passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-macosx_14_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1157 -0
- gap/pkg/semigroups/config.status +1132 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,1147 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/attributes/isorms.tst
|
|
4
|
+
#Y Copyright (C) 2015-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local A, B, BruteForceInverseCheck, BruteForceIsoCheck, G, G1, G2, H, I, R
|
|
12
|
+
#@local R1, R2, S, T, U, UU, V, W, WW, auto, comp, func, g, g_elms_list, id
|
|
13
|
+
#@local inv, iso, map, mat, mat1, mat2, norm, out, x, y
|
|
14
|
+
gap> START_TEST("Semigroups package: standard/attributes/isorms.tst");
|
|
15
|
+
gap> LoadPackage("semigroups", false);;
|
|
16
|
+
|
|
17
|
+
#
|
|
18
|
+
gap> SEMIGROUPS.StartTest();
|
|
19
|
+
|
|
20
|
+
# helper functions
|
|
21
|
+
gap> BruteForceIsoCheck := function(iso)
|
|
22
|
+
> local x, y;
|
|
23
|
+
> if not IsInjective(iso) or not IsSurjective(iso) then
|
|
24
|
+
> return false;
|
|
25
|
+
> fi;
|
|
26
|
+
> for x in Generators(Source(iso)) do
|
|
27
|
+
> for y in Generators(Source(iso)) do
|
|
28
|
+
> if x ^ iso * y ^ iso <> (x * y) ^ iso then
|
|
29
|
+
> return false;
|
|
30
|
+
> fi;
|
|
31
|
+
> od;
|
|
32
|
+
> od;
|
|
33
|
+
> return true;
|
|
34
|
+
> end;;
|
|
35
|
+
gap> BruteForceInverseCheck := function(map)
|
|
36
|
+
> local inv;
|
|
37
|
+
> inv := InverseGeneralMapping(map);
|
|
38
|
+
> return ForAll(Source(map), x -> x = (x ^ map) ^ inv)
|
|
39
|
+
> and ForAll(Range(map), x -> x = (x ^ inv) ^ map);
|
|
40
|
+
> end;;
|
|
41
|
+
|
|
42
|
+
#
|
|
43
|
+
gap> R := ReesZeroMatrixSemigroup(Group([(2, 8), (2, 8, 6)]),
|
|
44
|
+
> [[0, (2, 8), 0, 0, 0, (2, 8, 6)],
|
|
45
|
+
> [(), 0, (2, 8, 6), (2, 6), (2, 6, 8), 0],
|
|
46
|
+
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0],
|
|
47
|
+
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0],
|
|
48
|
+
> [0, (2, 8, 6), 0, 0, 0, (2, 8)],
|
|
49
|
+
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0]]);;
|
|
50
|
+
gap> A := AutomorphismGroup(R);;
|
|
51
|
+
gap> Print(A.1); "string to test printing";
|
|
52
|
+
RZMSIsoByTriple ( ReesZeroMatrixSemigroup( Group( [ (2,8), (2,8,6) ] ),
|
|
53
|
+
[ [ 0, (2,8), 0, 0, 0, (2,8,6) ], [ (), 0, (2,8,6), (2,6), (2,6,8), 0 ],
|
|
54
|
+
[ (2,8,6), 0, (2,6,8), (2,8), (), 0 ], [ (2,8,6), 0, (2,6,8), (2,8), (), 0 ]
|
|
55
|
+
, [ 0, (2,8,6), 0, 0, 0, (2,8) ], [ (2,8,6), 0, (2,6,8), (2,8), (), 0 ]
|
|
56
|
+
] ), ReesZeroMatrixSemigroup( Group( [ (2,8), (2,8,6) ] ),
|
|
57
|
+
[ [ 0, (2,8), 0, 0, 0, (2,8,6) ], [ (), 0, (2,8,6), (2,6), (2,6,8), 0 ],
|
|
58
|
+
[ (2,8,6), 0, (2,6,8), (2,8), (), 0 ], [ (2,8,6), 0, (2,6,8), (2,8), (), 0 ]
|
|
59
|
+
, [ 0, (2,8,6), 0, 0, 0, (2,8) ], [ (2,8,6), 0, (2,6,8), (2,8), (), 0 ]
|
|
60
|
+
] ), (), IdentityMapping( Group( [ (2,8), (2,8,6) ] ) ),
|
|
61
|
+
[ (2,6), (6,8), (2,8), (2,6), (6,8), (2,8), (2,6), (2,6), (6,8), (6,8),
|
|
62
|
+
(2,8), (6,8) ] )"string to test printing"
|
|
63
|
+
gap> Size(Range(IsomorphismPermGroup(A)));
|
|
64
|
+
82944
|
|
65
|
+
|
|
66
|
+
#
|
|
67
|
+
gap> SetInfoLevel(InfoSemigroups, 2);
|
|
68
|
+
gap> R := ReesZeroMatrixSemigroup(Group([(2, 8), (2, 8, 6)]),
|
|
69
|
+
> [[0, (2, 8), 0, 0, 0, (2, 8, 6)],
|
|
70
|
+
> [(), 0, (2, 8, 6), (2, 6), (2, 6, 8), 0],
|
|
71
|
+
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0],
|
|
72
|
+
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0],
|
|
73
|
+
> [0, (2, 8, 6), 0, 0, 0, (2, 8)],
|
|
74
|
+
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0]]);;
|
|
75
|
+
gap> A := AutomorphismGroup(R);;
|
|
76
|
+
#I the graph has 2304 automorphisms
|
|
77
|
+
#I the size of stabilizer of the matrix is 12
|
|
78
|
+
#I the underlying group has 6 automorphisms
|
|
79
|
+
#I the size of the stabilizer of the matrix entries is 1
|
|
80
|
+
#I the graph has 2 connected components
|
|
81
|
+
#I backtracking in the direct product of size 2304 . . .
|
|
82
|
+
#I found subgroup of size 2304
|
|
83
|
+
gap> Size(Range(IsomorphismPermGroup(A)));
|
|
84
|
+
82944
|
|
85
|
+
gap> SetInfoLevel(InfoSemigroups, 0);
|
|
86
|
+
|
|
87
|
+
#
|
|
88
|
+
gap> I := MinimalIdeal(PartitionMonoid(4));;
|
|
89
|
+
gap> R := Range(IsomorphismReesMatrixSemigroup(I));;
|
|
90
|
+
gap> G := AutomorphismGroup(R);
|
|
91
|
+
<automorphism group of <Rees matrix semigroup 15x15 over Group(())> with
|
|
92
|
+
5 generators>
|
|
93
|
+
gap> G := Range(IsomorphismPermGroup(AutomorphismGroup(R)));;
|
|
94
|
+
gap> Size(G);
|
|
95
|
+
1710012252724199424000000
|
|
96
|
+
|
|
97
|
+
# RZMSInducedFunction with lots of connected component
|
|
98
|
+
gap> I := SemigroupIdeal(
|
|
99
|
+
> InverseMonoid([
|
|
100
|
+
> PartialPermNC([1, 2, 3, 4, 5], [2, 3, 4, 5, 1]),
|
|
101
|
+
> PartialPermNC([1, 2, 3, 4, 5], [2, 1, 3, 4, 5]),
|
|
102
|
+
> PartialPermNC([2, 3, 4, 5], [1, 2, 3, 4])]),
|
|
103
|
+
> [PartialPermNC([1], [1])]);;
|
|
104
|
+
gap> R := Range(IsomorphismReesZeroMatrixSemigroup(I));
|
|
105
|
+
<Rees 0-matrix semigroup 5x5 over Group(())>
|
|
106
|
+
gap> A := AutomorphismGroup(R);
|
|
107
|
+
<automorphism group of <Rees 0-matrix semigroup 5x5 over Group(())> with
|
|
108
|
+
5 generators>
|
|
109
|
+
gap> Size(A);
|
|
110
|
+
120
|
|
111
|
+
gap> ForAll(A, BruteForceIsoCheck);
|
|
112
|
+
true
|
|
113
|
+
|
|
114
|
+
# RMSInducedFunction
|
|
115
|
+
gap> AutomorphismGroup(RectangularBand(IsReesMatrixSemigroup, 4, 3));
|
|
116
|
+
<automorphism group of <Rees matrix semigroup 4x3 over Group(())> with
|
|
117
|
+
5 generators>
|
|
118
|
+
|
|
119
|
+
# RZMSInducedFunction with one connected component
|
|
120
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]),
|
