1
524
+ gap> ForAll(h, x -> x in l);
525
+ true
526
+ gap> ForAll(h, x -> x in s);
527
+ true
528
+ gap> IsGreensClassNC(h);
529
+ true
530
+ gap> f := PartialPermNC([2, 8, 9], [8, 10, 5]);;
531
+ gap> l := LClass(s, f);
532
+ <Green's L-class: [2,8,10][9,5]>
533
+ gap> h := HClassNC(l, f);
534
+ <Green's H-class: [2,8,10][9,5]>
535
+ gap> ForAll(h, x -> x in s);
536
+ true
537
+ gap> ForAll(h, x -> x in l);
538
+ true
539
+ gap> Size(h);
540
+ 1
541
+
542
+ # MiscTest5
543
+ gap> gens := [Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
544
+ > Transformation([3, 8, 1, 4, 5, 6, 7, 1]),
545
+ > Transformation([4, 3, 2, 7, 7, 6, 6, 5]),
546
+ > Transformation([7, 1, 7, 4, 2, 5, 6, 3])];;
547
+ gap> s := Monoid(gens);
548
+ <transformation monoid of degree 8 with 4 generators>
549
+ gap> f := Transformation([5, 4, 7, 2, 2, 2, 2, 5]);;
550
+ gap> f in s;
551
+ true
552
+ gap> l := LClass(s, f);
553
+ <Green's L-class: Transformation( [ 5, 4, 7, 2, 2, 2, 2, 5 ] )>
554
+ gap> Transformation([5, 4, 7, 2, 2, 2, 2, 5]) in last;
555
+ true
556
+ gap> IsGreensClassNC(l);
557
+ false
558
+ gap> Size(l);
559
+ 1
560
+ gap> f := Transformation([4, 3, 2, 7, 7, 6, 6, 5]);;
561
+ gap> l := LClass(s, f);
562
+ <Green's L-class: Transformation( [ 4, 3, 2, 7, 7, 6, 6, 5 ] )>
563
+ gap> Transformation([4, 3, 2, 7, 7, 6, 6, 5]) in last;
564
+ true
565
+ gap> Size(l);
566
+ 1
567
+
568
+ # MiscTest6
569
+ gap> gens := [PartialPermNC([1, 2, 3], [1, 4, 3]),
570
+ > PartialPermNC([1, 2, 3], [2, 3, 4]),
571
+ > PartialPermNC([1, 2, 3], [4, 2, 1]),
572
+ > PartialPermNC([1, 2, 4], [1, 4, 3])];;
573
+ gap> s := Semigroup(gens);
574
+ <partial perm semigroup of rank 4 with 4 generators>
575
+ gap> List(LClasses(s), IsRegularGreensClass);
576
+ [ false, false, false, false, true, true, false, false, true, true, false,
577
+ false, false, false, true, true, true, true, false, true ]
578
+ gap> Number(last, x -> x = true);
579
+ 9
580
+ gap> GroupOfUnits(s);
581
+ fail
582
+ gap> List(LClasses(s), NrIdempotents);
583
+ [ 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1 ]
584
+ gap> NrIdempotents(s);
585
+ 9
586
+ gap> List(LClasses(s), Size);
587
+ [ 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 1 ]
588
+ gap> Sum(last);
589
+ 62
590
+ gap> Size(s);
591
+ 62
592
+ gap> f := PartialPerm([2, 3], [2, 4]);;
593
+ gap> l := LClassNC(s, f);
594
+ <Green's L-class: [3,4](2)>
595
+ gap> HClassReps(l);
596
+ [ [3,4](2), [1,2,4], [3,2,4], [1,4](2) ]
597
+ gap> IsRegularGreensClass(l);
598
+ false
599
+ gap> NrHClasses(l);
600
+ 4
601
+ gap> l := LClass(s, f);
602
+ <Green's L-class: [3,4](2)>
603
+ gap> HClassReps(l);
604
+ [ [1,4](2), [3,4](2), [1,2,4], [3,2,4] ]
605
+ gap> IsRegularGreensClass(l);
606
+ false
607
+ gap> ForAll(HClassReps(l), x -> x in l);
608
+ true
609
+ gap> d := DClassOfLClass(l);
610
+ <Green's D-class: [1,4](2)>
611
+ gap> Size(d);
612
+ 4
613
+ gap> Size(l);
614
+ 4
615
+ gap> AsSSortedList(l) = AsSortedList(d);
616
+ true
617
+ gap> AsSSortedList(d) = AsSSortedList(l);
618
+ true
619
+ gap> l < d;
620
+ false
621
+ gap> ForAll(l, x -> x in d);
622
+ true
623
+ gap> ForAll(d, x -> x in l);
624
+ true
625
+ gap> HClassReps(d) = HClassReps(l);
626
+ true
627
+ gap> NrRClasses(d);
628
+ 4
629
+ gap> NrLClasses(d);
630
+ 1
631
+ gap> NrHClasses(d);
632
+ 4
633
+
634
+ # MiscTest7
635
+ gap> gens := [Transformation([1, 5, 6, 2, 5, 2, 1]),
636
+ > Transformation([1, 7, 5, 4, 3, 5, 7]),
637
+ > Transformation([2, 7, 7, 2, 4, 1, 1]),
638
+ > Transformation([3, 2, 2, 4, 1, 7, 6]),
639
+ > Transformation([3, 3, 5, 1, 7, 1, 6]),
640
+ > Transformation([3, 3, 6, 1, 7, 5, 2]),
641
+ > Transformation([3, 4, 6, 5, 4, 4, 7]),
642
+ > Transformation([5, 2, 4, 5, 1, 4, 5]),
643
+ > Transformation([5, 5, 2, 2, 6, 7, 2]),
644
+ > Transformation([7, 7, 5, 4, 5, 3, 2])];;
645
+ gap> s := Semigroup(gens);;
646
+ gap> l := LClasses(s)[1154];
647
+ <Green's L-class: Transformation( [ 7, 2, 2, 3, 6, 1, 2 ] )>
648
+ gap> Transformation([7, 2, 2, 3, 6, 1, 2]) in last;
649
+ true
650
+ gap> IsRegularGreensClass(l);
651
+ false
652
+ gap> d := DClassOfLClass(l);
653
+ <Green's D-class: Transformation( [ 7, 2, 2, 3, 6, 1, 2 ] )>
654
+ gap> Transformation([7, 2, 2, 3, 6, 1, 2]) in last;
655
+ true
656
+ gap> Size(l);
657
+ 1
658
+ gap> Size(d);
659
+ 1
660
+ gap> NrHClasses(d);
661
+ 1
662
+ gap> NrLClasses(d);
663
+ 1
664
+ gap> NrRClasses(d);
665
+ 1
666
+ gap> l := LClasses(s)[523];
667
+ <Green's L-class: Transformation( [ 5, 5, 5, 1, 7, 3, 6 ] )>
668
+ gap> Transformation([5, 5, 5, 1, 7, 3, 6]) in last;
669
+ true
670
+ gap> Size(l);
671
+ 1
672
+
673
+ # MiscTest8
674
+ gap> gens := [PartialPermNC([1, 2, 3, 5], [5, 7, 3, 4]),
675
+ > PartialPermNC([1, 2, 3, 4, 5], [6, 4, 1, 2, 7]),
676
+ > PartialPermNC([1, 2, 3, 4, 7], [2, 7, 4, 5, 8]),
677
+ > PartialPermNC([1, 2, 3, 5, 6], [5, 6, 1, 4, 3]),
678
+ > PartialPermNC([1, 2, 4, 6, 7], [2, 1, 6, 7, 4]),
679
+ > PartialPermNC([1, 3, 5, 6, 7], [6, 2, 3, 5, 7]),
680
+ > PartialPermNC([1, 2, 3, 4, 5, 7], [4, 1, 6, 2, 8, 5]),
681
+ > PartialPermNC([1, 2, 3, 4, 5, 8], [5, 6, 3, 8, 2, 7]),
682
+ > PartialPermNC([1, 2, 3, 4, 6, 7], [1, 5, 2, 6, 7, 4]),
683
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 8], [7, 5, 2, 8, 4, 1, 3])];;
684
+ gap> s := Semigroup(gens);
685
+ <partial perm semigroup of rank 8 with 10 generators>
686
+ gap> Size(s);
687
+ 72713
688
+ gap> NrRClasses(s);
689
+ 25643
690
+ gap> NrDClasses(s);
691
+ 4737
692
+ gap> NrLClasses(s);
693
+ 11323
694
+ gap> NrIdempotents(s);
695
+ 121
696
+ gap> IsRegularSemigroup(s);
697
+ false
698
+ gap> f := PartialPerm([3, 4, 7], [4, 7, 8]);;
699
+ gap> d := DClass(s, f);
700
+ <Green's D-class: [3,4,7,8]>
701
+ gap> Size(d);
702
+ 282
703
+ gap> NrRClasses(d);
704
+ 282
705
+ gap> NrLClasses(d);
706
+ 1
707
+ gap> IsRegularDClass(d);
708
+ false
709
+ gap> RhoCosets(d);
710
+ <enumerator of perm group>
711
+ gap> Length(last);
712
+ 6
713
+ gap> AsList(last2);
714
+ [ (), (4,8), (4,7,8), (7,8), (4,8,7), (4,7) ]
715
+ gap> SchutzenbergerGroup(d);
716
+ Group(())
717
+ gap> RhoOrbStabChain(d);
718
+ <stabilizer chain record, Base [ 7, 8 ], Orbit length 3, Size: 6>
719
+ gap> data := SemigroupData(Parent(d));
720
+ <closed semigroup data with 25643 reps, 178 lambda-values, 150 rho-values>
721
+ gap> OrbSCC(data)[OrbSCCLookup(data)[SemigroupDataIndex(d)]];
722
+ [ 33, 144, 340, 568, 35, 151, 353, 540, 1088, 1900, 1342, 2195, 1043, 1151,
723
+ 1336, 2189, 1361, 1902, 713, 1346, 561, 711, 1343, 519, 706, 1333, 553,
724
+ 720, 539, 1086, 571, 1158, 560, 1134, 1973, 1337, 1842, 1040, 725, 1362,
725
+ 1904, 1357, 1202, 1102, 1367, 2196, 1840, 717, 1181, 1339, 2192, 544, 1103,
726
+ 1932, 2888, 1360, 729, 1366, 1124, 1958, 2214, 1126, 715, 1352, 2204, 1340,
727
+ 1013, 1368, 503, 1014, 1801, 2750, 3674, 1335, 2188, 2997, 1344, 356, 727,
728
+ 1090, 1905, 358, 731, 1139, 1911, 1041, 712, 1347, 1371, 721, 1359, 2213,
729
+ 1838, 2788, 1045, 1837, 357, 728, 1364, 1349, 2052, 2009, 1903, 2859, 2873,
730
+ 707, 718, 341, 708, 1338, 345, 719, 147, 344, 1356, 2208, 1978, 2203, 1369,
731
+ 2217, 2862, 1091, 1907, 710, 1341, 2193, 3127, 343, 714, 1351, 2202, 2191,
732
+ 3126, 724, 2037, 4041, 726, 1363, 2215, 3767, 2057, 2198, 2058, 2039, 2990,
733
+ 709, 1137, 1976, 1841, 2794, 2936, 2973, 1974, 1089, 1901, 2855, 2210,
734
+ 1899, 1831, 2209, 3132, 2866, 730, 1370, 2218, 1348, 2199, 1136, 1975,
735
+ 3137, 1358, 2212, 3133, 4044, 1365, 2795, 1928, 2065, 3019, 2884, 1898,
736
+ 1909, 1046, 1839, 342, 1977, 2938, 2792, 148, 346, 1908, 2861, 2939, 3850,
737
+ 2010, 2974, 3891, 2920, 2051, 3003, 1929, 2885, 2216, 3135, 1910, 2863,
738
+ 3004, 3124, 3704, 3916, 2791, 3708, 4573, 5517, 4042, 2190, 3125, 4040,
739
+ 2749, 4043, 4703, 4807, 3925, 2889, 3766, 2783, 2782, 3910, 2789, 2206,
740
+ 3130, 1979, 3706, 1355, 2207, 3131, 2194, 3128, 2856, 3765, 2857, 2201,
741
+ 2937, 2790, 3707, 2205, 2200, 1092, 2864, 1913, 1345, 2197, 1833, 3136,
742
+ 3134, 1960, 2921, 3831, 2865, 1906, 2860, 1832, 1918, 1140, 1800, 1353,
743
+ 1959, 1933, 1354, 2793, 1105, 2211, 1135, 1087, 1334, 1350, 2858, 1157,
744
+ 3129, 355, 152, 146 ]
745
+ gap> Position(DClasses(s), d);
746
+ 17
747
+ gap> d := DClasses(s)[18];
748
+ <Green's D-class: [1,2][3,7,5][6,8]>
749
+ gap> OrbSCC(data)[OrbSCCLookup(data)[SemigroupDataIndex(d)]];
750
+ [ 36 ]
751
+ gap> LambdaCosets(d);
752
+ <enumerator of perm group>
753
+ gap> LambdaOrbSCC(d);
754
+ [ 22 ]
755
+ gap> RhoOrbSCC(d);
756
+ [ 35 ]
757
+ gap> ForAll(d, x -> x in d);
758
+ true
759
+ gap> enum := Enumerator(d);
760
+ <enumerator of <Green's D-class: [1,2][3,7,5][6,8]>>
761
+ gap> enum[1];
762
+ [1,2][3,7,5][6,8]
763
+ gap> Length(enum);
764
+ 1
765
+ gap> Size(d);
766
+ 1
767
+ gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
768
+ true
769
+ gap> s := Semigroup(gens);
770
+ <partial perm semigroup of rank 8 with 10 generators>
771
+ gap> d := DClass(s, PartialPerm([1, 3, 6], [7, 4, 8]));
772
+ <Green's D-class: [1,7][3,4][6,8]>
773
+ gap> enum := Enumerator(d);
774
+ <enumerator of <Green's D-class: [1,7][3,4][6,8]>>
775
+ gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
776
+ true
777
+ gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
778
+ true
779
+ gap> enum[1];
780
+ [1,7][3,4][6,8]
781
+ gap> enum[2];
782
+ [2,8][3,7][6,4]
783
+ gap> Position(enum, enum[2]);
784
+ 2
785
+ gap> Position(enum, enum[3]);
786
+ 3
787
+ gap> enum[3];
788
+ [1,4][3,8][5,7]
789
+ gap> enum[4];
790
+ [2,7][6,4](8)
791
+ gap> for d in DClasses(s) do
792
+ > enum := Enumerator(d);
793
+ > if not ForAll(enum, x -> enum[Position(enum, x)] = x) then
794
+ > Print("problem with enumerator of a D-class 1\n");
795
+ > fi;
796
+ > od;
797
+ gap> Size(s);
798
+ 72713
799
+ gap> NrRClasses(s);
800
+ 25643
801
+ gap> NrLClasses(s);
802
+ 11323
803
+ gap> NrDClasses(s);
804
+ 4737
805
+ gap> NrIdempotents(s);
806
+ 121
807
+
808
+ # MiscTest9
809
+ gap> gens := [Transformation([3, 4, 1, 2, 1]),
810
+ > Transformation([4, 2, 1, 5, 5]),
811
+ > Transformation([4, 2, 2, 2, 4])];;
812
+ gap> s := Semigroup(gens);;
813
+ gap> for d in DClasses(s) do
814
+ > enum := Enumerator(d);
815
+ > if not ForAll(enum, x -> enum[Position(enum, x)] = x) then
816
+ > Print("problem with enumerator of a D-class 1\n");
817
+ > fi;
818
+ > od;
819
+ gap> gens := [PartialPermNC([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),
820
+ > PartialPermNC([1, 2, 3, 4, 5, 8, 10], [7, 1, 4, 3, 2, 6, 5]),
821
+ > PartialPermNC([1, 2, 3, 4, 6, 7, 8, 10], [3, 8, 1, 9, 4, 10, 5, 6])];;
822
+ gap> s := Semigroup(gens);;
823
+ gap> f := PartialPerm([2, 4], [6, 5]);;
824
+ gap> d := DClassNC(s, f);
825
+ <Green's D-class: [2,6][4,5]>
826
+ gap> GreensHClasses(d);
827
+ [ <Green's H-class: [2,6][4,5]> ]
828
+ gap> Size(d);
829
+ 1
830
+
831
+ # MiscTest10
832
+ gap> gens :=
833
+ > [PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19,
834
+ > 20, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 43, 45, 46, 49,
835
+ > 50, 51, 53, 55, 56, 57, 58, 59, 60, 61, 64, 66, 68, 69, 70, 72, 73, 74, 77,
836
+ > 80, 81, 83, 86, 87, 89, 91, 98], [89, 70, 79, 27, 84, 99, 9, 73, 33, 77,
837
+ > 69, 41, 18, 63, 29, 42, 75, 56, 90, 64, 98, 49, 35, 100, 71, 3, 20, 2, 26,
838
+ > 11, 39, 7, 48, 85, 8, 10, 61, 25, 55, 92, 62, 21, 34, 57, 44, 14, 53, 59,
839
+ > 12, 87, 78, 83, 30, 32, 68, 86, 23, 47, 93, 15, 76, 97, 91]),
840
+ > PartialPermNC([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
841
+ > 19, 20, 22, 23, 24, 25, 28, 30, 31, 33, 34, 35, 36, 39, 40, 42, 43, 44, 45,
842
+ > 46, 47, 50, 53, 54, 55, 58, 59, 64, 65, 67, 69, 70, 71, 72, 73, 76, 77, 78,
843
+ > 81, 82, 84, 85, 86, 87, 89, 92, 94, 95], [5, 13, 94, 44, 80, 54, 99, 81,
844
+ > 31, 7, 90, 30, 46, 68, 36, 11, 100, 17, 87, 72, 14, 29, 9, 61, 91, 32, 43,
845
+ > 64, 60, 41, 26, 40, 8, 23, 63, 38, 57, 12, 59, 83, 92, 96, 18, 3, 65, 2,
846
+ > 37, 21, 49, 16, 75, 24, 27, 1, 48, 6, 35, 79, 82, 51, 39, 25, 77, 62, 22]),
847
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
848
+ > 18, 19, 20, 21, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
849
+ > 40, 42, 44, 48, 51, 52, 53, 55, 56, 57, 58, 60, 63, 64, 65, 66, 67, 71, 73,
850
+ > 75, 77, 80, 82, 83, 85, 86, 90, 91, 96, 97, 98, 99],
851
+ > [67, 93, 18, 59, 86, 16, 99, 73, 60, 74, 17, 95, 85, 49, 79, 4, 33, 66, 15,
852
+ > 44, 77, 41, 55, 84, 68, 69, 94, 31, 2, 29, 5, 42, 10, 63, 58, 34, 72, 53,
853
+ > 89, 57, 62, 76, 20, 52, 22, 35, 75, 98, 78, 40, 46, 28, 6, 90, 12, 65, 26,
854
+ > 36, 25, 61, 83, 38, 39, 87, 92, 97, 43, 30])];;
855
+ gap> s := Semigroup(gens);;
856
+ gap> f := PartialPerm([12, 27, 37, 40, 46, 50, 51, 53],
857
+ > [98, 3, 84, 99, 100, 21, 70, 89]);;
858
+ gap> d := DClassNC(s, f);
859
+ <Green's D-class: [12,98][27,3][37,84][40,99][46,100][50,21][51,70][53,89]>
860
+ gap> Size(d);
861
+ 1
862
+ gap> GreensHClasses(d);
863
+ [ <Green's H-class: [12,98][27,3][37,84][40,99][46,100][50,21][51,70][53,89]>
864
+ ]
865
+ gap> iter := IteratorOfDClasses(s);
866
+ <iterator>
867
+ gap> repeat d := NextIterator(iter); until Size(d) > 1;
868
+ gap> d;
869
+ <Green's D-class: [8,63][57,87]>
870
+ gap> Size(d);
871
+ 2036
872
+ gap> IsRegularDClass(d);
873
+ false
874
+ gap> GreensHClasses(d);;
875
+ gap> NrHClasses(d);
876
+ 2036
877
+ gap> GreensLClasses(d);
878
+ [ <Green's L-class: [8,63][57,87]> ]
879
+
880
+ # MiscTest11
881
+ gap> gens := [Transformation([1, 3, 4, 1]),
882
+ > Transformation([2, 4, 1, 2]),
883
+ > Transformation([3, 1, 1, 3]),
884
+ > Transformation([3, 3, 4, 1])];;
885
+ gap> s := Monoid(gens);;
886
+ gap> List(GreensDClasses(s), LClasses);
887
+ [ [ <Green's L-class: IdentityTransformation> ],
888
+ [ <Green's L-class: Transformation( [ 1, 3, 4, 1 ] )>,
889
+ <Green's L-class: Transformation( [ 4, 1, 3, 4 ] )>,
890
+ <Green's L-class: Transformation( [ 3, 4, 1, 3 ] )> ],
891
+ [ <Green's L-class: Transformation( [ 2, 4, 1, 2 ] )> ],
892
+ [ <Green's L-class: Transformation( [ 3, 1, 1, 3 ] )>,
893
+ <Green's L-class: Transformation( [ 1, 4, 4, 1 ] )>,
894
+ <Green's L-class: Transformation( [ 2, 1, 1, 2 ] )>,
895
+ <Green's L-class: Transformation( [ 2, 4, 4, 2 ] )>,
896
+ <Green's L-class: Transformation( [ 4, 3, 3, 4 ] )> ],
897
+ [ <Green's L-class: Transformation( [ 3, 3, 4, 1 ] )> ],
898
+ [ <Green's L-class: Transformation( [ 1, 1, 1, 1 ] )>,
899
+ <Green's L-class: Transformation( [ 2, 2, 2, 2 ] )>,
900
+ <Green's L-class: Transformation( [ 3, 3, 3, 3 ] )>,
901
+ <Green's L-class: Transformation( [ 4, 4, 4, 4 ] )> ] ]
902
+ gap> List(Concatenation(last), Size);
903
+ [ 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 3, 1, 1, 1, 1 ]
904
+ gap> Sum(last);
905
+ 62
906
+ gap> Size(s);
907
+ 62
908
+ gap> l := Concatenation(List(GreensDClasses(s), LClasses));
909
+ [ <Green's L-class: IdentityTransformation>,
910
+ <Green's L-class: Transformation( [ 1, 3, 4, 1 ] )>,
911
+ <Green's L-class: Transformation( [ 4, 1, 3, 4 ] )>,
912
+ <Green's L-class: Transformation( [ 3, 4, 1, 3 ] )>,
913
+ <Green's L-class: Transformation( [ 2, 4, 1, 2 ] )>,
914
+ <Green's L-class: Transformation( [ 3, 1, 1, 3 ] )>,
915
+ <Green's L-class: Transformation( [ 1, 4, 4, 1 ] )>,
916
+ <Green's L-class: Transformation( [ 2, 1, 1, 2 ] )>,
917
+ <Green's L-class: Transformation( [ 2, 4, 4, 2 ] )>,
918
+ <Green's L-class: Transformation( [ 4, 3, 3, 4 ] )>,
919
+ <Green's L-class: Transformation( [ 3, 3, 4, 1 ] )>,
920
+ <Green's L-class: Transformation( [ 1, 1, 1, 1 ] )>,
921
+ <Green's L-class: Transformation( [ 2, 2, 2, 2 ] )>,
922
+ <Green's L-class: Transformation( [ 3, 3, 3, 3 ] )>,
923
+ <Green's L-class: Transformation( [ 4, 4, 4, 4 ] )> ]
924
+ gap> List(last, Elements);
925
+ [ [ IdentityTransformation ], [ Transformation( [ 1, 3, 4, 1 ] ) ],
926
+ [ Transformation( [ 4, 1, 3, 4 ] ) ], [ Transformation( [ 3, 4, 1, 3 ] ) ],
927
+ [ Transformation( [ 2, 4, 1, 2 ] ) ],
928
+ [ Transformation( [ 1, 1, 1, 3 ] ), Transformation( [ 1, 1, 3, 1 ] ),
929
+ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 1, 3, 1, 1 ] ),
930
+ Transformation( [ 1, 3, 3, 1 ] ), Transformation( [ 3, 1, 1, 3 ] ),
931
+ Transformation( [ 3, 1, 3, 3 ] ), Transformation( [ 3, 3, 1, 1 ] ),
932
+ Transformation( [ 3, 3, 1, 3 ] ), Transformation( [ 3, 3, 3, 1 ] ) ],
933
+ [ Transformation( [ 1, 1, 1 ] ), Transformation( [ 1, 1, 4, 1 ] ),
934
+ Transformation( [ 1, 1, 4, 4 ] ), Transformation( [ 1, 4, 1, 1 ] ),
935
+ Transformation( [ 1, 4, 4, 1 ] ), Transformation( [ 4, 1, 1, 4 ] ),
936
+ Transformation( [ 4, 1, 4, 4 ] ), Transformation( [ 4, 4, 1, 1 ] ),
937
+ Transformation( [ 4, 4, 1, 4 ] ), Transformation( [ 4, 4, 4, 1 ] ) ],
938
+ [ Transformation( [ 1, 1, 1, 2 ] ), Transformation( [ 1, 1, 2, 1 ] ),
939
+ Transformation( [ 1, 1, 2, 2 ] ), Transformation( [ 1, 2, 1, 1 ] ),
940
+ Transformation( [ 1, 2, 2, 1 ] ), Transformation( [ 2, 1, 1, 2 ] ),
941
+ Transformation( [ 2, 1, 2, 2 ] ), Transformation( [ 2, 2, 1, 1 ] ),
942
+ Transformation( [ 2, 2, 1, 2 ] ), Transformation( [ 2, 2, 2, 1 ] ) ],
943
+ [ Transformation( [ 2, 2, 2 ] ), Transformation( [ 2, 2, 4, 2 ] ),
944
+ Transformation( [ 2, 2, 4, 4 ] ), Transformation( [ 2, 4, 2, 2 ] ),
945
+ Transformation( [ 2, 4, 4, 2 ] ), Transformation( [ 4, 2, 2, 4 ] ),
946
+ Transformation( [ 4, 2, 4, 4 ] ), Transformation( [ 4, 4, 2, 2 ] ),
947
+ Transformation( [ 4, 4, 2, 4 ] ), Transformation( [ 4, 4, 4, 2 ] ) ],
948
+ [ Transformation( [ 3, 3, 3 ] ), Transformation( [ 3, 3, 4, 3 ] ),
949
+ Transformation( [ 3, 3, 4, 4 ] ), Transformation( [ 3, 4, 3, 3 ] ),
950
+ Transformation( [ 3, 4, 4, 3 ] ), Transformation( [ 4, 3, 3, 4 ] ),
951
+ Transformation( [ 4, 3, 4, 4 ] ), Transformation( [ 4, 4, 3, 3 ] ),
952
+ Transformation( [ 4, 4, 3, 4 ] ), Transformation( [ 4, 4, 4, 3 ] ) ],
953
+ [ Transformation( [ 1, 1 ] ), Transformation( [ 3, 3, 4, 1 ] ),
954
+ Transformation( [ 4, 4, 1, 3 ] ) ], [ Transformation( [ 1, 1, 1, 1 ] ) ]
955
+ , [ Transformation( [ 2, 2, 2, 2 ] ) ],
956
+ [ Transformation( [ 3, 3, 3, 3 ] ) ], [ Transformation( [ 4, 4, 4, 4 ] ) ] ]
957
+ gap> Union(last);
958
+ [ Transformation( [ 1, 1, 1, 1 ] ), Transformation( [ 1, 1, 1, 2 ] ),
959
+ Transformation( [ 1, 1, 1, 3 ] ), Transformation( [ 1, 1, 1 ] ),
960
+ Transformation( [ 1, 1, 2, 1 ] ), Transformation( [ 1, 1, 2, 2 ] ),
961
+ Transformation( [ 1, 1, 3, 1 ] ), Transformation( [ 1, 1, 3, 3 ] ),
962
+ Transformation( [ 1, 1 ] ), Transformation( [ 1, 1, 4, 1 ] ),
963
+ Transformation( [ 1, 1, 4, 4 ] ), Transformation( [ 1, 2, 1, 1 ] ),
964
+ Transformation( [ 1, 2, 2, 1 ] ), IdentityTransformation,
965
+ Transformation( [ 1, 3, 1, 1 ] ), Transformation( [ 1, 3, 3, 1 ] ),
966
+ Transformation( [ 1, 3, 4, 1 ] ), Transformation( [ 1, 4, 1, 1 ] ),
967
+ Transformation( [ 1, 4, 4, 1 ] ), Transformation( [ 2, 1, 1, 2 ] ),
968
+ Transformation( [ 2, 1, 2, 2 ] ), Transformation( [ 2, 2, 1, 1 ] ),
969
+ Transformation( [ 2, 2, 1, 2 ] ), Transformation( [ 2, 2, 2, 1 ] ),
970
+ Transformation( [ 2, 2, 2, 2 ] ), Transformation( [ 2, 2, 2 ] ),
971
+ Transformation( [ 2, 2, 4, 2 ] ), Transformation( [ 2, 2, 4, 4 ] ),
972
+ Transformation( [ 2, 4, 1, 2 ] ), Transformation( [ 2, 4, 2, 2 ] ),
973
+ Transformation( [ 2, 4, 4, 2 ] ), Transformation( [ 3, 1, 1, 3 ] ),
974
+ Transformation( [ 3, 1, 3, 3 ] ), Transformation( [ 3, 3, 1, 1 ] ),
975
+ Transformation( [ 3, 3, 1, 3 ] ), Transformation( [ 3, 3, 3, 1 ] ),
976
+ Transformation( [ 3, 3, 3, 3 ] ), Transformation( [ 3, 3, 3 ] ),
977
+ Transformation( [ 3, 3, 4, 1 ] ), Transformation( [ 3, 3, 4, 3 ] ),
978
+ Transformation( [ 3, 3, 4, 4 ] ), Transformation( [ 3, 4, 1, 3 ] ),
979
+ Transformation( [ 3, 4, 3, 3 ] ), Transformation( [ 3, 4, 4, 3 ] ),
980
+ Transformation( [ 4, 1, 1, 4 ] ), Transformation( [ 4, 1, 3, 4 ] ),
981
+ Transformation( [ 4, 1, 4, 4 ] ), Transformation( [ 4, 2, 2, 4 ] ),
982
+ Transformation( [ 4, 2, 4, 4 ] ), Transformation( [ 4, 3, 3, 4 ] ),
983
+ Transformation( [ 4, 3, 4, 4 ] ), Transformation( [ 4, 4, 1, 1 ] ),
984
+ Transformation( [ 4, 4, 1, 3 ] ), Transformation( [ 4, 4, 1, 4 ] ),
985
+ Transformation( [ 4, 4, 2, 2 ] ), Transformation( [ 4, 4, 2, 4 ] ),
986
+ Transformation( [ 4, 4, 3, 3 ] ), Transformation( [ 4, 4, 3, 4 ] ),
987
+ Transformation( [ 4, 4, 4, 1 ] ), Transformation( [ 4, 4, 4, 2 ] ),
988
+ Transformation( [ 4, 4, 4, 3 ] ), Transformation( [ 4, 4, 4, 4 ] ) ]
989
+ gap> last = AsSSortedList(s);
990
+ true
991
+
992
+ # MiscTest12
993
+ gap> gens := [PartialPermNC([1, 2, 3, 4], [5, 7, 1, 6]),
994
+ > PartialPermNC([1, 2, 3, 5], [5, 2, 7, 3]),
995
+ > PartialPermNC([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
996
+ > PartialPermNC([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])];;
997
+ gap> s := Semigroup(gens);;
998
+ gap> Size(s);
999
+ 840
1000
+ gap> NrDClasses(s);
1001
+ 176
1002
+
1003
+ # MiscTest13
1004
+ gap> gens := [PartialPermNC([1, 2, 3, 4], [5, 7, 1, 6]),
1005
+ > PartialPermNC([1, 2, 3, 5], [5, 2, 7, 3]),
1006
+ > PartialPermNC([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
1007
+ > PartialPermNC([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])];;
1008
+ gap> s := Semigroup(gens);;
1009
+ gap> Size(s);
1010
+ 840
1011
+ gap> NrDClasses(s);
1012
+ 176
1013
+ gap> List(DClasses(s), RClasses);
1014
+ [ [ <Green's R-class: [2,7][3,1,5][4,6]> ],
1015
+ [ <Green's R-class: [1,5,3,7](2)> ],
1016
+ [ <Green's R-class: [2,3,4][6,7,5](1)> ],
1017
+ [ <Green's R-class: [7,5,1,3,4,6](2)> ],
1018
+ [ <Green's R-class: [3,5]>,
1019
+ <Green's R-class: <identity partial perm on [ 5 ]>>,
1020
+ <Green's R-class: [1,5]>, <Green's R-class: [7,5]>,
1021
+ <Green's R-class: [6,5]>, <Green's R-class: [4,5]> ],
1022
+ [ <Green's R-class: [1,3][2,5]>, <Green's R-class: [2,5,3]>,
1023
+ <Green's R-class: [2,5][7,3]>, <Green's R-class: [2,5](3)> ],
1024
+ [ <Green's R-class: [2,1,5,6]>, <Green's R-class: [2,1][7,6](5)>,
1025
+ <Green's R-class: [2,1,5][3,6]>, <Green's R-class: [2,1,6](5)>,
1026
+ <Green's R-class: [2,1][7,5,6]>, <Green's R-class: [2,1,6][3,5]> ],
1027
+ [ <Green's R-class: [2,7][3,6](1)(5)> ],
1028
+ [ <Green's R-class: [1,3,5]>, <Green's R-class: [1,5,3]>,
1029
+ <Green's R-class: [1,5][7,3]>, <Green's R-class: [1,5][6,3]>,
1030
+ <Green's R-class: [4,3,5]>, <Green's R-class: [4,3](5)>,
1031
+ <Green's R-class: [7,5](3)>, <Green's R-class: (3,5)>,
1032
+ <Green's R-class: [7,3](5)> ],
1033
+ [ <Green's R-class: [1,3][5,7](2)>, <Green's R-class: [5,3](2)(7)>,
1034
+ <Green's R-class: [1,3,7](2)>, <Green's R-class: [1,7][5,3](2)>,
1035
+ <Green's R-class: [5,7,3](2)>, <Green's R-class: [1,7](2)(3)> ],
1036
+ [ <Green's R-class: [1,5][2,7,3]> ], [ <Green's R-class: [1,7,3](2)(5)> ],
1037
+ [ <Green's R-class: [2,5][3,1][4,7]> ], [ <Green's R-class: [2,3,5,4]> ],
1038
+ [ <Green's R-class: [2,4][6,5](1)> ], [ <Green's R-class: [2,3][5,1,4,7]> ],
1039
+ [ <Green's R-class: [2,5,3](1)>, <Green's R-class: [2,5,1][7,3]>,
1040
+ <Green's R-class: [2,5](1)(3)>, <Green's R-class: [2,5,1,3]>,
1041
+ <Green's R-class: [2,5,3][7,1]>, <Green's R-class: [2,5](1,3)> ],
1042
+ [ <Green's R-class: [3,5,4](1)(2)> ],
1043
+ [ <Green's R-class: [2,4][7,1,3,6,5]> ],
1044
+ [ <Green's R-class: [5,3,6][7,1,4](2)> ],
1045
+ [ <Green's R-class: <empty partial perm>> ], [ <Green's R-class: [2,5]> ],