|
121
|
+
> [[(), (), (), ()], [(), (), (), ()], [(), (), (), ()]]);
|
|
122
|
+
<Rees 0-matrix semigroup 4x3 over Group(())>
|
|
123
|
+
gap> AutomorphismGroup(R);
|
|
124
|
+
<automorphism group of <Rees 0-matrix semigroup 4x3 over Group(())> with
|
|
125
|
+
6 generators>
|
|
126
|
+
gap> Size(last);
|
|
127
|
+
144
|
|
128
|
+
gap> ForAll(A, BruteForceIsoCheck);
|
|
129
|
+
true
|
|
130
|
+
|
|
131
|
+
# AutomorphismGroup: for a RZMS with trivial automorphism group of graph
|
|
132
|
+
gap> R := ReesZeroMatrixSemigroup(Group([(1, 2, 3), (1, 2)]),
|
|
133
|
+
> [[(1, 3), (1, 2)], [0, (2, 3)]]);;
|
|
134
|
+
gap> A := AutomorphismGroup(R);;
|
|
135
|
+
gap> Size(A);
|
|
136
|
+
6
|
|
137
|
+
gap> IsAbelian(A);
|
|
138
|
+
false
|
|
139
|
+
|
|
140
|
+
# AutomorphismGroup: for a RZMS over not a group
|
|
141
|
+
gap> S := ReesZeroMatrixSemigroup(FullTransformationMonoid(2),
|
|
142
|
+
> [[IdentityTransformation]]);
|
|
143
|
+
<Rees 0-matrix semigroup 1x1 over <full transformation monoid of degree 2>>
|
|
144
|
+
gap> G := AutomorphismGroup(S);;
|
|
145
|
+
gap> IsCyclic(G);
|
|
146
|
+
true
|
|
147
|
+
|
|
148
|
+
# AutomorphismGroup: for a RZMSDigraph with 0 generators
|
|
149
|
+
gap> func := function(n, i)
|
|
150
|
+
> local out;
|
|
151
|
+
> out := ListWithIdenticalEntries(n, 0);
|
|
152
|
+
> out[i] := ();
|
|
153
|
+
> return out;
|
|
154
|
+
> end;
|
|
155
|
+
function( n, i ) ... end
|
|
156
|
+
gap> mat := List([1 .. 33], i -> func(33, i));;
|
|
157
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), mat);
|
|
158
|
+
<Rees 0-matrix semigroup 33x33 over Group(())>
|
|
159
|
+
gap> AutomorphismGroup(R);
|
|
160
|
+
<automorphism group of <Rees 0-matrix semigroup 33x33 over Group(())> with
|
|
161
|
+
33 generators>
|
|
162
|
+
|
|
163
|
+
# AutomorphismGroup: for a RMS over not a group
|
|
164
|
+
gap> R := ReesMatrixSemigroup(SymmetricInverseMonoid(2), [[PartialPerm([1])]]);
|
|
165
|
+
<Rees matrix semigroup 1x1 over <symmetric inverse monoid of degree 2>>
|
|
166
|
+
gap> GeneratorsOfSemigroup(R);;
|
|
167
|
+
gap> G := AutomorphismGroup(R);;
|
|
168
|
+
gap> IsCyclic(G);
|
|
169
|
+
true
|
|
170
|
+
|
|
171
|
+
# AutomorphismGroup: 1x1 RMS
|
|
172
|
+
gap> R := ReesMatrixSemigroup(Group(()), [[()]]);
|
|
173
|
+
<Rees matrix semigroup 1x1 over Group(())>
|
|
174
|
+
gap> A := AutomorphismGroup(R);
|
|
175
|
+
<automorphism group of <Rees matrix semigroup 1x1 over Group(())> with
|
|
176
|
+
1 generator>
|
|
177
|
+
gap> ForAll(A, BruteForceIsoCheck);
|
|
178
|
+
true
|
|
179
|
+
|
|
180
|
+
# AutomorphismGroup: 1x2 and 2x1 RMS
|
|
181
|
+
gap> A := AutomorphismGroup(RectangularBand(IsReesMatrixSemigroup, 2, 1));
|
|
182
|
+
<automorphism group of <Rees matrix semigroup 2x1 over Group(())> with
|
|
183
|
+
2 generators>
|
|
184
|
+
gap> ForAll(A, BruteForceIsoCheck);
|
|
185
|
+
true
|
|
186
|
+
gap> A := AutomorphismGroup(RectangularBand(IsReesMatrixSemigroup, 1, 2));
|
|
187
|
+
<automorphism group of <Rees matrix semigroup 1x2 over Group(())> with
|
|
188
|
+
2 generators>
|
|
189
|
+
gap> ForAll(A, BruteForceIsoCheck);
|
|
190
|
+
true
|
|
191
|
+
|
|
192
|
+
# AutomorphismGroup: 1x3 and 3x1 RMS
|
|
193
|
+
gap> A := AutomorphismGroup(RectangularBand(IsReesMatrixSemigroup, 3, 1));
|
|
194
|
+
<automorphism group of <Rees matrix semigroup 3x1 over Group(())> with
|
|
195
|
+
3 generators>
|
|
196
|
+
gap> ForAll(A, BruteForceIsoCheck);
|
|
197
|
+
true
|
|
198
|
+
gap> A := AutomorphismGroup(RectangularBand(IsReesMatrixSemigroup, 1, 3));
|
|
199
|
+
<automorphism group of <Rees matrix semigroup 1x3 over Group(())> with
|
|
200
|
+
3 generators>
|
|
201
|
+
gap> ForAll(A, BruteForceIsoCheck);
|
|
202
|
+
true
|
|
203
|
+
|
|
204
|
+
# AutomorphismGroup: 33x33 RMS
|
|
205
|
+
gap> A := AutomorphismGroup(RectangularBand(IsReesMatrixSemigroup, 33, 33));
|
|
206
|
+
<automorphism group of <Rees matrix semigroup 33x33 over Group(())> with
|
|
207
|
+
65 generators>
|
|
208
|
+
|
|
209
|
+
# AutomorphismGroup: RMS over non-trivial group
|
|
210
|
+
gap> B := AutomorphismGroup(ReesMatrixSemigroup(SymmetricGroup(3), [[(), ()]]));
|
|
211
|
+
<automorphism group of <Rees matrix semigroup 2x1 over Sym( [ 1 .. 3 ] )>
|
|
212
|
+
with 7 generators>
|
|
213
|
+
|
|
214
|
+
# \< for triples over different RMS
|
|
215
|
+
gap> A.1 < B.2;
|
|
216
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
217
|
+
Error, no 1st choice method found for `<' on 2 arguments
|
|
218
|
+
|
|
219
|
+
# Codecoverage
|
|
220
|
+
gap> S :=
|
|
221
|
+
> ReesMatrixSemigroup(Group([(1, 2)(3, 118)(4, 117)(5, 116)(6, 115)(7, 114)(8, 113)(9, 112)
|
|
222
|
+
> (10, 111)(11, 110)(12, 109)(13, 108)(14, 107)(15, 106)(16, 105)(17, 104)(18, 103)(19, 102)(20, 101)
|
|
223
|
+
> (21, 100)(22, 99)(23, 98)(24, 97)(25, 96)(26, 95)(27, 94)(28, 93)(29, 92)(30, 91)(31, 90)
|
|
224
|
+
> (32, 89)(33, 88)(34, 87)(35, 86)(36, 85)(37, 84)(38, 83)(39, 82)(40, 81)(41, 80)(42, 79)
|
|
225
|
+
> (43, 78)(44, 77)(45, 76)(46, 75)(47, 74)(48, 73)(49, 72)(50, 71)(51, 70)(52, 69)(53, 68)
|
|
226
|
+
> (54, 67)(55, 66)(56, 65)(57, 64)(58, 63)(59, 62)(60, 61),
|
|
227
|
+
> (1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49,
|
|
228
|
+
> 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99,
|
|
229
|
+
> 101, 103, 105, 107, 109, 111, 113, 115, 117)(2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
|
|
230
|
+
> 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82,
|
|
231
|
+
> 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118)]),
|
|
232
|
+
> [[(), ()],
|
|
233
|
+
> [(), (1, 27, 53, 79, 105, 13, 39, 65, 91, 117, 25, 51, 77, 103, 11, 37, 63, 89, 115, 23, 49, 75, 101, 9,
|
|
234
|
+
> 35, 61, 87, 113, 21, 47, 73, 99, 7, 33, 59, 85, 111, 19, 45, 71, 97, 5, 31, 57, 83, 109, 17, 43,
|
|
235
|
+
> 69, 95, 3, 29, 55, 81, 107, 15, 41, 67, 93)(2, 28, 54, 80, 106, 14, 40, 66, 92, 118, 26, 52, 78,
|
|
236
|
+
> 104, 12, 38, 64, 90, 116, 24, 50, 76, 102, 10, 36, 62, 88, 114, 22, 48, 74, 100, 8, 34, 60, 86, 112,
|
|
237
|
+
> 20, 46, 72, 98, 6, 32, 58, 84, 110, 18, 44, 70, 96, 4, 30, 56, 82, 108, 16, 42, 68, 94)],
|
|
238
|
+
> [(), (1, 82)(2, 81)(3, 80)(4, 79)(5, 78)(6, 77)(7, 76)(8, 75)(9, 74)(10, 73)
|
|
239
|
+
> (11, 72)(12, 71)(13, 70)(14, 69)(15, 68)(16, 67)(17, 66)(18, 65)(19, 64)(20, 63)
|
|
240
|
+
> (21, 62)(22, 61)(23, 60)(24, 59)(25, 58)(26, 57)(27, 56)(28, 55)(29, 54)(30, 53)
|
|
241
|
+
> (31, 52)(32, 51)(33, 50)(34, 49)(35, 48)(36, 47)(37, 46)(38, 45)(39, 44)(40, 43)
|
|
242
|
+
> (41, 42)(83, 118)(84, 117)(85, 116)(86, 115)(87, 114)(88, 113)(89, 112)(90, 111)(91, 110)
|
|
243
|
+
> (92, 109)(93, 108)(94, 107)(95, 106)(96, 105)(97, 104)(98, 103)(99, 102)(100, 101)]]);
|
|
244
|
+
<Rees matrix semigroup 2x3 over <permutation group with 2 generators>>
|
|
245
|
+
gap> AutomorphismGroup(S);
|
|
246
|
+
<automorphism group of <Rees matrix semigroup 2x3 over
|
|
247
|
+
<permutation group of size 118 with 2 generators>> with 3 generators>
|
|
248
|
+
|
|
249
|
+
# IdentityMapping: for an RMS
|
|
250
|
+
gap> R := ReesMatrixSemigroup(Group([()]), [[()]]);
|
|
251
|
+
<Rees matrix semigroup 1x1 over Group(())>
|
|
252
|
+
gap> map := IdentityMapping(R);
|
|
253
|
+
((), IdentityMapping( Group( [ () ] ) ), [ (), () ])
|
|
254
|
+
gap> BruteForceIsoCheck(last);
|
|
255
|
+
true
|
|
256
|
+
gap> ForAll(R, x -> x = x ^ map);
|
|
257
|
+
true
|
|
258
|
+
|
|
259
|
+
# IsomorphismSemigroups: RMS fail
|
|
260
|
+
gap> R := RectangularBand(IsReesMatrixSemigroup, 2, 2);
|
|
261
|
+
<Rees matrix semigroup 2x2 over Group(())>
|
|
262
|
+
gap> S := RectangularBand(IsReesMatrixSemigroup, 2, 3);
|
|
263
|
+
<Rees matrix semigroup 2x3 over Group(())>
|
|
264
|
+
gap> IsomorphismSemigroups(R, S);
|
|
265
|
+
fail
|
|
266
|
+
|
|
267
|
+
# IsomorphismSemigroups: from RMS to itself
|
|
268
|
+
gap> R := RectangularBand(IsReesMatrixSemigroup, 2, 2);
|
|
269
|
+
<Rees matrix semigroup 2x2 over Group(())>
|
|
270
|
+
gap> map := IsomorphismSemigroups(R, R);
|
|
271
|
+
((), IdentityMapping( Group( [ () ] ) ), [ (), (), (), () ])
|
|
272
|
+
gap> BruteForceIsoCheck(map);
|
|
273
|
+
true
|
|
274
|
+
gap> ForAll(R, x -> x = x ^ map);
|
|
275
|
+
true
|
|
276
|
+
|
|
277
|
+
# IsomorphismSemigroups: from RMS to RMS
|
|
278
|
+
gap> S := ReesMatrixSemigroup(Group([(1, 2)]), [[(), ()], [(), (1, 2)]]);;
|
|
279
|
+
gap> R := ReesMatrixSemigroup(Group([(1, 2)]), [[(), (1, 2)], [(), ()]]);;
|
|
280
|
+
gap> map := IsomorphismSemigroups(R, S);
|
|
281
|
+
((), GroupHomomorphismByImages( Group( [ (1,2) ] ), Group( [ (1,2) ] ),
|
|
282
|
+
[ (1,2) ], [ (1,2) ] ), [ (), (1,2), (), () ])
|
|
283
|
+
gap> BruteForceIsoCheck(map);
|
|
284
|
+
true
|
|
285
|
+
gap> BruteForceInverseCheck(map);
|
|
286
|
+
true
|
|
287
|
+
gap> map := InverseGeneralMapping(map);
|
|
288
|
+
((), GroupHomomorphismByImages( Group( [ (1,2) ] ), Group( [ (1,2) ] ),
|
|
289
|
+
[ (1,2) ], [ (1,2) ] ), [ (), (1,2), (), () ])
|
|
290
|
+
gap> BruteForceIsoCheck(map);
|
|
291
|
+
true
|
|
292
|
+
gap> BruteForceInverseCheck(map);
|
|
293
|
+
true
|
|
294
|
+
|
|
295
|
+
# IsomorphismSemigroups: from RZMS to RZMS
|
|
296
|
+
gap> S := ReesZeroMatrixSemigroup(Group([()]), [[(), ()], [(), 0]]);;
|
|
297
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), 0], [(), ()]]);;
|
|
298
|
+
gap> map := IsomorphismSemigroups(R, S);
|
|
299
|
+
((3,4), GroupHomomorphismByImages( Group( [ () ] ), Group( [ () ] ), [ ],
|
|
300
|
+
[ ] ), [ (), (), (), () ])
|
|
301
|
+
gap> BruteForceIsoCheck(map);
|
|
302
|
+
true
|
|
303
|
+
gap> BruteForceInverseCheck(map);
|
|
304
|
+
true
|
|
305
|
+
gap> map := InverseGeneralMapping(map);
|
|
306
|
+
((3,4), GroupHomomorphismByImages( Group( [ () ] ), Group( [ () ] ), [ ],
|
|
307
|
+
[ ] ), [ (), (), (), () ])
|
|
308
|
+
gap> BruteForceIsoCheck(map);
|
|
309
|
+
true
|
|
310
|
+
gap> BruteForceInverseCheck(map);
|
|
311
|
+
true
|
|
312
|
+
|
|
313
|
+
# IsomorphismSemigroups: fail (non-regular RZMS)
|
|
314
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]), [[0, 0], [(), ()]]);
|
|
315
|
+
<Rees 0-matrix semigroup 2x2 over Group(())>
|
|
316
|
+
gap> S := ReesZeroMatrixSemigroup(Group([(1, 2)]), [[(), ()], [(), (1, 2)]]);
|
|
317
|
+
<Rees 0-matrix semigroup 2x2 over Group([ (1,2) ])>
|
|
318
|
+
gap> IsomorphismSemigroups(R, S);
|
|
319
|
+
fail
|
|
320
|
+
|
|
321
|
+
# IsomorphismSemigroups: fail (different dimensions)
|
|
322
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), ()]]);;
|
|
323
|
+
gap> S := ReesZeroMatrixSemigroup(Group([()]), [[()], [()]]);;
|
|
324
|
+
gap> IsomorphismSemigroups(R, S);
|
|
325
|
+
fail
|
|
326
|
+
|
|
327
|
+
# IsomorphismSemigroups: from RZMS to itself
|
|
328
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), ()]]);;
|
|
329
|
+
gap> map := IsomorphismSemigroups(R, R);
|
|
330
|
+
((), IdentityMapping( Group( [ () ] ) ), [ (), (), () ])
|
|
331
|
+
gap> BruteForceIsoCheck(map);
|
|
332
|
+
true
|
|
333
|
+
gap> ForAll(R, x -> x = x ^ map);
|
|
334
|
+
true
|
|
335
|
+
gap> BruteForceInverseCheck(map);
|
|
336
|
+
true
|
|
337
|
+
|
|
338
|
+
# IsomorphismSemigroups: fail (non-isomorphic groups)
|
|
339
|
+
gap> R := ReesZeroMatrixSemigroup(Group([(1, 2, 3, 4)]), [[(), ()]]);;
|
|
340
|
+
gap> S := ReesZeroMatrixSemigroup(Group([(1, 2), (3, 4)]), [[(), ()]]);;
|
|
341
|
+
gap> IsomorphismSemigroups(R, S);
|
|
342
|
+
fail
|
|
343
|
+
|
|
344
|
+
# IsomorphismSemigroups: fail (non-isomorphic graphs)
|