1046
+ [ <Green's R-class: [1,5][2,6]>, <Green's R-class: [2,6](5)>,
1047
+ <Green's R-class: [2,6][7,5]>, <Green's R-class: [2,6][3,5]> ],
1048
+ [ <Green's R-class: [1,5,6][2,7]>, <Green's R-class: [2,7,6](5)>,
1049
+ <Green's R-class: [1,5][2,7][3,6]>, <Green's R-class: [1,6][2,7](5)>,
1050
+ <Green's R-class: [2,7,5,6]>, <Green's R-class: [1,6][2,7][3,5]> ],
1051
+ [ <Green's R-class: [2,6][7,5](1)> ], [ <Green's R-class: [2,7,5,1,6]> ],
1052
+ [ <Green's R-class: [1,7](2)>, <Green's R-class: [5,7](2)>,
1053
+ <Green's R-class: <identity partial perm on [ 2, 7 ]>>,
1054
+ <Green's R-class: [3,7](2)> ],
1055
+ [ <Green's R-class: [1,5,7][2,3]>, <Green's R-class: [2,3](5)(7)>,
1056
+ <Green's R-class: [1,5][2,3,7]>, <Green's R-class: [1,7][2,3](5)>,
1057
+ <Green's R-class: [2,3](5,7)>, <Green's R-class: [1,7][2,3,5]> ],
1058
+ [ <Green's R-class: [1,5,3](2)>, <Green's R-class: [7,3](2)(5)>,
1059
+ <Green's R-class: [1,5](2)(3)>, <Green's R-class: [1,3](2)(5)>,
1060
+ <Green's R-class: [7,5,3](2)>, <Green's R-class: [1,3,5](2)> ],
1061
+ [ <Green's R-class: [1,7,5][6,3]> ],
1062
+ [ <Green's R-class: [1,7](2)(5)>, <Green's R-class: (2)(5,7)>,
1063
+ <Green's R-class: [1,7][3,5](2)> ],
1064
+ [ <Green's R-class: [2,5,7](1)>, <Green's R-class: [2,5,1](7)>,
1065
+ <Green's R-class: [2,5][3,7](1)>, <Green's R-class: [2,5,1,7]>,
1066
+ <Green's R-class: [2,5,7,1]>, <Green's R-class: [2,5][3,1,7]> ],
1067
+ [ <Green's R-class: [1,4][2,3](5)>, <Green's R-class: [2,3][7,5,4]>,
1068
+ <Green's R-class: [1,4][2,3,5]>, <Green's R-class: [1,5,4][2,3]>,
1069
+ <Green's R-class: [2,3][7,4](5)>, <Green's R-class: [1,5][2,3,4]> ],
1070
+ [ <Green's R-class: [1,5][2,3][7,4]> ], [ <Green's R-class: [2,4,5,1]> ],
1071
+ [ <Green's R-class: [3,4](1)>, <Green's R-class: [5,1,4]>,
1072
+ <Green's R-class: [7,1,4]>, <Green's R-class: [6,1,4]>,
1073
+ <Green's R-class: [3,4,1]>, <Green's R-class: [5,4,1]>,
1074
+ <Green's R-class: [3,1][7,4]>, <Green's R-class: [3,4][5,1]>,
1075
+ <Green's R-class: [5,4][7,1]>, <Green's R-class: [3,1,4]>,
1076
+ <Green's R-class: [5,4](1)>, <Green's R-class: [7,4](1)>,
1077
+ <Green's R-class: [6,4](1)>, <Green's R-class: [3,1](4)>,
1078
+ <Green's R-class: [5,1](4)>, <Green's R-class: [3,4][7,1]>,
1079
+ <Green's R-class: [3,1][5,4]>, <Green's R-class: [5,1][7,4]> ],
1080
+ [ <Green's R-class: [3,7,1,4]> ], [ <Green's R-class: [2,3,7,1][5,4]> ],
1081
+ [ <Green's R-class: [1,4](2)(5)>, <Green's R-class: [7,5,4](2)>,
1082
+ <Green's R-class: [1,4][3,5](2)>, <Green's R-class: [1,5,4](2)>,
1083
+ <Green's R-class: [7,4](2)(5)>, <Green's R-class: [1,5][3,4](2)> ],
1084
+ [ <Green's R-class: [2,5][7,4](1)> ], [ <Green's R-class: [7,4](1,5)(2)> ],
1085
+ [ <Green's R-class: [2,1][4,5](3)> ], [ <Green's R-class: [2,4][3,1][5,6]> ]
1086
+ , [ <Green's R-class: [2,6,1,3]> ], [ <Green's R-class: [1,6][2,4,5,3]> ],
1087
+ [ <Green's R-class: [2,1,3][5,4]>, <Green's R-class: [2,1][5,3][7,4]>,
1088
+ <Green's R-class: [2,1,3,4]>, <Green's R-class: [2,1,4][5,3]>,
1089
+ <Green's R-class: [2,1][5,4][7,3]>, <Green's R-class: [2,1,4](3)> ],
1090
+ [ <Green's R-class: [5,6](1,3)(2)> ], [ <Green's R-class: [2,6,1,4][7,3]> ],
1091
+ [ <Green's R-class: [1,6][5,4][7,3](2)> ],
1092
+ [ <Green's R-class: [1,5][3,6]>, <Green's R-class: [1,6](5)>,
1093
+ <Green's R-class: [1,6][7,5]>, <Green's R-class: [1,6,5]>,
1094
+ <Green's R-class: [3,6][4,5]>, <Green's R-class: [4,5,6]>,
1095
+ <Green's R-class: [3,5][7,6]>, <Green's R-class: [3,6](5)>,
1096
+ <Green's R-class: [7,5,6]>, <Green's R-class: [1,6][3,5]>,
1097
+ <Green's R-class: [1,5,6]>, <Green's R-class: [1,5][7,6]>,
1098
+ <Green's R-class: [1,5](6)>, <Green's R-class: [3,5][4,6]>,
1099
+ <Green's R-class: [4,6](5)>, <Green's R-class: [3,6][7,5]>,
1100
+ <Green's R-class: [3,5,6]>, <Green's R-class: [7,6](5)> ],
1101
+ [ <Green's R-class: [1,6][2,7]>, <Green's R-class: [2,7][5,6]>,
1102
+ <Green's R-class: [2,7,6]>, <Green's R-class: [2,7][3,6]> ],
1103
+ [ <Green's R-class: [2,5,6](1)>, <Green's R-class: [2,5,1][7,6]>,
1104
+ <Green's R-class: [2,5][3,6](1)>, <Green's R-class: [2,5,1,6]>,
1105
+ <Green's R-class: [2,5,6][7,1]>, <Green's R-class: [2,5][3,1,6]> ],
1106
+ [ <Green's R-class: [2,7](1)(5)>, <Green's R-class: [2,7,5,1]>,
1107
+ <Green's R-class: [2,7][3,5](1)>, <Green's R-class: [2,7](1,5)>,
1108
+ <Green's R-class: [2,7,1](5)>, <Green's R-class: [2,7][3,1,5]> ],
1109
+ [ <Green's R-class: [7,1,6,5]> ],
1110
+ [ <Green's R-class: [2,7][5,1,6]>, <Green's R-class: [2,7,1][5,6]>,
1111
+ <Green's R-class: [2,7][3,1,6]>, <Green's R-class: [2,7][5,6](1)>,
1112
+ <Green's R-class: [2,7,6][5,1]>, <Green's R-class: [2,7][3,6](1)> ],
1113
+ [ <Green's R-class: <identity partial perm on [ 2 ]>> ],
1114
+ [ <Green's R-class: [6,3][7,5]> ], [ <Green's R-class: [2,5][4,3,7]> ],
1115
+ [ <Green's R-class: [2,4](1)>, <Green's R-class: [2,4][5,1]>,
1116
+ <Green's R-class: [2,4][7,1]>, <Green's R-class: [2,4][3,1]> ],
1117
+ [ <Green's R-class: [2,4][3,5][7,1]> ],
1118
+ [ <Green's R-class: [2,1,4]>, <Green's R-class: [2,1][5,4]>,
1119
+ <Green's R-class: [2,1][7,4]>, <Green's R-class: [2,1][3,4]> ],
1120
+ [ <Green's R-class: [2,7][6,1,4]> ],
1121
+ [ <Green's R-class: [1,4][3,7]>, <Green's R-class: [1,7][5,4]>,
1122
+ <Green's R-class: [1,7,4]>, <Green's R-class: [1,7][6,4]>,
1123
+ <Green's R-class: [3,7](4)>, <Green's R-class: [5,7](4)>,
1124
+ <Green's R-class: [3,4](7)>, <Green's R-class: [3,7][5,4]>,
1125
+ <Green's R-class: [5,7,4]>, <Green's R-class: [1,7][3,4]>,
1126
+ <Green's R-class: [1,4][5,7]>, <Green's R-class: [1,4](7)>,
1127
+ <Green's R-class: [1,4][6,7]>, <Green's R-class: [3,4,7]>,
1128
+ <Green's R-class: [5,4,7]>, <Green's R-class: [3,7,4]>,
1129
+ <Green's R-class: [3,4][5,7]>, <Green's R-class: [5,4](7)> ],
1130
+ [ <Green's R-class: [2,3,1,4][5,7]> ], [ <Green's R-class: [2,7,4][6,1]> ],
1131
+ [ <Green's R-class: [1,7,4][2,3]> ],
1132
+ [ <Green's R-class: [5,4](1)(2)>, <Green's R-class: [5,1][7,4](2)>,
1133
+ <Green's R-class: [3,4](1)(2)>, <Green's R-class: [5,1,4](2)>,
1134
+ <Green's R-class: [5,4][7,1](2)>, <Green's R-class: [3,1,4](2)> ],
1135
+ [ <Green's R-class: [6,4][7,1,5]> ],
1136
+ [ <Green's R-class: [2,1,3](5)>, <Green's R-class: [2,1][7,5,3]>,
1137
+ <Green's R-class: [2,1,3,5]>, <Green's R-class: [2,1,5,3]>,
1138
+ <Green's R-class: [2,1][7,3](5)>, <Green's R-class: [2,1,5](3)> ],
1139
+ [ <Green's R-class: [2,4][5,1,6]>, <Green's R-class: [2,4][5,6][7,1]>,
1140
+ <Green's R-class: [2,4][3,1,6]>, <Green's R-class: [2,4][5,6](1)>,
1141
+ <Green's R-class: [2,4][5,1][7,6]>, <Green's R-class: [2,4][3,6](1)> ],
1142
+ [ <Green's R-class: [2,4][7,6](1)> ], [ <Green's R-class: [2,6][4,1][5,3]> ]
1143
+ ,
1144
+ [ <Green's R-class: [1,3,6]>, <Green's R-class: [1,6][5,3]>,
1145
+ <Green's R-class: [1,6][7,3]>, <Green's R-class: [1,6,3]>,
1146
+ <Green's R-class: [4,3,6]>, <Green's R-class: [4,3][5,6]>,
1147
+ <Green's R-class: [7,6](3)>, <Green's R-class: [5,3,6]>,
1148
+ <Green's R-class: [5,6][7,3]>, <Green's R-class: [1,6](3)>,
1149
+ <Green's R-class: [1,3][5,6]>, <Green's R-class: [1,3][7,6]>,
1150
+ <Green's R-class: [1,3](6)>, <Green's R-class: [4,6](3)>,
1151
+ <Green's R-class: [4,6][5,3]>, <Green's R-class: [7,3,6]>,
1152
+ <Green's R-class: [5,6](3)>, <Green's R-class: [5,3][7,6]> ],
1153
+ [ <Green's R-class: [1,6][7,3,5]> ], [ <Green's R-class: [2,4][7,3,5,6]> ],
1154
+ [ <Green's R-class: [5,1,6](2)>, <Green's R-class: [5,6][7,1](2)>,
1155
+ <Green's R-class: [3,1,6](2)>, <Green's R-class: [5,6](1)(2)>,
1156
+ <Green's R-class: [5,1][7,6](2)>, <Green's R-class: [3,6](1)(2)> ],
1157
+ [ <Green's R-class: [2,1,3][7,6]> ], [ <Green's R-class: [5,3][7,6](1)(2)> ]
1158
+ , [ <Green's R-class: [2,3,4,1]> ], [ <Green's R-class: [2,6][5,4,1]> ],
1159
+ [ <Green's R-class: [1,4][2,3][5,6]>, <Green's R-class: [2,3][5,4][7,6]>,
1160
+ <Green's R-class: [1,4][2,3,6]>, <Green's R-class: [1,6][2,3][5,4]>,
1161
+ <Green's R-class: [2,3][5,6][7,4]>, <Green's R-class: [1,6][2,3,4]> ],
1162
+ [ <Green's R-class: [1,4][5,3](2)>, <Green's R-class: [5,4][7,3](2)>,
1163
+ <Green's R-class: [1,4](2)(3)>, <Green's R-class: [1,3][5,4](2)>,
1164
+ <Green's R-class: [5,3][7,4](2)>, <Green's R-class: [1,3,4](2)> ],
1165
+ [ <Green's R-class: [1,6,3][7,4]> ],
1166
+ [ <Green's R-class: [1,6][5,4](2)>, <Green's R-class: [5,6][7,4](2)>,
1167
+ <Green's R-class: [1,6][3,4](2)>, <Green's R-class: [1,4][5,6](2)>,
1168
+ <Green's R-class: [5,4][7,6](2)>, <Green's R-class: [1,4][3,6](2)> ],
1169
+ [ <Green's R-class: [1,6][2,5]>, <Green's R-class: [2,5,6]>,
1170
+ <Green's R-class: [2,5][7,6]>, <Green's R-class: [2,5][3,6]> ],
1171
+ [ <Green's R-class: [7,6,5]> ], [ <Green's R-class: [7,5](6)> ],
1172
+ [ <Green's R-class: [2,1][3,6][4,5]> ], [ <Green's R-class: [2,5][4,3]> ],
1173
+ [ <Green's R-class: [1,7][2,5,3]>, <Green's R-class: [2,5,7,3]>,
1174
+ <Green's R-class: [1,7][2,5](3)>, <Green's R-class: [1,3][2,5,7]>,
1175
+ <Green's R-class: [2,5,3](7)>, <Green's R-class: [1,3,7][2,5]> ],
1176
+ [ <Green's R-class: [2,3][6,5]> ], [ <Green's R-class: [2,4][3,1](5)> ],
1177
+ [ <Green's R-class: [2,7][5,4,1]> ],
1178
+ [ <Green's R-class: [2,3][5,1,7]>, <Green's R-class: [2,3][5,7,1]>,
1179
+ <Green's R-class: [2,3,1,7]>, <Green's R-class: [2,3][5,7](1)>,
1180
+ <Green's R-class: [2,3][5,1](7)>, <Green's R-class: [2,3,7](1)> ],
1181
+ [ <Green's R-class: [2,1,4](7)> ], [ <Green's R-class: [2,3][5,4](1)(7)> ],
1182
+ [ <Green's R-class: [2,4,1]> ],
1183
+ [ <Green's R-class: [1,7][2,4]>, <Green's R-class: [2,4][5,7]>,
1184
+ <Green's R-class: [2,4](7)>, <Green's R-class: [2,4][3,7]> ],
1185
+ [ <Green's R-class: [2,4](1,5)>, <Green's R-class: [2,4][7,1](5)>,
1186
+ <Green's R-class: [2,4][3,1,5]>, <Green's R-class: [2,4](1)(5)>,
1187
+ <Green's R-class: [2,4][7,5,1]>, <Green's R-class: [2,4][3,5](1)> ],
1188
+ [ <Green's R-class: [2,1][3,5](4)> ],
1189
+ [ <Green's R-class: [1,3][2,6]>, <Green's R-class: [2,6][5,3]>,
1190
+ <Green's R-class: [2,6][7,3]>, <Green's R-class: [2,6](3)> ],
1191
+ [ <Green's R-class: [2,6][7,3,1]> ],
1192
+ [ <Green's R-class: [1,6][2,3]>, <Green's R-class: [2,3][5,6]>,
1193
+ <Green's R-class: [2,3][7,6]>, <Green's R-class: [2,3,6]> ],
1194
+ [ <Green's R-class: [1,6,3][2,5]> ], [ <Green's R-class: [1,6][2,4](3)(5)> ]
1195
+ , [ <Green's R-class: [2,5][7,6,3]> ],
1196
+ [ <Green's R-class: [1,5][2,4][7,6]> ],
1197
+ [ <Green's R-class: [1,3][5,6](2)>, <Green's R-class: [5,3][7,6](2)>,
1198
+ <Green's R-class: [1,3,6](2)>, <Green's R-class: [1,6][5,3](2)>,
1199
+ <Green's R-class: [5,6][7,3](2)>, <Green's R-class: [1,6](2)(3)> ],
1200
+ [ <Green's R-class: [7,3](1)(6)> ],
1201
+ [ <Green's R-class: [1,4][2,6]>, <Green's R-class: [2,6][5,4]>,
1202
+ <Green's R-class: [2,6][7,4]>, <Green's R-class: [2,6][3,4]> ],
1203
+ [ <Green's R-class: [2,6][3,1][7,4]> ], [ <Green's R-class: [2,4,3,6]> ],
1204
+ [ <Green's R-class: [1,6][2,4]>, <Green's R-class: [2,4][5,6]>,
1205
+ <Green's R-class: [2,4][7,6]>, <Green's R-class: [2,4][3,6]> ],
1206
+ [ <Green's R-class: [7,6,4]> ],
1207
+ [ <Green's R-class: [1,6](2)>, <Green's R-class: [5,6](2)>,
1208
+ <Green's R-class: [7,6](2)>, <Green's R-class: [3,6](2)> ],
1209
+ [ <Green's R-class: [2,6][4,5]> ], [ <Green's R-class: [2,5][4,6]> ],
1210
+ [ <Green's R-class: [2,4][7,5](1)> ], [ <Green's R-class: [6,1][7,4]> ],
1211
+ [ <Green's R-class: [1,4][2,7]>, <Green's R-class: [2,7][5,4]>,
1212
+ <Green's R-class: [2,7,4]>, <Green's R-class: [2,7][3,4]> ],
1213
+ [ <Green's R-class: [2,7,4][3,1]> ], [ <Green's R-class: [6,4](7)> ],
1214
+ [ <Green's R-class: [1,4][2,3][5,7]>, <Green's R-class: [2,3][5,4](7)>,
1215
+ <Green's R-class: [1,4][2,3,7]>, <Green's R-class: [1,7][2,3][5,4]>,
1216
+ <Green's R-class: [2,3][5,7,4]>, <Green's R-class: [1,7][2,3,4]> ],
1217
+ [ <Green's R-class: [6,7,4](1)> ],
1218
+ [ <Green's R-class: [2,3][5,4](1)>, <Green's R-class: [2,3][5,1][7,4]>,
1219
+ <Green's R-class: [2,3,4](1)>, <Green's R-class: [2,3][5,1,4]>,
1220
+ <Green's R-class: [2,3][5,4][7,1]>, <Green's R-class: [2,3,1,4]> ],
1221
+ [ <Green's R-class: [6,4][7,1]> ],
1222
+ [ <Green's R-class: [1,4](2)>, <Green's R-class: [5,4](2)>,
1223
+ <Green's R-class: [7,4](2)>, <Green's R-class: [3,4](2)> ],
1224
+ [ <Green's R-class: [2,1,5,4]>, <Green's R-class: [2,1][7,4](5)>,
1225
+ <Green's R-class: [2,1,5][3,4]>, <Green's R-class: [2,1,4](5)>,
1226
+ <Green's R-class: [2,1][7,5,4]>, <Green's R-class: [2,1,4][3,5]> ],
1227
+ [ <Green's R-class: [2,6][5,1](3)> ], [ <Green's R-class: [2,5,6][4,3]> ],
1228
+ [ <Green's R-class: [1,5,3][2,4]>, <Green's R-class: [2,4][7,3](5)>,
1229
+ <Green's R-class: [1,5][2,4](3)>, <Green's R-class: [1,3][2,4](5)>,
1230
+ <Green's R-class: [2,4][7,5,3]>, <Green's R-class: [1,3,5][2,4]> ],
1231
+ [ <Green's R-class: [1,6][2,3][7,5]> ],
1232
+ [ <Green's R-class: [1,3][2,4][7,5,6]> ], [ <Green's R-class: [2,6][4,3]> ],
1233
+ [ <Green's R-class: [2,6][5,3](1)>, <Green's R-class: [2,6][5,1][7,3]>,
1234
+ <Green's R-class: [2,6](1)(3)>, <Green's R-class: [2,6][5,1,3]>,
1235
+ <Green's R-class: [2,6][5,3][7,1]>, <Green's R-class: [2,6](1,3)> ],
1236
+ [ <Green's R-class: [2,3,1][4,6]> ], [ <Green's R-class: [2,1][6,4]> ],
1237
+ [ <Green's R-class: [2,6][3,4][5,1]> ],
1238
+ [ <Green's R-class: [1,4][3,6]>, <Green's R-class: [1,6][5,4]>,
1239
+ <Green's R-class: [1,6][7,4]>, <Green's R-class: [1,6,4]>,
1240
+ <Green's R-class: [3,6](4)>, <Green's R-class: [5,6](4)>,
1241
+ <Green's R-class: [3,4][7,6]>, <Green's R-class: [3,6][5,4]>,
1242
+ <Green's R-class: [5,6][7,4]>, <Green's R-class: [1,6][3,4]>,
1243
+ <Green's R-class: [1,4][5,6]>, <Green's R-class: [1,4][7,6]>,
1244
+ <Green's R-class: [1,4](6)>, <Green's R-class: [3,4,6]>,
1245
+ <Green's R-class: [5,4,6]>, <Green's R-class: [3,6][7,4]>,
1246
+ <Green's R-class: [3,4][5,6]>, <Green's R-class: [5,4][7,6]> ],
1247
+ [ <Green's R-class: [2,6](4)> ], [ <Green's R-class: [2,5](6)> ],
1248
+ [ <Green's R-class: [2,7][3,4][5,1]> ], [ <Green's R-class: [2,7](4)> ],
1249
+ [ <Green's R-class: [2,7][5,4](1)>, <Green's R-class: [2,7,4][5,1]>,
1250
+ <Green's R-class: [2,7][3,4](1)>, <Green's R-class: [2,7][5,1,4]>,
1251
+ <Green's R-class: [2,7,1][5,4]>, <Green's R-class: [2,7][3,1,4]> ],
1252
+ [ <Green's R-class: [2,4,7][3,1]> ], [ <Green's R-class: [2,1](4)> ],
1253
+ [ <Green's R-class: [2,4][6,1]> ], [ <Green's R-class: [2,6][7,1,3]> ],
1254
+ [ <Green's R-class: [7,6,3]> ], [ <Green's R-class: [2,5][7,6](3)> ],
1255
+ [ <Green's R-class: [1,6][2,4](5)>, <Green's R-class: [2,4][7,5,6]>,
1256
+ <Green's R-class: [1,6][2,4][3,5]>, <Green's R-class: [1,5,6][2,4]>,
1257
+ <Green's R-class: [2,4][7,6](5)>, <Green's R-class: [1,5][2,4][3,6]> ],
1258
+ [ <Green's R-class: [1,3][7,6,5]> ],
1259
+ [ <Green's R-class: [1,3][2,4][5,6]>, <Green's R-class: [2,4][5,3][7,6]>,
1260
+ <Green's R-class: [1,3,6][2,4]>, <Green's R-class: [1,6][2,4][5,3]>,
1261
+ <Green's R-class: [2,4][5,6][7,3]>, <Green's R-class: [1,6][2,4](3)> ],
1262
+ [ <Green's R-class: [7,3](6)> ],
1263
+ [ <Green's R-class: [2,3][5,6](1)>, <Green's R-class: [2,3][5,1][7,6]>,
1264
+ <Green's R-class: [2,3,6](1)>, <Green's R-class: [2,3][5,1,6]>,
1265
+ <Green's R-class: [2,3][5,6][7,1]>, <Green's R-class: [2,3,1,6]> ],
1266
+ [ <Green's R-class: [2,6][5,4](1)>, <Green's R-class: [2,6][5,1][7,4]>,
1267
+ <Green's R-class: [2,6][3,4](1)>, <Green's R-class: [2,6][5,1,4]>,
1268
+ <Green's R-class: [2,6][5,4][7,1]>, <Green's R-class: [2,6][3,1,4]> ],
1269
+ [ <Green's R-class: [2,6][7,1,4]> ], [ <Green's R-class: [2,3](6)> ],
1270
+ [ <Green's R-class: [2,6,5]> ], [ <Green's R-class: [2,7,1,4]> ],
1271
+ [ <Green's R-class: [6,7,4]> ],
1272
+ [ <Green's R-class: [2,4][5,7](1)>, <Green's R-class: [2,4][5,1](7)>,
1273
+ <Green's R-class: [2,4][3,7](1)>, <Green's R-class: [2,4][5,1,7]>,
1274
+ <Green's R-class: [2,4][5,7,1]>, <Green's R-class: [2,4][3,1,7]> ],
1275
+ [ <Green's R-class: [2,4][6,7]> ], [ <Green's R-class: [2,5,3,6]> ],
1276
+ [ <Green's R-class: [1,3][2,5,6]>, <Green's R-class: [2,5,3][7,6]>,
1277
+ <Green's R-class: [1,3,6][2,5]>, <Green's R-class: [1,6][2,5,3]>,
1278
+ <Green's R-class: [2,5,6][7,3]>, <Green's R-class: [1,6][2,5](3)> ],
1279
+ [ <Green's R-class: [2,6][4,5](3)> ], [ <Green's R-class: [2,3][4,6]> ],
1280
+ [ <Green's R-class: [2,6,3]> ], [ <Green's R-class: [2,4](6)> ],
1281
+ [ <Green's R-class: [7,4](6)> ], [ <Green's R-class: [2,4,7]> ],
1282
+ [ <Green's R-class: [2,7][6,4]> ], [ <Green's R-class: [1,6][2,5][7,3]> ],
1283
+ [ <Green's R-class: [1,3][2,6](5)>, <Green's R-class: [2,6][7,5,3]>,
1284
+ <Green's R-class: [1,3,5][2,6]>, <Green's R-class: [1,5,3][2,6]>,
1285
+ <Green's R-class: [2,6][7,3](5)>, <Green's R-class: [1,5][2,6](3)> ],
1286
+ [ <Green's R-class: [2,4,6]> ], [ <Green's R-class: [2,6,4]> ] ]
1287
+ gap> ForAll(Union(List(Union(last), Elements)), x -> x in s);
1288
+ true
1289
+ gap> Union(List(last2, Elements));
1290
+ [ <Green's R-class: [2,7][3,1,5][4,6]>, <Green's R-class: [1,5,3,7](2)>,
1291
+ <Green's R-class: [2,3,4][6,7,5](1)>, <Green's R-class: [7,5,1,3,4,6](2)>,
1292
+ <Green's R-class: [3,5]>, <Green's R-class: [2,5,3]>,
1293
+ <Green's R-class: [2,1,5][3,6]>, <Green's R-class: [2,7][3,6](1)(5)>,
1294
+ <Green's R-class: [1,3,5]>, <Green's R-class: [1,3][5,7](2)>,
1295
+ <Green's R-class: [1,5][2,7,3]>, <Green's R-class: [1,7,3](2)(5)>,
1296
+ <Green's R-class: [2,5][3,1][4,7]>, <Green's R-class: [2,3,5,4]>,
1297
+ <Green's R-class: [2,4][6,5](1)>, <Green's R-class: [2,3][5,1,4,7]>,
1298
+ <Green's R-class: [2,5](1)(3)>, <Green's R-class: [3,5,4](1)(2)>,
1299
+ <Green's R-class: [2,4][7,1,3,6,5]>, <Green's R-class: [5,3,6][7,1,4](2)>,
1300
+ <Green's R-class: <empty partial perm>>,
1301
+ <Green's R-class: <identity partial perm on [ 5 ]>>,
1302
+ <Green's R-class: [2,5]>, <Green's R-class: [1,5]>,
1303
+ <Green's R-class: [1,3][2,5]>, <Green's R-class: [7,5]>,
1304
+ <Green's R-class: [2,5][7,3]>, <Green's R-class: [1,5][2,6]>,
1305
+ <Green's R-class: [2,1,6](5)>, <Green's R-class: [1,5,6][2,7]>,
1306
+ <Green's R-class: [2,6][7,5](1)>, <Green's R-class: [2,7,5,1,6]>,
1307
+ <Green's R-class: [1,5,3]>, <Green's R-class: [1,7](2)>,
1308
+ <Green's R-class: [1,5][7,3]>, <Green's R-class: [5,3](2)(7)>,
1309
+ <Green's R-class: [2,5](3)>, <Green's R-class: [1,5][6,3]>,
1310
+ <Green's R-class: [1,5][2,3,7]>, <Green's R-class: [1,5](2)(3)>,
1311
+ <Green's R-class: [1,7,5][6,3]>, <Green's R-class: (2)(5,7)>,
1312
+ <Green's R-class: [2,5][3,7](1)>, <Green's R-class: [1,4][2,3](5)>,
1313
+ <Green's R-class: [1,5][2,3][7,4]>, <Green's R-class: [4,3,5]>,
1314
+ <Green's R-class: [2,4,5,1]>, <Green's R-class: [3,4](1)>,
1315
+ <Green's R-class: [3,7,1,4]>, <Green's R-class: [2,3,7,1][5,4]>,
1316
+ <Green's R-class: [2,5,1,3]>, <Green's R-class: [3,1,4]>,
1317
+ <Green's R-class: [1,4](2)(5)>, <Green's R-class: [2,5][7,4](1)>,
1318
+ <Green's R-class: [7,4](1,5)(2)>, <Green's R-class: [2,1][4,5](3)>,
1319
+ <Green's R-class: [2,4][3,1][5,6]>, <Green's R-class: [2,6,1,3]>,
1320
+ <Green's R-class: [1,6][2,4,5,3]>, <Green's R-class: [2,1,3,4]>,
1321
+ <Green's R-class: [5,6](1,3)(2)>, <Green's R-class: [2,6,1,4][7,3]>,
1322
+ <Green's R-class: [1,6][5,4][7,3](2)>, <Green's R-class: [6,5]>,
1323
+ <Green's R-class: [2,6](5)>, <Green's R-class: [1,5][3,6]>,
1324
+ <Green's R-class: [1,6][7,5]>, <Green's R-class: [2,1][7,5,6]>,
1325
+ <Green's R-class: [1,6][3,5]>, <Green's R-class: [1,6][2,7]>,
1326
+ <Green's R-class: [1,5][7,6]>, <Green's R-class: [2,7,6](5)>,
1327
+ <Green's R-class: [2,6][3,5]>, <Green's R-class: [2,5][3,6](1)>,
1328
+ <Green's R-class: [2,7][3,5](1)>, <Green's R-class: [7,1,6,5]>,
1329
+ <Green's R-class: [2,7,1][5,6]>, <Green's R-class: [7,3](5)>,
1330
+ <Green's R-class: <identity partial perm on [ 2 ]>>,
1331
+ <Green's R-class: [5,7](2)>, <Green's R-class: [1,3,7](2)>,
1332
+ <Green's R-class: [6,3][7,5]>,
1333
+ <Green's R-class: <identity partial perm on [ 2, 7 ]>>,
1334
+ <Green's R-class: [4,3](5)>, <Green's R-class: [1,7][2,3](5)>,
1335
+ <Green's R-class: [1,3](2)(5)>, <Green's R-class: [2,5][4,3,7]>,
1336
+ <Green's R-class: [1,7][3,5](2)>, <Green's R-class: [2,5,1,7]>,
1337
+ <Green's R-class: [2,3][7,5,4]>, <Green's R-class: [2,4](1)>,
1338
+ <Green's R-class: [7,5](3)>, <Green's R-class: [2,4][3,5][7,1]>,
1339
+ <Green's R-class: [5,1,4]>, <Green's R-class: [2,1][3,4]>,
1340
+ <Green's R-class: (3,5)>, <Green's R-class: [2,7][6,1,4]>,
1341
+ <Green's R-class: [1,7][5,4]>, <Green's R-class: [2,1,4]>,
1342
+ <Green's R-class: [2,3,1,4][5,7]>, <Green's R-class: [2,7,4][6,1]>,
1343
+ <Green's R-class: [1,7,4][2,3]>, <Green's R-class: [2,5,3][7,1]>,
1344
+ <Green's R-class: [5,4](1)>, <Green's R-class: [7,5,4](2)>,
1345
+ <Green's R-class: [2,4][3,1]>, <Green's R-class: [6,4](1)>,
1346
+ <Green's R-class: [2,4][3,5](1)>, <Green's R-class: [3,4](1)(2)>,
1347
+ <Green's R-class: [6,4][7,1,5]>, <Green's R-class: [2,1,3,5]>,
1348
+ <Green's R-class: [2,4][5,1,6]>, <Green's R-class: [2,4][7,6](1)>,
1349
+ <Green's R-class: [2,6][4,1][5,3]>, <Green's R-class: [1,3,6]>,
1350
+ <Green's R-class: [1,6][7,3,5]>, <Green's R-class: [2,4][7,3,5,6]>,
1351
+ <Green's R-class: [2,1][5,4]>, <Green's R-class: [2,1,4][5,3]>,
1352
+ <Green's R-class: [1,6](3)>, <Green's R-class: [5,1,6](2)>,
1353
+ <Green's R-class: [2,1,3][7,6]>, <Green's R-class: [5,3][7,6](1)(2)>,
1354
+ <Green's R-class: [2,3,4,1]>, <Green's R-class: [2,6](3)>,
1355
+ <Green's R-class: [2,6][5,4,1]>, <Green's R-class: [1,4][2,3,6]>,
1356
+ <Green's R-class: [1,4](2)(3)>, <Green's R-class: [1,6,3][7,4]>,
1357
+ <Green's R-class: [5,6][7,4](2)>, <Green's R-class: [4,5]>,
1358
+ <Green's R-class: [2,6][7,5]>, <Green's R-class: [1,6](5)>,
1359
+ <Green's R-class: [2,5][3,6]>, <Green's R-class: [1,6,5]>,
1360
+ <Green's R-class: [1,6][2,5]>, <Green's R-class: [2,1,6][3,5]>,
1361
+ <Green's R-class: [7,6,5]>, <Green's R-class: [1,5,6]>,
1362
+ <Green's R-class: [2,7][5,6]>, <Green's R-class: [1,5](6)>,
1363
+ <Green's R-class: [1,5][2,7][3,6]>, <Green's R-class: [7,5](6)>,
1364
+ <Green's R-class: [2,5,6]>, <Green's R-class: [2,5,1,6]>,
1365
+ <Green's R-class: [2,7](1,5)>, <Green's R-class: [2,1][3,6][4,5]>,
1366
+ <Green's R-class: [4,5,6]>, <Green's R-class: [2,7][3,1,6]>,
1367
+ <Green's R-class: [2,7,6]>, <Green's R-class: [1,7][5,3](2)>,
1368
+ <Green's R-class: [2,5][4,3]>, <Green's R-class: [3,7](2)>,
1369
+ <Green's R-class: [2,3](5,7)>, <Green's R-class: [7,5,3](2)>,
1370
+ <Green's R-class: [1,7][2,5](3)>, <Green's R-class: [1,7](2)(5)>,
1371
+ <Green's R-class: [2,5,7,1]>, <Green's R-class: [1,4][2,3,5]>,
1372
+ <Green's R-class: [2,4][5,1]>, <Green's R-class: [2,3][6,5]>,
1373
+ <Green's R-class: [2,4][3,1](5)>, <Green's R-class: [7,1,4]>,
1374
+ <Green's R-class: [5,4][7,1]>, <Green's R-class: [3,4,1]>,
1375
+ <Green's R-class: [2,7][5,4,1]>, <Green's R-class: [1,4][3,7]>,
1376
+ <Green's R-class: [1,7,4]>, <Green's R-class: [5,7,4]>,
1377
+ <Green's R-class: [1,7][3,4]>, <Green's R-class: [2,3][5,1,7]>,
1378
+ <Green's R-class: [2,1,4](7)>, <Green's R-class: [2,3][5,4](1)(7)>,
1379