|
345
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), ()], [(), ()]]);;
|
|
346
|
+
gap> S := ReesZeroMatrixSemigroup(Group([()]), [[(), 0], [(), ()]]);;
|
|
347
|
+
gap> IsomorphismSemigroups(R, S);
|
|
348
|
+
fail
|
|
349
|
+
|
|
350
|
+
# IsomorphismSemigroups: fail (no map found)
|
|
351
|
+
gap> mat1 := [[(), ()], [(), ()]];;
|
|
352
|
+
gap> mat2 := [[(), ()], [(), (1, 2)]];;
|
|
353
|
+
gap> R1 := ReesZeroMatrixSemigroup(Group((1, 2)), mat1);;
|
|
354
|
+
gap> R2 := ReesZeroMatrixSemigroup(Group((1, 2)), mat2);;
|
|
355
|
+
gap> IsomorphismSemigroups(R1, R2);
|
|
356
|
+
fail
|
|
357
|
+
|
|
358
|
+
# IsomorphismSemigroups: non-trivial isomorphism 1/2
|
|
359
|
+
gap> R := ReesZeroMatrixSemigroup(Group([(1, 2)]), [[(), 0], [0, ()]]);;
|
|
360
|
+
gap> S := ReesZeroMatrixSemigroup(Group([(1, 2)]), [[0, ()], [(1, 2), 0]]);;
|
|
361
|
+
gap> map := IsomorphismSemigroups(R, S);
|
|
362
|
+
((3,4), GroupHomomorphismByImages( Group( [ (1,2) ] ), Group( [ (1,2) ] ),
|
|
363
|
+
[ (1,2) ], [ (1,2) ] ), [ (), (), (1,2), () ])
|
|
364
|
+
gap> BruteForceIsoCheck(map);
|
|
365
|
+
true
|
|
366
|
+
gap> BruteForceInverseCheck(map);
|
|
367
|
+
true
|
|
368
|
+
gap> map := InverseGeneralMapping(map);
|
|
369
|
+
((3,4), GroupHomomorphismByImages( Group( [ (1,2) ] ), Group( [ (1,2) ] ),
|
|
370
|
+
[ (1,2) ], [ (1,2) ] ), [ (), (), (), (1,2) ])
|
|
371
|
+
gap> BruteForceIsoCheck(map);
|
|
372
|
+
true
|
|
373
|
+
gap> BruteForceInverseCheck(map);
|
|
374
|
+
true
|
|
375
|
+
|
|
376
|
+
# IsomorphismSemigroups: non-trivial isomorphism 2/2
|
|
377
|
+
gap> S := ReesZeroMatrixSemigroup(Group([(1, 2, 3), (1, 2)]),
|
|
378
|
+
> [[0, (1, 2, 3)], [(1, 3, 2), ()]]);;
|
|
379
|
+
gap> R := ReesZeroMatrixSemigroup(Group([(1, 2, 3), (1, 2)]),
|
|
380
|
+
> [[(1, 3), (1, 2)], [0, (2, 3)]]);;
|
|
381
|
+
gap> map := IsomorphismSemigroups(R, S);
|
|
382
|
+
((3,4), GroupHomomorphismByImages( Group( [ (1,2,3), (1,2) ] ), Group(
|
|
383
|
+
[ (1,2,3), (1,2) ] ), [ (1,2,3), (1,2) ], [ (1,2,3), (1,2) ] ),
|
|
384
|
+
[ (), (1,2,3), (2,3), (1,2) ])
|
|
385
|
+
gap> BruteForceIsoCheck(map);
|
|
386
|
+
true
|
|
387
|
+
gap> BruteForceInverseCheck(map);
|
|
388
|
+
true
|
|
389
|
+
gap> map := InverseGeneralMapping(map);
|
|
390
|
+
((3,4), GroupHomomorphismByImages( Group( [ (1,2,3), (1,2) ] ), Group(
|
|
391
|
+
[ (1,2,3), (1,2) ] ), [ (1,2,3), (1,2) ], [ (1,2,3), (1,2) ] ),
|
|
392
|
+
[ (), (1,3,2), (1,2), (2,3) ])
|
|
393
|
+
gap> BruteForceIsoCheck(map);
|
|
394
|
+
true
|
|
395
|
+
gap> BruteForceInverseCheck(map);
|
|
396
|
+
true
|
|
397
|
+
|
|
398
|
+
# SEMIGROUPS.RZMStoRZMSInducedFunction: error, 1/1
|
|
399
|
+
gap> R := ReesZeroMatrixSemigroup(Group([(1, 2)]), [[(), 0], [0, ()]]);;
|
|
400
|
+
gap> SEMIGROUPS.RZMStoRZMSInducedFunction(R, R, fail, fail, [1]);
|
|
401
|
+
Error, the 5th argument (a list) must have length 2, but found 1
|
|
402
|
+
|
|
403
|
+
# \=: RMS and RMS elements
|
|
404
|
+
gap> R := RectangularBand(IsReesMatrixSemigroup, 2, 2);
|
|
405
|
+
<Rees matrix semigroup 2x2 over Group(())>
|
|
406
|
+
gap> G := AutomorphismGroup(R);
|
|
407
|
+
<automorphism group of <Rees matrix semigroup 2x2 over Group(())> with
|
|
408
|
+
3 generators>
|
|
409
|
+
gap> G.1 = G.1;
|
|
410
|
+
true
|
|
411
|
+
gap> G.1 = G.2;
|
|
412
|
+
false
|
|
413
|
+
gap> One(G) = One(G.1);
|
|
414
|
+
true
|
|
415
|
+
|
|
416
|
+
# \=: RMS and RMS elements
|
|
417
|
+
gap> R := RectangularBand(IsReesMatrixSemigroup, 2, 2);
|
|
418
|
+
<Rees matrix semigroup 2x2 over Group(())>
|
|
419
|
+
gap> S := RectangularBand(IsReesMatrixSemigroup, 2, 2);
|
|
420
|
+
<Rees matrix semigroup 2x2 over Group(())>
|
|
421
|
+
gap> G := AutomorphismGroup(R); H := AutomorphismGroup(S);
|
|
422
|
+
<automorphism group of <Rees matrix semigroup 2x2 over Group(())> with
|
|
423
|
+
3 generators>
|
|
424
|
+
<automorphism group of <Rees matrix semigroup 2x2 over Group(())> with
|
|
425
|
+
3 generators>
|
|
426
|
+
gap> G.1 = H.1;
|
|
427
|
+
false
|
|
428
|
+
gap> G.1 * G.2;
|
|
429
|
+
((3,4), GroupHomomorphismByImages( Group( [ () ] ), Group( [ () ] ), [ () ],
|
|
430
|
+
[ () ] ), [ (), (), (), () ])
|
|
431
|
+
gap> R.1 ^ G.1;
|
|
432
|
+
(1,(),1)
|
|
433
|
+
gap> ImagesElm(G.2, R.1);
|
|
434
|
+
[ (1,(),2) ]
|
|
435
|
+
gap> G.1 ^ -1;
|
|
436
|
+
((), IdentityMapping( Group( [ () ] ) ), [ (), (), (), () ])
|
|
437
|
+
gap> IsOne(G.1);
|
|
438
|
+
true
|
|
439
|
+
gap> IsOne(One(G.1 * G.2));
|
|
440
|
+
true
|
|
441
|
+
gap> IsOne(G.1 * G.2);
|
|
442
|
+
false
|
|
443
|
+
gap> Print(G.2); true;
|
|
444
|
+
RMSIsoByTriple ( ReesMatrixSemigroup( Group( [ () ] ),
|
|
445
|
+
[ [ (), () ], [ (), () ] ] ), ReesMatrixSemigroup( Group( [ () ] ),
|
|
446
|
+
[ [ (), () ], [ (), () ] ] ), [(3,4), GroupHomomorphismByImages( Group(
|
|
447
|
+
[ () ] ), Group( [ () ] ), [ () ], [ () ] ), [ (), (), (), () ]])true
|
|
448
|
+
gap> PreImagesRepresentative(G.2, R.1);
|
|
449
|
+
(1,(),2)
|
|
450
|
+
gap> G.1 ^ -1;
|
|
451
|
+
IdentityMapping( <Rees matrix semigroup 2x2 over Group(())> )
|
|
452
|
+
|
|
453
|
+
# \=: RZMS and RZMS elements 1/2
|
|
454
|
+
gap> R := ReesZeroMatrixSemigroup(Group([(1, 2, 3)]),
|
|
455
|
+
> [[(1, 2, 3), 0], [0, (1, 2, 3)]]);;
|
|
456
|
+
gap> G := AutomorphismGroup(R);;
|
|
457
|
+
gap> Length(GeneratorsOfSemigroup(G));
|
|
458
|
+
5
|
|
459
|
+
gap> map := RZMSIsoByTriple(R, R,
|
|
460
|
+
> [(1, 2)(3, 4), IdentityMapping(Group((1, 2, 3))), [(), (), (), ()]]);
|
|
461
|
+
((1,2)(3,4), IdentityMapping( Group( [ (1,2,3) ] ) ), [ (), (), (), () ])
|
|
462
|
+
gap> map in G;
|
|
463
|
+
true
|
|
464
|
+
gap> CompositionMapping2(G.1, G.2);
|
|
465
|
+
((), IdentityMapping( Group( [ (1,2,3) ] ) ), [ (), (1,3,2), (), (1,3,2) ])
|
|
466
|
+
gap> R.1 ^ G.1;
|
|
467
|
+
(1,(),1)
|
|
468
|
+
gap> G.1 ^ -1;
|
|
469
|
+
((), IdentityMapping( Group( [ (1,2,3) ] ) ), [ (), (), (), () ])
|
|
470
|
+
gap> IsOne(G.1);
|
|
471
|
+
true
|
|
472
|
+
gap> IsOne(One(G.1 * G.2));
|
|
473
|
+
true
|
|
474
|
+
gap> Print(G.1); true;
|
|
475
|
+
IdentityMapping( ReesZeroMatrixSemigroup( Group( [ (1,2,3) ] ),
|
|
476
|
+
[ [ (1,2,3), 0 ], [ 0, (1,2,3) ] ] ) )true
|
|
477
|
+
|
|
478
|
+
# \=: RZMS and RZMS elements 2/2
|
|
479
|
+
gap> R := ReesZeroMatrixSemigroup(Group([(1, 2, 3)]),
|
|
480
|
+
> [[(1, 2, 3), 0], [0, (1, 2, 3)]]);;
|
|
481
|
+
gap> G := AutomorphismGroup(R);;
|
|
482
|
+
gap> Length(GeneratorsOfSemigroup(G));
|
|
483
|
+
5
|
|
484
|
+
gap> S := ReesZeroMatrixSemigroup(Group([(1, 2, 3), (1, 2)]),
|
|
485
|
+
> [[0, (1, 2, 3)], [(1, 3, 2), ()]]);;
|
|
486
|
+
gap> H := AutomorphismGroup(S);;
|
|
487
|
+
gap> Length(GeneratorsOfSemigroup(H));
|
|
488
|
+
4
|
|
489
|
+
gap> G.1 = H.1;
|
|
490
|
+
false
|
|
491
|
+
gap> CompositionMapping2(G.1, G.2);
|
|
492
|
+
((), IdentityMapping( Group( [ (1,2,3) ] ) ), [ (), (1,3,2), (), (1,3,2) ])
|
|
493
|
+
gap> R.1 ^ G.1;
|
|
494
|
+
(1,(),1)
|
|
495
|
+
gap> G.1 ^ -1;
|
|
496
|
+
((), IdentityMapping( Group( [ (1,2,3) ] ) ), [ (), (), (), () ])
|
|
497
|
+
gap> IsOne(G.1);
|
|
498
|
+
true
|
|
499
|
+
gap> IsOne(One(G.1 * G.2));
|
|
500
|
+
true
|
|
501
|
+
gap> Print(G.1); true;
|
|
502
|
+
IdentityMapping( ReesZeroMatrixSemigroup( Group( [ (1,2,3) ] ),
|
|
503
|
+
[ [ (1,2,3), 0 ], [ 0, (1,2,3) ] ] ) )true
|
|
504
|
+
gap> PreImagesRepresentative(G.2, R.1);
|
|
505
|
+
(1,(),1)
|
|
506
|
+
gap> ImagesElm(G.2, R.1);
|
|
507
|
+
[ (1,(),1) ]
|
|
508
|
+
|
|
509
|
+
# Issue #167 (part 1), problem with IsomorphismSemigroups for RMS and RZMS
|
|
510
|
+
# when one of the arguments was did not satisfy IsWholeFamily
|
|
511
|
+
gap> R := ReesMatrixSemigroup(Group(()), [[(), ()], [(), ()]]);;
|
|
512
|
+
gap> W := Semigroup(RMSElement(R, 2, (), 2));;
|
|
513
|
+
gap> S := ReesMatrixSemigroup(Group(()), [[()]]);;
|
|
514
|
+
gap> IsTrivial(S) and IsTrivial(W);
|
|
515
|
+
true
|
|
516
|
+
gap> map := IsomorphismSemigroups(S, S);
|
|
517
|
+
((), IdentityMapping( Group( [ () ] ) ), [ (), () ])
|
|
518
|
+
gap> map := IsomorphismSemigroups(W, W);;
|
|
519
|
+
gap> BruteForceIsoCheck(map);
|
|
520
|
+
true
|
|
521
|
+
gap> BruteForceInverseCheck(map);
|
|
522
|
+
true
|
|
523
|
+
gap> map := IsomorphismSemigroups(W, S);
|
|
524
|
+
CompositionMapping( ((), GroupHomomorphismByImages( Group( [ () ] ), Group(
|
|
525
|
+
[ () ] ), [ ], [ ] ), [ (), () ]),
|
|
526
|
+
<Rees matrix semigroup 1x1 over Group(())> ->
|
|
527
|
+
<Rees matrix semigroup 1x1 over Group(())> )
|
|
528
|
+
gap> BruteForceIsoCheck(map);
|
|
529
|
+
true
|
|
530
|
+
gap> BruteForceInverseCheck(map);
|
|
531
|
+
true
|
|
532
|
+
gap> map := IsomorphismReesMatrixSemigroup(W);;
|
|
533
|
+
gap> BruteForceIsoCheck(map);
|
|
534
|
+
true
|
|
535
|
+
gap> BruteForceInverseCheck(map);
|
|
536
|
+
true
|
|
537
|
+
gap> WW := Range(map);
|
|
538
|
+
<Rees matrix semigroup 1x1 over Group(())>
|
|
539
|
+
gap> map := IsomorphismSemigroups(S, WW);
|
|
540
|
+
((), GroupHomomorphismByImages( Group( [ () ] ), Group( [ () ] ), [ ],
|
|
541
|
+
[ ] ), [ (), () ])
|
|
542
|
+
gap> BruteForceIsoCheck(map);
|
|
543
|
+
true
|
|
544
|
+
gap> BruteForceInverseCheck(map);
|
|
545
|
+
true
|
|
546
|
+
gap> map := IsomorphismSemigroups(WW, S);
|
|
547
|
+
((), GroupHomomorphismByImages( Group( [ () ] ), Group( [ () ] ), [ ],
|
|
548
|
+
[ ] ), [ (), () ])
|
|
549
|
+
gap> BruteForceIsoCheck(map);
|
|
550
|
+
true
|
|
551
|
+
gap> BruteForceInverseCheck(map);
|
|
552
|
+
true
|
|
553
|
+
gap> IsReesMatrixSemigroup(W);
|
|
554
|
+
true
|
|
555
|
+
gap> map := IsomorphismSemigroups(W, W);;
|
|
556
|
+
gap> BruteForceIsoCheck(map);
|
|
557
|
+
true
|
|
558
|
+
gap> BruteForceInverseCheck(map);
|
|
559
|
+
true
|
|
560
|
+
gap> map := IsomorphismSemigroups(S, W);;
|
|
561
|
+
gap> BruteForceIsoCheck(map);
|
|
562
|
+
true
|
|
563
|
+
gap> BruteForceInverseCheck(map);
|
|
564
|
+
true
|
|
565
|
+
gap> map := IsomorphismSemigroups(W, S);;
|
|
566
|
+
gap> BruteForceIsoCheck(map);
|
|
567
|
+
true
|
|
568
|
+
gap> BruteForceInverseCheck(map);
|
|
569
|
+
true
|
|
570
|
+
|
|
571
|
+
# IsomorphismSemigroups, for RMS where an argument is not WholeFamily
|
|
572
|
+
gap> R := ReesMatrixSemigroup(SymmetricGroup(4),
|
|
573
|
+
> [[(1, 2), (1, 4), (1, 4, 3)],
|
|
574
|
+
> [(1, 2), (), (2, 4)],
|
|
575
|
+
> [(1, 2), (1, 4, 2), (1, 3, 2)]]);;
|
|
576
|
+
gap> U := Semigroup([RMSElement(R, 1, (1, 2, 4), 2),
|
|
577
|
+
> RMSElement(R, 3, (1, 4), 2)]);;
|
|
578
|
+
gap> UU := Semigroup([RMSElement(R, 2, (), 2)]);;
|
|
579
|
+
gap> G := SymmetricGroup(IsPcGroup, 3);;
|
|
580
|
+
gap> V := ReesMatrixSemigroup(G, [[G.1, G.2 ^ 2]]);;
|
|
581
|
+
gap> G := Group([[[0, 1, 0],
|
|
582
|
+
> [1, 0, 0],
|
|
583
|
+
> [0, 0, 1]],
|
|
584
|
+
> [[0, 1, 0],
|
|
585
|
+
> [0, 0, 1],
|
|
586
|
+
> [1, 0, 0]]]);;
|
|
587
|
+
gap> id := Identity(G);;
|
|
588
|
+
gap> S := ReesMatrixSemigroup(G, [[id, id, id, id],
|
|
589
|
+
> [id, id, id, id],
|
|
590
|
+
> [id, id, id, id]]);;
|
|
591
|
+
gap> W := ReesMatrixSubsemigroup(S, [3, 4], G, [2]);;
|
|
592
|
+
gap> ForAll([U, UU, V, W, R, S], IsReesMatrixSemigroup);
|
|
593
|
+
true
|
|
594
|
+
gap> ForAll([U, UU, V, W, R, S], IsCompletelySimpleSemigroup);
|
|
595
|
+
true
|
|
596
|
+
|
|
597
|
+
# IsomorphismClasses: [U, V, W], [R], [UU], [S]
|
|
598
|
+
gap> IsomorphismSemigroups(U, UU);
|
|
599
|
+
fail
|
|
600
|
+
gap> IsomorphismSemigroups(UU, U);
|
|
601
|
+
fail
|
|
602
|
+
gap> iso := IsomorphismSemigroups(U, U);;
|