+ <Green's R-class: [2,4,1]>, <Green's R-class: [2,7][3,4]>,
1380
+ <Green's R-class: [2,4][3,7]>, <Green's R-class: [1,7][6,4]>,
1381
+ <Green's R-class: [2,5](1,3)>, <Green's R-class: [7,4](1)>,
1382
+ <Green's R-class: [5,1][7,4]>, <Green's R-class: [1,4][3,5](2)>,
1383
+ <Green's R-class: [7,4](2)>, <Green's R-class: [3,1](4)>,
1384
+ <Green's R-class: [5,1](4)>, <Green's R-class: [2,4](1,5)>,
1385
+ <Green's R-class: [5,4](2)>, <Green's R-class: [5,1,4](2)>,
1386
+ <Green's R-class: [2,1][3,5](4)>, <Green's R-class: [2,1,5,3]>,
1387
+ <Green's R-class: [2,4][5,6][7,1]>, <Green's R-class: [2,4][3,6]>,
1388
+ <Green's R-class: [1,3][2,6]>, <Green's R-class: [2,6][7,3,1]>,
1389
+ <Green's R-class: [1,6][5,3]>, <Green's R-class: [2,3,6]>,
1390
+ <Green's R-class: [1,6,3][2,5]>, <Green's R-class: [1,6][2,3]>,
1391
+ <Green's R-class: [1,6][2,4](3)(5)>, <Green's R-class: [2,5][7,6,3]>,
1392
+ <Green's R-class: [1,5][2,4][7,6]>, <Green's R-class: [2,1][7,4]>,
1393
+ <Green's R-class: [2,1][5,4][7,3]>, <Green's R-class: [1,3][5,6]>,
1394
+ <Green's R-class: [5,6][7,1](2)>, <Green's R-class: [1,3](6)>,
1395
+ <Green's R-class: [2,6](1,3)>, <Green's R-class: [1,3,6](2)>,
1396
+ <Green's R-class: [7,3](1)(6)>, <Green's R-class: [2,3,1,4]>,
1397
+ <Green's R-class: [2,6][5,3]>, <Green's R-class: [1,4][2,6]>,
1398
+ <Green's R-class: [3,1][7,4]>, <Green's R-class: [2,6][3,1][7,4]>,
1399
+ <Green's R-class: [2,3][5,6]>, <Green's R-class: [1,6][2,3][5,4]>,
1400
+ <Green's R-class: [1,3][5,4](2)>, <Green's R-class: [2,4,3,6]>,
1401
+ <Green's R-class: [1,6,4]>, <Green's R-class: [4,3][5,6]>,
1402
+ <Green's R-class: [1,6][2,4]>, <Green's R-class: [1,6][3,4](2)>,
1403
+ <Green's R-class: [7,6,4]>, <Green's R-class: [7,6](2)>,
1404
+ <Green's R-class: [7,5,6]>, <Green's R-class: [3,6][4,5]>,
1405
+ <Green's R-class: [2,1,5,6]>, <Green's R-class: [2,6][4,5]>,
1406
+ <Green's R-class: [7,6](5)>, <Green's R-class: [3,5][4,6]>,
1407
+ <Green's R-class: [4,6](5)>, <Green's R-class: [1,6][2,7](5)>,
1408
+ <Green's R-class: [2,5][4,6]>, <Green's R-class: [2,5][7,6]>,
1409
+ <Green's R-class: [2,5,6][7,1]>, <Green's R-class: [2,7,1](5)>,
1410
+ <Green's R-class: [3,5][7,6]>, <Green's R-class: [2,7][5,6](1)>,
1411
+ <Green's R-class: [2,7][3,6]>, <Green's R-class: [5,7,3](2)>,
1412
+ <Green's R-class: [1,7][2,3,5]>, <Green's R-class: [1,3,5](2)>,
1413
+ <Green's R-class: [1,3][2,5,7]>, <Green's R-class: [2,5][3,1,7]>,
1414
+ <Green's R-class: [1,5,4][2,3]>, <Green's R-class: [2,4][7,1]>,
1415
+ <Green's R-class: [2,4][7,5](1)>, <Green's R-class: [6,1,4]>,
1416
+ <Green's R-class: [6,1][7,4]>, <Green's R-class: [1,4][2,7]>,
1417
+ <Green's R-class: [2,7,4][3,1]>, <Green's R-class: [1,7][2,4]>,
1418
+ <Green's R-class: [6,4](7)>, <Green's R-class: [1,4][5,7]>,
1419
+ <Green's R-class: [2,3][5,7,1]>, <Green's R-class: [1,4][6,7]>,
1420
+ <Green's R-class: [2,7][3,1,4]>, <Green's R-class: [1,4][2,3,7]>,
1421
+ <Green's R-class: [6,7,4](1)>, <Green's R-class: [2,3][5,1][7,4]>,
1422
+ <Green's R-class: [2,7][5,4]>, <Green's R-class: [2,4][5,7]>,
1423
+ <Green's R-class: [3,7](4)>, <Green's R-class: [5,7](4)>,
1424
+ <Green's R-class: [2,5,3](1)>, <Green's R-class: [6,4][7,1]>,
1425
+ <Green's R-class: [1,5,4](2)>, <Green's R-class: [3,4](2)>,
1426
+ <Green's R-class: [3,4][7,1]>, <Green's R-class: [2,4][7,1](5)>,
1427
+ <Green's R-class: [1,4](2)>, <Green's R-class: [5,4][7,1](2)>,
1428
+ <Green's R-class: [2,1,5][3,4]>, <Green's R-class: [2,1][7,3](5)>,
1429
+ <Green's R-class: [2,4][3,1,6]>, <Green's R-class: [2,4][7,6]>,
1430
+ <Green's R-class: [2,4][5,6]>, <Green's R-class: [2,6][5,1](3)>,
1431
+ <Green's R-class: [1,6][7,3]>, <Green's R-class: [5,6][7,3]>,
1432
+ <Green's R-class: [4,3,6]>, <Green's R-class: [2,5,6][4,3]>,
1433
+ <Green's R-class: [1,5,3][2,4]>, <Green's R-class: [1,6][2,3][7,5]>,
1434
+ <Green's R-class: [1,3][2,4][7,5,6]>, <Green's R-class: [2,6][4,3]>,
1435
+ <Green's R-class: [2,1,4](3)>, <Green's R-class: [1,3][7,6]>,
1436
+ <Green's R-class: [5,3][7,6]>, <Green's R-class: [3,1,6](2)>,
1437
+ <Green's R-class: [4,6](3)>, <Green's R-class: [4,6][5,3]>,
1438
+ <Green's R-class: [2,6][5,3](1)>, <Green's R-class: [5,6](2)>,
1439
+ <Green's R-class: [1,6][5,3](2)>, <Green's R-class: [2,3,1][4,6]>,
1440
+ <Green's R-class: [2,3][5,4](1)>, <Green's R-class: [2,6][7,3]>,
1441
+ <Green's R-class: [2,6][5,4]>, <Green's R-class: [3,4][5,1]>,
1442
+ <Green's R-class: [2,1][6,4]>, <Green's R-class: [2,6][3,4][5,1]>,
1443
+ <Green's R-class: [2,3][7,6]>, <Green's R-class: [1,4][3,6]>,
1444
+ <Green's R-class: [1,6][7,4]>, <Green's R-class: [2,3][5,6][7,4]>,
1445
+ <Green's R-class: [5,3][7,4](2)>, <Green's R-class: [1,6][2,4](3)>,
1446
+ <Green's R-class: [3,6](4)>, <Green's R-class: [5,6](4)>,
1447
+ <Green's R-class: [7,6](3)>, <Green's R-class: [1,4][5,6](2)>,
1448
+ <Green's R-class: [2,6](4)>, <Green's R-class: [3,6](2)>,
1449
+ <Green's R-class: [2,1][7,6](5)>, <Green's R-class: [3,6][7,5]>,
1450
+ <Green's R-class: [2,7,5,6]>, <Green's R-class: [2,5][3,1,6]>,
1451
+ <Green's R-class: [2,7][3,1,5]>, <Green's R-class: [3,6](5)>,
1452
+ <Green's R-class: [2,5](6)>, <Green's R-class: [2,7,6][5,1]>,
1453
+ <Green's R-class: [1,7](2)(3)>, <Green's R-class: [1,5,7][2,3]>,
1454
+ <Green's R-class: [1,5,3](2)>, <Green's R-class: [2,5,3](7)>,
1455
+ <Green's R-class: [2,5,7](1)>, <Green's R-class: [2,3][7,4](5)>,
1456
+ <Green's R-class: [5,4,1]>, <Green's R-class: [2,7][3,4][5,1]>,
1457
+ <Green's R-class: [2,7](4)>, <Green's R-class: [1,4](7)>,
1458
+ <Green's R-class: [5,4](7)>, <Green's R-class: [2,3,1,7]>,
1459
+ <Green's R-class: [3,4,7]>, <Green's R-class: [5,4,7]>,
1460
+ <Green's R-class: [2,7][5,4](1)>, <Green's R-class: [1,7][2,3][5,4]>,
1461
+ <Green's R-class: [2,4,7][3,1]>, <Green's R-class: [2,3,4](1)>,
1462
+ <Green's R-class: [2,7,4]>, <Green's R-class: [2,4](7)>,
1463
+ <Green's R-class: [3,4](7)>, <Green's R-class: [2,5,1][7,3]>,
1464
+ <Green's R-class: [2,1](4)>, <Green's R-class: [7,4](2)(5)>,
1465
+ <Green's R-class: [3,1][5,4]>, <Green's R-class: [2,4][6,1]>,
1466
+ <Green's R-class: [2,4][3,1,5]>, <Green's R-class: [3,1,4](2)>,
1467
+ <Green's R-class: [2,1,4](5)>, <Green's R-class: [2,1,5](3)>,
1468
+ <Green's R-class: [2,4][5,6](1)>, <Green's R-class: [2,6][7,1,3]>,
1469
+ <Green's R-class: [1,6,3]>, <Green's R-class: [7,6,3]>,
1470
+ <Green's R-class: [2,5][7,6](3)>, <Green's R-class: [2,4][7,3](5)>,
1471
+ <Green's R-class: [1,6][2,5](3)>, <Green's R-class: [1,6][2,4][3,5]>,
1472
+ <Green's R-class: [1,3][7,6,5]>, <Green's R-class: [2,4][5,3][7,6]>,
1473
+ <Green's R-class: [2,1,3][5,4]>, <Green's R-class: [7,3](6)>,
1474
+ <Green's R-class: [5,6](1)(2)>, <Green's R-class: [7,3,6]>,
1475
+ <Green's R-class: [2,6][5,1][7,3]>, <Green's R-class: [1,6](2)>,
1476
+ <Green's R-class: [5,6][7,3](2)>, <Green's R-class: [2,3,6](1)>,
1477
+ <Green's R-class: [2,6][7,4]>, <Green's R-class: [2,6][5,4](1)>,
1478
+ <Green's R-class: [2,6][7,1,4]>, <Green's R-class: [1,6][5,4]>,
1479
+ <Green's R-class: [1,6][2,3,4]>, <Green's R-class: [1,3,4](2)>,
1480
+ <Green's R-class: [1,3][2,4][5,6]>, <Green's R-class: [2,6][3,4]>,
1481
+ <Green's R-class: [1,6][3,4]>, <Green's R-class: [3,4][7,6]>,
1482
+ <Green's R-class: [5,3,6]>, <Green's R-class: [2,3](6)>,
1483
+ <Green's R-class: [1,4][7,6]>, <Green's R-class: [5,4][7,6](2)>,
1484
+ <Green's R-class: [3,5,6]>, <Green's R-class: [2,6,5]>,
1485
+ <Green's R-class: [1,6][2,7][3,5]>, <Green's R-class: [2,5,6](1)>,
1486
+ <Green's R-class: [2,7](1)(5)>, <Green's R-class: [2,7][3,6](1)>,
1487
+ <Green's R-class: [2,3](5)(7)>, <Green's R-class: [7,3](2)(5)>,
1488
+ <Green's R-class: [1,3,7][2,5]>, <Green's R-class: [2,5,1](7)>,
1489
+ <Green's R-class: [1,5][2,3,4]>, <Green's R-class: [2,7,1,4]>,
1490
+ <Green's R-class: [6,7,4]>, <Green's R-class: [2,3][5,7](1)>,
1491
+ <Green's R-class: [3,7,4]>, <Green's R-class: [2,7,4][5,1]>,
1492
+ <Green's R-class: [2,3][5,7,4]>, <Green's R-class: [2,4][3,7](1)>,
1493
+ <Green's R-class: [2,3][5,1,4]>, <Green's R-class: [3,7][5,4]>,
1494
+ <Green's R-class: [2,4][6,7]>, <Green's R-class: [1,5][3,4](2)>,
1495
+ <Green's R-class: [2,4](1)(5)>, <Green's R-class: [5,4](1)(2)>,
1496
+ <Green's R-class: [2,1][7,5,4]>, <Green's R-class: [2,1,3](5)>,
1497
+ <Green's R-class: [2,4][5,1][7,6]>, <Green's R-class: [2,5,3,6]>,
1498
+ <Green's R-class: [1,5][2,4](3)>, <Green's R-class: [1,3][2,5,6]>,
1499
+ <Green's R-class: [1,5,6][2,4]>, <Green's R-class: [2,6][4,5](3)>,
1500
+ <Green's R-class: [1,3,6][2,4]>, <Green's R-class: [2,1][5,3][7,4]>,
1501
+ <Green's R-class: [2,3][4,6]>, <Green's R-class: [5,1][7,6](2)>,
1502
+ <Green's R-class: [5,6](3)>, <Green's R-class: [2,6,3]>,
1503
+ <Green's R-class: [2,6](1)(3)>, <Green's R-class: [1,6](2)(3)>,
1504
+ <Green's R-class: [2,3][5,1,6]>, <Green's R-class: [2,6][5,1][7,4]>,
1505
+ <Green's R-class: [5,6][7,4]>, <Green's R-class: [1,4][2,3][5,6]>,
1506
+ <Green's R-class: [1,4][5,3](2)>, <Green's R-class: [1,4][5,6]>,
1507
+ <Green's R-class: [3,6][5,4]>, <Green's R-class: [2,4](6)>,
1508
+ <Green's R-class: [1,4](6)>, <Green's R-class: [1,4][3,6](2)>,
1509
+ <Green's R-class: [7,4](6)>, <Green's R-class: [2,5,1][7,6]>,
1510
+ <Green's R-class: [2,7,5,1]>, <Green's R-class: [2,7][5,1,6]>,
1511
+ <Green's R-class: [1,7][2,5,3]>, <Green's R-class: [2,4,7]>,
1512
+ <Green's R-class: [2,3][5,1](7)>, <Green's R-class: [3,4][5,7]>,
1513
+ <Green's R-class: [2,7][6,4]>, <Green's R-class: [2,7][3,4](1)>,
1514
+ <Green's R-class: [1,7][2,3,4]>, <Green's R-class: [2,4][5,1,7]>,
1515
+ <Green's R-class: [2,3][5,4][7,1]>, <Green's R-class: [2,4][7,5,1]>,
1516
+ <Green's R-class: [5,1][7,4](2)>, <Green's R-class: [2,1,4][3,5]>,
1517
+ <Green's R-class: [2,1][7,5,3]>, <Green's R-class: [2,4][3,6](1)>,
1518
+ <Green's R-class: [1,6][2,5][7,3]>, <Green's R-class: [1,3][2,4](5)>,
1519
+ <Green's R-class: [2,5,3][7,6]>, <Green's R-class: [2,4][7,6](5)>,
1520
+ <Green's R-class: [1,3,5][2,6]>, <Green's R-class: [1,6][2,4][5,3]>,
1521
+ <Green's R-class: [3,6](1)(2)>, <Green's R-class: [2,6][5,1,3]>,
1522
+ <Green's R-class: [1,3][5,6](2)>, <Green's R-class: [2,3][5,6][7,1]>,
1523
+ <Green's R-class: [2,6][3,4](1)>, <Green's R-class: [2,3][5,4][7,6]>,
1524
+ <Green's R-class: [5,4][7,3](2)>, <Green's R-class: [5,4][7,6]>,
1525
+ <Green's R-class: [2,4,6]>, <Green's R-class: [3,4,6]>,
1526
+ <Green's R-class: [5,4,6]>, <Green's R-class: [1,6][5,4](2)>,
1527
+ <Green's R-class: [2,5,7,3]>, <Green's R-class: [2,3,7](1)>,
1528
+ <Green's R-class: [2,7][5,1,4]>, <Green's R-class: [1,4][2,3][5,7]>,
1529
+ <Green's R-class: [2,4][5,7,1]>, <Green's R-class: [2,1,5,4]>,
1530
+ <Green's R-class: [2,4][7,5,3]>, <Green's R-class: [1,3,6][2,5]>,
1531
+ <Green's R-class: [1,5][2,4][3,6]>, <Green's R-class: [1,5,3][2,6]>,
1532
+ <Green's R-class: [2,4][5,6][7,3]>, <Green's R-class: [2,6][5,3][7,1]>,
1533
+ <Green's R-class: [5,3][7,6](2)>, <Green's R-class: [2,3,1,6]>,
1534
+ <Green's R-class: [2,6][5,1,4]>, <Green's R-class: [3,6][7,4]>,
1535
+ <Green's R-class: [2,7,1][5,4]>, <Green's R-class: [2,3][5,4](7)>,
1536
+ <Green's R-class: [2,4][3,1,7]>, <Green's R-class: [2,1][7,4](5)>,
1537
+ <Green's R-class: [1,3,5][2,4]>, <Green's R-class: [1,6][2,5,3]>,
1538
+ <Green's R-class: [1,6][2,4](5)>, <Green's R-class: [2,6][7,3](5)>,
1539
+ <Green's R-class: [2,3][5,6](1)>, <Green's R-class: [2,6][5,4][7,1]>,
1540
+ <Green's R-class: [3,4][5,6]>, <Green's R-class: [2,6,4]>,
1541
+ <Green's R-class: [2,4][5,7](1)>, <Green's R-class: [2,5,6][7,3]>,
1542
+ <Green's R-class: [2,4][7,5,6]>, <Green's R-class: [1,5][2,6](3)>,
1543
+ <Green's R-class: [2,3][5,1][7,6]>, <Green's R-class: [2,6][3,1,4]>,
1544
+ <Green's R-class: [2,4][5,1](7)>, <Green's R-class: [1,3][2,6](5)>,
1545
+ <Green's R-class: [2,6][7,5,3]> ]
1546
+ gap> Union(List(last, Elements));
1547
+ [ <empty partial perm>, <identity partial perm on [ 1 ]>, [1,3], [1,4],
1548
+ [1,5], [1,6], [1,7], [2,1], <identity partial perm on [ 2 ]>, [2,3], [2,4],
1549
+ [2,5], [2,6], [2,7], <identity partial perm on [ 1, 2 ]>, [2,3](1),
1550
+ [2,4](1), [2,5](1), [2,6](1), [2,7](1), [2,1,3], [1,3](2), [1,3][2,4],
1551
+ [1,3][2,5], [1,3][2,6], [1,3][2,7], [2,1,4], [1,4](2), [1,4][2,3],
1552
+ [1,4][2,5], [1,4][2,6], [1,4][2,7], [2,1,5], [1,5](2), [1,5][2,3],
1553
+ [1,5][2,4], [1,5][2,6], [1,5][2,7], [2,1,6], [1,6](2), [1,6][2,3],
1554
+ [1,6][2,4], [1,6][2,5], [1,6][2,7], [2,1,7], [1,7](2), [1,7][2,3],
1555
+ [1,7][2,4], [1,7][2,5], [3,1], <identity partial perm on [ 3 ]>, [3,4],
1556
+ [3,5], [3,6], [3,7], [2,1](3), [2,1][3,4], [2,1][3,5], [2,1][3,6],
1557
+ [2,1][3,7], [3,1](2), <identity partial perm on [ 2, 3 ]>, [3,4](2),
1558
+ [3,5](2), [3,6](2), [3,7](2), [2,3,1], [2,3,4], [2,3,5], [2,3,6], [2,3,7],
1559
+ [2,4][3,1], [2,4](3), [2,4][3,5], [2,4][3,6], [2,4][3,7], [2,5][3,1],
1560
+ [2,5](3), [2,5][3,4], [2,5][3,6], [2,5][3,7], [2,6][3,1], [2,6](3),
1561
+ [2,6][3,4], [2,6][3,5], [2,7][3,1], [2,7](3), [2,7][3,4], [2,7][3,5],
1562
+ [2,7][3,6], <identity partial perm on [ 1, 3 ]>, [3,4](1), [3,5](1),
1563
+ [3,6](1), [3,7](1), <identity partial perm on [ 1, 2, 3 ]>, [3,4](1)(2),
1564
+ [3,5](1)(2), [3,6](1)(2), [2,3,4](1), [2,3,6](1), [2,3,7](1),
1565
+ [2,4][3,5](1), [2,4][3,6](1), [2,4][3,7](1), [2,5](1)(3), [2,5][3,6](1),
1566
+ [2,5][3,7](1), [2,6](1)(3), [2,6][3,4](1), [2,7][3,4](1), [2,7][3,5](1),
1567
+ [2,7][3,6](1), (1,3), [1,3,4], [1,3,5], [1,3,6], [1,3,7], [2,1,3,4],
1568
+ [2,1,3,5], (1,3)(2), [1,3,4](2), [1,3,5](2), [1,3,6](2), [1,3,7](2),
1569
+ [1,3,5][2,4], [1,3,6][2,4], [2,5](1,3), [1,3,6][2,5], [1,3,7][2,5],
1570
+ [2,6](1,3), [1,3,5][2,6], [3,1,4], [1,4](3), [1,4][3,5], [1,4][3,6],
1571
+ [1,4][3,7], [2,1,4](3), [2,1,4][3,5], [3,1,4](2), [1,4](2)(3),
1572
+ [1,4][3,5](2), [1,4][3,6](2), [2,3,1,4], [1,4][2,3,5], [1,4][2,3,6],
1573
+ [1,4][2,3,7], [2,6][3,1,4], [2,7][3,1,4], [3,1,5], [1,5](3), [1,5][3,4],
1574
+ [1,5][3,6], [1,5][3,7], [2,1,5](3), [2,1,5][3,4], [2,1,5][3,6], [3,1,5](2),
1575
+ [1,5](2)(3), [1,5][3,4](2), [1,5][3,7](2), [1,5][2,3,4], [1,5][2,3,7],
1576
+ [2,4][3,1,5], [1,5][2,4](3), [1,5][2,4][3,6], [1,5][2,6](3), [2,7][3,1,5],
1577
+ [1,5][2,7][3,6], [3,1,6], [1,6](3), [1,6][3,4], [1,6][3,5], [2,1,6][3,5],
1578
+ [3,1,6](2), [1,6](2)(3), [1,6][3,4](2), [2,3,1,6], [1,6][2,3,4],
1579
+ [2,4][3,1,6], [1,6][2,4](3), [1,6][2,4][3,5], [2,5][3,1,6], [1,6][2,5](3),
1580
+ [2,7][3,1,6], [1,6][2,7][3,5], [3,1,7], [1,7](3), [1,7][3,4], [1,7][3,5],
1581
+ [1,7](2)(3), [1,7][3,5](2), [2,3,1,7], [1,7][2,3,4], [1,7][2,3,5],
1582
+ [2,4][3,1,7], [2,5][3,1,7], [1,7][2,5](3), [4,1], [4,3],
1583
+ <identity partial perm on [ 4 ]>, [4,5], [4,6], [4,7], [4,3,1], [3,1](4),
1584
+ [3,1][4,5], [3,1][4,6], [3,1][4,7], [4,1](3),
1585
+ <identity partial perm on [ 3, 4 ]>, [4,5](3), [4,6](3), [4,7](3), [3,4,1],
1586
+ (3,4), [3,4,5], [3,4,6], [3,4,7], [3,5][4,1], [4,3,5], [3,5](4),
1587
+ [3,5][4,6], [3,5][4,7], [3,6][4,1], [4,3,6], [3,6](4), [3,6][4,5],
1588
+ [3,7][4,1], [4,3,7], [3,7](4), [3,7][4,5], [2,1][4,3], [2,1](4),
1589
+ [2,1][4,5], [2,1][4,6], [2,1][4,7], [2,1][4,5](3), [2,1][3,5](4),
1590
+ [2,1][3,6][4,5], [2,3][4,1], [2,3](4), [2,3][4,5], [2,3][4,6], [2,3][4,7],
1591
+ [2,3,1][4,6], [2,3,4,1], [2,4,1], [2,4,3], [2,4,5], [2,4,6], [2,4,7],
1592
+ [2,4,7][3,1], [2,4,3,6], [2,5][4,1], [2,5][4,3], [2,5](4), [2,5][4,6],
1593
+ [2,5][4,7], [2,5][3,1][4,7], [2,5][4,3,7], [2,6][4,1], [2,6][4,3],
1594
+ [2,6](4), [2,6][4,5], [2,6][4,5](3), [2,7][4,1], [2,7][4,3], [2,7](4),
1595
+ [2,7][4,5], [2,7][3,1,5][4,6], [5,1], [5,3], [5,4],
1596
+ <identity partial perm on [ 5 ]>, [5,6], [5,7], [4,1][5,3], [5,4,1],
1597
+ [4,1](5), [4,1][5,6], [4,1][5,7], [4,3][5,1], [5,4,3], [4,3](5),
1598
+ [4,3][5,6], [4,3][5,7], [5,1](4), [5,3](4),
1599
+ <identity partial perm on [ 4, 5 ]>, [5,6](4), [5,7](4), [4,5,1], [4,5,3],
1600
+ (4,5), [4,5,6], [4,5,7], [4,6][5,1], [4,6][5,3], [5,4,6], [4,6](5),
1601
+ [4,7][5,1], [4,7][5,3], [5,4,7], [4,7](5), [5,3,1], [3,1][5,4], [3,1](5),
1602
+ [3,1][5,6], [3,1][5,7], [5,1](3), [5,4](3),
1603
+ <identity partial perm on [ 3, 5 ]>, [5,6](3), [5,7](3), [3,4][5,1],
1604
+ [5,3,4], [3,4](5), [3,4][5,6], [3,4][5,7], [3,5,1], (3,5), [3,5,4],
1605
+ [3,5,6], [3,5,7], [3,6][5,1], [5,3,6], [3,6][5,4], [3,6](5), [3,7][5,1],
1606
+ [5,3,7], [3,7][5,4], [3,7](5), [2,1][5,3], [2,1][5,4], [2,1](5),
1607
+ [2,1][5,6], [2,1][5,7], [5,1](2), [5,3](2), [5,4](2),
1608
+ <identity partial perm on [ 2, 5 ]>, [5,6](2), [5,7](2), [2,3][5,1],
1609
+ [2,3][5,4], [2,3](5), [2,3][5,6], [2,3][5,7], [2,3,5,4], [2,4][5,1],
1610
+ [2,4][5,3], [2,4](5), [2,4][5,6], [2,4][5,7], [2,4,5,1], [2,4][3,1](5),
1611
+ [2,4][3,1][5,6], [2,5,1], [2,5,3], [2,5,4], [2,5,6], [2,5,7], [2,5,6][4,3],
1612
+ [2,5,3,6], [2,6][5,1], [2,6][5,3], [2,6][5,4], [2,6](5), [2,6][4,1][5,3],
1613
+ [2,6][5,4,1], [2,6][5,1](3), [2,6][3,4][5,1], [2,7][5,1], [2,7][5,3],
1614
+ [2,7][5,4], [2,7](5), [2,7][5,6], [2,7][5,4,1], [2,7][3,4][5,1], [5,3](1),
1615
+ [5,4](1), <identity partial perm on [ 1, 5 ]>, [5,6](1), [5,7](1),
1616
+ [5,3](1)(2), [5,4](1)(2), <identity partial perm on [ 1, 2, 5 ]>,
1617
+ [5,6](1)(2), [3,5,4](1)(2), [2,3][5,4](1), [2,3][5,6](1), [2,3][5,7](1),
1618
+ [2,4](1)(5), [2,4][5,6](1), [2,4][5,7](1), [2,5,3](1), [2,5,6](1),
1619
+ [2,5,7](1), [2,6][5,3](1), [2,6][5,4](1), [2,7][5,4](1), [2,7](1)(5),
1620
+ [2,7][5,6](1), [2,7][3,6](1)(5), [5,1,3], [1,3][5,4], [1,3](5), [1,3][5,6],
1621
+ [1,3][5,7], [2,1,3][5,4], [2,1,3](5), [5,1,3](2), [1,3][5,4](2),
1622
+ [1,3](2)(5), [1,3][5,6](2), [1,3][5,7](2), [5,6](1,3)(2), [1,3][2,4](5),
1623
+ [1,3][2,4][5,6], [2,5,1,3], [1,3][2,5,6], [1,3][2,5,7], [2,6][5,1,3],
1624
+ [1,3][2,6](5), [5,1,4], [1,4][5,3], [1,4](5), [1,4][5,6], [1,4][5,7],
1625
+ [2,1,4][5,3], [2,1,4](5), [5,1,4](2), [1,4][5,3](2), [1,4](2)(5),
1626
+ [1,4][5,6](2), [2,3][5,1,4], [1,4][2,3](5), [1,4][2,3][5,6],
1627
+ [1,4][2,3][5,7], [2,3][5,1,4,7], [2,3,1,4][5,7], [2,6][5,1,4],
1628
+ [2,7][5,1,4], (1,5), [1,5,3], [1,5,4], [1,5,6], [1,5,7], [2,1,5,3],
1629
+ [2,1,5,4], [2,1,5,6], (1,5)(2), [1,5,3](2), [1,5,4](2), [1,5,7](2),
1630
+ [1,5,3,7](2), [1,5,4][2,3], [1,5,7][2,3], [2,4](1,5), [1,5,3][2,4],
1631
+ [1,5,6][2,4], [1,5,3][2,6], [2,7](1,5), [1,5,6][2,7], [5,1,6], [1,6][5,3],
1632
+ [1,6][5,4], [1,6](5), [2,1,6](5), [5,1,6](2), [1,6][5,3](2), [1,6][5,4](2),
1633
+ [2,3][5,1,6], [1,6][2,3][5,4], [2,4][5,1,6], [1,6][2,4][5,3],
1634
+ [1,6][2,4](5), [1,6][2,4,5,3], [1,6][2,4](3)(5), [2,5,1,6], [1,6][2,5,3],
1635
+ [2,7][5,1,6], [1,6][2,7](5), [5,1,7], [1,7][5,3], [1,7][5,4], [1,7](5),
1636
+ [1,7][5,3](2), [1,7](2)(5), [2,3][5,1,7], [1,7][2,3][5,4], [1,7][2,3](5),
1637
+ [2,4][5,1,7], [2,5,1,7], [1,7][2,5,3], [6,1], [6,3], [6,4], [6,5],
1638
+ <identity partial perm on [ 6 ]>, [6,7], [2,1][6,3], [2,1][6,4],
1639
+ [2,1][6,5], [2,1](6), [2,1][6,7], [2,3][6,1], [2,3][6,4], [2,3][6,5],
1640
+ [2,3](6), [2,3][6,7], [2,4][6,1], [2,4][6,3], [2,4][6,5], [2,4](6),
1641
+ [2,4][6,7], [2,5][6,1], [2,5][6,3], [2,5][6,4], [2,5](6), [2,5][6,7],
1642
+ [2,6,1], [2,6,3], [2,6,4], [2,6,5], [2,7][6,1], [2,7][6,3], [2,7][6,4],
1643
+ [2,7][6,5], [6,3](1), [6,4](1), [6,5](1), <identity partial perm on [ 1, 6 ]
1644
+ >, [6,7](1), [2,4][6,5](1), [6,1,3], [1,3][6,4], [1,3][6,5], [1,3](6),
1645
+ [1,3][6,7], [2,6,1,3], [6,1,4], [1,4][6,3], [1,4][6,5], [1,4](6),
1646
+ [1,4][6,7], [2,7][6,1,4], [6,1,5], [1,5][6,3], [1,5][6,4], [1,5](6),
1647
+ [1,5][6,7], (1,6), [1,6,3], [1,6,4], [1,6,5], [1,6,3][2,5], [6,1,7],
1648
+ [1,7][6,3], [1,7][6,4], [1,7][6,5], [7,1], [7,3], [7,4], [7,5], [7,6],
1649
+ <identity partial perm on [ 7 ]>, [6,1][7,3], [6,1][7,4], [6,1][7,5],
1650
+ [7,6,1], [6,1](7), [6,3][7,1], [6,3][7,4], [6,3][7,5], [7,6,3], [6,3](7),
1651
+ [6,4][7,1], [6,4][7,3], [6,4][7,5], [7,6,4], [6,4](7), [6,5][7,1],
1652
+ [6,5][7,3], [6,5][7,4], [7,6,5], [6,5](7), [7,1](6), [7,3](6), [7,4](6),
1653
+ [7,5](6), [6,7,1], [6,7,3], [6,7,4], [6,7,5], [5,1][7,3], [5,1][7,4],
1654
+ [7,5,1], [5,1][7,6], [5,1](7), [5,3][7,1], [5,3][7,4], [7,5,3], [5,3][7,6],
1655
+ [5,3](7), [5,4][7,1], [5,4][7,3], [7,5,4], [5,4][7,6], [5,4](7), [7,1](5),
1656
+ [7,3](5), [7,4](5), [7,6](5), <identity partial perm on [ 5, 7 ]>,
1657
+ [5,6][7,1], [5,6][7,3], [5,6][7,4], [7,5,6], [5,7,1], [5,7,3], [5,7,4],
1658
+ (5,7), [7,3,1], [3,1][7,4], [3,1][7,5], [3,1][7,6], [3,1](7), [7,1](3),
1659
+ [7,4](3), [7,5](3), [7,6](3), <identity partial perm on [ 3, 7 ]>,
1660
+ [3,4][7,1], [7,3,4], [3,4][7,5], [3,4][7,6], [3,4](7), [3,5][7,1], [7,3,5],
1661
+ [3,5][7,4], [3,5][7,6], [3,5](7), [3,6][7,1], [7,3,6], [3,6][7,4],
1662
+ [3,6][7,5], [3,7,1], (3,7), [3,7,4], [3,7,5], [2,1][7,3], [2,1][7,4],
1663
+ [2,1][7,5], [2,1][7,6], [2,1](7), [2,1][5,3][7,4], [2,1][7,5,3],
1664
+ [2,1][5,4][7,3], [2,1][7,5,4], [2,1][7,3](5), [2,1][7,4](5), [2,1][7,6](5),
1665
+ [2,1][7,5,6], [7,1](2), [7,3](2), [7,4](2), [7,5](2), [7,6](2),
1666
+ <identity partial perm on [ 2, 7 ]>, [5,1][7,3](2), [5,1][7,4](2),
1667
+ [7,5,1](2), [5,1][7,6](2), [5,3][7,1](2), [5,3][7,4](2), [7,5,3](2),
1668
+ [5,3][7,6](2), [5,3](2)(7), [5,4][7,1](2), [5,4][7,3](2), [7,5,4](2),
1669
+ [5,4][7,6](2), [7,1](2)(5), [7,3](2)(5), [7,4](2)(5),
1670
+ <identity partial perm on [ 2, 5, 7 ]>, [5,6][7,1](2), [5,6][7,3](2),
1671
+ [5,6][7,4](2), [5,7,3](2), (2)(5,7), [2,3][7,1], [2,3][7,4], [2,3][7,5],
1672
+ [2,3][7,6], [2,3](7), [2,3][5,1][7,4], [2,3][5,1][7,6], [2,3][5,1](7),
1673
+ [2,3][5,4][7,1], [2,3][7,5,4], [2,3][5,4][7,6], [2,3][5,4](7),
1674
+ [2,3][7,4](5), [2,3](5)(7), [2,3][5,6][7,1], [2,3][5,6][7,4], [2,3][5,7,1],
1675
+ [2,3][5,7,4], [2,3](5,7), [2,3,7,1][5,4], [2,4][7,1], [2,4][7,3],
1676
+ [2,4][7,5], [2,4][7,6], [2,4](7), [2,4][7,5,1], [2,4][5,1][7,6],
1677
+ [2,4][5,1](7), [2,4][7,5,3], [2,4][5,3][7,6], [2,4][7,1](5), [2,4][7,3](5),
1678
+ [2,4][7,6](5), [2,4][5,6][7,1], [2,4][5,6][7,3], [2,4][7,5,6],
1679
+ [2,4][5,7,1], [2,4][3,5][7,1], [2,4][7,3,5,6], [2,5][7,1], [2,5][7,3],
1680
+ [2,5][7,4], [2,5][7,6], [2,5](7), [2,5][7,6,3], [2,5,1][7,3], [2,5,1][7,6],
1681
+ [2,5,1](7), [2,5,3][7,1], [2,5,3][7,6], [2,5,3](7), [2,5,6][7,1],
1682
+ [2,5,6][7,3], [2,5,7,1], [2,5,7,3], [2,5][7,6](3), [2,6][7,1], [2,6][7,3],
1683
+ [2,6][7,4], [2,6][7,5], [2,6][5,1][7,3], [2,6][5,1][7,4], [2,6][5,3][7,1],
1684
+ [2,6][7,5,3], [2,6][5,4][7,1], [2,6][7,3](5), [2,6][7,3,1], [2,6][3,1][7,4],
1685
+ [2,7,1], [2,7,3], [2,7,4], [2,7,5], [2,7,6], [2,7,4][6,1], [2,7,4][5,1],
1686
+ [2,7,5,1], [2,7,6][5,1], [2,7,1][5,4], [2,7,1](5), [2,7,6](5),
1687
+ [2,7,1][5,6], [2,7,5,6], [2,7,4][3,1], [7,3](1), [7,4](1), [7,5](1),
1688
+ [7,6](1), <identity partial perm on [ 1, 7 ]>, [7,3](1)(6), [6,7,4](1),
1689
+ [5,3][7,6](1)(2), [2,3][5,4](1)(7), [2,3,4][6,7,5](1), [2,4][7,5](1),
1690
+ [2,4][7,6](1), [2,5][7,4](1), [2,6][7,5](1), [7,1,3], [1,3][7,4],
1691
+ [1,3][7,5], [1,3][7,6], [1,3](7), [1,3][7,6,5], [2,1,3][7,6],
1692
+ [7,5,1,3,4,6](2), [1,3][2,4][7,5,6], [2,4][7,1,3,6,5], [2,6][7,1,3],
1693
+ [7,1,4], [1,4][7,3], [1,4][7,5], [1,4][7,6], [1,4](7), [3,7,1,4],
1694
+ [2,1,4](7), [5,3,6][7,1,4](2), [2,6][7,1,4], [2,6,1,4][7,3], [2,7,1,4],
1695
+ [7,1,5], [1,5][7,3], [1,5][7,4], [1,5][7,6], [1,5](7), [6,4][7,1,5],