|
603
|
+
gap> BruteForceIsoCheck(iso);
|
|
604
|
+
true
|
|
605
|
+
gap> BruteForceInverseCheck(iso);
|
|
606
|
+
true
|
|
607
|
+
gap> iso := IsomorphismSemigroups(U, V);;
|
|
608
|
+
gap> BruteForceIsoCheck(iso);
|
|
609
|
+
true
|
|
610
|
+
gap> BruteForceInverseCheck(iso);
|
|
611
|
+
true
|
|
612
|
+
gap> iso := IsomorphismSemigroups(U, W);;
|
|
613
|
+
gap> BruteForceIsoCheck(iso);
|
|
614
|
+
true
|
|
615
|
+
gap> BruteForceInverseCheck(iso);
|
|
616
|
+
true
|
|
617
|
+
gap> IsomorphismSemigroups(U, R);
|
|
618
|
+
fail
|
|
619
|
+
gap> IsomorphismSemigroups(U, S);
|
|
620
|
+
fail
|
|
621
|
+
gap> iso := IsomorphismSemigroups(V, U);;
|
|
622
|
+
gap> BruteForceIsoCheck(iso);
|
|
623
|
+
true
|
|
624
|
+
gap> BruteForceInverseCheck(iso);
|
|
625
|
+
true
|
|
626
|
+
gap> iso := IsomorphismSemigroups(V, V);;
|
|
627
|
+
gap> BruteForceIsoCheck(iso);
|
|
628
|
+
true
|
|
629
|
+
gap> BruteForceInverseCheck(iso);
|
|
630
|
+
true
|
|
631
|
+
gap> iso := IsomorphismSemigroups(V, W);;
|
|
632
|
+
gap> BruteForceIsoCheck(iso);
|
|
633
|
+
true
|
|
634
|
+
gap> BruteForceInverseCheck(iso);
|
|
635
|
+
true
|
|
636
|
+
gap> IsomorphismSemigroups(V, R);
|
|
637
|
+
fail
|
|
638
|
+
gap> IsomorphismSemigroups(V, S);
|
|
639
|
+
fail
|
|
640
|
+
gap> iso := IsomorphismSemigroups(W, U);;
|
|
641
|
+
gap> BruteForceIsoCheck(iso);
|
|
642
|
+
true
|
|
643
|
+
gap> BruteForceInverseCheck(iso);
|
|
644
|
+
true
|
|
645
|
+
gap> iso := IsomorphismSemigroups(W, V);;
|
|
646
|
+
gap> BruteForceIsoCheck(iso);
|
|
647
|
+
true
|
|
648
|
+
gap> BruteForceInverseCheck(iso);
|
|
649
|
+
true
|
|
650
|
+
gap> iso := IsomorphismSemigroups(W, W);;
|
|
651
|
+
gap> BruteForceIsoCheck(iso);
|
|
652
|
+
true
|
|
653
|
+
gap> BruteForceInverseCheck(iso);
|
|
654
|
+
true
|
|
655
|
+
gap> IsomorphismSemigroups(W, R);
|
|
656
|
+
fail
|
|
657
|
+
gap> IsomorphismSemigroups(W, S);
|
|
658
|
+
fail
|
|
659
|
+
gap> IsomorphismSemigroups(R, U);
|
|
660
|
+
fail
|
|
661
|
+
gap> IsomorphismSemigroups(R, V);
|
|
662
|
+
fail
|
|
663
|
+
gap> IsomorphismSemigroups(R, W);
|
|
664
|
+
fail
|
|
665
|
+
gap> iso := IsomorphismSemigroups(R, R);;
|
|
666
|
+
gap> BruteForceIsoCheck(iso);
|
|
667
|
+
true
|
|
668
|
+
gap> BruteForceInverseCheck(iso);
|
|
669
|
+
true
|
|
670
|
+
gap> IsomorphismSemigroups(R, S);
|
|
671
|
+
fail
|
|
672
|
+
gap> IsomorphismSemigroups(S, U);
|
|
673
|
+
fail
|
|
674
|
+
gap> IsomorphismSemigroups(S, V);
|
|
675
|
+
fail
|
|
676
|
+
gap> IsomorphismSemigroups(S, W);
|
|
677
|
+
fail
|
|
678
|
+
gap> IsomorphismSemigroups(S, R);
|
|
679
|
+
fail
|
|
680
|
+
gap> iso := IsomorphismSemigroups(S, S);;
|
|
681
|
+
gap> BruteForceIsoCheck(iso);
|
|
682
|
+
true
|
|
683
|
+
gap> BruteForceInverseCheck(iso);
|
|
684
|
+
true
|
|
685
|
+
|
|
686
|
+
# IsomorphismSemigroups, for RZMS where an argument is not WholeFamily
|
|
687
|
+
gap> true;;
|
|
688
|
+
|
|
689
|
+
# Issue #167 (part 2)
|
|
690
|
+
gap> G1 := SymmetricGroup(IsPermGroup, 2);;
|
|
691
|
+
gap> R1 := ReesMatrixSemigroup(G1, [[Identity(G1)]]);;
|
|
692
|
+
gap> G2 := SymmetricGroup(IsPcGroup, 2);;
|
|
693
|
+
gap> R2 := ReesMatrixSemigroup(G2, [[Identity(G2)]]);;
|
|
694
|
+
gap> map := IsomorphismSemigroups(R1, R2);;
|
|
695
|
+
gap> BruteForceIsoCheck(map);
|
|
696
|
+
true
|
|
697
|
+
gap> BruteForceInverseCheck(map);
|
|
698
|
+
true
|
|
699
|
+
gap> map := InverseGeneralMapping(map);;
|
|
700
|
+
gap> BruteForceIsoCheck(map);
|
|
701
|
+
true
|
|
702
|
+
gap> BruteForceInverseCheck(map);
|
|
703
|
+
true
|
|
704
|
+
|
|
705
|
+
# Issue #167 (part 3)
|
|
706
|
+
gap> R := ReesMatrixSemigroup(Group(()), [[()]]);
|
|
707
|
+
<Rees matrix semigroup 1x1 over Group(())>
|
|
708
|
+
gap> iso := IsomorphismSemigroups(R, R);
|
|
709
|
+
((), IdentityMapping( Group( [ () ] ) ), [ (), () ])
|
|
710
|
+
gap> inv := InverseGeneralMapping(iso);
|
|
711
|
+
((), IdentityMapping( Group( [ () ] ) ), [ (), () ])
|
|
712
|
+
gap> Representative(R) ^ inv;
|
|
713
|
+
(1,(),1)
|
|
714
|
+
|
|
715
|
+
# Issue #167 (part 4)
|
|
716
|
+
gap> G1 := Group([(2, 4), (1, 2)]);;
|
|
717
|
+
gap> mat1 := [[(1, 2), (2, 4)]];;
|
|
718
|
+
gap> R1 := ReesMatrixSemigroup(G1, mat1);;
|
|
719
|
+
gap> G2 := Group([(1, 2)(3, 6)(4, 5), (1, 3, 5)(2, 4, 6)]);;
|
|
720
|
+
gap> mat2 := [[(1, 2)(3, 6)(4, 5), (1, 5, 3)(2, 6, 4)]];;
|
|
721
|
+
gap> R2 := ReesMatrixSemigroup(G2, mat2);;
|
|
722
|
+
gap> map := IsomorphismSemigroups(R1, R2);
|
|
723
|
+
((), GroupHomomorphismByImages( Group( [ (2,4), (1,2) ] ), Group(
|
|
724
|
+
[ (1,2)(3,6)(4,5), (1,3,5)(2,4,6) ] ), [ (2,4), (1,2) ],
|
|
725
|
+
[ (1,2)(3,6)(4,5), (1,4)(2,3)(5,6) ] ), [ (), (1,4)(2,3)(5,6), (1,3,5)(2,4,6)
|
|
726
|
+
])
|
|
727
|
+
gap> BruteForceIsoCheck(map);
|
|
728
|
+
true
|
|
729
|
+
gap> BruteForceInverseCheck(map);
|
|
730
|
+
true
|
|
731
|
+
gap> map := InverseGeneralMapping(map);
|
|
732
|
+
((), GroupHomomorphismByImages( Group( [ (1,2)(3,6)(4,5), (1,3,5)(2,4,6)
|
|
733
|
+
] ), Group( [ (2,4), (1,2) ] ), [ (1,2)(3,6)(4,5), (1,4)(2,3)(5,6) ],
|
|
734
|
+
[ (2,4), (1,2) ] ), [ (), (1,2), (1,4,2) ])
|
|
735
|
+
gap> BruteForceIsoCheck(map);
|
|
736
|
+
true
|
|
737
|
+
gap> BruteForceInverseCheck(map);
|
|
738
|
+
true
|
|
739
|
+
|
|
740
|
+
# Issue #167 (part 5)
|
|
741
|
+
gap> R := ReesMatrixSemigroup(Group(()), [[(), ()], [(), ()]]);;
|
|
742
|
+
gap> W := Semigroup(RMSElement(R, 2, (), 2));;
|
|
743
|
+
gap> S := ReesMatrixSemigroup(Group(()), [[()]]);;
|
|
744
|
+
gap> norm := InverseGeneralMapping(IsomorphismReesMatrixSemigroup(W));;
|
|
745
|
+
gap> iso := IsomorphismSemigroups(S, Source(norm));;
|
|
746
|
+
gap> comp := CompositionMapping(norm, iso);;
|
|
747
|
+
gap> inv := InverseGeneralMapping(comp);;
|
|
748
|
+
gap> Representative(S) ^ comp = Representative(W);
|
|
749
|
+
true
|
|
750
|
+
gap> Representative(W) ^ inv;
|
|
751
|
+
(1,(),1)
|
|
752
|
+
|
|
753
|
+
# Check inverses work
|
|
754
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]),
|
|
755
|
+
> [[(), 0, (), 0], [0, (), 0, ()]]);;
|
|
756
|
+
gap> A := AutomorphismGroup(R);
|
|
757
|
+
<automorphism group of <Rees 0-matrix semigroup 4x2 over Group(())> with
|
|
758
|
+
3 generators>
|
|
759
|
+
gap> Size(A);
|
|
760
|
+
8
|
|
761
|
+
gap> ForAll(A, x -> x * x ^ -1 = One(A));
|
|
762
|
+
true
|
|
763
|
+
gap> ForAll(A, x -> x ^ -1 * x = One(A));
|
|
764
|
+
true
|
|
765
|
+
gap> ForAll(A, BruteForceIsoCheck);
|
|
766
|
+
true
|
|
767
|
+
gap> ForAll(A, BruteForceInverseCheck);
|
|
768
|
+
true
|
|
769
|
+
|
|
770
|
+
# Errors in checked version of RMSIsoByTriple
|
|
771
|
+
gap> g := SymmetricGroup(4);;
|
|
772
|
+
gap> mat := [[(1, 3), (1, 2)(3, 4)],
|
|
773
|
+
> [(1, 4, 3, 2), ()],
|
|
774
|
+
> [(1, 3)(2, 4), (1, 3, 4, 2)]];;
|
|
775
|
+
gap> R := ReesMatrixSemigroup(g, mat);;
|
|
776
|
+
gap> S := ReesMatrixSemigroup(Group((1, 2)), [[()]]);;
|
|
777
|
+
gap> auto := IdentityMapping(g);;
|
|
778
|
+
gap> g_elms_list := [(), (1, 3), (), (), ()];;
|
|
779
|
+
gap> RMSIsoByTriple(R, S, [(), auto, g_elms_list]);
|
|
780
|
+
Error, the 1st and 2nd arguments (Rees matrix semigroups) have different numbe\
|
|
781
|
+
rs of rows and columns
|
|
782
|
+
gap> RMSIsoByTriple(R, R, [42, auto, g_elms_list]);
|
|
783
|
+
Error, the 1st entry in the 3rd argument (a triple) is not a permutation
|
|
784
|
+
gap> RMSIsoByTriple(R, R, [(1, 7), auto, g_elms_list]);
|
|
785
|
+
Error, the 1st entry (a permutation) in the 3rd argument (a triple) is not a p\
|
|
786
|
+
ermutation on [1 .. 5]
|
|
787
|
+
gap> RMSIsoByTriple(R, R, [(1, 4), auto, g_elms_list]);
|
|
788
|
+
Error, the 1st entry (a permutation) in the 3rd argument (a triple) maps rows \
|
|
789
|
+
to columns
|
|
790
|
+
gap> RMSIsoByTriple(R, R, [(), fail, g_elms_list]);
|
|
791
|
+
Error, the 2nd entry in the 3rd argument (a triple) is not an isomorphism betw\
|
|
792
|
+
een the underlying groups of the 1st and 2nd arguments (Rees matrix semigroups\
|
|
793
|
+
)
|
|
794
|
+
gap> RMSIsoByTriple(R, R, [(), auto, [(), (), ()]]);
|
|
795
|
+
Error, the 3rd entry (a list) in the 3rd argument (a triple)does not have leng\
|
|
796
|
+
th equal to the number of rows and columns of the 1st argument (a Rees matrix \
|
|
797
|
+
semigroup)
|
|
798
|
+
gap> RMSIsoByTriple(R, R, [(), auto, [42, 43, 44, 45, 46]]);
|
|
799
|
+
Error, the 3rd entry (a list) in the 3rd argument (a triple) does not consist \
|
|
800
|
+
of elements of the underlying group of the 2nd argument (a Rees matrix semigro\
|
|
801
|
+
up)
|
|
802
|
+
gap> RMSIsoByTriple(R, R, [(), auto, g_elms_list]);
|
|
803
|
+
Error, the 3rd entry (a list) in the 3rd argument (a triple) does not define a\
|
|
804
|
+
n isomorphism
|
|
805
|
+
gap> iso := RMSIsoByTripleNC(R, R, [(), auto, g_elms_list]);;
|
|
806
|
+
gap> BruteForceIsoCheck(iso);
|
|
807
|
+
false
|
|
808
|
+
gap> g_elms_list := [(), (), (), (), ()];;
|
|
809
|
+
gap> iso := RMSIsoByTriple(R, R, [(), auto, g_elms_list]);
|
|
810
|
+
((), IdentityMapping( SymmetricGroup( [ 1 .. 4 ] ) ), [ (), (), (), (), () ])
|
|
811
|
+
gap> BruteForceIsoCheck(iso);
|
|
812
|
+
true
|
|
813
|
+
|
|
814
|
+
# Errors in checked version of RZMSIsoByTriple
|
|
815
|
+
gap> g := SymmetricGroup(3);;
|
|
816
|
+
gap> mat := [[0, 0, (1, 3)], [(1, 2, 3), (), (2, 3)], [0, 0, ()]];;
|
|
817
|
+
gap> R := ReesZeroMatrixSemigroup(g, mat);;
|
|
818
|
+
gap> S := ReesZeroMatrixSemigroup(Group((1, 2)), [[()]]);;
|
|
819
|
+
gap> auto := IdentityMapping(g);;
|
|
820
|
+
gap> g_elms_list := [(), (1, 3), (), (), (), ()];;
|
|
821
|
+
gap> RZMSIsoByTriple(R, S, [(), auto, g_elms_list]);
|
|
822
|
+
Error, the 1st and 2nd arguments (Rees 0-matrix semigroups) have different num\
|
|
823
|
+
bers of rows and columns
|
|
824
|
+
gap> RZMSIsoByTriple(R, R, [42, auto, g_elms_list]);
|
|
825
|
+
Error, the 1st entry in the 3rd argument (a triple) is not a permutation
|
|
826
|
+
gap> RZMSIsoByTriple(R, R, [(1, 3), auto, g_elms_list]);
|
|
827
|
+
Error, the 1st entry in the 3rd argument (a triple) is not an isomorphism from\
|
|
828
|
+
the graph of the 1st argument (a Rees 0-matrix semigroup) and the graph of th\
|
|
829
|
+
e 2nd argument (a Rees 0-matrix semigroup)
|
|
830
|
+
gap> RZMSIsoByTriple(R, R, [(), fail, g_elms_list]);
|
|
831
|
+
Error, the 2nd entry in the 3rd argument (a triple) is not an isomorphism betw\
|
|
832
|
+
een the underlying groups of the 1st and 2nd arguments (Rees 0-matrix semigrou\
|
|
833
|
+
ps)
|
|
834
|
+
gap> RZMSIsoByTriple(R, R, [(), auto, [(), (), ()]]);
|
|
835
|
+
Error, the 3rd entry (a list) in the 3rd argument (a triple)does not have leng\
|
|
836
|
+
th equal to the number of rows and columns of the 1st argument (a Rees 0-matri\
|
|
837
|
+
x semigroup)
|
|
838
|
+
gap> RZMSIsoByTriple(R, R, [(), auto, [41, 42, 43, 44, 45, 46]]);
|
|
839
|
+
Error, the 3rd entry (a list) in the 3rd argument (a triple) does not consist \
|
|
840
|
+
of elements of the underlying group of the 2nd argument (a Rees 0-matrix semig\
|
|
841
|
+
roup)
|
|
842
|
+
gap> RZMSIsoByTriple(R, R, [(), auto, g_elms_list]);
|
|
843
|
+
Error, the 3rd entry (a list) in the 3rd argument (a triple) does not define a\
|
|
844
|
+
n isomorphism
|
|
845
|
+
gap> iso := RZMSIsoByTripleNC(R, R, [(), auto, g_elms_list]);;
|
|
846
|
+
gap> BruteForceIsoCheck(iso);
|
|
847
|
+
false
|
|
848
|
+
gap> g_elms_list := [(), (), (), (), (), ()];;
|
|
849
|
+
gap> iso := RZMSIsoByTriple(R, R, [(), auto, g_elms_list]);