1696
+ [7,4](1,5)(2), [1,5][2,3][7,4], [1,5][2,4][7,6], [1,5][2,7,3], [7,1,6],
1697
+ [1,6][7,3], [1,6][7,4], [1,6][7,5], [1,6,3][7,4], [7,1,6,5], [1,6][7,3,5],
1698
+ [1,6][5,4][7,3](2), [1,6][2,3][7,5], [1,6][2,5][7,3], [2,7,5,1,6], (1,7),
1699
+ [1,7,3], [1,7,4], [1,7,5], [1,7,5][6,3], [1,7,3](2)(5), [1,7,4][2,3] ]
1700
+ gap> ForAll(last, x -> x in s);
1701
+ true
1702
+ gap> Set(last2) = AsSSortedList(s);
1703
+ true
1704
+
1705
+ # MiscTest14
1706
+ gap> gens := [Transformation([1, 3, 2, 3]),
1707
+ > Transformation([1, 4, 1, 2]),
1708
+ > Transformation([2, 4, 1, 1]),
1709
+ > Transformation([3, 4, 2, 2])];;
1710
+ gap> s := Semigroup(gens);;
1711
+ gap> Size(s);
1712
+ 114
1713
+ gap> NrRClasses(s);
1714
+ 11
1715
+ gap> NrDClasses(s);
1716
+ 5
1717
+ gap> NrLClasses(s);
1718
+ 19
1719
+ gap> NrIdempotents(s);
1720
+ 28
1721
+ gap> IsRegularSemigroup(s);
1722
+ false
1723
+ gap> f := Transformation([4, 2, 4, 3]);;
1724
+ gap> d := First(DClasses(s), x -> f in x);
1725
+ <Green's D-class: Transformation( [ 1, 4, 1, 2 ] )>
1726
+ gap> Transformation([1, 4, 1, 2]) in last;
1727
+ true
1728
+ gap> h := HClass(d, f);
1729
+ <Green's H-class: Transformation( [ 4, 2, 4, 3 ] )>
1730
+ gap> Transformation([4, 2, 4, 3]) in last;
1731
+ true
1732
+ gap> Size(h);
1733
+ 6
1734
+ gap> IsGroupHClass(h);
1735
+ true
1736
+ gap> SchutzenbergerGroup(h);
1737
+ Group([ (2,4), (2,3,4) ])
1738
+ gap> ForAll(Elements(h), x -> x in h);
1739
+ true
1740
+ gap> ForAll(Elements(h), x -> x in d);
1741
+ true
1742
+ gap> IsGreensClassNC(h);
1743
+ false
1744
+ gap> gens := [PartialPermNC([1, 2, 4], [4, 5, 6]),
1745
+ > PartialPermNC([1, 2, 5], [2, 1, 3]),
1746
+ > PartialPermNC([1, 2, 4, 6], [2, 4, 3, 5]),
1747
+ > PartialPermNC([1, 2, 3, 4, 5], [4, 3, 6, 5, 1])];;
1748
+ gap> s := Semigroup(gens);;
1749
+ gap> Size(s);
1750
+ 201
1751
+ gap> f := PartialPerm([1 .. 5], [4, 3, 6, 5, 1]);;
1752
+ gap> d := DClassNC(s, f);
1753
+ <Green's D-class: [2,3,6](1,4,5)>
1754
+ gap> h := HClassNC(d, f);
1755
+ <Green's H-class: [2,3,6](1,4,5)>
1756
+ gap> Size(h);
1757
+ 1
1758
+ gap> Size(d);
1759
+ 1
1760
+ gap> AsSSortedList(h) = AsSSortedList(d);
1761
+ true
1762
+
1763
+ # MiscTest15
1764
+ gap> gens :=
1765
+ > [PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18,
1766
+ > 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 40, 42, 44,
1767
+ > 46, 47, 51, 53, 54, 58, 59, 60, 61, 63, 65, 66, 67, 69, 71, 72, 76, 79, 84,
1768
+ > 86, 88, 94, 95, 100], [46, 47, 33, 32, 70, 97, 29, 30, 34, 11, 37, 89,
1769
+ > 77, 52, 73, 2, 96, 66, 88, 69, 93, 87, 85, 68, 48, 25, 28, 43, 49, 95, 40,
1770
+ > 24, 16, 94, 76, 63, 58, 23, 100, 38, 27, 78, 21, 71, 4, 72, 36, 13, 99, 90,
1771
+ > 17, 41, 98, 10, 35, 91, 53, 45, 82, 42]),
1772
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19,
1773
+ > 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43,
1774
+ > 44, 46, 48, 49, 51, 52, 54, 56, 58, 59, 61, 64, 65, 67, 68, 70, 73, 74, 76,
1775
+ > 78, 79, 80, 82, 88, 90, 97], [63, 38, 57, 12, 9, 91, 59, 32, 54, 83, 92,
1776
+ > 96, 99, 18, 3, 81, 5, 65, 2, 37, 21, 49, 16, 75, 24, 23, 43, 27, 1, 48, 6,
1777
+ > 35, 30, 79, 82, 51, 39, 25, 61, 77, 62, 22, 64, 14, 72, 7, 50, 8, 80, 19,
1778
+ > 94, 69, 10, 40, 67, 28, 88, 93, 66, 36, 70, 56]),
1779
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
1780
+ > 18, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 42,
1781
+ > 43, 44, 46, 48, 49, 51, 52, 53, 55, 58, 60, 63, 64, 66, 67, 68, 69, 71, 73,
1782
+ > 75, 80, 86, 87, 88, 90, 91, 94, 95, 97], [89, 85, 8, 56, 42, 10, 61, 25,
1783
+ > 98, 55, 39, 92, 62, 21, 34, 57, 44, 14, 53, 64, 59, 84, 12, 87, 78, 83, 30,
1784
+ > 32, 68, 73, 2, 86, 23, 48, 47, 79, 93, 15, 76, 97, 77, 11, 33, 100, 91, 67,
1785
+ > 18, 16, 99, 60, 74, 17, 95, 49, 4, 66, 41, 69, 94, 31, 29, 5, 63, 58, 72]),
1786
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 20, 21,
1787
+ > 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47,
1788
+ > 48, 49, 51, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 72, 74,
1789
+ > 75, 79, 80, 82, 87, 88, 91, 92, 99, 100], [89, 67, 34, 15, 57, 29, 4, 62,
1790
+ > 76, 20, 52, 22, 35, 75, 98, 78, 40, 46, 28, 6, 55, 90, 16, 12, 65, 26, 66,
1791
+ > 36, 25, 61, 83, 38, 41, 93, 2, 39, 87, 85, 17, 92, 97, 43, 30, 5, 13, 94,
1792
+ > 44, 80, 54, 99, 81, 31, 7, 68, 11, 100, 72, 14, 9, 91, 32, 64, 60, 8,
1793
+ > 23])];;
1794
+ gap> s := Semigroup(gens);;
1795
+ gap> f := PartialPerm([2, 63], [28, 89]);;
1796
+ gap> d := DClassNC(s, f);
1797
+ <Green's D-class: [2,28][63,89]>
1798
+ gap> Size(d);
1799
+ 4752
1800
+ gap> RhoOrb(d);
1801
+ <closed orbit, 2874 points with Schreier tree with log with grading>
1802
+ gap> 2874 * 2;
1803
+ 5748
1804
+ gap> LambdaOrb(d);
1805
+ <closed orbit, 1 points with Schreier tree with log with grading>
1806
+ gap> NrLClasses(d);
1807
+ 1
1808
+ gap> NrRClasses(d);
1809
+ 4752
1810
+ gap> f := PartialPerm([4, 29], [28, 89]);;
1811
+ gap> f in d;
1812
+ true
1813
+ gap> h := HClass(d, f);
1814
+ <Green's H-class: [4,28][29,89]>
1815
+ gap> hh := HClassNC(d, f);
1816
+ <Green's H-class: [4,28][29,89]>
1817
+ gap> hh = h;
1818
+ true
1819
+ gap> Size(h);
1820
+ 1
1821
+
1822
+ # MiscTest16
1823
+ gap> gens := [Transformation([1, 3, 2, 3]),
1824
+ > Transformation([1, 4, 1, 2]),
1825
+ > Transformation([3, 4, 2, 2]),
1826
+ > Transformation([4, 1, 2, 1])];;
1827
+ gap> s := Monoid(gens);;
1828
+ gap> List(DClasses(s), RClassReps);
1829
+ [ [ IdentityTransformation ], [ Transformation( [ 1, 3, 2, 3 ] ) ],
1830
+ [ Transformation( [ 1, 4, 1, 2 ] ), Transformation( [ 1, 2, 4, 4 ] ) ],
1831
+ [ Transformation( [ 4, 1, 2, 1 ] ), Transformation( [ 4, 2, 1, 2 ] ) ],
1832
+ [ Transformation( [ 3, 2, 3, 2 ] ), Transformation( [ 3, 2, 2, 2 ] ),
1833
+ Transformation( [ 3, 3, 2, 3 ] ) ], [ Transformation( [ 1, 4, 2, 4 ] ) ]
1834
+ , [ Transformation( [ 4, 4, 2, 2 ] ), Transformation( [ 4, 2, 4, 4 ] ),
1835
+ Transformation( [ 4, 4, 4, 2 ] ) ], [ Transformation( [ 1, 1, 1, 1 ] ) ]
1836
+ , [ Transformation( [ 4, 2, 4, 2 ] ), Transformation( [ 4, 2, 2, 2 ] ),
1837
+ Transformation( [ 4, 4, 2, 4 ] ) ] ]
1838
+ gap> reps := Concatenation(last);
1839
+ [ IdentityTransformation, Transformation( [ 1, 3, 2, 3 ] ),
1840
+ Transformation( [ 1, 4, 1, 2 ] ), Transformation( [ 1, 2, 4, 4 ] ),
1841
+ Transformation( [ 4, 1, 2, 1 ] ), Transformation( [ 4, 2, 1, 2 ] ),
1842
+ Transformation( [ 3, 2, 3, 2 ] ), Transformation( [ 3, 2, 2, 2 ] ),
1843
+ Transformation( [ 3, 3, 2, 3 ] ), Transformation( [ 1, 4, 2, 4 ] ),
1844
+ Transformation( [ 4, 4, 2, 2 ] ), Transformation( [ 4, 2, 4, 4 ] ),
1845
+ Transformation( [ 4, 4, 4, 2 ] ), Transformation( [ 1, 1, 1, 1 ] ),
1846
+ Transformation( [ 4, 2, 4, 2 ] ), Transformation( [ 4, 2, 2, 2 ] ),
1847
+ Transformation( [ 4, 4, 2, 4 ] ) ]
1848
+ gap> Length(last);
1849
+ 17
1850
+ gap> IsDuplicateFree(last2);
1851
+ true
1852
+ gap> Size(s);
1853
+ 69
1854
+ gap> NrDClasses(s);
1855
+ 9
1856
+ gap> NrLClasses(s);
1857
+ 21
1858
+ gap> List(reps, x -> DClass(s, x));
1859
+ [ <Green's D-class: IdentityTransformation>,
1860
+ <Green's D-class: Transformation( [ 1, 3, 2, 3 ] )>,
1861
+ <Green's D-class: Transformation( [ 1, 4, 1, 2 ] )>,
1862
+ <Green's D-class: Transformation( [ 1, 2, 4, 4 ] )>,
1863
+ <Green's D-class: Transformation( [ 4, 1, 2, 1 ] )>,
1864
+ <Green's D-class: Transformation( [ 4, 2, 1, 2 ] )>,
1865
+ <Green's D-class: Transformation( [ 3, 2, 3, 2 ] )>,
1866
+ <Green's D-class: Transformation( [ 3, 2, 2, 2 ] )>,
1867
+ <Green's D-class: Transformation( [ 3, 3, 2, 3 ] )>,
1868
+ <Green's D-class: Transformation( [ 1, 4, 2, 4 ] )>,
1869
+ <Green's D-class: Transformation( [ 4, 4, 2, 2 ] )>,
1870
+ <Green's D-class: Transformation( [ 4, 2, 4, 4 ] )>,
1871
+ <Green's D-class: Transformation( [ 4, 4, 4, 2 ] )>,
1872
+ <Green's D-class: Transformation( [ 1, 1, 1, 1 ] )>,
1873
+ <Green's D-class: Transformation( [ 4, 2, 4, 2 ] )>,
1874
+ <Green's D-class: Transformation( [ 4, 2, 2, 2 ] )>,
1875
+ <Green's D-class: Transformation( [ 4, 4, 2, 4 ] )> ]
1876
+ gap> d := DClass(s, Transformation([1, 2, 4, 4]));
1877
+ <Green's D-class: Transformation( [ 1, 2, 4, 4 ] )>
1878
+ gap> Transformation([1, 4, 1, 2]) in last;
1879
+ true
1880
+ gap> f := Transformation([1, 2, 4, 4]);
1881
+ Transformation( [ 1, 2, 4, 4 ] )
1882
+ gap> o := LambdaOrb(s);
1883
+ <closed orbit, 15 points with Schreier tree with log>
1884
+ gap> HasRhoOrb(s) and IsClosedOrbit(RhoOrb(s));
1885
+ true
1886
+ gap> o := RhoOrb(s);
1887
+ <closed orbit, 12 points with Schreier tree with log>
1888
+ gap> List(reps, x -> DClass(s, x));
1889
+ [ <Green's D-class: IdentityTransformation>,
1890
+ <Green's D-class: Transformation( [ 1, 3, 2, 3 ] )>,
1891
+ <Green's D-class: Transformation( [ 1, 4, 1, 2 ] )>,
1892
+ <Green's D-class: Transformation( [ 1, 2, 4, 4 ] )>,
1893
+ <Green's D-class: Transformation( [ 4, 1, 2, 1 ] )>,
1894
+ <Green's D-class: Transformation( [ 4, 2, 1, 2 ] )>,
1895
+ <Green's D-class: Transformation( [ 3, 2, 3, 2 ] )>,
1896
+ <Green's D-class: Transformation( [ 3, 2, 2, 2 ] )>,
1897
+ <Green's D-class: Transformation( [ 3, 3, 2, 3 ] )>,
1898
+ <Green's D-class: Transformation( [ 1, 4, 2, 4 ] )>,
1899
+ <Green's D-class: Transformation( [ 4, 4, 2, 2 ] )>,
1900
+ <Green's D-class: Transformation( [ 4, 2, 4, 4 ] )>,
1901
+ <Green's D-class: Transformation( [ 4, 4, 4, 2 ] )>,
1902
+ <Green's D-class: Transformation( [ 1, 1, 1, 1 ] )>,
1903
+ <Green's D-class: Transformation( [ 4, 2, 4, 2 ] )>,
1904
+ <Green's D-class: Transformation( [ 4, 2, 2, 2 ] )>,
1905
+ <Green's D-class: Transformation( [ 4, 4, 2, 4 ] )> ]
1906
+ gap> Union(List(last, x -> LClass(x, Representative(x))));
1907
+ [ Transformation( [ 1, 1, 1, 1 ] ), Transformation( [ 1, 2, 1 ] ),
1908
+ Transformation( [ 1, 2, 3, 2 ] ), IdentityTransformation,
1909
+ Transformation( [ 1, 2, 4, 2 ] ), Transformation( [ 1, 2, 4, 4 ] ),
1910
+ Transformation( [ 1, 3, 2, 3 ] ), Transformation( [ 1, 4, 1, 2 ] ),
1911
+ Transformation( [ 1, 4, 2, 2 ] ), Transformation( [ 1, 4, 2, 4 ] ),
1912
+ Transformation( [ 2, 2, 2 ] ), Transformation( [ 2, 2, 3, 2 ] ),
1913
+ Transformation( [ 2, 2, 4, 2 ] ), Transformation( [ 2, 2, 4, 4 ] ),
1914
+ Transformation( [ 2, 3, 2, 3 ] ), Transformation( [ 2, 3, 3, 3 ] ),
1915
+ Transformation( [ 2, 4, 2, 2 ] ), Transformation( [ 2, 4, 2, 4 ] ),
1916
+ Transformation( [ 2, 4, 4, 4 ] ), Transformation( [ 3, 2, 2, 2 ] ),
1917
+ Transformation( [ 3, 2, 3, 2 ] ), Transformation( [ 3, 3, 2, 3 ] ),
1918
+ Transformation( [ 4, 1, 2, 1 ] ), Transformation( [ 4, 2, 1, 2 ] ),
1919
+ Transformation( [ 4, 2, 2, 2 ] ), Transformation( [ 4, 2, 4, 2 ] ),
1920
+ Transformation( [ 4, 2, 4, 4 ] ), Transformation( [ 4, 4, 2, 2 ] ),
1921
+ Transformation( [ 4, 4, 2, 4 ] ), Transformation( [ 4, 4, 4, 2 ] ) ]
1922
+ gap> Length(last);
1923
+ 30
1924
+ gap> D := List(reps, x -> DClass(s, x));
1925
+ [ <Green's D-class: IdentityTransformation>,
1926
+ <Green's D-class: Transformation( [ 1, 3, 2, 3 ] )>,
1927
+ <Green's D-class: Transformation( [ 1, 4, 1, 2 ] )>,
1928
+ <Green's D-class: Transformation( [ 1, 2, 4, 4 ] )>,
1929
+ <Green's D-class: Transformation( [ 4, 1, 2, 1 ] )>,
1930
+ <Green's D-class: Transformation( [ 4, 2, 1, 2 ] )>,
1931
+ <Green's D-class: Transformation( [ 3, 2, 3, 2 ] )>,
1932
+ <Green's D-class: Transformation( [ 3, 2, 2, 2 ] )>,
1933
+ <Green's D-class: Transformation( [ 3, 3, 2, 3 ] )>,
1934
+ <Green's D-class: Transformation( [ 1, 4, 2, 4 ] )>,
1935
+ <Green's D-class: Transformation( [ 4, 4, 2, 2 ] )>,
1936
+ <Green's D-class: Transformation( [ 4, 2, 4, 4 ] )>,
1937
+ <Green's D-class: Transformation( [ 4, 4, 4, 2 ] )>,
1938
+ <Green's D-class: Transformation( [ 1, 1, 1, 1 ] )>,
1939
+ <Green's D-class: Transformation( [ 4, 2, 4, 2 ] )>,
1940
+ <Green's D-class: Transformation( [ 4, 2, 2, 2 ] )>,
1941
+ <Green's D-class: Transformation( [ 4, 4, 2, 4 ] )> ]
1942
+ gap> Length(Set(D));
1943
+ 9
1944
+ gap> List(D, x -> LClass(x, Representative(x)));
1945
+ [ <Green's L-class: IdentityTransformation>,
1946
+ <Green's L-class: Transformation( [ 1, 3, 2, 3 ] )>,
1947
+ <Green's L-class: Transformation( [ 1, 4, 1, 2 ] )>,
1948
+ <Green's L-class: Transformation( [ 1, 2, 4, 4 ] )>,
1949
+ <Green's L-class: Transformation( [ 4, 1, 2, 1 ] )>,
1950
+ <Green's L-class: Transformation( [ 4, 2, 1, 2 ] )>,
1951
+ <Green's L-class: Transformation( [ 3, 2, 3, 2 ] )>,
1952
+ <Green's L-class: Transformation( [ 3, 2, 2, 2 ] )>,
1953
+ <Green's L-class: Transformation( [ 3, 3, 2, 3 ] )>,
1954
+ <Green's L-class: Transformation( [ 1, 4, 2, 4 ] )>,
1955
+ <Green's L-class: Transformation( [ 4, 4, 2, 2 ] )>,
1956
+ <Green's L-class: Transformation( [ 4, 2, 4, 4 ] )>,
1957
+ <Green's L-class: Transformation( [ 4, 4, 4, 2 ] )>,
1958
+ <Green's L-class: Transformation( [ 1, 1, 1, 1 ] )>,
1959
+ <Green's L-class: Transformation( [ 4, 2, 4, 2 ] )>,
1960
+ <Green's L-class: Transformation( [ 4, 2, 2, 2 ] )>,
1961
+ <Green's L-class: Transformation( [ 4, 4, 2, 4 ] )> ]
1962
+ gap> Union(last);
1963
+ [ Transformation( [ 1, 1, 1, 1 ] ), Transformation( [ 1, 2, 1 ] ),
1964
+ Transformation( [ 1, 2, 3, 2 ] ), IdentityTransformation,
1965
+ Transformation( [ 1, 2, 4, 2 ] ), Transformation( [ 1, 2, 4, 4 ] ),
1966
+ Transformation( [ 1, 3, 2, 3 ] ), Transformation( [ 1, 4, 1, 2 ] ),
1967
+ Transformation( [ 1, 4, 2, 2 ] ), Transformation( [ 1, 4, 2, 4 ] ),
1968
+ Transformation( [ 2, 2, 2 ] ), Transformation( [ 2, 2, 3, 2 ] ),
1969
+ Transformation( [ 2, 2, 4, 2 ] ), Transformation( [ 2, 2, 4, 4 ] ),
1970
+ Transformation( [ 2, 3, 2, 3 ] ), Transformation( [ 2, 3, 3, 3 ] ),
1971
+ Transformation( [ 2, 4, 2, 2 ] ), Transformation( [ 2, 4, 2, 4 ] ),
1972
+ Transformation( [ 2, 4, 4, 4 ] ), Transformation( [ 3, 2, 2, 2 ] ),
1973
+ Transformation( [ 3, 2, 3, 2 ] ), Transformation( [ 3, 3, 2, 3 ] ),
1974
+ Transformation( [ 4, 1, 2, 1 ] ), Transformation( [ 4, 2, 1, 2 ] ),
1975
+ Transformation( [ 4, 2, 2, 2 ] ), Transformation( [ 4, 2, 4, 2 ] ),
1976
+ Transformation( [ 4, 2, 4, 4 ] ), Transformation( [ 4, 4, 2, 2 ] ),
1977
+ Transformation( [ 4, 4, 2, 4 ] ), Transformation( [ 4, 4, 4, 2 ] ) ]
1978
+ gap> Set(last2) = Set(LClasses(s));
1979
+ false
1980
+ gap> L := Set(last3);
1981
+ [ <Green's L-class: Transformation( [ 1, 1, 1, 1 ] )>,
1982
+ <Green's L-class: Transformation( [ 1, 4, 1, 2 ] )>,
1983
+ <Green's L-class: Transformation( [ 1, 3, 2, 3 ] )>,
1984
+ <Green's L-class: IdentityTransformation>,
1985
+ <Green's L-class: Transformation( [ 1, 4, 2, 4 ] )>,
1986
+ <Green's L-class: Transformation( [ 4, 4, 2, 2 ] )>,
1987
+ <Green's L-class: Transformation( [ 3, 2, 3, 2 ] )>,
1988
+ <Green's L-class: Transformation( [ 4, 2, 4, 2 ] )>,
1989
+ <Green's L-class: Transformation( [ 4, 1, 2, 1 ] )> ]
1990
+
1991
+ # MiscTest17
1992
+ gap> gens :=
1993
+ > [PartialPermNC([1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18,
1994
+ > 20, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 35, 36, 37, 38, 41, 42, 44, 45,
1995
+ > 50, 51, 52, 54, 55, 60, 62, 64, 65, 66, 68, 71, 73, 75, 77, 78, 79, 83, 84,
1996
+ > 94, 95, 96, 97], [30, 56, 33, 17, 43, 34, 28, 78, 91, 24, 44, 84, 71, 81,
1997
+ > 57, 90, 20, 69, 70, 6, 82, 26, 53, 86, 32, 22, 12, 95, 59, 40, 73, 76, 98,
1998
+ > 48, 80, 51, 9, 27, 49, 93, 52, 60, 94, 11, 75, 96, 72, 4, 87, 37, 29, 50,
1999
+ > 39, 45, 88, 67, 14, 99]),
2000
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19,
2001
+ > 20, 21, 23, 24, 25, 26, 28, 30, 32, 35, 36, 37, 41, 42, 43, 47, 48, 49, 50,
2002
+ > 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 64, 65, 67, 68, 69, 71, 72, 74, 76,
2003
+ > 81, 82, 83, 84, 86, 87, 92, 93], [56, 4, 87, 14, 67, 82, 17, 73, 18, 12,
2004
+ > 35, 43, 80, 99, 7, 96, 58, 76, 36, 30, 98, 26, 62, 1, 75, 27, 10, 74, 55,
2005
+ > 47, 37, 95, 39, 52, 84, 72, 50, 53, 77, 24, 59, 66, 9, 49, 70, 6, 51, 89,
2006
+ > 21, 11, 85, 15, 19, 28, 79, 40, 34, 71, 5, 29, 88, 16, 8]),
2007
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18,
2008
+ > 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42,
2009
+ > 44, 46, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 68, 70, 71, 72,
2010
+ > 77, 81, 84, 88, 89, 91, 93, 95, 97, 99, 100],
2011
+ > [53, 10, 43, 41, 57, 14, 68, 20, 54, 62, 5, 49, 86, 56, 91, 48, 9, 87, 33,
2012
+ > 64, 60, 13, 70, 92, 80, 69, 35, 88, 98, 4, 96, 79, 94, 71, 61, 27, 89, 97,
2013
+ > 46, 28, 40, 3, 100, 17, 19, 39, 82, 52, 6, 16, 77, 76, 45, 67, 23, 31, 29,
2014
+ > 12, 95, 72, 85, 7, 26, 38, 18, 24]),
2015
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 20, 21, 23,
2016
+ > 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 40, 41, 42, 43, 44, 47,
2017
+ > 48, 49, 50, 53, 54, 55, 56, 58, 59, 62, 64, 65, 66, 68, 69, 70, 72, 74, 76,
2018
+ > 78, 83, 84, 86, 90, 91, 92, 93, 94, 99, 100],
2019
+ > [3, 77, 85, 63, 47, 30, 68, 21, 95, 13, 49, 33, 62, 6, 78, 81, 83, 35, 69,
2020
+ > 50, 26, 61, 27, 93, 56, 39, 48, 5, 19, 52, 73, 12, 8, 89, 25, 86, 84, 14,
2021
+ > 70, 29, 58, 88, 43, 37, 10, 92, 65, 22, 76, 38, 74, 34, 4, 94, 82, 67, 60,
2022
+ > 2, 23, 59, 80, 11, 40, 98, 51, 28])];;
2023
+ gap> s := Semigroup(gens);
2024
+ <partial perm semigroup of rank 97 with 4 generators>
2025
+ gap> f :=
2026
+ > PartialPermNC([5, 7, 11, 12, 14, 24, 25, 26, 27, 29, 31, 32, 34, 35, 41,
2027
+ > 42, 44, 47, 48, 49, 50, 53, 62, 69, 70, 86, 92],
2028
+ > [23, 52, 39, 62, 11, 47, 94, 34, 70, 50, 73, 89, 2, 86, 14, 81, 74, 83, 77,
2029
+ > 92, 48, 26, 13, 98, 84, 60, 33]);;
2030
+ gap> d := DClass(s, f);
2031
+ <Green's D-class: [5,23][7,52][12,62,13][24,47,83][25,94][27,70,84]
2032
+ [29,50,48,77][31,73][32,89][35,86,60][41,14,11,39][42,81][44,74][49,92,33]
2033
+ [53,26,34,2][69,98]>
2034
+ gap> Size(d);
2035
+ 1
2036
+ gap> RhoOrb(d);
2037
+ <closed orbit, 1 points with Schreier tree with log with grading>
2038
+ gap> LambdaOrb(d);
2039
+ <closed orbit, 35494 points with Schreier tree with log>
2040
+ gap> f := PartialPerm([5, 7, 56, 83, 92], [30, 52, 16, 21, 29]);;
2041
+ gap> d := DClassNC(s, f);
2042
+ <Green's D-class: [5,30][7,52][56,16][83,21][92,29]>
2043
+ gap> Size(d);
2044
+ 1
2045
+ gap> iter := IteratorOfDClasses(s);
2046
+ <iterator>
2047
+ gap> repeat d := NextIterator(iter); until Size(d) > 1;
2048
+ gap> d;
2049
+ <Green's D-class: [74,16][84,34]>
2050
+ gap> Size(d);
2051
+ 6793298
2052
+ gap> f := PartialPerm([1, 88], [78, 48]);;
2053
+ gap> f in d;
2054
+ true
2055
+ gap> r := RClass(d, f);
2056
+ <Green's R-class: [1,78][88,48]>
2057
+ gap> ForAll(r, x -> x in d);
2058
+ true
2059
+ gap> Size(r);
2060
+ 3686
2061
+ gap> NrLClasses(d) * last;
2062
+ 6793298
2063
+ gap> SchutzenbergerGroup(r);
2064
+ Group([ (16,34) ])
2065
+ gap> SchutzenbergerGroup(d);
2066
+ Group([ (16,34) ])
2067
+ gap> IsRegularDClass(d);
2068
+ true
2069
+ gap> IsRegularGreensClass(r);
2070
+ true
2071
+ gap> ForAll(r, x -> x in r);
2072
+ true
2073
+ gap> repeat d := NextIterator(iter); until Size(d) > 1;
2074
+ gap> d;
2075
+ <Green's D-class: [41,34][50,16]>
2076
+ gap> Size(d);
2077
+ 3686
2078
+ gap> f := PartialPerm([41, 50], [17, 32]);;
2079
+ gap> r := RClassNC(d, f);
2080
+ <Green's R-class: [41,17][50,32]>
2081
+ gap> Size(r);
2082
+ 3686
2083
+ gap> ForAll(r, x -> x in d);
2084
+ true
2085
+ gap> ForAll(d, x -> x in r);
2086
+ true
2087
+ gap> rr := RClass(s, f);
2088
+ <Green's R-class: [41,17][50,32]>
2089
+ gap> AsSSortedList(rr) = AsSSortedList(r);
2090
+ true
2091
+ gap> d;
2092
+ <Green's D-class: [41,34][50,16]>
2093
+ gap> GroupHClass(d);
2094
+ fail
2095
+
2096
+ # MiscTest18
2097
+ gap> gens := [Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5]),
2098
+ > Transformation([3, 1, 4, 2, 5, 2, 1, 6, 1, 7]),
2099
+ > Transformation([3, 8, 1, 9, 9, 4, 10, 5, 10, 6]),
2100
+ > Transformation([4, 7, 6, 9, 10, 1, 3, 6, 6, 2]),
2101
+ > Transformation([5, 9, 10, 9, 6, 3, 8, 4, 6, 5]),
2102
+ > Transformation([6, 2, 2, 7, 8, 8, 2, 10, 2, 4]),
2103
+ > Transformation([6, 2, 8, 4, 7, 5, 8, 3, 5, 8]),
2104
+ > Transformation([7, 1, 4, 3, 2, 7, 7, 6, 6, 5]),
2105
+ > Transformation([7, 10, 10, 1, 7, 9, 10, 4, 2, 10]),
2106
+ > Transformation([10, 7, 10, 8, 8, 7, 5, 9, 1, 9])];;
2107
+ gap> s := Semigroup(gens);
2108
+ <transformation semigroup of degree 10 with 10 generators>
2109
+ gap> f := Transformation([6, 6, 6, 6, 6, 10, 6, 6, 6, 6]);;
2110
+ gap> d := DClassNC(s, f);
2111
+ <Green's D-class: Transformation( [ 6, 6, 6, 6, 6, 10, 6, 6, 6, 6 ] )>
2112
+ gap> Transformation([6, 6, 6, 6, 6, 10, 6, 6, 6, 6]) in last;
2113
+ true
2114
+ gap> Size(d);
2115
+ 31680
2116
+ gap> IsRegularDClass(d);
2117
+ true
2118
+ gap> GroupHClass(d);
2119
+ <Green's H-class: Transformation( [ 10, 10, 10, 10, 10, 6, 10, 10, 10, 10 ] )>
2120
+ gap> Transformation([10, 10, 10, 10, 10, 6, 10, 10, 10, 10]) in last;
2121
+ true
2122
+
2123
+ # MiscTest19
2124
+ gap> gens := [PartialPermNC([1, 3, 4, 6, 10], [3, 4, 1, 6, 10]),
2125
+ > PartialPermNC([1, 2, 3, 4, 5, 6], [10, 3, 9, 1, 5, 8]),
2126
+ > PartialPermNC([1, 2, 3, 4, 6, 10], [1, 8, 2, 3, 4, 9]),
2127
+ > PartialPermNC([1, 2, 3, 4, 8, 9, 10], [5, 8, 9, 7, 2, 6, 10])];;
2128
+ gap> s := Semigroup(gens);
2129
+ <partial perm semigroup of rank 9 with 4 generators>
2130
+ gap> Size(s);
2131
+ 789
2132
+ gap> NrDClasses(s);
2133
+ 251
2134
+ gap> d := DClasses(s)[251];
2135
+ <Green's D-class: [4,7](2)>
2136
+ gap> Size(d);
2137
+ 1
2138
+ gap> First(DClasses(s), IsRegularDClass);
2139
+ <Green's D-class: (1,3,4)(6)(10)>
2140
+ gap> d := last;
2141
+ <Green's D-class: (1,3,4)(6)(10)>
2142
+ gap> Size(d);
2143
+ 3
2144
+ gap> h := GroupHClass(d);
2145
+ <Green's H-class: <identity partial perm on [ 1, 3, 4, 6, 10 ]>>
2146
+ gap> PartialPerm([1, 3, 4, 6, 10], [1, 3, 4, 6, 10]) in last;
2147
+ true
2148
+ gap> Size(h);
2149
+ 3
2150
+ gap> AsSSortedList(h) = AsSSortedList(d);
2151
+ true
2152
+ gap> Elements(h);
2153
+ [ <identity partial perm on [ 1, 3, 4, 6, 10 ]>, (1,3,4)(6)(10),
2154
+ (1,4,3)(6)(10) ]
2155
+ gap> Number(DClasses(s), IsRegularDClass);
2156
+ 6
2157
+ gap> List(DClasses(s), Idempotents);
2158
+ [ [ <identity partial perm on [ 1, 3, 4, 6, 10 ]> ], [ ], [ ], [ ], [ ],
2159
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2160
+ [ ], [ ], [ ],
2161
+ [ <identity partial perm on [ 8 ]>, <identity partial perm on [ 2 ]>,
2162
+ <identity partial perm on [ 3 ]>, <identity partial perm on [ 4 ]>,
2163
+ <identity partial perm on [ 6 ]>, <identity partial perm on [ 9 ]>,
2164
+ <identity partial perm on [ 10 ]>, <identity partial perm on [ 1 ]> ],
2165
+ [ ], [ ], [ ], [ ], [ ], [ <identity partial perm on [ 5 ]> ], [ ],
2166
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2167
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2168
+ [ ], [ ], [ ], [ <identity partial perm on [ 2, 8, 10 ]> ],
2169
+ [ <empty partial perm> ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2170
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2171
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2172
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2173
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2174
+ [ <identity partial perm on [ 3, 4 ]>, <identity partial perm on [ 1, 3 ]>,
2175
+ <identity partial perm on [ 1, 4 ]> ], [ ], [ ], [ ], [ ], [ ],
2176
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2177
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2178
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2179
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2180
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2181
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2182
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2183
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2184
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2185
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2186
+ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
2187
+ [ ] ]
2188
+ gap> Concatenation(last);
2189
+ [ <identity partial perm on [ 1, 3, 4, 6, 10 ]>,
2190
+ <identity partial perm on [ 8 ]>, <identity partial perm on [ 2 ]>,
2191
+ <identity partial perm on [ 3 ]>, <identity partial perm on [ 4 ]>,
2192
+ <identity partial perm on [ 6 ]>, <identity partial perm on [ 9 ]>,
2193
+ <identity partial perm on [ 10 ]>, <identity partial perm on [ 1 ]>,
2194
+ <identity partial perm on [ 5 ]>, <identity partial perm on [ 2, 8, 10 ]>,
2195
+ <empty partial perm>, <identity partial perm on [ 3, 4 ]>,
2196
+ <identity partial perm on [ 1, 3 ]>, <identity partial perm on [ 1, 4 ]> ]
2197
+ gap> ForAll(last, x -> x in s);
2198
+ true
2199
+ gap> Set(last2) = Idempotents(s);
2200
+ false
2201
+ gap> Set(last3) = Set(Idempotents(s));
2202
+ true
2203
+
2204
+ # MiscTest20
2205
+ gap> gens := [Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]),
2206
+ > Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 7])];;
2207
+ gap> s := Monoid(gens);;
2208
+ gap> List(DClasses(s), Idempotents);
2209
+ [ [ IdentityTransformation ],
2210
+ [ Transformation( [ 1, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ) ],
2211
+ [ Transformation( [ 4, 2, 2, 4, 5, 6, 7, 7, 7 ] ),
2212
+ Transformation( [ 2, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2213
+ Transformation( [ 6, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2214
+ Transformation( [ 7, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2215
+ Transformation( [ 5, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2216
+ Transformation( [ 10, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2217
+ Transformation( [ 11, 2, 4, 4, 5, 6, 7, 6, 10, 10, 11 ] ),
2218
+ Transformation( [ 4, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ) ] ]
2219
+ gap> Concatenation(last);
2220
+ [ IdentityTransformation, Transformation( [ 1, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] )
2221
+ , Transformation( [ 4, 2, 2, 4, 5, 6, 7, 7, 7 ] ),
2222
+ Transformation( [ 2, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2223
+ Transformation( [ 6, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2224
+ Transformation( [ 7, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2225
+ Transformation( [ 5, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2226
+ Transformation( [ 10, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2227
+ Transformation( [ 11, 2, 4, 4, 5, 6, 7, 6, 10, 10, 11 ] ),
2228
+ Transformation( [ 4, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ) ]
2229
+ gap> e := last;
2230
+ [ IdentityTransformation, Transformation( [ 1, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] )
2231
+ , Transformation( [ 4, 2, 2, 4, 5, 6, 7, 7, 7 ] ),
2232
+ Transformation( [ 2, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2233
+ Transformation( [ 6, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2234
+ Transformation( [ 7, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2235
+ Transformation( [ 5, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2236
+ Transformation( [ 10, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
2237
+ Transformation( [ 11, 2, 4, 4, 5, 6, 7, 6, 10, 10, 11 ] ),
2238
+ Transformation( [ 4, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ) ]
2239
+ gap> IsDuplicateFree(e);
2240
+ true
2241
+ gap> ForAll(e, x -> x in s);
2242
+ true
2243
+ gap> Set(Idempotents(s)) = Set(e);
2244
+ true
2245
+
2246
+ # MiscTest21
2247
+ gap> gens :=
2248
+ > [PartialPermNC([1, 2, 3, 4, 5, 6], [7, 10, 8, 6, 4, 2]),
2249
+ > PartialPermNC([1, 2, 3, 4, 5, 9], [6, 8, 3, 10, 4, 2]),
2250
+ > PartialPermNC([1, 2, 3, 5, 6, 7], [8, 7, 5, 6, 2, 9]),
2251
+ > PartialPermNC([1, 2, 3, 5, 6, 8], [9, 3, 4, 7, 8, 6])];;
2252
+ gap> s := Semigroup(gens);;
2253
+ gap> Size(s);
2254
+ 489
2255
+ gap> First(DClasses(s), IsRegularDClass);
2256
+ <Green's D-class: <empty partial perm>>
2257
+ gap> NrRegularDClasses(s);
2258
+ 5
2259
+ gap> PositionsProperty(DClasses(s), IsRegularDClass);
2260
+ [ 25, 26, 32, 35, 63 ]
2261
+ gap> d := DClasses(s)[26];
2262
+ <Green's D-class: [3,8]>
2263
+ gap> NrLClasses(d);
2264
+ 8
2265
+ gap> NrRClasses(d);
2266
+ 8
2267
+ gap> Size(d);
2268
+ 64
2269
+ gap> Idempotents(d);
2270
+ [ <identity partial perm on [ 3 ]>, <identity partial perm on [ 2 ]>,
2271
+ <identity partial perm on [ 6 ]>, <identity partial perm on [ 4 ]>,
2272
+ <identity partial perm on [ 5 ]>, <identity partial perm on [ 8 ]>,
2273
+ <identity partial perm on [ 9 ]>, <identity partial perm on [ 7 ]> ]
2274
+ gap> ForAll(last, x -> x in d);
2275
+ true
2276
+ gap> dd := DClassNC(s, PartialPermNC([8], [9]));
2277
+ <Green's D-class: [8,9]>
2278
+ gap> dd = d;
2279
+ true
2280
+ gap> Size(dd);
2281
+ 64
2282
+ gap> Idempotents(dd);
2283
+ [ <identity partial perm on [ 8 ]>, <identity partial perm on [ 3 ]>,
2284
+ <identity partial perm on [ 2 ]>, <identity partial perm on [ 6 ]>,
2285
+ <identity partial perm on [ 4 ]>, <identity partial perm on [ 5 ]>,
2286
+ <identity partial perm on [ 9 ]>, <identity partial perm on [ 7 ]> ]
2287
+ gap> Set(LClassReps(dd)) = Set(LClassReps(d));
2288
+ false
2289
+ gap> LClassReps(dd);
2290
+ [ [8,9], [8,2], <identity partial perm on [ 8 ]>, [8,6], [8,7], [8,3], [8,5],
2291
+ [8,4] ]
2292
+ gap> LClassReps(d);
2293
+ [ [3,8], [3,6], [3,2], <identity partial perm on [ 3 ]>, [3,5], [3,7], [3,9],
2294
+ [3,4] ]
2295
+ gap> Set(List(LClassReps(d), x -> LClass(d, x))) =
2296
+ > Set(List(LClassReps(dd), x -> LClass(d, x)));
2297
+ true
2298
+ gap> Set(List(LClassReps(d), x -> LClass(d, x))) = Set(List(LClassReps(dd),
2299
+ > x -> LClass(dd, x)));
2300
+ true
2301
+ gap> ForAll(LClassReps(dd), x -> x in d);
2302
+ true
2303
+ gap> ForAll(LClassReps(d), x -> x in dd);
2304
+ true
2305
+
2306
+ # MiscTest22
2307
+ gap> gens :=
2308
+ > [PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
2309
+ > [2, 3, 4, 5, 6, 7, 8, 9, 10, 1]),
2310
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
2311
+ > [2, 1, 3, 4, 5, 6, 7, 8, 9, 10]),
2312
+ > PartialPermNC([1, 2, 4, 7, 10], [8, 5, 9, 6, 7])];;
2313
+ gap> s := Semigroup(gens);;
2314
+ gap> Size(s);
2315
+ 12398231
2316
+ gap> NrRClasses(s);
2317
+ 639
2318
+ gap> f := PartialPerm([3, 9], [5, 4]);;
2319
+ gap> d := DClass(s, f);
2320
+ <Green's D-class: [3,5][9,4]>
2321
+ gap> Position(LambdaOrb(d), ImageSetOfPartialPerm(d!.rep));
2322
+ 7
2323
+ gap> OrbSCC(RhoOrb(d))[RhoOrbSCCIndex(d)];
2324
+ [ 61, 38, 60, 92, 39, 62, 94, 93, 133, 184, 64, 96, 136, 134, 160, 211, 8,
2325
+ 15, 24, 40, 273, 146, 185, 158, 209, 270, 339, 407, 271, 240, 305, 63, 95,
2326
+ 135, 371, 435, 239, 304, 370, 434, 132, 183, 238, 303, 369 ]
2327
+ gap> OrbSCC(LambdaOrb(d))[LambdaOrbSCCIndex(d)];
2328
+ [ 7, 13, 20, 27, 36, 48, 65, 67, 90, 53, 73, 95, 45, 62, 86, 110, 49, 34,
2329
+ 139, 170, 115, 143, 172, 208, 66, 71, 92, 116, 119, 147, 177, 173, 209,
2330
+ 244, 278, 245, 120, 137, 148, 178, 214, 114, 142, 89, 113 ]
2331
+ gap> NrIdempotents(d);
2332
+ 45
2333
+ gap> Number(Idempotents(s), x -> x in d);
2334
+ 45
2335
+ gap> s := Semigroup(gens);
2336
+ <partial perm semigroup of rank 10 with 3 generators>
2337
+ gap> d := DClass(s, f);
2338
+ <Green's D-class: [3,5][9,4]>
2339
+ gap> s := Semigroup(gens);
2340
+ <partial perm semigroup of rank 10 with 3 generators>
2341
+ gap> d := DClassNC(s, f);
2342
+ <Green's D-class: [3,5][9,4]>
2343
+ gap> NrIdempotents(d);
2344
+ 45
2345
+ gap> Number(Idempotents(s), x -> x in d);
2346
+ 45
2347
+ gap> s := Semigroup(gens);
2348
+ <partial perm semigroup of rank 10 with 3 generators>
2349
+ gap> l := LClass(s, f);
2350
+ <Green's L-class: [3,5][9,4]>
2351
+ gap> d := DClassOfLClass(l);
2352
+ <Green's D-class: [3,5][9,4]>
2353
+ gap> NrIdempotents(d);
2354
+ 45
2355
+ gap> s := Semigroup(gens);
2356
+ <partial perm semigroup of rank 10 with 3 generators>
2357
+ gap> l := LClass(s, f);
2358
+ <Green's L-class: [3,5][9,4]>
2359
+ gap> s := Semigroup(gens);
2360
+ <partial perm semigroup of rank 10 with 3 generators>
2361
+ gap> l := LClassNC(s, f);
2362
+ <Green's L-class: [3,5][9,4]>
2363
+ gap> d := DClassOfLClass(l);
2364
+ <Green's D-class: [3,5][9,4]>
2365
+ gap> NrIdempotents(d);
2366
+ 45
2367
+ gap> s := Semigroup(gens);
2368
+ <partial perm semigroup of rank 10 with 3 generators>
2369
+ gap> r := RClass(s, f);
2370
+ <Green's R-class: [3,5][9,4]>
2371
+ gap> d := DClassOfRClass(r);
2372
+ <Green's D-class: [3,7][9,6]>
2373
+ gap> NrIdempotents(d);
2374
+ 45
2375
+ gap> s := Semigroup(gens);
2376
+ <partial perm semigroup of rank 10 with 3 generators>
2377
+ gap> r := RClassNC(s, f);
2378
+ <Green's R-class: [3,5][9,4]>
2379
+ gap> d := DClassOfRClass(r);
2380
+ <Green's D-class: [3,5][9,4]>
2381
+ gap> NrIdempotents(d);
2382
+ 45
2383
+ gap> r := RClassNC(s, f);
2384
+ <Green's R-class: [3,5][9,4]>
2385
+ gap> d := DClassOfRClass(r);
2386
+ <Green's D-class: [3,5][9,4]>
2387
+ gap> NrIdempotents(d);
2388
+ 45
2389
+ gap> IsGreensClassNC(d);
2390
+ true
2391
+ gap> IsGreensClassNC(r);
2392
+ true
2393
+ gap> NrRegularDClasses(s);
2394
+ 7
2395
+ gap> NrDClasses(s);
2396
+ 7
2397
+ gap> IsRegularSemigroup(s);
2398
+ true
2399
+
2400
+ # MiscTest23
2401
+ gap> gens := [Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]),
2402
+ > Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 7])];;
2403
+ gap> s := Monoid(gens);;
2404
+ gap> NrRegularDClasses(s);
2405
+ 3
2406
+ gap> NrDClasses(s);
2407
+ 3
2408
+ gap> IsRegularSemigroup(s);
2409
+ true
2410
+ gap> d := DClasses(s)[2];
2411
+ <Green's D-class: Transformation( [ 1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10 ] )>
2412
+ gap> Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]) in last;
2413
+ true
2414
+ gap> NrHClasses(d);
2415
+ 1
2416
+ gap> h := GroupHClass(d);
2417
+ <Green's H-class: Transformation( [ 1, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] )>
2418
+ gap> Transformation([1, 2, 4, 4, 5, 6, 7, 6, 10, 10]) in last;
2419
+ true
2420
+ gap> AsSSortedList(h) = AsSSortedList(d);
2421
+ true
2422
+ gap> Size(d);
2423
+ 7
2424
+ gap> Size(h);
2425
+ 7
2426
+
2427
+ # MiscTest24
2428
+ gap> gens :=
2429
+ > [PartialPermNC([1, 2, 3, 5, 6, 7, 12], [11, 10, 3, 4, 6, 2, 8]),
2430
+ > PartialPermNC([1, 2, 4, 5, 6, 8, 9, 10, 11],
2431
+ > [2, 8, 1, 10, 11, 4, 7, 6, 9])];;
2432
+ gap> s := Semigroup(gens);
2433
+ <partial perm semigroup of rank 12 with 2 generators>
2434
+ gap> Size(s);
2435
+ 251
2436
+ gap> d := DClass(s, PartialPerm([5, 12], [6, 9]));;
2437
+ gap> NrHClasses(d);
2438
+ 1
2439
+ gap> List(DClasses(s), NrHClasses);
2440
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2441
+ 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 4,
2442
+ 1, 9, 1, 4, 1, 1, 1, 1, 1, 10, 1, 1, 4, 1, 1, 10, 1, 1, 1, 4, 1, 1, 1 ]
2443
+ gap> Sum(last);
2444
+ 223
2445
+ gap> NrHClasses(s);
2446
+ 223
2447
+
2448
+ # MiscTest25
2449
+ gap> gens :=
2450
+ > [PartialPermNC([1, 2, 3, 4, 9, 10, 11], [4, 1, 7, 12, 3, 9, 6]),
2451
+ > PartialPermNC([1, 3, 4, 5, 7, 8, 11, 12], [4, 11, 2, 7, 9, 8, 1, 6])];;
2452
+ gap> s := Semigroup(gens);;
2453
+ gap> f := PartialPerm([4, 7, 11], [2, 9, 6]);;
2454
+ gap> d := DClassNC(s, f);
2455
+ <Green's D-class: [4,2][7,9][11,6]>
2456
+ gap> NrHClasses(s);
2457
+ 125
2458
+ gap> d := DClass(s, f);
2459
+ <Green's D-class: [4,2][7,9][11,6]>
2460
+ gap> NrHClasses(s);
2461
+ 125
2462
+ gap> NrHClasses(d);
2463
+ 1
2464
+ gap> d := DClassNC(s, f);
2465
+ <Green's D-class: [4,2][7,9][11,6]>
2466
+ gap> NrHClasses(d);
2467
+ 1
2468
+ gap> d := DClass(LClass(s, f));
2469
+ <Green's D-class: [4,2][7,9][11,6]>
2470
+ gap> NrHClasses(d);
2471
+ 1
2472
+ gap> d := DClass(RClass(s, f));
2473
+ <Green's D-class: [4,2][7,9][11,6]>
2474
+ gap> NrHClasses(d);
2475
+ 1
2476
+ gap> NrRegularDClasses(s);
2477
+ 4
2478
+ gap> NrDClasses(s);
2479
+ 65
2480
+ gap> RClassReps(d);
2481
+ [ [4,2][7,9][11,6] ]
2482
+ gap> iter := IteratorOfDClasses(s);
2483
+ <iterator>
2484
+ gap> repeat
2485
+ > d := NextIterator(iter);
2486
+ > until IsDoneIterator(iter) or Size(d) > 1000;
2487
+ gap> d;
2488
+ <Green's D-class: [1,6][5,4]>
2489
+ gap> Size(d);
2490
+ 1
2491
+ gap> List(DClasses(s), Size);
2492
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 9, 1, 1, 1, 3, 1, 1, 1, 1,
2493
+ 1, 3, 1, 3, 3, 3, 3, 1, 9, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 3, 1, 3,
2494
+ 9, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1 ]
2495
+ gap> Position(last, 9);
2496
+ 17
2497
+ gap> d := DClasses(s)[17];
2498
+ <Green's D-class: [1,4][3,7]>
2499
+ gap> Size(d);
2500
+ 9
2501
+ gap> IsRegularDClass(d);
2502
+ true
2503
+ gap> RClassReps(d);
2504
+ [ [1,4][3,7], [2,4][9,7], <identity partial perm on [ 4, 7 ]> ]
2505
+ gap> d := DClassNC(s, Representative(d));
2506
+ <Green's D-class: [1,4][3,7]>
2507
+ gap> RClassReps(d);
2508
+ [ [1,4][3,7], [2,4][9,7], <identity partial perm on [ 4, 7 ]> ]
2509
+ gap> s := Semigroup(Generators(s));
2510
+ <partial perm semigroup of rank 11 with 2 generators>
2511
+ gap> d := DClass(HClass(s, Representative(d)));
2512
+ <Green's D-class: [1,4][3,7]>
2513
+ gap> RClassReps(d);
2514
+ [ [1,4][3,7], [2,4][9,7], <identity partial perm on [ 4, 7 ]> ]
2515
+ gap> Size(d);
2516
+ 9
2517
+ gap> Number(s, x -> x in d);
2518
+ 9
2519
+ gap> ForAll(d, x -> x in d);
2520
+ true
2521
+ gap> HClassReps(d);
2522
+ [ [1,4][3,7], [1,2][3,9], <identity partial perm on [ 1, 3 ]>, [2,4][9,7],
2523
+ <identity partial perm on [ 2, 9 ]>, [2,1][9,3],
2524
+ <identity partial perm on [ 4, 7 ]>, [4,2][7,9], [4,1][7,3] ]
2525
+ gap> Set(last) = Elements(d);
2526
+ true
2527
+
2528
+ # MiscTest26
2529
+ gap> gens := [Transformation([2, 1, 4, 5, 3, 7, 8, 9, 10, 6]),
2530
+ > Transformation([1, 2, 4, 3, 5, 6, 7, 8, 9, 10]),
2531
+ > Transformation([1, 2, 3, 4, 5, 6, 10, 9, 8, 7]),
2532
+ > Transformation([9, 1, 4, 3, 6, 9, 3, 4, 3, 9])];;
2533
+ gap> s := Monoid(gens);;
2534
+ gap> f := Transformation([2, 1, 3, 5, 4, 10, 9, 8, 7, 6]);;
2535
+ gap> d := DClass(HClass(s, f));
2536
+ <Green's D-class: Transformation( [ 2, 1, 3, 5, 4, 10, 9, 8, 7, 6 ] )>
2537
+ gap> Transformation([2, 1, 3, 5, 4, 10, 9, 8, 7, 6]) in last;
2538
+ true
2539
+ gap> Size(d);
2540
+ 120
2541
+ gap> HClassReps(d);
2542
+ [ Transformation( [ 2, 1, 3, 5, 4, 10, 9, 8, 7, 6 ] ) ]
2543
+ gap> h := GroupHClass(d);
2544
+ <Green's H-class: IdentityTransformation>
2545
+ gap> ForAll(h, x -> x in d) and ForAll(d, x -> x in h);
2546
+ true
2547
+ gap> Size(s);
2548
+ 491558
2549
+ gap> f := Transformation([6, 6, 3, 6, 4, 6, 6, 6, 6, 4]);;
2550
+ gap> d := DClass(HClass(s, f));
2551
+ <Green's D-class: Transformation( [ 6, 6, 3, 6, 4, 6, 6, 6, 6, 4 ] )>
2552
+ gap> Transformation([9, 4, 9, 6, 4, 9, 6, 9, 6, 9]) in last;
2553
+ true
2554
+ gap> Size(d);
2555
+ 121500
2556
+ gap> NrHClasses(d);
2557
+ 20250
2558
+ gap> Length(HClassReps(d));
2559
+ 20250
2560
+ gap> ForAll(HClassReps(d), x -> x in d);
2561
+ true
2562
+ gap> d := DClass(RClass(s, f));
2563
+ <Green's D-class: Transformation( [ 9, 9, 6, 9, 4, 9, 9, 9, 9, 4 ] )>
2564
+ gap> Transformation([9, 4, 9, 6, 4, 9, 6, 9, 6, 9]) in last;
2565
+ true
2566
+ gap> Size(d);
2567
+ 121500
2568
+ gap> ForAll(d, x -> x in d);
2569
+ true
2570
+ gap> NrIdempotents(d);
2571
+ 5550
2572
+ gap> ForAll(Idempotents(d), x -> x in d);
2573
+ true
2574
+
2575
+ # MiscTest27: R-class
2576
+ gap> gens := [
2577
+ > Transformation([2, 2, 3, 5, 5, 6, 7, 8, 14, 16, 16, 17, 18, 14, 16, 16, 17,
2578
+ > 18]),
2579
+ > Transformation([1, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
2580
+ > 18]),
2581
+ > Transformation([1, 2, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 15, 16, 17,
2582
+ > 18]),
2583
+ > Transformation([1, 2, 3, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 17,
2584
+ > 18]),
2585
+ > Transformation([1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18,
2586
+ > 18]),
2587
+ > Transformation([1, 2, 3, 4, 5, 6, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
2588
+ > 2]),
2589
+ > Transformation([1, 2, 9, 10, 11, 12, 13, 1, 9, 10, 11, 12, 13, 14, 15, 16,
2590
+ > 17, 18])];;
2591
+ gap> s := Semigroup(gens);;
2592
+ gap> f := Transformation([1, 2, 4, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13, 15, 15,
2593
+ > 17, 17, 18]);;
2594
+ gap> r := RClassNC(s, f);
2595
+ <Green's R-class: Transformation( [ 1, 2, 4, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13,
2596
+ 15, 15, 17, 17 ] )>
2597
+ gap> Size(r);
2598
+ 1
2599
+ gap> SchutzenbergerGroup(r);
2600
+ Group(())
2601
+ gap> f := Transformation([1, 2, 10, 10, 11, 12, 13, 1, 9, 10, 11, 12, 13, 15,
2602
+ > 15, 16, 17, 18]);;
2603
+ gap> r := RClass(s, f);
2604
+ <Green's R-class: Transformation( [ 1, 2, 10, 10, 11, 12, 13, 1, 9, 10, 11,
2605
+ 12, 13, 15, 15 ] )>
2606
+ gap> Size(r);
2607
+ 1
2608
+ gap> SchutzenbergerGroup(r);
2609
+ Group(())
2610
+
2611
+ # MiscTest28
2612
+ gap> gens := [
2613
+ > Transformation([2, 4, 1, 5, 4, 4, 7, 3, 8, 1]),
2614
+ > Transformation([9, 1, 2, 8, 1, 5, 9, 9, 9, 5]),
2615
+ > Transformation([9, 3, 1, 5, 10, 3, 4, 6, 10, 2]),
2616
+ > Transformation([10, 7, 3, 7, 1, 9, 8, 8, 4, 10])];;
2617
+ gap> s := Semigroup(gens);;
2618
+ gap> f := Transformation([9, 10, 10, 3, 10, 9, 9, 9, 9, 9]);;
2619
+ gap> r := RClass(s, f);
2620
+ <Green's R-class: Transformation( [ 9, 10, 10, 3, 10, 9, 9, 9, 9, 9 ] )>
2621
+ gap> Transformation([9, 8, 8, 1, 8, 9, 9, 9, 9, 9]) in last;
2622
+ true
2623
+ gap> Size(r);
2624
+ 546
2625
+ gap> SchutzenbergerGroup(r);
2626
+ Group([ (1,9,8), (1,8) ])
2627
+ gap> ForAll(r, x -> x in r);
2628
+ true
2629
+ gap> f := Transformation([8, 8, 8, 8, 8, 8, 7, 7, 8, 8]);;
2630
+ gap> r := RClass(s, f);
2631
+ <Green's R-class: Transformation( [ 8, 8, 8, 8, 8, 8, 7, 7, 8, 8 ] )>
2632
+ gap> Transformation([1, 1, 1, 1, 1, 1, 9, 9, 1, 1]) in last;
2633
+ true
2634
+ gap> Size(r);
2635
+ 86
2636
+ gap> iter := IteratorOfRClasses(s);
2637
+ <iterator>
2638
+ gap> repeat r := NextIterator(iter); until Size(r) > 1000;
2639
+ gap> r;
2640
+ <Green's R-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9, 8 ] )>
2641
+ gap> Transformation([9, 1, 8, 2, 1, 8, 9, 9, 9, 8]) in last;
2642
+ true
2643
+ gap> Size(r);
2644
+ 1992
2645
+ gap> SchutzenbergerGroup(r);
2646
+ Group([ (2,8), (1,8), (1,2,8,9) ])
2647
+ gap> enum := Enumerator(r);
2648
+ <enumerator of <Green's R-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9,
2649
+ 8 ] )>>
2650
+ gap> ForAll(enum, x -> x in r);
2651
+ true
2652
+ gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
2653
+ true
2654
+ gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
2655
+ true
2656
+ gap> NrHClasses(r);
2657
+ 83
2658
+ gap> GreensHClasses(r);
2659
+ [ <Green's H-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9, 8 ] )>,
2660
+ <Green's H-class: Transformation( [ 8, 2, 4, 3, 2, 4, 8, 8, 8, 4 ] )>,
2661
+ <Green's H-class: Transformation( [ 1, 5, 4, 3, 5, 4, 1, 1, 1, 4 ] )>,
2662
+ <Green's H-class: Transformation( [ 5, 4, 1, 2, 4, 1, 5, 5, 5, 1 ] )>,
2663
+ <Green's H-class: Transformation( [ 10, 5, 9, 3, 5, 9, 10, 10, 10, 9 ] )>,
2664
+ <Green's H-class: Transformation( [ 9, 1, 2, 5, 1, 2, 9, 9, 9, 2 ] )>,
2665
+ <Green's H-class: Transformation( [ 4, 10, 7, 1, 10, 7, 4, 4, 4, 7 ] )>,
2666
+ <Green's H-class: Transformation( [ 5, 1, 7, 2, 1, 7, 5, 5, 5, 7 ] )>,
2667
+ <Green's H-class: Transformation( [ 10, 9, 4, 3, 9, 4, 10, 10, 10, 4 ] )>,
2668
+ <Green's H-class: Transformation( [ 5, 9, 8, 2, 9, 8, 5, 5, 5, 8 ] )>,
2669
+ <Green's H-class: Transformation( [ 1, 4, 8, 7, 4, 8, 1, 1, 1, 8 ] )>,
2670
+ <Green's H-class: Transformation( [ 7, 5, 2, 3, 5, 2, 7, 7, 7, 2 ] )>,
2671
+ <Green's H-class: Transformation( [ 10, 1, 4, 3, 1, 4, 10, 10, 10, 4 ] )>,
2672
+ <Green's H-class: Transformation( [ 8, 1, 7, 3, 1, 7, 8, 8, 8, 7 ] )>,
2673
+ <Green's H-class: Transformation( [ 3, 2, 7, 1, 2, 7, 3, 3, 3, 7 ] )>,
2674
+ <Green's H-class: Transformation( [ 1, 4, 7, 2, 4, 7, 1, 1, 1, 7 ] )>,
2675
+ <Green's H-class: Transformation( [ 5, 4, 7, 2, 4, 7, 5, 5, 5, 7 ] )>,
2676
+ <Green's H-class: Transformation( [ 10, 5, 4, 3, 5, 4, 10, 10, 10, 4 ] )>,
2677
+ <Green's H-class: Transformation( [ 1, 7, 3, 10, 7, 3, 1, 1, 1, 3 ] )>,
2678
+ <Green's H-class: Transformation( [ 9, 4, 1, 2, 4, 1, 9, 9, 9, 1 ] )>,
2679
+ <Green's H-class: Transformation( [ 5, 8, 4, 2, 8, 4, 5, 5, 5, 4 ] )>,
2680
+ <Green's H-class: Transformation( [ 10, 6, 5, 3, 6, 5, 10, 10, 10, 5 ] )>,
2681
+ <Green's H-class: Transformation( [ 2, 3, 10, 1, 3, 10, 2, 2, 2, 10 ] )>,
2682
+ <Green's H-class: Transformation( [ 3, 1, 2, 9, 1, 2, 3, 3, 3, 2 ] )>,
2683
+ <Green's H-class: Transformation( [ 10, 1, 9, 3, 1, 9, 10, 10, 10, 9 ] )>,
2684
+ <Green's H-class: Transformation( [ 2, 9, 10, 1, 9, 10, 2, 2, 2, 10 ] )>,
2685
+ <Green's H-class: Transformation( [ 2, 4, 1, 8, 4, 1, 2, 2, 2, 1 ] )>,
2686
+ <Green's H-class: Transformation( [ 5, 3, 4, 2, 3, 4, 5, 5, 5, 4 ] )>,
2687
+ <Green's H-class: Transformation( [ 10, 1, 5, 3, 1, 5, 10, 10, 10, 5 ] )>,
2688
+ <Green's H-class: Transformation( [ 3, 5, 9, 6, 5, 9, 3, 3, 3, 9 ] )>,
2689
+ <Green's H-class: Transformation( [ 3, 1, 4, 9, 1, 4, 3, 3, 3, 4 ] )>,
2690
+ <Green's H-class: Transformation( [ 1, 5, 10, 9, 5, 10, 1, 1, 1, 10 ] )>,
2691
+ <Green's H-class: Transformation( [ 3, 10, 7, 4, 10, 7, 3, 3, 3, 7 ] )>,
2692
+ <Green's H-class: Transformation( [ 3, 10, 8, 7, 10, 8, 3, 3, 3, 8 ] )>,
2693
+ <Green's H-class: Transformation( [ 1, 2, 6, 4, 2, 6, 1, 1, 1, 6 ] )>,
2694
+ <Green's H-class: Transformation( [ 9, 1, 5, 8, 1, 5, 9, 9, 9, 5 ] )>,
2695
+ <Green's H-class: Transformation( [ 4, 1, 8, 10, 1, 8, 4, 4, 4, 8 ] )>,
2696
+ <Green's H-class: Transformation( [ 5, 3, 1, 2, 3, 1, 5, 5, 5, 1 ] )>,
2697
+ <Green's H-class: Transformation( [ 5, 9, 6, 2, 9, 6, 5, 5, 5, 6 ] )>,
2698
+ <Green's H-class: Transformation( [ 1, 4, 9, 7, 4, 9, 1, 1, 1, 9 ] )>,
2699
+ <Green's H-class: Transformation( [ 8, 4, 7, 10, 4, 7, 8, 8, 8, 7 ] )>,
2700
+ <Green's H-class: Transformation( [ 3, 5, 7, 1, 5, 7, 3, 3, 3, 7 ] )>,
2701
+ <Green's H-class: Transformation( [ 4, 10, 9, 1, 10, 9, 4, 4, 4, 9 ] )>,
2702
+ <Green's H-class: Transformation( [ 5, 1, 8, 2, 1, 8, 5, 5, 5, 8 ] )>,
2703
+ <Green's H-class: Transformation( [ 10, 6, 9, 3, 6, 9, 10, 10, 10, 9 ] )>,
2704
+ <Green's H-class: Transformation( [ 1, 10, 8, 7, 10, 8, 1, 1, 1, 8 ] )>,
2705
+ <Green's H-class: Transformation( [ 9, 2, 6, 4, 2, 6, 9, 9, 9, 6 ] )>,
2706
+ <Green's H-class: Transformation( [ 9, 10, 2, 5, 10, 2, 9, 9, 9, 2 ] )>,
2707
+ <Green's H-class: Transformation( [ 10, 3, 1, 8, 3, 1, 10, 10, 10, 1 ] )>,
2708
+ <Green's H-class: Transformation( [ 2, 1, 9, 6, 1, 9, 2, 2, 2, 9 ] )>,
2709
+ <Green's H-class: Transformation( [ 7, 10, 4, 9, 10, 4, 7, 7, 7, 4 ] )>,
2710
+ <Green's H-class: Transformation( [ 7, 1, 5, 8, 1, 5, 7, 7, 7, 5 ] )>,
2711
+ <Green's H-class: Transformation( [ 7, 2, 4, 3, 2, 4, 7, 7, 7, 4 ] )>,
2712
+ <Green's H-class: Transformation( [ 1, 4, 5, 7, 4, 5, 1, 1, 1, 5 ] )>,
2713
+ <Green's H-class: Transformation( [ 9, 5, 10, 4, 5, 10, 9, 9, 9, 10 ] )>,
2714
+ <Green's H-class: Transformation( [ 5, 1, 8, 4, 1, 8, 5, 5, 5, 8 ] )>,
2715
+ <Green's H-class: Transformation( [ 9, 10, 6, 5, 10, 6, 9, 9, 9, 6 ] )>,
2716
+ <Green's H-class: Transformation( [ 4, 10, 9, 6, 10, 9, 4, 4, 4, 9 ] )>,
2717
+ <Green's H-class: Transformation( [ 10, 2, 5, 3, 2, 5, 10, 10, 10, 5 ] )>,
2718
+ <Green's H-class: Transformation( [ 5, 10, 4, 2, 10, 4, 5, 5, 5, 4 ] )>,
2719
+ <Green's H-class: Transformation( [ 2, 5, 8, 7, 5, 8, 2, 2, 2, 8 ] )>,
2720
+ <Green's H-class: Transformation( [ 3, 10, 6, 4, 10, 6, 3, 3, 3, 6 ] )>,
2721
+ <Green's H-class: Transformation( [ 3, 10, 9, 7, 10, 9, 3, 3, 3, 9 ] )>,
2722
+ <Green's H-class: Transformation( [ 1, 2, 10, 4, 2, 10, 1, 1, 1, 10 ] )>,
2723
+ <Green's H-class: Transformation( [ 3, 5, 2, 9, 5, 2, 3, 3, 3, 2 ] )>,
2724
+ <Green's H-class: Transformation( [ 3, 1, 7, 4, 1, 7, 3, 3, 3, 7 ] )>,
2725
+ <Green's H-class: Transformation( [ 9, 1, 4, 5, 1, 4, 9, 9, 9, 4 ] )>,
2726
+ <Green's H-class: Transformation( [ 3, 10, 8, 4, 10, 8, 3, 3, 3, 8 ] )>,
2727
+ <Green's H-class: Transformation( [ 2, 1, 5, 6, 1, 5, 2, 2, 2, 5 ] )>,
2728
+ <Green's H-class: Transformation( [ 7, 10, 1, 9, 10, 1, 7, 7, 7, 1 ] )>,
2729
+ <Green's H-class: Transformation( [ 7, 1, 2, 8, 1, 2, 7, 7, 7, 2 ] )>,
2730
+ <Green's H-class: Transformation( [ 4, 3, 9, 6, 3, 9, 4, 4, 4, 9 ] )>,
2731
+ <Green's H-class: Transformation( [ 7, 3, 4, 9, 3, 4, 7, 7, 7, 4 ] )>,
2732
+ <Green's H-class: Transformation( [ 1, 5, 10, 4, 5, 10, 1, 1, 1, 10 ] )>,
2733
+ <Green's H-class: Transformation( [ 3, 4, 8, 7, 4, 8, 3, 3, 3, 8 ] )>,
2734
+ <Green's H-class: Transformation( [ 1, 5, 6, 4, 5, 6, 1, 1, 1, 6 ] )>,
2735
+ <Green's H-class: Transformation( [ 9, 2, 10, 4, 2, 10, 9, 9, 9, 10 ] )>,
2736
+ <Green's H-class: Transformation( [ 3, 10, 2, 9, 10, 2, 3, 3, 3, 2 ] )>,
2737
+ <Green's H-class: Transformation( [ 2, 5, 10, 1, 5, 10, 2, 2, 2, 10 ] )>,
2738
+ <Green's H-class: Transformation( [ 9, 5, 4, 3, 5, 4, 9, 9, 9, 4 ] )>,
2739
+ <Green's H-class: Transformation( [ 4, 1, 9, 6, 1, 9, 4, 4, 4, 9 ] )>,
2740
+ <Green's H-class: Transformation( [ 9, 5, 6, 4, 5, 6, 9, 9, 9, 6 ] )>,
2741
+ <Green's H-class: Transformation( [ 1, 5, 3, 6, 5, 3, 1, 1, 1, 3 ] )> ]
2742
+ gap> List(last, x -> Representative(x) in s);
2743
+ [ true, true, true, true, true, true, true, true, true, true, true, true,
2744
+ true, true, true, true, true, true, true, true, true, true, true, true,
2745
+ true, true, true, true, true, true, true, true, true, true, true, true,
2746
+ true, true, true, true, true, true, true, true, true, true, true, true,
2747
+ true, true, true, true, true, true, true, true, true, true, true, true,
2748
+ true, true, true, true, true, true, true, true, true, true, true, true,
2749
+ true, true, true, true, true, true, true, true, true, true, true ]
2750
+ gap> ForAll(last2, x -> Representative(x) in r);
2751
+ true
2752
+ gap> Semigroup(gens);;
2753
+ gap> r := GreensRClassOfElement(s, f);
2754
+ <Green's R-class: Transformation( [ 8, 8, 8, 8, 8, 8, 7, 7, 8, 8 ] )>
2755
+ gap> Transformation([1, 1, 1, 1, 1, 1, 9, 9, 1, 1]) in last;
2756
+ true
2757
+ gap> f := Transformation([9, 9, 5, 9, 5, 9, 5, 5, 5, 5]);;
2758
+ gap> r := GreensRClassOfElement(s, f);
2759
+ <Green's R-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>
2760
+ gap> Transformation([9, 9, 1, 9, 1, 9, 1, 1, 1, 1]) in last;
2761
+ true
2762
+ gap> Size(r);
2763
+ 86
2764
+ gap> NrHClasses(r);
2765
+ 43
2766
+ gap> s := Semigroup(gens);;
2767
+ gap> r := GreensRClassOfElement(s, f);
2768
+ <Green's R-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>
2769
+ gap> Transformation([9, 9, 1, 9, 1, 9, 1, 1, 1, 1]) in last;
2770
+ true
2771
+ gap> GreensHClasses(r);
2772
+ [ <Green's H-class: Transformation( [ 9, 9, 1, 9, 1, 9, 1, 1, 1, 1 ] )>,
2773
+ <Green's H-class: Transformation( [ 8, 8, 2, 8, 2, 8, 2, 2, 2, 2 ] )>,
2774
+ <Green's H-class: Transformation( [ 4, 4, 3, 4, 3, 4, 3, 3, 3, 3 ] )>,
2775
+ <Green's H-class: Transformation( [ 1, 1, 5, 1, 5, 1, 5, 5, 5, 5 ] )>,
2776
+ <Green's H-class: Transformation( [ 9, 9, 10, 9, 10, 9, 10, 10, 10, 10 ] )>,
2777
+ <Green's H-class: Transformation( [ 10, 10, 4, 10, 4, 10, 4, 4, 4, 4 ] )>,
2778
+ <Green's H-class: Transformation( [ 8, 8, 5, 8, 5, 8, 5, 5, 5, 5 ] )>,
2779
+ <Green's H-class: Transformation( [ 8, 8, 1, 8, 1, 8, 1, 1, 1, 1 ] )>,
2780
+ <Green's H-class: Transformation( [ 8, 8, 10, 8, 10, 8, 10, 10, 10, 10 ] )>,
2781
+ <Green's H-class: Transformation( [ 1, 1, 3, 1, 3, 1, 3, 3, 3, 3 ] )>,
2782
+ <Green's H-class: Transformation( [ 3, 3, 10, 3, 10, 3, 10, 10, 10, 10 ] )>,
2783
+ <Green's H-class: Transformation( [ 2, 2, 5, 2, 5, 2, 5, 5, 5, 5 ] )>,
2784
+ <Green's H-class: Transformation( [ 7, 7, 1, 7, 1, 7, 1, 1, 1, 1 ] )>,
2785
+ <Green's H-class: Transformation( [ 9, 9, 4, 9, 4, 9, 4, 4, 4, 4 ] )>,
2786
+ <Green's H-class: Transformation( [ 9, 9, 8, 9, 8, 9, 8, 8, 8, 8 ] )>,
2787
+ <Green's H-class: Transformation( [ 8, 8, 4, 8, 4, 8, 4, 4, 4, 4 ] )>,
2788
+ <Green's H-class: Transformation( [ 7, 7, 8, 7, 8, 7, 8, 8, 8, 8 ] )>,
2789
+ <Green's H-class: Transformation( [ 7, 7, 3, 7, 3, 7, 3, 3, 3, 3 ] )>,
2790
+ <Green's H-class: Transformation( [ 9, 9, 2, 9, 2, 9, 2, 2, 2, 2 ] )>,
2791
+ <Green's H-class: Transformation( [ 7, 7, 4, 7, 4, 7, 4, 4, 4, 4 ] )>,
2792
+ <Green's H-class: Transformation( [ 4, 4, 5, 4, 5, 4, 5, 5, 5, 5 ] )>,
2793
+ <Green's H-class: Transformation( [ 5, 5, 10, 5, 10, 5, 10, 10, 10, 10 ] )>,
2794
+ <Green's H-class: Transformation( [ 2, 2, 10, 2, 10, 2, 10, 10, 10, 10 ] )>,
2795
+ <Green's H-class: Transformation( [ 7, 7, 10, 7, 10, 7, 10, 10, 10, 10 ] )>,
2796
+ <Green's H-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>,
2797
+ <Green's H-class: Transformation( [ 1, 1, 4, 1, 4, 1, 4, 4, 4, 4 ] )>,
2798
+ <Green's H-class: Transformation( [ 4, 4, 2, 4, 2, 4, 2, 2, 2, 2 ] )>,
2799
+ <Green's H-class: Transformation( [ 5, 5, 3, 5, 3, 5, 3, 3, 3, 3 ] )>,
2800
+ <Green's H-class: Transformation( [ 1, 1, 2, 1, 2, 1, 2, 2, 2, 2 ] )>,
2801
+ <Green's H-class: Transformation( [ 9, 9, 3, 9, 3, 9, 3, 3, 3, 3 ] )>,
2802
+ <Green's H-class: Transformation( [ 1, 1, 10, 1, 10, 1, 10, 10, 10, 10 ] )>,
2803
+ <Green's H-class: Transformation( [ 2, 2, 3, 2, 3, 2, 3, 3, 3, 3 ] )>,
2804
+ <Green's H-class: Transformation( [ 7, 7, 5, 7, 5, 7, 5, 5, 5, 5 ] )>,
2805
+ <Green's H-class: Transformation( [ 8, 8, 3, 8, 3, 8, 3, 3, 3, 3 ] )>,
2806
+ <Green's H-class: Transformation( [ 1, 1, 6, 1, 6, 1, 6, 6, 6, 6 ] )>,
2807
+ <Green's H-class: Transformation( [ 4, 4, 6, 4, 6, 4, 6, 6, 6, 6 ] )>,
2808
+ <Green's H-class: Transformation( [ 9, 9, 7, 9, 7, 9, 7, 7, 7, 7 ] )>,
2809
+ <Green's H-class: Transformation( [ 6, 6, 5, 6, 5, 6, 5, 5, 5, 5 ] )>,
2810
+ <Green's H-class: Transformation( [ 6, 6, 10, 6, 10, 6, 10, 10, 10, 10 ] )>,
2811
+ <Green's H-class: Transformation( [ 7, 7, 2, 7, 2, 7, 2, 2, 2, 2 ] )>,
2812
+ <Green's H-class: Transformation( [ 2, 2, 6, 2, 6, 2, 6, 6, 6, 6 ] )>,
2813
+ <Green's H-class: Transformation( [ 9, 9, 6, 9, 6, 9, 6, 6, 6, 6 ] )>,
2814
+ <Green's H-class: Transformation( [ 3, 3, 6, 3, 6, 3, 6, 6, 6, 6 ] )> ]
2815
+ gap> Length(last);
2816
+ 43
2817
+ gap> ForAll(last2, x -> Representative(x) in r);
2818
+ true
2819
+ gap> ForAll(last3, x -> Representative(x) in s);
2820
+ true
2821
+ gap> h := Random(GreensHClasses(r));;
2822
+ gap> f := Representative(h);;
2823
+ gap> hh := HClass(r, f);;
2824
+ gap> hh = h;
2825
+ true
2826
+ gap> h = hh;
2827
+ true
2828
+ gap> Elements(h) = Elements(hh);
2829
+ true
2830
+ gap> f := Transformation([10, 1, 9, 10, 2, 1, 5, 3, 2, 3]);;
2831
+ gap> r := GreensRClassOfElement(s, f);
2832
+ <Green's R-class: Transformation( [ 10, 1, 9, 10, 2, 1, 5, 3, 2, 3 ] )>
2833
+ gap> Transformation([10, 1, 9, 10, 2, 1, 5, 3, 2, 3]) in last;
2834
+ true
2835
+ gap> Size(r);
2836
+ 1
2837
+ gap> f := Transformation([10, 10, 3, 10, 10, 10, 10, 10, 6, 10]);;
2838
+ gap> r := GreensRClassOfElement(s, f);
2839
+ <Green's R-class: Transformation( [ 10, 10, 3, 10, 10, 10, 10, 10, 6, 10 ] )>
2840
+ gap> Transformation([8, 8, 1, 8, 8, 8, 8, 8, 9, 8]) in last;
2841
+ true
2842
+ gap> Size(r);
2843
+ 546
2844
+ gap> f := Transformation([6, 6, 4, 6, 6, 6, 6, 6, 3, 6]);;
2845
+ gap> f in r;
2846
+ true
2847
+ gap> h := HClass(r, f);
2848
+ <Green's H-class: Transformation( [ 6, 6, 4, 6, 6, 6, 6, 6, 3, 6 ] )>
2849
+ gap> Transformation([6, 6, 4, 6, 6, 6, 6, 6, 3, 6]) in last;
2850
+ true
2851
+ gap> f in h;
2852
+ true
2853
+ gap> ForAll(h, x -> x in r);
2854
+ true
2855
+ gap> Size(h);
2856
+ 6
2857
+ gap> Elements(h);
2858
+ [ Transformation( [ 3, 3, 4, 3, 3, 3, 3, 3, 6, 3 ] ),
2859
+ Transformation( [ 3, 3, 6, 3, 3, 3, 3, 3, 4, 3 ] ),
2860
+ Transformation( [ 4, 4, 3, 4, 4, 4, 4, 4, 6, 4 ] ),
2861
+ Transformation( [ 4, 4, 6, 4, 4, 4, 4, 4, 3, 4 ] ),
2862
+ Transformation( [ 6, 6, 3, 6, 6, 6, 6, 6, 4, 6 ] ),
2863
+ Transformation( [ 6, 6, 4, 6, 6, 6, 6, 6, 3, 6 ] ) ]
2864
+
2865
+ # MiscTest29
2866
+ gap> gens :=
2867
+ > [PartialPermNC([1, 2, 3, 5, 9, 10], [5, 10, 7, 8, 9, 1]),
2868
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 9], [9, 3, 1, 4, 2, 5, 6]),
2869
+ > PartialPermNC([1, 2, 3, 4, 5, 7, 9], [7, 6, 2, 8, 4, 5, 3]),
2870
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
2871
+ > [8, 7, 4, 3, 10, 9, 5, 6, 1, 2])];;
2872
+ gap> s := Semigroup(gens);;
2873
+ gap> Size(s);
2874
+ 1422787
2875
+ gap> f := PartialPermNC([1, 4, 7, 9, 10], [5, 10, 9, 8, 7]);;
2876
+ gap> r := GreensRClassOfElementNC(s, f);
2877
+ <Green's R-class: [1,5][4,10,7,9,8]>
2878
+ gap> Size(r);
2879
+ 4
2880
+ gap> f in r;
2881
+ true
2882
+ gap> f := PartialPermNC([1, 7, 8, 9], [10, 9, 6, 5]);;
2883
+ gap> r := GreensRClassOfElementNC(s, f);
2884
+ <Green's R-class: [1,10][7,9,5][8,6]>
2885
+ gap> Size(r);
2886
+ 4
2887
+ gap> iter := IteratorOfRClasses(s);
2888
+ <iterator>
2889
+ gap> repeat r := NextIterator(iter); until Size(r) > 1000;
2890
+ gap> r;
2891
+ <Green's R-class: [1,4][9,3,5][10,7]>
2892
+ gap> Size(r);
2893
+ 3792
2894
+ gap> r := RClassNC(s, Representative(r));
2895
+ <Green's R-class: [1,4][9,3,5][10,7]>
2896
+ gap> h := HClassNC(r, Random(r));;
2897
+ gap> Size(h);
2898
+ 24
2899
+ gap> ForAll(h, x -> x in r);
2900
+ true
2901
+ gap> IsRegularGreensClass(r);
2902
+ true
2903
+ gap> IsRegularSemigroup(s);
2904
+ false
2905
+ gap> NrIdempotents(r);
2906
+ 1
2907
+ gap> Idempotents(r);
2908
+ [ <identity partial perm on [ 1, 3, 9, 10 ]> ]
2909
+ gap> ForAll(last, x -> x in r);
2910
+ true
2911
+
2912
+ # MiscTest30
2913
+ gap> gens := [Transformation([1, 3, 7, 9, 1, 12, 13, 1, 15, 9, 1, 18, 1, 1,
2914
+ > 13, 1, 1, 21, 1, 1, 1, 1, 1, 25, 26, 1]),
2915
+ > Transformation([1, 5, 1, 5, 11, 1, 1, 14, 1, 16, 17, 1, 1, 19, 1, 11, 1,
2916
+ > 1, 1, 23, 1, 16, 19, 1, 1, 1]),
2917
+ > Transformation([1, 4, 8, 1, 10, 1, 8, 1, 1, 1, 10, 1, 8, 10, 1, 1, 20, 1,
2918
+ > 22, 1, 8, 1, 1, 1, 1, 1]),
2919
+ > Transformation([1, 6, 6, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 6, 1, 1, 6, 1,
2920
+ > 1, 24, 1, 1, 1, 1, 6])];;
2921
+ gap> s := Semigroup(gens);;
2922
+ gap> First(DClasses(s), IsRegularDClass);
2923
+ <Green's D-class: Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2924
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
2925
+ gap> NrDClasses(s);
2926
+ 31
2927
+ gap> PositionsProperty(DClasses(s), IsRegularDClass);
2928
+ [ 6, 7 ]
2929
+ gap> d := DClasses(s)[7];
2930
+ <Green's D-class: Transformation( [ 1, 6, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 6,
2931
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
2932
+ gap> r := RClassNC(s, Representative(d));
2933
+ <Green's R-class: Transformation( [ 1, 6, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 6,
2934
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
2935
+ gap> Size(r);
2936
+ 20
2937
+ gap> ForAll(Idempotents(r), x -> x in s);
2938
+ true
2939
+ gap> ForAll(Idempotents(r), x -> x in r);
2940
+ true
2941
+ gap> ForAll(Idempotents(r), x -> x in d);
2942
+ true
2943
+ gap> ForAll(r, x -> x in d);
2944
+ true
2945
+ gap> Number(GreensRClasses(s), IsRegularGreensClass);
2946
+ 21
2947
+ gap> NrRegularDClasses(s);
2948
+ 2
2949
+
2950
+ # MiscTest31
2951
+ gap> gens := [Transformation([1, 2, 3, 5, 4, 6, 7, 8]),
2952
+ > Transformation([4, 4, 3, 1, 5, 6, 3, 8]),
2953
+ > Transformation([3, 6, 1, 7, 3, 4, 8, 3]),
2954
+ > Transformation([1, 2, 3, 4, 5, 3, 7, 8]),
2955
+ > Transformation([1, 2, 3, 4, 1, 6, 7, 8]),
2956
+ > Transformation([8, 8, 3, 4, 5, 7, 6, 1])];;
2957
+ gap> s := Monoid(gens);
2958
+ <transformation monoid of degree 8 with 6 generators>
2959
+ gap> f := Transformation([4, 4, 3, 8, 5, 3, 3, 1]);;
2960
+ gap> Size(s);
2961
+ 998
2962
+ gap> r := RClass(s, f);
2963
+ <Green's R-class: Transformation( [ 4, 4, 3, 8, 5, 3, 3, 1 ] )>
2964
+ gap> Transformation([4, 4, 3, 8, 5, 3, 3, 1]) in last;
2965
+ true
2966
+ gap> IsRegularGreensClass(r);
2967
+ true
2968
+ gap> Idempotents(r);
2969
+ [ Transformation( [ 1, 1, 3, 4, 5, 3, 3 ] ) ]
2970
+ gap> IsRegularSemigroup(s);
2971
+ false
2972
+ gap> ForAll(r, x -> x in s);
2973
+ true
2974
+ gap> iter := Iterator(r);
2975
+ <iterator>
2976
+ gap> for i in iter do od;
2977
+ gap> Size(r);
2978
+ 24
2979
+ gap> IsDoneIterator(iter);
2980
+ true
2981
+ gap> iter := Iterator(r);
2982
+ <iterator>
2983
+ gap> for i in [1 .. 23] do NextIterator(iter); od;
2984
+ gap> IsDoneIterator(iter);
2985
+ false
2986
+ gap> NextIterator(iter);
2987
+ Transformation( [ 5, 5, 3, 1, 4, 3, 3 ] )
2988
+ gap> IsDoneIterator(iter);
2989
+ true
2990
+ gap> Transformation([4, 4, 3, 8, 1, 3, 3, 5]) in r;
2991
+ true
2992
+ gap> r;
2993
+ <Green's R-class: Transformation( [ 4, 4, 3, 8, 5, 3, 3, 1 ] )>
2994
+ gap> Transformation([4, 4, 3, 8, 5, 3, 3, 1]) in last;
2995
+ true
2996
+ gap> NrIdempotents(r);
2997
+ 1
2998
+
2999
+ # MiscTest32
3000
+ gap> gens := [PartialPermNC([1, 2, 3, 4, 7], [8, 3, 5, 7, 4]),
3001
+ > PartialPermNC([1, 2, 5, 6, 7], [4, 1, 6, 2, 8]),
3002
+ > PartialPermNC([1, 2, 3, 4, 5, 6], [3, 7, 1, 5, 2, 6]),
3003
+ > PartialPermNC([1, 2, 3, 4, 5, 6], [7, 2, 5, 6, 3, 8]),
3004
+ > PartialPermNC([1, 2, 3, 5, 6, 7], [4, 5, 6, 1, 2, 7]),
3005
+ > PartialPermNC([1, 2, 3, 5, 6, 7], [5, 1, 7, 2, 8, 4])];;
3006
+ gap> s := Semigroup(gens);;
3007
+ gap> Size(s);
3008
+ 9954
3009
+ gap> f := PartialPerm([2, 3, 6], [1, 4, 8]);;
3010
+ gap> r := RClass(s, f);
3011
+ <Green's R-class: [2,1][3,4][6,8]>
3012
+ gap> NrIdempotents(r);
3013
+ 0
3014
+ gap> Sum(List(RClasses(s), NrIdempotents));
3015
+ 53
3016
+ gap> NrIdempotents(s);
3017
+ 53
3018
+ gap> gens := [Transformation([1, 2, 4, 3, 6, 5]),
3019
+ > Transformation([1, 2, 3, 4, 5, 6]),
3020
+ > Transformation([6, 4, 3, 2, 5, 3]),
3021
+ > Transformation([5, 3, 4, 2, 2, 1]),
3022
+ > Transformation([2, 4, 6, 4, 5, 3]),
3023
+ > Transformation([4, 2, 4, 3, 6, 5]),
3024
+ > Transformation([2, 4, 4, 3, 6, 5]),
3025
+ > Transformation([5, 6, 4, 4, 3, 2]),
3026
+ > Transformation([2, 2, 3, 4, 5, 6]),
3027
+ > Transformation([3, 4, 2, 2, 2, 1]),
3028
+ > Transformation([1, 2, 4, 2, 3, 3]),
3029
+ > Transformation([1, 2, 3, 4, 3, 2]),
3030
+ > Transformation([6, 4, 2, 3, 2, 3]),
3031
+ > Transformation([6, 4, 2, 2, 1, 1]),
3032
+ > Transformation([6, 4, 2, 3, 4, 4]),
3033
+ > Transformation([5, 3, 3, 2, 4, 2])];;
3034
+ gap> s := Semigroup(gens);;
3035
+ gap> Size(s);
3036
+ 1888
3037
+ gap> f := Transformation([2, 4, 6, 6, 5, 6]);;
3038
+ gap> r := RClass(s, f);
3039
+ <Green's R-class: Transformation( [ 2, 4, 6, 6, 5, 6 ] )>
3040
+ gap> Transformation([2, 4, 6, 6, 5, 6]) in last;
3041
+ true
3042
+ gap> h := HClassNC(s, f);
3043
+ <Green's H-class: Transformation( [ 2, 4, 6, 6, 5, 6 ] )>
3044
+ gap> Transformation([2, 4, 6, 6, 5, 6]) in last;
3045
+ true
3046
+ gap> hh := HClass(r, f);
3047
+ <Green's H-class: Transformation( [ 2, 4, 6, 6, 5, 6 ] )>
3048
+ gap> Transformation([2, 4, 6, 6, 5, 6]) in last;
3049
+ true
3050
+ gap> hh = h;
3051
+ true
3052
+ gap> ForAll(h, x -> x in r);
3053
+ true
3054
+ gap> ForAll(hh, x -> x in r);
3055
+ true
3056
+ gap> RClassOfHClass(h) = r;
3057
+ true
3058
+ gap> RClassOfHClass(hh) = r;
3059
+ true
3060
+ gap> r = RClassOfHClass(hh);
3061
+ true
3062
+ gap> Size(r);
3063
+ 2
3064
+ gap> HClassReps(r);
3065
+ [ Transformation( [ 2, 4, 6, 6, 5, 6 ] ),
3066
+ Transformation( [ 2, 3, 5, 5, 6, 5 ] ) ]
3067
+ gap> ForAll(last, x -> x in r);
3068
+ true
3069
+ gap> ForAll(last2, x -> x in s);
3070
+ true
3071
+
3072
+ # MiscTest33
3073
+ gap> gens :=
3074
+ > [PartialPermNC([1, 2, 3], [2, 3, 4]),
3075
+ > PartialPermNC([1, 2, 3], [3, 6, 1]),
3076
+ > PartialPermNC([1, 2, 3], [6, 2, 1]),
3077
+ > PartialPermNC([1, 2, 4], [4, 2, 6]),
3078
+ > PartialPermNC([1, 3, 5], [2, 6, 3]),
3079
+ > PartialPermNC([1, 4, 5], [1, 6, 3]),
3080
+ > PartialPermNC([1, 2, 3, 5], [2, 3, 5, 1]),
3081
+ > PartialPermNC([1, 2, 3, 5], [3, 2, 4, 6]),
3082
+ > PartialPermNC([1, 2, 4, 6], [4, 3, 1, 6]),
3083
+ > PartialPermNC([1, 3, 5, 6], [1, 4, 6, 2]),
3084
+ > PartialPermNC([1, 2, 3, 4, 5], [5, 4, 6, 2, 1]),
3085
+ > PartialPermNC([1, 2, 3, 4, 5], [6, 2, 3, 5, 1]),
3086
+ > PartialPermNC([1, 2, 3, 4, 5], [6, 3, 5, 1, 2]),
3087
+ > PartialPermNC([1, 2, 3, 4, 6], [4, 1, 5, 2, 3]),
3088
+ > PartialPermNC([1, 2, 3, 4, 6], [5, 1, 6, 3, 2]),
3089
+ > PartialPermNC([1, 2, 3, 5, 6], [5, 4, 2, 6, 3])];;
3090
+ gap> s := Semigroup(gens);;
3091
+ gap> Size(s);
3092
+ 6741
3093
+ gap> f := PartialPermNC([1, 3, 5, 6], [6, 2, 5, 1]);;
3094
+ gap> r := RClassNC(s, f);
3095
+ <Green's R-class: [3,2](1,6)(5)>
3096
+ gap> HClassReps(r);
3097
+ [ [3,2](1,6)(5) ]
3098
+ gap> ForAll(last, x -> x in r);
3099
+ true
3100
+ gap> r := RClass(s, f);
3101
+ <Green's R-class: [3,2](1,6)(5)>
3102
+ gap> HClassReps(r);
3103
+ [ [3,2](1,6)(5) ]
3104
+ gap> h := HClass(s, last[1]);
3105
+ <Green's H-class: [3,2](1,6)(5)>
3106
+ gap> r := RClassOfHClass(h);
3107
+ <Green's R-class: [3,2](1,6)(5)>
3108
+ gap> HClassReps(r);
3109
+ [ [3,2](1,6)(5) ]
3110
+ gap> iter := IteratorOfRClasses(s);
3111
+ <iterator>
3112
+ gap> iter := IteratorOfRClasses(s);
3113
+ <iterator>
3114
+ gap> repeat r := NextIterator(iter); until Size(r) > 1;
3115
+ gap> r;
3116
+ <Green's R-class: [1,2,3,4]>
3117
+ gap> Size(r);
3118
+ 114
3119
+ gap> HClassReps(r);
3120
+ [ [1,2,3,4], [1,2,4][3,6], [2,3,6](1), [1,5](2)(3), [2,5](1,3), [3,2,1,5],
3121
+ <identity partial perm on [ 1, 2, 3 ]>, [1,3,2,6], [3,6](1)(2),
3122
+ [1,4][2,3,6], [1,3,5][2,4], [2,3,4](1), [2,1,5][3,6], [1,6][2,5](3),
3123
+ [1,2,6][3,5], [1,4][3,2,5], [3,4](1,2), [2,5][3,4](1), [2,6][3,1,4] ]
3124
+ gap> Size(DClass(r));
3125
+ 2166
3126
+ gap> d := DClass(r);
3127
+ <Green's D-class: [1,2,3,4]>
3128
+ gap> ForAll(r, x -> x in d);
3129
+ true
3130
+ gap> Number(d, x -> x in r);
3131
+ 114
3132
+ gap> Size(r);
3133
+ 114
3134
+ gap> ForAll(HClassReps(r), x -> x in d);
3135
+ true
3136
+ gap> ForAll(HClassReps(r), x -> x in HClassReps(d));
3137
+ true
3138
+
3139
+ # MiscTest34
3140
+ gap> gens := [Transformation([6, 4, 3, 2, 5, 1]),
3141
+ > Transformation([1, 2, 3, 4, 5, 6]),
3142
+ > Transformation([5, 3, 3, 2, 4, 1]),
3143
+ > Transformation([1, 3, 3, 4, 5, 2]),
3144
+ > Transformation([4, 5, 2, 3, 3, 1]),
3145
+ > Transformation([6, 4, 3, 5, 2, 3]),
3146
+ > Transformation([5, 2, 3, 4, 3, 6]),
3147
+ > Transformation([1, 3, 2, 5, 4, 5]),
3148
+ > Transformation([4, 3, 2, 2, 1, 5]),
3149
+ > Transformation([1, 3, 3, 5, 2, 4]),
3150
+ > Transformation([6, 3, 3, 2, 1, 5]),
3151
+ > Transformation([6, 3, 4, 5, 2, 2]),
3152
+ > Transformation([6, 4, 3, 2, 2, 5]),
3153
+ > Transformation([1, 3, 2, 3, 5, 4]),
3154
+ > Transformation([1, 2, 3, 4, 5, 2]),
3155
+ > Transformation([2, 4, 3, 4, 6, 5]),
3156
+ > Transformation([2, 4, 3, 3, 6, 1]),
3157
+ > Transformation([6, 4, 3, 2, 3, 1]),
3158
+ > Transformation([6, 4, 3, 2, 2, 1])];;
3159
+ gap> s := Semigroup(gens);
3160
+ <transformation monoid of degree 6 with 18 generators>
3161
+ gap> Size(s);
3162
+ 7008
3163
+ gap> NrRClasses(s);
3164
+ 310
3165
+ gap> IsRegularSemigroup(s);
3166
+ false
3167
+ gap> f := Transformation([3, 2, 3, 4, 3, 5]);;
3168
+ gap> r := RClassNC(s, f);
3169
+ <Green's R-class: Transformation( [ 3, 2, 3, 4, 3, 5 ] )>
3170
+ gap> Transformation([3, 2, 3, 4, 3, 5]) in last;
3171
+ true
3172
+ gap> d := DClassOfRClass(r);
3173
+ <Green's D-class: Transformation( [ 3, 2, 3, 4, 3, 5 ] )>
3174
+ gap> Transformation([3, 2, 3, 4, 3, 5]) in last;
3175
+ true
3176
+ gap> Size(d);
3177
+ 792
3178
+ gap> IsRegularDClass(d);
3179
+ false
3180
+ gap> NrIdempotents(d);
3181
+ 0
3182
+ gap> Idempotents(d);
3183
+ [ ]
3184
+ gap> HClassReps(d);;
3185
+ gap> Length(last);
3186
+ 198
3187
+ gap> Number(HClassReps(d), x -> x in r);
3188
+ 6
3189
+ gap> NrHClasses(r);
3190
+ 6
3191
+
3192
+ # MiscTest35
3193
+ gap> gens := [PartialPermNC([1, 2, 4], [2, 5, 3]),
3194
+ > PartialPermNC([1, 2, 4], [5, 6, 1]),
3195
+ > PartialPermNC([1, 2, 5], [5, 3, 2]),
3196
+ > PartialPermNC([1, 2, 3, 4], [5, 1, 2, 4]),
3197
+ > PartialPermNC([1, 2, 3, 4], [5, 1, 2, 6]),
3198
+ > PartialPermNC([1, 2, 3, 4], [5, 6, 4, 1]),
3199
+ > PartialPermNC([1, 2, 3, 5], [1, 5, 2, 6]),
3200
+ > PartialPermNC([1, 2, 3, 5], [2, 3, 4, 1]),
3201
+ > PartialPermNC([1, 2, 3, 5], [2, 5, 4, 1]),
3202
+ > PartialPermNC([1, 2, 3, 5], [5, 1, 2, 3]),
3203
+ > PartialPermNC([1, 2, 3, 6], [1, 4, 6, 5]),
3204
+ > PartialPermNC([1, 2, 5, 6], [6, 4, 2, 5]),
3205
+ > PartialPermNC([1, 3, 4, 6], [2, 3, 1, 6]),
3206
+ > PartialPermNC([1, 2, 3, 4, 5], [3, 6, 5, 2, 4]),
3207
+ > PartialPermNC([1, 2, 3, 4, 5], [6, 5, 3, 2, 1]),
3208
+ > PartialPermNC([1, 2, 3, 4, 6], [1, 3, 4, 6, 2]),
3209
+ > PartialPermNC([1, 2, 3, 5, 6], [1, 3, 6, 4, 5]),
3210
+ > PartialPermNC([1, 2, 4, 5, 6], [5, 4, 2, 1, 6]),
3211
+ > PartialPermNC([1, 2, 3, 4, 5, 6], [2, 5, 6, 4, 3, 1])];;
3212
+ gap> s := Semigroup(gens);;
3213
+ gap> Size(s);
3214
+ 12612
3215
+ gap> f := PartialPermNC([1, 4, 6], [2, 3, 6]);;
3216
+ gap> r := RClass(s, f);
3217
+ <Green's R-class: [1,2][4,3](6)>
3218
+ gap> Size(r);
3219
+ 120
3220
+ gap> NrHClasses(r);
3221
+ 20
3222
+ gap> Number(HClassReps(s), x -> x in r);
3223
+ 20
3224
+
3225
+ # MiscTest36: H-class tests
3226
+ gap> gens := [Transformation([8, 7, 6, 5, 4, 3, 2, 1]),
3227
+ > Transformation([1, 2, 3, 4, 5, 6, 7, 8]),
3228
+ > Transformation([7, 6, 5, 4, 3, 2, 1, 2]),
3229
+ > Transformation([3, 2, 1, 2, 3, 4, 5, 6]),
3230
+ > Transformation([2, 3, 4, 5, 4, 5, 6, 7]),
3231
+ > Transformation([1, 2, 3, 4, 5, 4, 5, 6]),
3232
+ > Transformation([5, 6, 5, 4, 5, 4, 3, 2]),
3233
+ > Transformation([5, 6, 7, 8, 7, 6, 5, 4])];;
3234
+ gap> s := Semigroup(gens);;
3235
+ gap> f := Transformation([5, 6, 5, 4, 5, 4, 5, 4]);;
3236
+ gap> h := HClass(s, f);
3237
+ <Green's H-class: Transformation( [ 5, 6, 5, 4, 5, 4, 5, 4 ] )>
3238
+ gap> Transformation([5, 6, 5, 4, 5, 4, 5, 4]) in last;
3239
+ true
3240
+ gap> ForAll(h, x -> x in h);
3241
+ true
3242
+ gap> h := HClassNC(s, f);
3243
+ <Green's H-class: Transformation( [ 5, 6, 5, 4, 5, 4, 5, 4 ] )>
3244
+ gap> Transformation([5, 6, 5, 4, 5, 4, 5, 4]) in last;
3245
+ true
3246
+ gap> Enumerator(h);
3247
+ <enumerator of <Green's H-class: Transformation( [ 5, 6, 5, 4, 5, 4, 5, 4 ] )>
3248
+ >
3249
+ gap> h := HClassNC(s, f);
3250
+ <Green's H-class: Transformation( [ 5, 6, 5, 4, 5, 4, 5, 4 ] )>
3251
+ gap> Transformation([5, 6, 5, 4, 5, 4, 5, 4]) in last;
3252
+ true
3253
+ gap> SchutzenbergerGroup(h);
3254
+ Group([ (4,6) ])
3255
+
3256
+ # MiscTest37
3257
+ gap> s := FullTransformationSemigroup(7);
3258
+ <full transformation monoid of degree 7>
3259
+ gap> Factorial(7);
3260
+ 5040
3261
+ gap> f := One(s);
3262
+ IdentityTransformation
3263
+ gap> h := HClassNC(s, f);
3264
+ <Green's H-class: IdentityTransformation>
3265
+ gap> enum := Enumerator(h);
3266
+ <enumerator of <Green's H-class: IdentityTransformation>>
3267
+ gap> ForAll(enum, x -> x in h);
3268
+ true
3269
+ gap> ForAll(enum, x -> x in s);
3270
+ true
3271
+ gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
3272
+ true
3273
+ gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
3274
+ true
3275
+ gap> Idempotents(h);
3276
+ [ IdentityTransformation ]
3277
+ gap> f := Transformation([3, 2, 4, 5, 6, 1, 1]);;
3278
+ gap> h := HClassNC(s, f);
3279
+ <Green's H-class: Transformation( [ 3, 2, 4, 5, 6, 1, 1 ] )>
3280
+ gap> Transformation([3, 2, 4, 5, 6, 1, 1]) in last;
3281
+ true
3282
+ gap> Idempotents(h);
3283
+ [ Transformation( [ 1, 2, 3, 4, 5, 6, 6 ] ) ]
3284
+ gap> IsGroupHClass(h);
3285
+ true
3286
+ gap> h := HClass(s, Transformation([5, 1, 3, 3, 5, 5, 3]));;
3287
+ gap> IsGroupHClass(h);
3288
+ false
3289
+ gap> IsRegularGreensClass(h);
3290
+ false
3291
+
3292
+ # MiscTest38
3293
+ gap> gens :=
3294
+ > [PartialPermNC([1, 2, 3], [1, 5, 2]),
3295
+ > PartialPermNC([1, 2, 4], [1, 3, 6]),
3296
+ > PartialPermNC([1, 2, 4], [3, 1, 6]),
3297
+ > PartialPermNC([1, 2, 6], [6, 4, 1]),
3298
+ > PartialPermNC([1, 3, 5], [5, 2, 3]),
3299
+ > PartialPermNC([1, 2, 3, 4], [5, 3, 2, 4]),
3300
+ > PartialPermNC([1, 2, 3, 4], [6, 1, 5, 3]),
3301
+ > PartialPermNC([1, 2, 3, 5], [1, 4, 6, 3]),
3302
+ > PartialPermNC([1, 2, 3, 5], [2, 3, 4, 1]),
3303
+ > PartialPermNC([1, 2, 3, 5], [6, 5, 1, 2]),
3304
+ > PartialPermNC([1, 2, 3, 6], [3, 5, 4, 6]),
3305
+ > PartialPermNC([1, 2, 4, 5], [4, 2, 3, 6]),
3306
+ > PartialPermNC([1, 2, 4, 6], [6, 4, 3, 5]),
3307
+ > PartialPermNC([1, 2, 4, 6], [6, 4, 5, 2]),
3308
+ > PartialPermNC([1, 3, 4, 5], [6, 1, 4, 3]),
3309
+ > PartialPermNC([1, 2, 3, 4, 5], [3, 4, 1, 2, 6]),
3310
+ > PartialPermNC([1, 2, 3, 4, 6], [1, 2, 5, 3, 4]),
3311
+ > PartialPermNC([1, 2, 3, 4, 6], [3, 6, 4, 5, 1]),
3312
+ > PartialPermNC([1, 2, 3, 5, 6], [4, 3, 5, 1, 6]),
3313
+ > PartialPermNC([1, 2, 4, 5, 6], [2, 3, 1, 5, 6])];;
3314
+ gap> s := Semigroup(gens);;
3315
+ gap> Size(s);
3316
+ 7960
3317
+ gap> f := PartialPermNC([1, 2, 5, 6], [5, 3, 6, 4]);;
3318
+ gap> h := HClass(s, f);
3319
+ <Green's H-class: [1,5,6,4][2,3]>
3320
+ gap> d := DClass(s, f);
3321
+ <Green's D-class: [1,5,6,4][2,3]>
3322
+ gap> h := HClass(s, f);
3323
+ <Green's H-class: [1,5,6,4][2,3]>
3324
+ gap> IsGroupHClass(h);
3325
+ false
3326
+ gap> Size(h);
3327
+ 1
3328
+ gap> h;
3329
+ <Green's H-class: [1,5,6,4][2,3]>
3330
+ gap> Size(h);
3331
+ 1
3332
+ gap> enum := Enumerator(h);
3333
+ <enumerator of <Green's H-class: [1,5,6,4][2,3]>>
3334
+ gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
3335
+ true
3336
+ gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
3337
+ true
3338
+ gap> d := DClass(s, Representative(h));
3339
+ <Green's D-class: [1,5,6,4][2,3]>
3340
+ gap> f := Representative(h);
3341
+ [1,5,6,4][2,3]
3342
+ gap> h := HClass(d, f);
3343
+ <Green's H-class: [1,5,6,4][2,3]>
3344
+ gap> h = HClass(s, f);
3345
+ true
3346
+ gap> Idempotents(h);
3347
+ [ ]
3348
+ gap> repeat h := NextIterator(iter); until Size(h) > 1;
3349
+ gap> h;
3350
+ <Green's R-class: [1,3](2)(4)>
3351
+ gap> Size(h);
3352
+ 114
3353
+ gap> f := Representative(h);
3354
+ [1,3](2)(4)
3355
+ gap> r := RClassNC(d, f);
3356
+ <Green's R-class: [1,3](2)(4)>
3357
+ gap> h := HClass(r, f);
3358
+ Error, the 2nd argument (a mult. elt.) does not belong to the 1st argument (a \
3359
+ Green's class)
3360
+ gap> h = HClass(s, f);
3361
+ false
3362
+ gap> Elements(h) = Elements(HClass(s, f));
3363
+ false
3364
+ gap> l := LClass(s, f);
3365
+ <Green's L-class: [1,3](2)(4)>
3366
+ gap> h := HClass(l, f);
3367
+ <Green's H-class: [1,3](2)(4)>
3368
+ gap> Elements(h) = Elements(HClass(s, f));
3369
+ true
3370
+ gap> h := HClass(l, f);
3371
+ <Green's H-class: [1,3](2)(4)>
3372
+
3373
+ # MiscTest41
3374
+ gap> gens := [Transformation([1, 2, 5, 4, 3, 8, 7, 6]),
3375
+ > Transformation([1, 6, 3, 4, 7, 2, 5, 8]),
3376
+ > Transformation([2, 1, 6, 7, 8, 3, 4, 5]),
3377
+ > Transformation([3, 2, 3, 6, 1, 6, 1, 2]),
3378
+ > Transformation([5, 2, 3, 6, 3, 4, 7, 4])];;
3379
+ gap> s := Semigroup(gens);;
3380
+ gap> Size(s);
3381
+ 5304
3382
+
3383
+ # MiscTest44
3384
+ gap> gens := [Transformation([4, 6, 5, 2, 1, 3]),
3385
+ > Transformation([6, 3, 2, 5, 4, 1]),
3386
+ > Transformation([1, 2, 4, 3, 5, 6]),
3387
+ > Transformation([3, 5, 6, 1, 2, 3]),
3388
+ > Transformation([5, 3, 6, 6, 6, 2]),
3389
+ > Transformation([2, 3, 2, 6, 4, 6]),
3390
+ > Transformation([2, 1, 2, 2, 2, 4]),
3391
+ > Transformation([4, 4, 1, 2, 1, 2])];;
3392
+ gap> s := Semigroup(gens);;
3393
+ gap> f := Transformation([4, 4, 1, 2, 1, 2]);;
3394
+ gap> h := HClassNC(s, f);
3395
+ <Green's H-class: Transformation( [ 4, 4, 1, 2, 1, 2 ] )>
3396
+ gap> Transformation([4, 4, 1, 2, 1, 2]) in last;
3397
+ true
3398
+ gap> IsRegularGreensClass(h);
3399
+ false
3400
+ gap> IsGroupHClass(h);
3401
+ false
3402
+ gap> h := GroupHClass(DClass(h));
3403
+ <Green's H-class: Transformation( [ 2, 2, 3, 6, 3, 6 ] )>
3404
+ gap> Transformation([2, 2, 3, 6, 3, 6]) in last;
3405
+ true
3406
+ gap> Size(h);
3407
+ 6
3408
+ gap> r := RClassOfHClass(h);
3409
+ <Green's R-class: Transformation( [ 2, 2, 3, 6, 3, 6 ] )>
3410
+ gap> Transformation([1, 1, 2, 4, 2, 4]) in last;
3411
+ true
3412
+ gap> ForAll(h, x -> x in r);
3413
+ true
3414
+ gap> Number(r, x -> x in h);
3415
+ 6
3416
+ gap> l;
3417
+ <Green's L-class: [1,3](2)(4)>
3418
+ gap> RhoOrbStabChain(l);
3419
+ true
3420
+ gap> g := SchutzenbergerGroup(l);
3421
+ Sym( [ 2 .. 4 ] )
3422
+ gap> IsSymmetricGroup(g);
3423
+ true
3424
+ gap> IsNaturalSymmetricGroup(g);
3425
+ true
3426
+
3427
+ # MiscTest45
3428
+ gap> a1 := Transformation([2, 2, 3, 5, 5, 6, 7, 8, 14, 16, 16, 17, 18, 14,
3429
+ > 16, 16, 17, 18]);;
3430
+ gap> a2 := Transformation([1, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
3431
+ > 16, 17, 18]);;
3432
+ gap> a3 := Transformation([1, 2, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 15,
3433
+ > 16, 17, 18]);;
3434
+ gap> a4 := Transformation([1, 2, 3, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
3435
+ > 17, 17, 18]);;
3436
+ gap> a5 := Transformation([1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15,
3437
+ > 16, 18, 18]);;
3438
+ gap> a6 := Transformation([1, 2, 3, 4, 5, 6, 8, 8, 9, 10, 11, 12, 13, 14, 15,
3439
+ > 16, 17, 2]);;
3440
+ gap> P := Transformation([1, 2, 9, 10, 11, 12, 13, 1, 9, 10, 11, 12, 13, 14,
3441
+ > 15, 16, 17, 18]);;
3442
+ gap> K18g := [a1, a2, a3, a4, a5, a6, P];;
3443
+ gap> s := Semigroup(K18g);;
3444
+ gap> f := Transformation([1, 2, 4, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13, 15, 15,
3445
+ > 17, 17, 18]);;
3446
+ gap> r := RClassNC(s, f);
3447
+ <Green's R-class: Transformation( [ 1, 2, 4, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13,
3448
+ 15, 15, 17, 17 ] )>
3449
+ gap> Size(r);
3450
+ 1
3451
+ gap> SchutzenbergerGroup(r);
3452
+ Group(())
3453
+ gap> f := Transformation([1, 2, 10, 10, 11, 12, 13, 1, 9, 10, 11, 12, 13, 15,
3454
+ > 15, 16, 17, 18]);;
3455
+ gap> r := RClass(s, f);
3456
+ <Green's R-class: Transformation( [ 1, 2, 10, 10, 11, 12, 13, 1, 9, 10, 11,
3457
+ 12, 13, 15, 15 ] )>
3458
+ gap> Size(r);
3459
+ 1
3460
+ gap> SchutzenbergerGroup(r);
3461
+ Group(())
3462
+
3463
+ # MiscTest46
3464
+ gap> gens := [Transformation([2, 4, 1, 5, 4, 4, 7, 3, 8, 1]),
3465
+ > Transformation([9, 1, 2, 8, 1, 5, 9, 9, 9, 5]),
3466
+ > Transformation([9, 3, 1, 5, 10, 3, 4, 6, 10, 2]),
3467
+ > Transformation([10, 7, 3, 7, 1, 9, 8, 8, 4, 10])];;
3468
+ gap> s := Semigroup(gens);;
3469
+ gap> f := Transformation([9, 10, 10, 3, 10, 9, 9, 9, 9, 9]);;
3470
+ gap> r := RClass(s, f);
3471
+ <Green's R-class: Transformation( [ 9, 10, 10, 3, 10, 9, 9, 9, 9, 9 ] )>
3472
+ gap> Transformation([9, 8, 8, 1, 8, 9, 9, 9, 9, 9]) in last;
3473
+ true
3474
+ gap> Size(r);
3475
+ 546
3476
+ gap> SchutzenbergerGroup(r);
3477
+ Group([ (1,9,8), (1,8) ])
3478
+ gap> ForAll(r, x -> x in r);
3479
+ true
3480
+ gap> f := Transformation([8, 8, 8, 8, 8, 8, 7, 7, 8, 8]);;
3481
+ gap> r := RClass(s, f);
3482
+ <Green's R-class: Transformation( [ 8, 8, 8, 8, 8, 8, 7, 7, 8, 8 ] )>
3483
+ gap> Transformation([1, 1, 1, 1, 1, 1, 9, 9, 1, 1]) in last;
3484
+ true
3485
+ gap> Size(r);
3486
+ 86
3487
+ gap> iter := IteratorOfRClasses(s);
3488
+ <iterator>
3489
+ gap> repeat r := NextIterator(iter); until Size(r) > 1000;
3490
+ gap> r;
3491
+ <Green's R-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9, 8 ] )>
3492
+ gap> Transformation([9, 1, 8, 2, 1, 8, 9, 9, 9, 8]) in last;
3493
+ true
3494
+ gap> Size(r);
3495
+ 1992
3496
+ gap> SchutzenbergerGroup(r);
3497
+ Group([ (2,8), (1,8), (1,2,8,9) ])
3498
+ gap> enum := Enumerator(r);
3499
+ <enumerator of <Green's R-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9,
3500
+ 8 ] )>>
3501
+ gap> ForAll(enum, x -> x in r);
3502
+ true
3503
+ gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
3504
+ true
3505
+ gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
3506
+ true
3507
+ gap> NrHClasses(r);
3508
+ 83
3509
+ gap> GreensHClasses(r);
3510
+ [ <Green's H-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9, 8 ] )>,
3511
+ <Green's H-class: Transformation( [ 8, 2, 4, 3, 2, 4, 8, 8, 8, 4 ] )>,
3512
+ <Green's H-class: Transformation( [ 1, 5, 4, 3, 5, 4, 1, 1, 1, 4 ] )>,
3513
+ <Green's H-class: Transformation( [ 5, 4, 1, 2, 4, 1, 5, 5, 5, 1 ] )>,
3514
+ <Green's H-class: Transformation( [ 10, 5, 9, 3, 5, 9, 10, 10, 10, 9 ] )>,
3515
+ <Green's H-class: Transformation( [ 9, 1, 2, 5, 1, 2, 9, 9, 9, 2 ] )>,
3516
+ <Green's H-class: Transformation( [ 4, 10, 7, 1, 10, 7, 4, 4, 4, 7 ] )>,
3517
+ <Green's H-class: Transformation( [ 5, 1, 7, 2, 1, 7, 5, 5, 5, 7 ] )>,
3518
+ <Green's H-class: Transformation( [ 10, 9, 4, 3, 9, 4, 10, 10, 10, 4 ] )>,
3519
+ <Green's H-class: Transformation( [ 5, 9, 8, 2, 9, 8, 5, 5, 5, 8 ] )>,
3520
+ <Green's H-class: Transformation( [ 1, 4, 8, 7, 4, 8, 1, 1, 1, 8 ] )>,
3521
+ <Green's H-class: Transformation( [ 7, 5, 2, 3, 5, 2, 7, 7, 7, 2 ] )>,
3522
+ <Green's H-class: Transformation( [ 10, 1, 4, 3, 1, 4, 10, 10, 10, 4 ] )>,
3523
+ <Green's H-class: Transformation( [ 8, 1, 7, 3, 1, 7, 8, 8, 8, 7 ] )>,
3524
+ <Green's H-class: Transformation( [ 3, 2, 7, 1, 2, 7, 3, 3, 3, 7 ] )>,
3525
+ <Green's H-class: Transformation( [ 1, 4, 7, 2, 4, 7, 1, 1, 1, 7 ] )>,
3526
+ <Green's H-class: Transformation( [ 5, 4, 7, 2, 4, 7, 5, 5, 5, 7 ] )>,
3527
+ <Green's H-class: Transformation( [ 10, 5, 4, 3, 5, 4, 10, 10, 10, 4 ] )>,
3528
+ <Green's H-class: Transformation( [ 1, 7, 3, 10, 7, 3, 1, 1, 1, 3 ] )>,
3529
+ <Green's H-class: Transformation( [ 9, 4, 1, 2, 4, 1, 9, 9, 9, 1 ] )>,
3530
+ <Green's H-class: Transformation( [ 5, 8, 4, 2, 8, 4, 5, 5, 5, 4 ] )>,
3531
+ <Green's H-class: Transformation( [ 10, 6, 5, 3, 6, 5, 10, 10, 10, 5 ] )>,
3532
+ <Green's H-class: Transformation( [ 2, 3, 10, 1, 3, 10, 2, 2, 2, 10 ] )>,
3533
+ <Green's H-class: Transformation( [ 3, 1, 2, 9, 1, 2, 3, 3, 3, 2 ] )>,
3534
+ <Green's H-class: Transformation( [ 10, 1, 9, 3, 1, 9, 10, 10, 10, 9 ] )>,
3535
+ <Green's H-class: Transformation( [ 2, 9, 10, 1, 9, 10, 2, 2, 2, 10 ] )>,
3536
+ <Green's H-class: Transformation( [ 2, 4, 1, 8, 4, 1, 2, 2, 2, 1 ] )>,
3537
+ <Green's H-class: Transformation( [ 5, 3, 4, 2, 3, 4, 5, 5, 5, 4 ] )>,
3538
+ <Green's H-class: Transformation( [ 10, 1, 5, 3, 1, 5, 10, 10, 10, 5 ] )>,
3539
+ <Green's H-class: Transformation( [ 3, 5, 9, 6, 5, 9, 3, 3, 3, 9 ] )>,
3540
+ <Green's H-class: Transformation( [ 3, 1, 4, 9, 1, 4, 3, 3, 3, 4 ] )>,
3541
+ <Green's H-class: Transformation( [ 1, 5, 10, 9, 5, 10, 1, 1, 1, 10 ] )>,
3542
+ <Green's H-class: Transformation( [ 3, 10, 7, 4, 10, 7, 3, 3, 3, 7 ] )>,
3543
+ <Green's H-class: Transformation( [ 3, 10, 8, 7, 10, 8, 3, 3, 3, 8 ] )>,
3544
+ <Green's H-class: Transformation( [ 1, 2, 6, 4, 2, 6, 1, 1, 1, 6 ] )>,
3545
+ <Green's H-class: Transformation( [ 9, 1, 5, 8, 1, 5, 9, 9, 9, 5 ] )>,
3546
+ <Green's H-class: Transformation( [ 4, 1, 8, 10, 1, 8, 4, 4, 4, 8 ] )>,
3547
+ <Green's H-class: Transformation( [ 5, 3, 1, 2, 3, 1, 5, 5, 5, 1 ] )>,
3548
+ <Green's H-class: Transformation( [ 5, 9, 6, 2, 9, 6, 5, 5, 5, 6 ] )>,
3549
+ <Green's H-class: Transformation( [ 1, 4, 9, 7, 4, 9, 1, 1, 1, 9 ] )>,
3550
+ <Green's H-class: Transformation( [ 8, 4, 7, 10, 4, 7, 8, 8, 8, 7 ] )>,
3551
+ <Green's H-class: Transformation( [ 3, 5, 7, 1, 5, 7, 3, 3, 3, 7 ] )>,
3552
+ <Green's H-class: Transformation( [ 4, 10, 9, 1, 10, 9, 4, 4, 4, 9 ] )>,
3553
+ <Green's H-class: Transformation( [ 5, 1, 8, 2, 1, 8, 5, 5, 5, 8 ] )>,
3554
+ <Green's H-class: Transformation( [ 10, 6, 9, 3, 6, 9, 10, 10, 10, 9 ] )>,
3555
+ <Green's H-class: Transformation( [ 1, 10, 8, 7, 10, 8, 1, 1, 1, 8 ] )>,
3556
+ <Green's H-class: Transformation( [ 9, 2, 6, 4, 2, 6, 9, 9, 9, 6 ] )>,
3557
+ <Green's H-class: Transformation( [ 9, 10, 2, 5, 10, 2, 9, 9, 9, 2 ] )>,
3558
+ <Green's H-class: Transformation( [ 10, 3, 1, 8, 3, 1, 10, 10, 10, 1 ] )>,
3559
+ <Green's H-class: Transformation( [ 2, 1, 9, 6, 1, 9, 2, 2, 2, 9 ] )>,
3560
+ <Green's H-class: Transformation( [ 7, 10, 4, 9, 10, 4, 7, 7, 7, 4 ] )>,
3561
+ <Green's H-class: Transformation( [ 7, 1, 5, 8, 1, 5, 7, 7, 7, 5 ] )>,
3562
+ <Green's H-class: Transformation( [ 7, 2, 4, 3, 2, 4, 7, 7, 7, 4 ] )>,
3563
+ <Green's H-class: Transformation( [ 1, 4, 5, 7, 4, 5, 1, 1, 1, 5 ] )>,
3564
+ <Green's H-class: Transformation( [ 9, 5, 10, 4, 5, 10, 9, 9, 9, 10 ] )>,
3565
+ <Green's H-class: Transformation( [ 5, 1, 8, 4, 1, 8, 5, 5, 5, 8 ] )>,
3566
+ <Green's H-class: Transformation( [ 9, 10, 6, 5, 10, 6, 9, 9, 9, 6 ] )>,
3567
+ <Green's H-class: Transformation( [ 4, 10, 9, 6, 10, 9, 4, 4, 4, 9 ] )>,
3568
+ <Green's H-class: Transformation( [ 10, 2, 5, 3, 2, 5, 10, 10, 10, 5 ] )>,
3569
+ <Green's H-class: Transformation( [ 5, 10, 4, 2, 10, 4, 5, 5, 5, 4 ] )>,
3570
+ <Green's H-class: Transformation( [ 2, 5, 8, 7, 5, 8, 2, 2, 2, 8 ] )>,
3571
+ <Green's H-class: Transformation( [ 3, 10, 6, 4, 10, 6, 3, 3, 3, 6 ] )>,
3572
+ <Green's H-class: Transformation( [ 3, 10, 9, 7, 10, 9, 3, 3, 3, 9 ] )>,
3573
+ <Green's H-class: Transformation( [ 1, 2, 10, 4, 2, 10, 1, 1, 1, 10 ] )>,
3574
+ <Green's H-class: Transformation( [ 3, 5, 2, 9, 5, 2, 3, 3, 3, 2 ] )>,
3575
+ <Green's H-class: Transformation( [ 3, 1, 7, 4, 1, 7, 3, 3, 3, 7 ] )>,
3576
+ <Green's H-class: Transformation( [ 9, 1, 4, 5, 1, 4, 9, 9, 9, 4 ] )>,
3577
+ <Green's H-class: Transformation( [ 3, 10, 8, 4, 10, 8, 3, 3, 3, 8 ] )>,
3578
+ <Green's H-class: Transformation( [ 2, 1, 5, 6, 1, 5, 2, 2, 2, 5 ] )>,
3579
+ <Green's H-class: Transformation( [ 7, 10, 1, 9, 10, 1, 7, 7, 7, 1 ] )>,
3580
+ <Green's H-class: Transformation( [ 7, 1, 2, 8, 1, 2, 7, 7, 7, 2 ] )>,
3581
+ <Green's H-class: Transformation( [ 4, 3, 9, 6, 3, 9, 4, 4, 4, 9 ] )>,
3582
+ <Green's H-class: Transformation( [ 7, 3, 4, 9, 3, 4, 7, 7, 7, 4 ] )>,
3583
+ <Green's H-class: Transformation( [ 1, 5, 10, 4, 5, 10, 1, 1, 1, 10 ] )>,
3584
+ <Green's H-class: Transformation( [ 3, 4, 8, 7, 4, 8, 3, 3, 3, 8 ] )>,
3585
+ <Green's H-class: Transformation( [ 1, 5, 6, 4, 5, 6, 1, 1, 1, 6 ] )>,
3586
+ <Green's H-class: Transformation( [ 9, 2, 10, 4, 2, 10, 9, 9, 9, 10 ] )>,
3587
+ <Green's H-class: Transformation( [ 3, 10, 2, 9, 10, 2, 3, 3, 3, 2 ] )>,
3588
+ <Green's H-class: Transformation( [ 2, 5, 10, 1, 5, 10, 2, 2, 2, 10 ] )>,
3589
+ <Green's H-class: Transformation( [ 9, 5, 4, 3, 5, 4, 9, 9, 9, 4 ] )>,
3590
+ <Green's H-class: Transformation( [ 4, 1, 9, 6, 1, 9, 4, 4, 4, 9 ] )>,
3591
+ <Green's H-class: Transformation( [ 9, 5, 6, 4, 5, 6, 9, 9, 9, 6 ] )>,
3592
+ <Green's H-class: Transformation( [ 1, 5, 3, 6, 5, 3, 1, 1, 1, 3 ] )> ]
3593
+ gap> List(last, x -> Representative(x) in s);
3594
+ [ true, true, true, true, true, true, true, true, true, true, true, true,
3595
+ true, true, true, true, true, true, true, true, true, true, true, true,
3596
+ true, true, true, true, true, true, true, true, true, true, true, true,
3597
+ true, true, true, true, true, true, true, true, true, true, true, true,
3598
+ true, true, true, true, true, true, true, true, true, true, true, true,
3599
+ true, true, true, true, true, true, true, true, true, true, true, true,
3600
+ true, true, true, true, true, true, true, true, true, true, true ]
3601
+ gap> ForAll(last2, x -> Representative(x) in r);
3602
+ true
3603
+ gap> Semigroup(gens);;
3604
+ gap> r := GreensRClassOfElement(s, f);
3605
+ <Green's R-class: Transformation( [ 8, 8, 8, 8, 8, 8, 7, 7, 8, 8 ] )>
3606
+ gap> Transformation([1, 1, 1, 1, 1, 1, 9, 9, 1, 1]) in last;
3607
+ true
3608
+ gap> f := Transformation([9, 9, 5, 9, 5, 9, 5, 5, 5, 5]);;
3609
+ gap> r := GreensRClassOfElement(s, f);
3610
+ <Green's R-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>
3611
+ gap> Transformation([9, 9, 1, 9, 1, 9, 1, 1, 1, 1]) in last;
3612
+ true
3613
+ gap> Size(r);
3614
+ 86
3615
+ gap> NrHClasses(r);
3616
+ 43
3617
+ gap> s := Semigroup(gens);;
3618
+ gap> r := GreensRClassOfElement(s, f);
3619
+ <Green's R-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>
3620
+ gap> Transformation([9, 9, 1, 9, 1, 9, 1, 1, 1, 1]) in last;
3621
+ true
3622
+ gap> GreensHClasses(r);
3623
+ [ <Green's H-class: Transformation( [ 9, 9, 1, 9, 1, 9, 1, 1, 1, 1 ] )>,
3624
+ <Green's H-class: Transformation( [ 8, 8, 2, 8, 2, 8, 2, 2, 2, 2 ] )>,
3625
+ <Green's H-class: Transformation( [ 4, 4, 3, 4, 3, 4, 3, 3, 3, 3 ] )>,
3626
+ <Green's H-class: Transformation( [ 1, 1, 5, 1, 5, 1, 5, 5, 5, 5 ] )>,
3627
+ <Green's H-class: Transformation( [ 9, 9, 10, 9, 10, 9, 10, 10, 10, 10 ] )>,
3628
+ <Green's H-class: Transformation( [ 10, 10, 4, 10, 4, 10, 4, 4, 4, 4 ] )>,
3629
+ <Green's H-class: Transformation( [ 8, 8, 5, 8, 5, 8, 5, 5, 5, 5 ] )>,
3630
+ <Green's H-class: Transformation( [ 8, 8, 1, 8, 1, 8, 1, 1, 1, 1 ] )>,
3631
+ <Green's H-class: Transformation( [ 8, 8, 10, 8, 10, 8, 10, 10, 10, 10 ] )>,
3632
+ <Green's H-class: Transformation( [ 1, 1, 3, 1, 3, 1, 3, 3, 3, 3 ] )>,
3633
+ <Green's H-class: Transformation( [ 3, 3, 10, 3, 10, 3, 10, 10, 10, 10 ] )>,
3634
+ <Green's H-class: Transformation( [ 2, 2, 5, 2, 5, 2, 5, 5, 5, 5 ] )>,
3635
+ <Green's H-class: Transformation( [ 7, 7, 1, 7, 1, 7, 1, 1, 1, 1 ] )>,
3636
+ <Green's H-class: Transformation( [ 9, 9, 4, 9, 4, 9, 4, 4, 4, 4 ] )>,
3637
+ <Green's H-class: Transformation( [ 9, 9, 8, 9, 8, 9, 8, 8, 8, 8 ] )>,
3638
+ <Green's H-class: Transformation( [ 8, 8, 4, 8, 4, 8, 4, 4, 4, 4 ] )>,
3639
+ <Green's H-class: Transformation( [ 7, 7, 8, 7, 8, 7, 8, 8, 8, 8 ] )>,
3640
+ <Green's H-class: Transformation( [ 7, 7, 3, 7, 3, 7, 3, 3, 3, 3 ] )>,
3641
+ <Green's H-class: Transformation( [ 9, 9, 2, 9, 2, 9, 2, 2, 2, 2 ] )>,
3642
+ <Green's H-class: Transformation( [ 7, 7, 4, 7, 4, 7, 4, 4, 4, 4 ] )>,
3643
+ <Green's H-class: Transformation( [ 4, 4, 5, 4, 5, 4, 5, 5, 5, 5 ] )>,
3644
+ <Green's H-class: Transformation( [ 5, 5, 10, 5, 10, 5, 10, 10, 10, 10 ] )>,
3645
+ <Green's H-class: Transformation( [ 2, 2, 10, 2, 10, 2, 10, 10, 10, 10 ] )>,
3646
+ <Green's H-class: Transformation( [ 7, 7, 10, 7, 10, 7, 10, 10, 10, 10 ] )>,
3647
+ <Green's H-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>,
3648
+ <Green's H-class: Transformation( [ 1, 1, 4, 1, 4, 1, 4, 4, 4, 4 ] )>,
3649
+ <Green's H-class: Transformation( [ 4, 4, 2, 4, 2, 4, 2, 2, 2, 2 ] )>,
3650
+ <Green's H-class: Transformation( [ 5, 5, 3, 5, 3, 5, 3, 3, 3, 3 ] )>,
3651
+ <Green's H-class: Transformation( [ 1, 1, 2, 1, 2, 1, 2, 2, 2, 2 ] )>,
3652
+ <Green's H-class: Transformation( [ 9, 9, 3, 9, 3, 9, 3, 3, 3, 3 ] )>,
3653
+ <Green's H-class: Transformation( [ 1, 1, 10, 1, 10, 1, 10, 10, 10, 10 ] )>,
3654
+ <Green's H-class: Transformation( [ 2, 2, 3, 2, 3, 2, 3, 3, 3, 3 ] )>,
3655
+ <Green's H-class: Transformation( [ 7, 7, 5, 7, 5, 7, 5, 5, 5, 5 ] )>,
3656
+ <Green's H-class: Transformation( [ 8, 8, 3, 8, 3, 8, 3, 3, 3, 3 ] )>,
3657
+ <Green's H-class: Transformation( [ 1, 1, 6, 1, 6, 1, 6, 6, 6, 6 ] )>,
3658
+ <Green's H-class: Transformation( [ 4, 4, 6, 4, 6, 4, 6, 6, 6, 6 ] )>,
3659
+ <Green's H-class: Transformation( [ 9, 9, 7, 9, 7, 9, 7, 7, 7, 7 ] )>,
3660
+ <Green's H-class: Transformation( [ 6, 6, 5, 6, 5, 6, 5, 5, 5, 5 ] )>,
3661
+ <Green's H-class: Transformation( [ 6, 6, 10, 6, 10, 6, 10, 10, 10, 10 ] )>,
3662
+ <Green's H-class: Transformation( [ 7, 7, 2, 7, 2, 7, 2, 2, 2, 2 ] )>,
3663
+ <Green's H-class: Transformation( [ 2, 2, 6, 2, 6, 2, 6, 6, 6, 6 ] )>,
3664
+ <Green's H-class: Transformation( [ 9, 9, 6, 9, 6, 9, 6, 6, 6, 6 ] )>,
3665
+ <Green's H-class: Transformation( [ 3, 3, 6, 3, 6, 3, 6, 6, 6, 6 ] )> ]
3666
+ gap> Length(last);
3667
+ 43
3668
+ gap> ForAll(last2, x -> Representative(x) in r);
3669
+ true
3670
+ gap> ForAll(last3, x -> Representative(x) in s);
3671
+ true
3672
+ gap> h := HClass(s, Transformation([4, 4, 9, 4, 9, 4, 9, 9, 9, 9]));;
3673
+ gap> f := Representative(h);
3674
+ Transformation( [ 4, 4, 9, 4, 9, 4, 9, 9, 9, 9 ] )
3675
+ gap> hh := HClass(r, f);
3676
+ <Green's H-class: Transformation( [ 4, 4, 9, 4, 9, 4, 9, 9, 9, 9 ] )>
3677
+ gap> Transformation([4, 4, 9, 4, 9, 4, 9, 9, 9, 9]) in last;
3678
+ true
3679
+ gap> hh = h;
3680
+ true
3681
+ gap> h = hh;
3682
+ true
3683
+ gap> Elements(h) = Elements(hh);
3684
+ true
3685
+ gap> f := Transformation([10, 1, 9, 10, 2, 1, 5, 3, 2, 3]);;
3686
+ gap> r := GreensRClassOfElement(s, f);
3687
+ <Green's R-class: Transformation( [ 10, 1, 9, 10, 2, 1, 5, 3, 2, 3 ] )>
3688
+ gap> Transformation([10, 1, 9, 10, 2, 1, 5, 3, 2, 3]) in last;
3689
+ true
3690
+ gap> Size(r);
3691
+ 1
3692
+ gap> f := Transformation([10, 10, 3, 10, 10, 10, 10, 10, 6, 10]);;
3693
+ gap> r := GreensRClassOfElement(s, f);
3694
+ <Green's R-class: Transformation( [ 10, 10, 3, 10, 10, 10, 10, 10, 6, 10 ] )>
3695
+ gap> Transformation([8, 8, 1, 8, 8, 8, 8, 8, 9, 8]) in last;
3696
+ true
3697
+ gap> Size(r);
3698
+ 546
3699
+ gap> f := Transformation([6, 6, 4, 6, 6, 6, 6, 6, 3, 6]);;
3700
+ gap> f in r;
3701
+ true
3702
+ gap> h := HClass(r, f);
3703
+ <Green's H-class: Transformation( [ 6, 6, 4, 6, 6, 6, 6, 6, 3, 6 ] )>
3704
+ gap> Transformation([6, 6, 4, 6, 6, 6, 6, 6, 3, 6]) in last;
3705
+ true
3706
+ gap> f in h;
3707
+ true
3708
+ gap> ForAll(h, x -> x in r);
3709
+ true
3710
+ gap> Size(h);
3711
+ 6
3712
+ gap> Elements(h);
3713
+ [ Transformation( [ 3, 3, 4, 3, 3, 3, 3, 3, 6, 3 ] ),
3714
+ Transformation( [ 3, 3, 6, 3, 3, 3, 3, 3, 4, 3 ] ),
3715
+ Transformation( [ 4, 4, 3, 4, 4, 4, 4, 4, 6, 4 ] ),
3716
+ Transformation( [ 4, 4, 6, 4, 4, 4, 4, 4, 3, 4 ] ),
3717
+ Transformation( [ 6, 6, 3, 6, 6, 6, 6, 6, 4, 6 ] ),
3718
+ Transformation( [ 6, 6, 4, 6, 6, 6, 6, 6, 3, 6 ] ) ]
3719
+
3720
+ # MiscTest47
3721
+ gap> gens :=
3722
+ > [PartialPermNC([1, 2, 3, 5, 9, 10], [5, 10, 7, 8, 9, 1]),
3723
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 9], [9, 3, 1, 4, 2, 5, 6]),
3724
+ > PartialPermNC([1, 2, 3, 4, 5, 7, 9], [7, 6, 2, 8, 4, 5, 3]),
3725
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
3726
+ > [8, 7, 4, 3, 10, 9, 5, 6, 1, 2])];;
3727
+ gap> s := Semigroup(gens);;
3728
+ gap> Size(s);
3729
+ 1422787
3730
+ gap> f := PartialPerm([1, 4, 7, 9, 10], [5, 10, 9, 8, 7]);;
3731
+ gap> r := GreensRClassOfElementNC(s, f);
3732
+ <Green's R-class: [1,5][4,10,7,9,8]>
3733
+ gap> Size(r);
3734
+ 4
3735
+ gap> f in r;
3736
+ true
3737
+ gap> f := PartialPerm([1, 7, 8, 9], [10, 9, 6, 5]);;
3738
+ gap> r := GreensRClassOfElementNC(s, f);
3739
+ <Green's R-class: [1,10][7,9,5][8,6]>
3740
+ gap> Size(r);
3741
+ 4
3742
+ gap> iter := IteratorOfRClasses(s);
3743
+ <iterator>
3744
+ gap> repeat r := NextIterator(iter); until Size(r) > 1000;
3745
+ gap> r;
3746
+ <Green's R-class: [1,4][9,3,5][10,7]>
3747
+ gap> Size(r);
3748
+ 3792
3749
+ gap> r := RClassNC(s, Representative(r));
3750
+ <Green's R-class: [1,4][9,3,5][10,7]>
3751
+ gap> h := HClassNC(r, PartialPermNC([1, 3, 9, 10], [10, 9, 8, 1]));;
3752
+ gap> Size(h);
3753
+ 24
3754
+ gap> ForAll(h, x -> x in r);
3755
+ true
3756
+ gap> IsRegularGreensClass(r);
3757
+ true
3758
+ gap> IsRegularSemigroup(s);
3759
+ false
3760
+ gap> NrIdempotents(r);
3761
+ 1
3762
+ gap> Idempotents(r);
3763
+ [ <identity partial perm on [ 1, 3, 9, 10 ]> ]
3764
+ gap> ForAll(last, x -> x in r);
3765
+ true
3766
+
3767
+ # MiscTest48
3768
+ gap> gens := [Transformation([1, 3, 7, 9, 1, 12, 13, 1, 15, 9, 1, 18, 1, 1,
3769
+ > 13, 1, 1, 21, 1, 1, 1, 1, 1, 25, 26, 1]),
3770
+ > Transformation([1, 5, 1, 5, 11, 1, 1, 14, 1, 16, 17, 1, 1, 19, 1, 11, 1,
3771
+ > 1, 1, 23, 1, 16, 19, 1, 1, 1]),
3772
+ > Transformation([1, 4, 8, 1, 10, 1, 8, 1, 1, 1, 10, 1, 8, 10, 1, 1, 20, 1,
3773
+ > 22, 1, 8, 1, 1, 1, 1, 1]),
3774
+ > Transformation([1, 6, 6, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 6, 1, 1, 6, 1,
3775
+ > 1, 24, 1, 1, 1, 1, 6])];;
3776
+ gap> s := Semigroup(gens);;
3777
+ gap> First(DClasses(s), IsRegularDClass);
3778
+ <Green's D-class: Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
3779
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
3780
+ gap> NrDClasses(s);
3781
+ 31
3782
+ gap> PositionsProperty(DClasses(s), IsRegularDClass);
3783
+ [ 6, 7 ]
3784
+ gap> d := DClasses(s)[7];
3785
+ <Green's D-class: Transformation( [ 1, 6, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 6,
3786
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
3787
+ gap> r := RClassNC(s, Representative(d));
3788
+ <Green's R-class: Transformation( [ 1, 6, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 6,
3789
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
3790
+ gap> Size(r);
3791
+ 20
3792
+ gap> ForAll(Idempotents(r), x -> x in s);
3793
+ true
3794
+ gap> ForAll(Idempotents(r), x -> x in r);
3795
+ true
3796
+ gap> ForAll(Idempotents(r), x -> x in d);
3797
+ true
3798
+ gap> ForAll(r, x -> x in d);
3799
+ true
3800
+ gap> Number(GreensRClasses(s), IsRegularGreensClass);
3801
+ 21
3802
+ gap> NrRegularDClasses(s);
3803
+ 2
3804
+
3805
+ # MiscTest49
3806
+ gap> gens := [Transformation([1, 2, 3, 5, 4, 6, 7, 8]),
3807
+ > Transformation([4, 4, 3, 1, 5, 6, 3, 8]),
3808
+ > Transformation([3, 6, 1, 7, 3, 4, 8, 3]),
3809
+ > Transformation([1, 2, 3, 4, 5, 3, 7, 8]),
3810
+ > Transformation([1, 2, 3, 4, 1, 6, 7, 8]),
3811
+ > Transformation([8, 8, 3, 4, 5, 7, 6, 1])];;
3812
+ gap> s := Monoid(gens);
3813
+ <transformation monoid of degree 8 with 6 generators>
3814
+ gap> f := Transformation([4, 4, 3, 8, 5, 3, 3, 1]);;
3815
+ gap> Size(s);
3816
+ 998
3817
+ gap> r := RClass(s, f);
3818
+ <Green's R-class: Transformation( [ 4, 4, 3, 8, 5, 3, 3, 1 ] )>
3819
+ gap> Transformation([4, 4, 3, 8, 5, 3, 3, 1]) in last;
3820
+ true
3821
+ gap> IsRegularGreensClass(r);
3822
+ true
3823
+ gap> Idempotents(r);
3824
+ [ Transformation( [ 1, 1, 3, 4, 5, 3, 3 ] ) ]
3825
+ gap> IsRegularSemigroup(s);
3826
+ false
3827
+ gap> ForAll(r, x -> x in s);
3828
+ true
3829
+ gap> iter := Iterator(r);
3830
+ <iterator>
3831
+ gap> for i in iter do od;
3832
+ gap> Size(r);
3833
+ 24
3834
+ gap> IsDoneIterator(iter);
3835
+ true
3836
+ gap> iter := Iterator(r);
3837
+ <iterator>
3838
+ gap> for i in [1 .. 23] do NextIterator(iter); od;
3839
+ gap> IsDoneIterator(iter);
3840
+ false
3841
+ gap> NextIterator(iter);
3842
+ Transformation( [ 5, 5, 3, 1, 4, 3, 3 ] )
3843
+ gap> IsDoneIterator(iter);
3844
+ true
3845
+ gap> Transformation([4, 4, 3, 8, 1, 3, 3, 5]) in r;
3846
+ true
3847
+ gap> r;
3848
+ <Green's R-class: Transformation( [ 4, 4, 3, 8, 5, 3, 3, 1 ] )>
3849
+ gap> Transformation([4, 4, 3, 8, 5, 3, 3, 1]) in last;
3850
+ true
3851
+ gap> NrIdempotents(r);
3852
+ 1
3853
+
3854
+ # MiscTest50
3855
+ gap> gens :=
3856
+ > [PartialPermNC([1, 2, 3, 4, 7], [8, 3, 5, 7, 4]),
3857
+ > PartialPermNC([1, 2, 5, 6, 7], [4, 1, 6, 2, 8]),
3858
+ > PartialPermNC([1, 2, 3, 4, 5, 6], [3, 7, 1, 5, 2, 6]),
3859
+ > PartialPermNC([1, 2, 3, 4, 5, 6], [7, 2, 5, 6, 3, 8]),
3860
+ > PartialPermNC([1, 2, 3, 5, 6, 7], [4, 5, 6, 1, 2, 7]),
3861
+ > PartialPermNC([1, 2, 3, 5, 6, 7], [5, 1, 7, 2, 8, 4])];;
3862
+ gap> s := Semigroup(gens);;
3863
+ gap> Size(s);
3864
+ 9954
3865
+ gap> f := PartialPerm([2, 3, 6], [1, 4, 8]);;
3866
+ gap> r := RClass(s, f);
3867
+ <Green's R-class: [2,1][3,4][6,8]>
3868
+ gap> NrIdempotents(r);
3869
+ 0
3870
+ gap> List(RClasses(s), NrIdempotents);;
3871
+ gap> Sum(last);
3872
+ 53
3873
+ gap> NrIdempotents(s);
3874
+ 53
3875
+ gap> r := RClassOfHClass(h);
3876
+ <Green's R-class: [1,4][9,3,5][10,7]>
3877
+ gap> HClassReps(r);
3878
+ [ [1,4][9,3,5][10,7], [1,8][3,2][9,5][10,4], [1,6][9,10,3,7],
3879
+ [1,9,2][3,5][10,4], [1,6][9,4][10,2](3), [9,4][10,3,1,5], [3,9,4][10,1,2],
3880
+ [1,4][10,6](3)(9), [3,6][9,5][10,4](1), [1,8](3,9,10), [3,1,6][9,2][10,4],
3881
+ [1,9,5][10,4](3), [1,8][9,2][10,4](3), [1,6][9,7][10,3,4], [9,10,3,4](1),
3882
+ [1,9,7][10,3,8], [10,9,1,3,4], [3,4][10,6](1)(9), [1,9,6][3,4][10,5],
3883
+ [1,6][3,4][9,5][10,2], [1,5][9,2][10,3,4], [9,3,4][10,1,2],
3884
+ [1,3,8][9,7][10,4], [1,4][9,5][10,3,6], [3,5][9,2][10,1,4], [1,4][10,9,3,2],
3885
+ [1,8][9,2][10,3,6], [1,6][3,9,7][10,4], [10,3,1,9,5], [1,3,7][9,4][10,2],
3886
+ [1,6][3,2][9,5][10,8], [1,9,10,6][3,7], [3,5][10,9,2](1), [1,9,3,2][10,6],
3887
+ [9,1,6][10,5](3), [1,9,8][3,4](10), [9,6][10,2](1)(3), [1,8][3,4][10,7](9),
3888
+ [3,7][10,9,4](1), [1,7][9,5][10,8](3), [1,5][3,4][9,10,6], [1,10,9,2](3),
3889
+ [3,7](1)(9,10), [3,5][9,2][10,1,8], [1,6][3,10,8][9,7], [1,9,5][3,2][10,6],
3890
+ [1,6][9,2][10,5](3), [9,3,1,5][10,2], [1,7][3,5][9,10,8],
3891
+ [1,5][3,10,6][9,2], [1,10,9,7][3,2], [3,7][9,5][10,1,2],
3892
+ [1,6][3,5][9,4][10,7], [1,9,3,10,5], [3,1,9,7][10,8], [3,8][9,5][10,6](1),
3893
+ [1,8][3,6](9,10), [3,9,2][10,1,6], [1,5][10,9,3,6], [3,5][9,1,2][10,6],
3894
+ [1,3,2][10,5](9), [1,10,8][3,7](9), [3,7][9,1,4](10), [1,3,5][9,8][10,2],
3895
+ [1,4][3,10,7][9,6], [3,9,4](1,10), [9,3,1,2][10,8], [1,7][3,8][9,4][10,6],
3896
+ [3,2][9,4](1)(10), [1,8][9,3,7][10,2], [10,3,9,1,2], [1,10,7][3,9,5],
3897
+ [3,1,2][9,10,5], [3,5][9,1,10,8], [1,2][3,10,6][9,8], [1,7][3,2][10,9,6],
3898
+ [3,7][10,1,5](9), [1,7][3,8][9,2](10), [1,5][3,6][9,7][10,2],
3899
+ [10,1,3,6](9), [3,5][10,9,6](1), [3,10,1,8](9), [3,2][9,1,6][10,8],
3900
+ [1,9,8][3,7][10,6], [3,9,1,4][10,8], [9,8][10,6](1,3), [1,4][3,8][10,9,6],
3901
+ [1,7][9,6][10,3,2], [1,5][3,7][10,4](9), [1,4][9,3,5][10,8],
3902
+ [1,3,10,6][9,4], [9,1,10,3,5], [3,1,5][9,7][10,8], [1,10,6][3,8][9,5],
3903
+ [1,2][3,6](9,10), [3,9,2][10,1,7], [1,5][9,6][10,7](3), [1,10,5][3,4](9),
3904
+ [9,1,2](3)(10), [1,7][3,4][9,8][10,2], [3,7][9,5](1,10), [1,2][3,5][9,10,8],
3905
+ [1,7][3,10,6][9,2], [1,5][3,2][10,9,7], [1,2][3,10,4][9,8],
3906
+ [3,1,7][9,8][10,4], [1,5][9,6][10,3,8], [1,10,4][3,6](9),
3907
+ [1,2][3,7][9,4][10,6], [1,7][10,9,3,5], [3,10,1,5][9,4], [1,10,8][9,3,2],
3908
+ [1,8][3,4][9,10,7], [1,7][3,9,4](10), [3,4][9,7][10,1,2], [9,3,5][10,1,8],
3909
+ [1,6][3,10,8][9,4], [3,10,1,8][9,7], [3,8][9,10,4](1), [9,1,4][10,6](3),
3910
+ [3,1,4][10,5](9), [1,4][3,9,6][10,2], [10,9,1,3,7], [1,2][9,7][10,3,5],
3911
+ [1,7][3,10,4][9,5], [1,5][9,10,3,2], [1,10,4][3,7][9,2], [3,8][9,1,4][10,5],
3912
+ [1,3,6][9,8](10), [9,1,3,8](10), [1,4][3,6][9,8][10,2], [1,3,9,6][10,7],
3913
+ [1,3,4][10,8](9), [9,4][10,1,3,7], [1,2][3,5][9,8][10,7],
3914
+ [1,7][3,10,5][9,6], [1,5][3,2](9)(10), [3,7][9,1,10,2], [1,8][9,7](3)(10),
3915
+ [1,10,9,4](3), [1,7][9,10,4](3), [1,3,7](9,10),
3916
+ <identity partial perm on [ 1, 3, 9, 10 ]>, [3,4][9,1,8][10,2],
3917
+ [1,6][9,8][10,7](3), [10,9,1,8](3), [3,4][9,8][10,1,6], [1,9,6][10,8](3),
3918
+ [9,8][10,1,4](3), [1,3,4][9,6][10,8], [9,3,1,7][10,8],
3919
+ [1,5][3,8][9,4][10,6], [1,10,9,3,6], [1,8][9,3,4](10), [1,7][10,4](3,9),
3920
+ [9,7](1)(3,10), [1,3,10,5][9,4], [1,4][9,3,2](10) ]
3921
+ gap> iter := IteratorOfRClasses(s);
3922
+ <iterator>
3923
+ gap> repeat r := NextIterator(iter); until Size(r) > 1;
3924
+ gap> r;
3925
+ <Green's R-class: (1,5,2)>
3926
+ gap> Size(r);
3927
+ 120
3928
+ gap> HClassReps(r);
3929
+ [ (1,5,2), [2,6][5,4](1), [1,3][2,6](5), [5,2,6](1), [5,2,4](1),
3930
+ [1,7][5,2,6], [1,7](2)(5), [2,5,1,7], [1,4](2)(5), [1,6][5,3](2),
3931
+ [1,2,5,6], [1,7][2,3][5,6], [1,7][5,3](2), [1,4][2,3](5), [1,6][2,5,7],
3932
+ [5,7](1,2), [2,5,4](1), [1,3](2)(5), [2,5,1,6], [1,6][5,2,4] ]
3933
+ gap> ForAll(last, x -> x in r);
3934
+ true
3935
+ gap> r;
3936
+ <Green's R-class: (1,5,2)>
3937
+ gap> Size(DClass(r));
3938
+ 2400
3939
+ gap> d := DClass(r);
3940
+ <Green's D-class: (1,5,2)>
3941
+ gap> ForAll(r, x -> x in d);
3942
+ true
3943
+ gap> Number(d, x -> x in r);
3944
+ 120
3945
+ gap> Size(r);
3946
+ 120
3947
+ gap> ForAll(HClassReps(r), x -> x in d);
3948
+ true
3949
+ gap> ForAll(HClassReps(r), x -> x in HClassReps(d));
3950
+ true
3951
+
3952
+ # MiscTest51
3953
+ gap> gens := [Transformation([6, 4, 3, 2, 5, 1]),
3954
+ > Transformation([1, 2, 3, 4, 5, 6]),
3955
+ > Transformation([5, 3, 3, 2, 4, 1]),
3956
+ > Transformation([1, 3, 3, 4, 5, 2]),
3957
+ > Transformation([4, 5, 2, 3, 3, 1]),
3958
+ > Transformation([6, 4, 3, 5, 2, 3]),
3959
+ > Transformation([5, 2, 3, 4, 3, 6]),
3960
+ > Transformation([1, 3, 2, 5, 4, 5]),
3961
+ > Transformation([4, 3, 2, 2, 1, 5]),
3962
+ > Transformation([1, 3, 3, 5, 2, 4]),
3963
+ > Transformation([6, 3, 3, 2, 1, 5]),
3964
+ > Transformation([6, 3, 4, 5, 2, 2]),
3965
+ > Transformation([6, 4, 3, 2, 2, 5]),
3966
+ > Transformation([1, 3, 2, 3, 5, 4]),
3967
+ > Transformation([1, 2, 3, 4, 5, 2]),
3968
+ > Transformation([2, 4, 3, 4, 6, 5]),
3969
+ > Transformation([2, 4, 3, 3, 6, 1]),
3970
+ > Transformation([6, 4, 3, 2, 3, 1]),
3971
+ > Transformation([6, 4, 3, 2, 2, 1])];;
3972
+ gap> s := Semigroup(gens);;
3973
+ gap> Size(s);
3974
+ 7008
3975
+ gap> NrRClasses(s);
3976
+ 310
3977
+ gap> IsRegularSemigroup(s);
3978
+ false
3979
+ gap> f := Transformation([3, 2, 3, 4, 3, 5]);;
3980
+ gap> r := RClassNC(s, f);
3981
+ <Green's R-class: Transformation( [ 3, 2, 3, 4, 3, 5 ] )>
3982
+ gap> Transformation([3, 2, 3, 4, 3, 5]) in last;
3983
+ true
3984
+ gap> d := DClassOfRClass(r);
3985
+ <Green's D-class: Transformation( [ 3, 2, 3, 4, 3, 5 ] )>
3986
+ gap> Transformation([3, 2, 3, 4, 3, 5]) in last;
3987
+ true
3988
+ gap> Size(d);
3989
+ 792
3990
+ gap> IsRegularDClass(d);
3991
+ false
3992
+ gap> NrIdempotents(d);
3993
+ 0
3994
+ gap> Idempotents(d);
3995
+ [ ]
3996
+ gap> HClassReps(d);
3997
+ [ Transformation( [ 3, 2, 3, 4, 3, 5 ] ),
3998
+ Transformation( [ 3, 2, 3, 5, 3, 4 ] ),
3999
+ Transformation( [ 4, 2, 4, 5, 4, 3 ] ),
4000
+ Transformation( [ 2, 3, 2, 4, 2, 5 ] ),
4001
+ Transformation( [ 2, 3, 2, 5, 2, 4 ] ),
4002
+ Transformation( [ 2, 4, 2, 3, 2, 5 ] ),
4003
+ Transformation( [ 5, 4, 3, 2, 3, 3 ] ),
4004
+ Transformation( [ 4, 5, 3, 2, 3, 3 ] ),
4005
+ Transformation( [ 3, 5, 4, 2, 4, 4 ] ),
4006
+ Transformation( [ 5, 4, 2, 3, 2, 2 ] ),
4007
+ Transformation( [ 4, 5, 2, 3, 2, 2 ] ),
4008
+ Transformation( [ 5, 3, 2, 4, 2, 2 ] ),
4009
+ Transformation( [ 3, 3, 3, 4, 2, 5 ] ),
4010
+ Transformation( [ 3, 3, 3, 5, 2, 4 ] ),
4011
+ Transformation( [ 4, 4, 4, 5, 2, 3 ] ),
4012
+ Transformation( [ 2, 2, 2, 4, 3, 5 ] ),
4013
+ Transformation( [ 2, 2, 2, 5, 3, 4 ] ),
4014
+ Transformation( [ 2, 2, 2, 3, 4, 5 ] ),
4015
+ Transformation( [ 5, 4, 3, 3, 2, 3 ] ),
4016
+ Transformation( [ 4, 5, 3, 3, 2, 3 ] ),
4017
+ Transformation( [ 3, 5, 4, 4, 2, 4 ] ),
4018
+ Transformation( [ 5, 4, 2, 2, 3, 2 ] ),
4019
+ Transformation( [ 4, 5, 2, 2, 3, 2 ] ),
4020
+ Transformation( [ 5, 3, 2, 2, 4, 2 ] ),
4021
+ Transformation( [ 5, 3, 4, 3, 2, 3 ] ),
4022
+ Transformation( [ 4, 3, 5, 3, 2, 3 ] ),
4023
+ Transformation( [ 3, 4, 5, 4, 2, 4 ] ),
4024
+ Transformation( [ 5, 2, 4, 2, 3, 2 ] ),
4025
+ Transformation( [ 4, 2, 5, 2, 3, 2 ] ),
4026
+ Transformation( [ 5, 2, 3, 2, 4, 2 ] ),
4027
+ Transformation( [ 2, 4, 3, 4, 5, 3 ] ),
4028
+ Transformation( [ 2, 5, 3, 5, 4, 3 ] ),
4029
+ Transformation( [ 2, 5, 4, 5, 3, 4 ] ),
4030
+ Transformation( [ 3, 4, 2, 4, 5, 2 ] ),
4031
+ Transformation( [ 3, 5, 2, 5, 4, 2 ] ),
4032
+ Transformation( [ 4, 3, 2, 3, 5, 2 ] ),
4033
+ Transformation( [ 3, 2, 3, 4, 4, 5 ] ),
4034
+ Transformation( [ 3, 2, 3, 5, 5, 4 ] ),
4035
+ Transformation( [ 4, 2, 4, 5, 5, 3 ] ),
4036
+ Transformation( [ 2, 3, 2, 4, 4, 5 ] ),
4037
+ Transformation( [ 2, 3, 2, 5, 5, 4 ] ),
4038
+ Transformation( [ 2, 4, 2, 3, 3, 5 ] ),
4039
+ Transformation( [ 5, 4, 3, 2, 2, 3 ] ),
4040
+ Transformation( [ 4, 5, 3, 2, 2, 3 ] ),
4041
+ Transformation( [ 3, 5, 4, 2, 2, 4 ] ),
4042
+ Transformation( [ 5, 4, 2, 3, 3, 2 ] ),
4043
+ Transformation( [ 4, 5, 2, 3, 3, 2 ] ),
4044
+ Transformation( [ 5, 3, 2, 4, 4, 2 ] ),
4045
+ Transformation( [ 5, 3, 4, 3, 2, 2 ] ),
4046
+ Transformation( [ 4, 3, 5, 3, 2, 2 ] ),
4047
+ Transformation( [ 3, 4, 5, 4, 2, 2 ] ),
4048
+ Transformation( [ 5, 2, 4, 2, 3, 3 ] ),
4049
+ Transformation( [ 4, 2, 5, 2, 3, 3 ] ),
4050
+ Transformation( [ 5, 2, 3, 2, 4, 4 ] ),
4051
+ Transformation( [ 2, 3, 4, 3, 2, 5 ] ),
4052
+ Transformation( [ 2, 3, 5, 3, 2, 4 ] ),
4053
+ Transformation( [ 2, 4, 5, 4, 2, 3 ] ),
4054
+ Transformation( [ 3, 2, 4, 2, 3, 5 ] ),
4055
+ Transformation( [ 3, 2, 5, 2, 3, 4 ] ),
4056
+ Transformation( [ 4, 2, 3, 2, 4, 5 ] ),
4057
+ Transformation( [ 3, 3, 4, 3, 2, 5 ] ),
4058
+ Transformation( [ 3, 3, 5, 3, 2, 4 ] ),
4059
+ Transformation( [ 4, 4, 5, 4, 2, 3 ] ),
4060
+ Transformation( [ 2, 2, 4, 2, 3, 5 ] ),
4061
+ Transformation( [ 2, 2, 5, 2, 3, 4 ] ),
4062
+ Transformation( [ 2, 2, 3, 2, 4, 5 ] ),
4063
+ Transformation( [ 5, 4, 3, 2, 4, 3 ] ),
4064
+ Transformation( [ 4, 5, 3, 2, 5, 3 ] ),
4065
+ Transformation( [ 3, 5, 4, 2, 5, 4 ] ),
4066
+ Transformation( [ 5, 4, 2, 3, 4, 2 ] ),
4067
+ Transformation( [ 4, 5, 2, 3, 5, 2 ] ),
4068
+ Transformation( [ 5, 3, 2, 4, 3, 2 ] ),
4069
+ Transformation( [ 5, 3, 4, 2, 3, 3 ] ),
4070
+ Transformation( [ 4, 3, 5, 2, 3, 3 ] ),
4071
+ Transformation( [ 3, 4, 5, 2, 4, 4 ] ),
4072
+ Transformation( [ 5, 2, 4, 3, 2, 2 ] ),
4073
+ Transformation( [ 4, 2, 5, 3, 2, 2 ] ),
4074
+ Transformation( [ 5, 2, 3, 4, 2, 2 ] ),
4075
+ Transformation( [ 3, 2, 4, 3, 3, 5 ] ),
4076
+ Transformation( [ 3, 2, 5, 3, 3, 4 ] ),
4077
+ Transformation( [ 4, 2, 5, 4, 4, 3 ] ),
4078
+ Transformation( [ 2, 3, 4, 2, 2, 5 ] ),
4079
+ Transformation( [ 2, 3, 5, 2, 2, 4 ] ),
4080
+ Transformation( [ 2, 4, 3, 2, 2, 5 ] ),
4081
+ Transformation( [ 2, 3, 4, 4, 5, 3 ] ),
4082
+ Transformation( [ 2, 3, 5, 5, 4, 3 ] ),
4083
+ Transformation( [ 2, 4, 5, 5, 3, 4 ] ),
4084
+ Transformation( [ 3, 2, 4, 4, 5, 2 ] ),
4085
+ Transformation( [ 3, 2, 5, 5, 4, 2 ] ),
4086
+ Transformation( [ 4, 2, 3, 3, 5, 2 ] ),
4087
+ Transformation( [ 5, 3, 4, 2, 3, 2 ] ),
4088
+ Transformation( [ 4, 3, 5, 2, 3, 2 ] ),
4089
+ Transformation( [ 3, 4, 5, 2, 4, 2 ] ),
4090
+ Transformation( [ 5, 2, 4, 3, 2, 3 ] ),
4091
+ Transformation( [ 4, 2, 5, 3, 2, 3 ] ),
4092
+ Transformation( [ 5, 2, 3, 4, 2, 4 ] ),
4093
+ Transformation( [ 2, 2, 4, 3, 3, 5 ] ),
4094
+ Transformation( [ 2, 2, 5, 3, 3, 4 ] ),
4095
+ Transformation( [ 2, 2, 5, 4, 4, 3 ] ),
4096
+ Transformation( [ 3, 3, 4, 2, 2, 5 ] ),
4097
+ Transformation( [ 3, 3, 5, 2, 2, 4 ] ),
4098
+ Transformation( [ 4, 4, 3, 2, 2, 5 ] ),
4099
+ Transformation( [ 5, 4, 3, 2, 3, 2 ] ),
4100
+ Transformation( [ 4, 5, 3, 2, 3, 2 ] ),
4101
+ Transformation( [ 3, 5, 4, 2, 4, 2 ] ),
4102
+ Transformation( [ 5, 4, 2, 3, 2, 3 ] ),
4103
+ Transformation( [ 4, 5, 2, 3, 2, 3 ] ),
4104
+ Transformation( [ 5, 3, 2, 4, 2, 4 ] ),
4105
+ Transformation( [ 5, 4, 3, 2, 3, 4 ] ),
4106
+ Transformation( [ 4, 5, 3, 2, 3, 5 ] ),
4107
+ Transformation( [ 3, 5, 4, 2, 4, 5 ] ),
4108
+ Transformation( [ 5, 4, 2, 3, 2, 4 ] ),
4109
+ Transformation( [ 4, 5, 2, 3, 2, 5 ] ),
4110
+ Transformation( [ 5, 3, 2, 4, 2, 3 ] ),
4111
+ Transformation( [ 4, 2, 3, 4, 3, 5 ] ),
4112
+ Transformation( [ 5, 2, 3, 5, 3, 4 ] ),
4113
+ Transformation( [ 5, 2, 4, 5, 4, 3 ] ),
4114
+ Transformation( [ 4, 3, 2, 4, 2, 5 ] ),
4115
+ Transformation( [ 5, 3, 2, 5, 2, 4 ] ),
4116
+ Transformation( [ 3, 4, 2, 3, 2, 5 ] ),
4117
+ Transformation( [ 5, 4, 3, 2, 2, 4 ] ),
4118
+ Transformation( [ 4, 5, 3, 2, 2, 5 ] ),
4119
+ Transformation( [ 3, 5, 4, 2, 2, 5 ] ),
4120
+ Transformation( [ 5, 4, 2, 3, 3, 4 ] ),
4121
+ Transformation( [ 4, 5, 2, 3, 3, 5 ] ),
4122
+ Transformation( [ 5, 3, 2, 4, 4, 3 ] ),
4123
+ Transformation( [ 2, 3, 3, 4, 2, 5 ] ),
4124
+ Transformation( [ 2, 3, 3, 5, 2, 4 ] ),
4125
+ Transformation( [ 2, 4, 4, 5, 2, 3 ] ),
4126
+ Transformation( [ 3, 2, 2, 4, 3, 5 ] ),
4127
+ Transformation( [ 3, 2, 2, 5, 3, 4 ] ),
4128
+ Transformation( [ 4, 2, 2, 3, 4, 5 ] ),
4129
+ Transformation( [ 3, 4, 3, 4, 5, 2 ] ),
4130
+ Transformation( [ 3, 5, 3, 5, 4, 2 ] ),
4131
+ Transformation( [ 4, 5, 4, 5, 3, 2 ] ),
4132
+ Transformation( [ 2, 4, 2, 4, 5, 3 ] ),
4133
+ Transformation( [ 2, 5, 2, 5, 4, 3 ] ),
4134
+ Transformation( [ 2, 3, 2, 3, 5, 4 ] ),
4135
+ Transformation( [ 5, 3, 4, 4, 2, 2 ] ),
4136
+ Transformation( [ 4, 3, 5, 5, 2, 2 ] ),
4137
+ Transformation( [ 3, 4, 5, 5, 2, 2 ] ),
4138
+ Transformation( [ 5, 2, 4, 4, 3, 3 ] ),
4139
+ Transformation( [ 4, 2, 5, 5, 3, 3 ] ),
4140
+ Transformation( [ 5, 2, 3, 3, 4, 4 ] ),
4141
+ Transformation( [ 2, 4, 4, 3, 5, 2 ] ),
4142
+ Transformation( [ 2, 5, 5, 3, 4, 2 ] ),
4143
+ Transformation( [ 2, 5, 5, 4, 3, 2 ] ),
4144
+ Transformation( [ 3, 4, 4, 2, 5, 3 ] ),
4145
+ Transformation( [ 3, 5, 5, 2, 4, 3 ] ),
4146
+ Transformation( [ 4, 3, 3, 2, 5, 4 ] ),
4147
+ Transformation( [ 2, 3, 4, 4, 5, 2 ] ),
4148
+ Transformation( [ 2, 3, 5, 5, 4, 2 ] ),
4149
+ Transformation( [ 2, 4, 5, 5, 3, 2 ] ),
4150
+ Transformation( [ 3, 2, 4, 4, 5, 3 ] ),
4151
+ Transformation( [ 3, 2, 5, 5, 4, 3 ] ),
4152
+ Transformation( [ 4, 2, 3, 3, 5, 4 ] ),
4153
+ Transformation( [ 5, 3, 4, 2, 2, 2 ] ),
4154
+ Transformation( [ 4, 3, 5, 2, 2, 2 ] ),
4155
+ Transformation( [ 3, 4, 5, 2, 2, 2 ] ),
4156
+ Transformation( [ 5, 2, 4, 3, 3, 3 ] ),
4157
+ Transformation( [ 4, 2, 5, 3, 3, 3 ] ),
4158
+ Transformation( [ 5, 2, 3, 4, 4, 4 ] ),
4159
+ Transformation( [ 2, 2, 4, 3, 4, 5 ] ),
4160
+ Transformation( [ 2, 2, 5, 3, 5, 4 ] ),
4161
+ Transformation( [ 2, 2, 5, 4, 5, 3 ] ),
4162
+ Transformation( [ 3, 3, 4, 2, 4, 5 ] ),
4163
+ Transformation( [ 3, 3, 5, 2, 5, 4 ] ),
4164
+ Transformation( [ 4, 4, 3, 2, 3, 5 ] ),
4165
+ Transformation( [ 2, 2, 4, 3, 2, 5 ] ),
4166
+ Transformation( [ 2, 2, 5, 3, 2, 4 ] ),
4167
+ Transformation( [ 2, 2, 5, 4, 2, 3 ] ),
4168
+ Transformation( [ 3, 3, 4, 2, 3, 5 ] ),
4169
+ Transformation( [ 3, 3, 5, 2, 3, 4 ] ),
4170
+ Transformation( [ 4, 4, 3, 2, 4, 5 ] ),
4171
+ Transformation( [ 2, 4, 3, 4, 5, 2 ] ),
4172
+ Transformation( [ 2, 5, 3, 5, 4, 2 ] ),
4173
+ Transformation( [ 2, 5, 4, 5, 3, 2 ] ),
4174
+ Transformation( [ 3, 4, 2, 4, 5, 3 ] ),
4175
+ Transformation( [ 3, 5, 2, 5, 4, 3 ] ),
4176
+ Transformation( [ 4, 3, 2, 3, 5, 4 ] ),
4177
+ Transformation( [ 3, 4, 4, 3, 5, 2 ] ),
4178
+ Transformation( [ 3, 5, 5, 3, 4, 2 ] ),
4179
+ Transformation( [ 4, 5, 5, 4, 3, 2 ] ),
4180
+ Transformation( [ 2, 4, 4, 2, 5, 3 ] ),
4181
+ Transformation( [ 2, 5, 5, 2, 4, 3 ] ),
4182
+ Transformation( [ 2, 3, 3, 2, 5, 4 ] ),
4183
+ Transformation( [ 4, 2, 3, 4, 2, 5 ] ),
4184
+ Transformation( [ 5, 2, 3, 5, 2, 4 ] ),
4185
+ Transformation( [ 5, 2, 4, 5, 2, 3 ] ),
4186
+ Transformation( [ 4, 3, 2, 4, 3, 5 ] ),
4187
+ Transformation( [ 5, 3, 2, 5, 3, 4 ] ),
4188
+ Transformation( [ 3, 4, 2, 3, 4, 5 ] ),
4189
+ Transformation( [ 3, 2, 3, 4, 2, 5 ] ),
4190
+ Transformation( [ 3, 2, 3, 5, 2, 4 ] ),
4191
+ Transformation( [ 4, 2, 4, 5, 2, 3 ] ),
4192
+ Transformation( [ 2, 3, 2, 4, 3, 5 ] ),
4193
+ Transformation( [ 2, 3, 2, 5, 3, 4 ] ),
4194
+ Transformation( [ 2, 4, 2, 3, 4, 5 ] ) ]
4195
+ gap> Number(HClassReps(d), x -> x in r);
4196
+ 6
4197
+ gap> NrHClasses(r);
4198
+ 6
4199
+
4200
+ # MiscTest52
4201
+ gap> gens :=
4202
+ > [PartialPermNC([1, 2, 4], [2, 5, 3]),
4203
+ > PartialPermNC([1, 2, 4], [5, 6, 1]),
4204
+ > PartialPermNC([1, 2, 5], [5, 3, 2]),
4205
+ > PartialPermNC([1, 2, 3, 4], [5, 1, 2, 4]),
4206
+ > PartialPermNC([1, 2, 3, 4], [5, 1, 2, 6]),
4207
+ > PartialPermNC([1, 2, 3, 4], [5, 6, 4, 1]),
4208
+ > PartialPermNC([1, 2, 3, 5], [1, 5, 2, 6]),
4209
+ > PartialPermNC([1, 2, 3, 5], [2, 3, 4, 1]),
4210
+ > PartialPermNC([1, 2, 3, 5], [2, 5, 4, 1]),
4211
+ > PartialPermNC([1, 2, 3, 5], [5, 1, 2, 3]),
4212
+ > PartialPermNC([1, 2, 3, 6], [1, 4, 6, 5]),
4213
+ > PartialPermNC([1, 2, 5, 6], [6, 4, 2, 5]),
4214
+ > PartialPermNC([1, 3, 4, 6], [2, 3, 1, 6]),
4215
+ > PartialPermNC([1, 2, 3, 4, 5], [3, 6, 5, 2, 4]),
4216
+ > PartialPermNC([1, 2, 3, 4, 5], [6, 5, 3, 2, 1]),
4217
+ > PartialPermNC([1, 2, 3, 4, 6], [1, 3, 4, 6, 2]),
4218
+ > PartialPermNC([1, 2, 3, 5, 6], [1, 3, 6, 4, 5]),
4219
+ > PartialPermNC([1, 2, 4, 5, 6], [5, 4, 2, 1, 6]),
4220
+ > PartialPermNC([1, 2, 3, 4, 5, 6], [2, 5, 6, 4, 3, 1])];;
4221
+ gap> s := Semigroup(gens);;
4222
+ gap> Size(s);
4223
+ 12612
4224
+ gap> f := PartialPerm([1, 4, 6], [2, 3, 6]);;
4225
+ gap> r := RClass(s, f);
4226
+ <Green's R-class: [1,2][4,3](6)>
4227
+ gap> Size(r);
4228
+ 120
4229
+ gap> NrHClasses(r);
4230
+ 20
4231
+ gap> Number(HClassReps(s), x -> x in r);
4232
+ 20
4233
+
4234
+ #
4235
+ gap> SEMIGROUPS.StopTest();
4236
+ gap> STOP_TEST("Semigroups package: extreme/misc.tst");