|
|
850
|
+
((), IdentityMapping( SymmetricGroup( [ 1 .. 3 ] ) ),
|
|
851
|
+
[ (), (), (), (), (), () ])
|
|
852
|
+
gap> BruteForceIsoCheck(iso);
|
|
853
|
+
true
|
|
854
|
+
|
|
855
|
+
# IsomorphismSemigroups, for RMS
|
|
856
|
+
gap> G := CyclicGroup(6);;
|
|
857
|
+
gap> R := ReesMatrixSemigroup(G, [[One(G)]]);;
|
|
858
|
+
gap> S := ReesMatrixSemigroup(SymmetricGroup(3), [[()]]);;
|
|
859
|
+
gap> IsomorphismSemigroups(R, S);
|
|
860
|
+
fail
|
|
861
|
+
gap> R := ReesMatrixSemigroup(FullTransformationSemigroup(2),
|
|
862
|
+
> [[IdentityTransformation]]);;
|
|
863
|
+
gap> S := ReesMatrixSemigroup(FullTransformationSemigroup(3),
|
|
864
|
+
> [[IdentityTransformation]]);;
|
|
865
|
+
gap> IsomorphismSemigroups(R, S);
|
|
866
|
+
fail
|
|
867
|
+
gap> R := ReesMatrixSemigroup(Group((1, 2)), [[(), ()], [(), ()]]);;
|
|
868
|
+
gap> S := ReesMatrixSemigroup(Group((1, 2)), [[(), ()], [(), (1, 2)]]);;
|
|
869
|
+
gap> IsomorphismSemigroups(R, S);
|
|
870
|
+
fail
|
|
871
|
+
gap> G := AllSmallGroups(6)[1];;
|
|
872
|
+
gap> H := AllSmallGroups(6)[2];;
|
|
873
|
+
gap> R := ReesMatrixSemigroup(G, [[One(G)]]);;
|
|
874
|
+
gap> S := ReesMatrixSemigroup(H, [[One(H)]]);;
|
|
875
|
+
gap> T := ReesMatrixSemigroup(SymmetricGroup(3), [[()]]);;
|
|
876
|
+
gap> IsomorphismSemigroups(R, S);
|
|
877
|
+
fail
|
|
878
|
+
gap> IsomorphismSemigroups(T, S);
|
|
879
|
+
fail
|
|
880
|
+
gap> map := IsomorphismSemigroups(T, R);;
|
|
881
|
+
gap> BruteForceIsoCheck(map);
|
|
882
|
+
true
|
|
883
|
+
gap> BruteForceInverseCheck(map);
|
|
884
|
+
true
|
|
885
|
+
gap> map := IsomorphismSemigroups(R, T);;
|
|
886
|
+
gap> BruteForceIsoCheck(map);
|
|
887
|
+
true
|
|
888
|
+
gap> BruteForceInverseCheck(map);
|
|
889
|
+
true
|
|
890
|
+
|
|
891
|
+
# IsomorphismSemigroups, for RZMS
|
|
892
|
+
gap> G := CyclicGroup(6);;
|
|
893
|
+
gap> R := ReesZeroMatrixSemigroup(G, [[One(G)]]);;
|
|
894
|
+
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[()]]);;
|
|
895
|
+
gap> IsomorphismSemigroups(R, S);
|
|
896
|
+
fail
|
|
897
|
+
gap> R := ReesZeroMatrixSemigroup(FullTransformationSemigroup(2),
|
|
898
|
+
> [[IdentityTransformation]]);;
|
|
899
|
+
gap> S := ReesZeroMatrixSemigroup(FullTransformationSemigroup(3),
|
|
900
|
+
> [[IdentityTransformation]]);;
|
|
901
|
+
gap> IsomorphismSemigroups(R, S);
|
|
902
|
+
fail
|
|
903
|
+
gap> R := ReesZeroMatrixSemigroup(Group((1, 2)), [[(), ()], [(), ()]]);;
|
|
904
|
+
gap> S := ReesZeroMatrixSemigroup(Group((1, 2)), [[(), ()], [(), (1, 2)]]);;
|
|
905
|
+
gap> IsomorphismSemigroups(R, S);
|
|
906
|
+
fail
|
|
907
|
+
gap> G := AllSmallGroups(6)[1];;
|
|
908
|
+
gap> H := AllSmallGroups(6)[2];;
|
|
909
|
+
gap> R := ReesZeroMatrixSemigroup(G, [[One(G)]]);;
|
|
910
|
+
gap> S := ReesZeroMatrixSemigroup(H, [[One(H)]]);;
|
|
911
|
+
gap> T := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[()]]);;
|
|
912
|
+
gap> IsomorphismSemigroups(R, S);
|
|
913
|
+
fail
|
|
914
|
+
gap> IsomorphismSemigroups(T, S);
|
|
915
|
+
fail
|
|
916
|
+
gap> map := IsomorphismSemigroups(T, R);;
|
|
917
|
+
gap> BruteForceIsoCheck(map);
|
|
918
|
+
true
|
|
919
|
+
gap> BruteForceInverseCheck(map);
|
|
920
|
+
true
|
|
921
|
+
gap> map := IsomorphismSemigroups(R, T);;
|
|
922
|
+
gap> BruteForceIsoCheck(map);
|
|
923
|
+
true
|
|
924
|
+
gap> BruteForceInverseCheck(map);
|
|
925
|
+
true
|
|
926
|
+
gap> G := CyclicGroup(IsPcGroup, 5);;
|
|
927
|
+
gap> R := ReesZeroMatrixSemigroup(G, [[One(G), 0], [One(G), One(G)]]);;
|
|
928
|
+
gap> S := ReesZeroMatrixSemigroup(G, [[One(G), One(G)], [0, One(G)]]);;
|
|
929
|
+
gap> map := IsomorphismSemigroups(R, S);;
|
|
930
|
+
gap> BruteForceIsoCheck(map);
|
|
931
|
+
true
|
|
932
|
+
gap> BruteForceInverseCheck(map);
|
|
933
|
+
true
|
|
934
|
+
|
|
935
|
+
# IsomorphismRees(Zero)MatrixSemigroupOverPermGroup
|
|
936
|
+
gap> S := FullTransformationMonoid(3);;
|
|
937
|
+
gap> IsomorphismReesMatrixSemigroupOverPermGroup(S);
|
|
938
|
+
Error, the argument is not a finite simple semigroup
|
|
939
|
+
gap> IsomorphismReesZeroMatrixSemigroupOverPermGroup(S);
|
|
940
|
+
Error, the argument is not a finite 0-simple semigroup
|
|
941
|
+
gap> G := SymmetricGroup(2);;
|
|
942
|
+
gap> R := ReesMatrixSemigroup(G, [[G.1, G.1]]);
|
|
943
|
+
<Rees matrix semigroup 2x1 over Sym( [ 1 .. 2 ] )>
|
|
944
|
+
gap> iso := IsomorphismReesMatrixSemigroupOverPermGroup(R);;
|
|
945
|
+
gap> BruteForceIsoCheck(iso);
|
|
946
|
+
true
|
|
947
|
+
gap> BruteForceInverseCheck(iso);
|
|
948
|
+
true
|
|
949
|
+
gap> S := Semigroup(Representative(R));;
|
|
950
|
+
gap> iso := IsomorphismReesMatrixSemigroupOverPermGroup(S);;
|
|
951
|
+
gap> BruteForceIsoCheck(iso);
|
|
952
|
+
true
|
|
953
|
+
gap> BruteForceInverseCheck(iso);
|
|
954
|
+
true
|
|
955
|
+
gap> G := AllSmallGroups(8)[3];;
|
|
956
|
+
gap> R := ReesMatrixSemigroup(G, [[G.1, G.1]]);
|
|
957
|
+
<Rees matrix semigroup 2x1 over <pc group of size 8 with 3 generators>>
|
|
958
|
+
gap> iso := IsomorphismReesMatrixSemigroupOverPermGroup(R);;
|
|
959
|
+
gap> BruteForceIsoCheck(iso);
|
|
960
|
+
true
|
|
961
|
+
gap> BruteForceInverseCheck(iso);
|
|
962
|
+
true
|
|
963
|
+
gap> S := Semigroup(Representative(R));;
|
|
964
|
+
gap> iso := IsomorphismReesMatrixSemigroupOverPermGroup(S);;
|
|
965
|
+
gap> BruteForceIsoCheck(iso);
|
|
966
|
+
true
|
|
967
|
+
gap> BruteForceInverseCheck(iso);
|
|
968
|
+
true
|
|
969
|
+
gap> G := SymmetricGroup(2);;
|
|
970
|
+
gap> R := ReesZeroMatrixSemigroup(G, [[(), 0, 0], [0, (), 0], [0, 0, ()]]);
|
|
971
|
+
<Rees 0-matrix semigroup 3x3 over Sym( [ 1 .. 2 ] )>
|
|
972
|
+
gap> iso := IsomorphismReesZeroMatrixSemigroupOverPermGroup(R);;
|
|
973
|
+
gap> BruteForceIsoCheck(iso);
|
|
974
|
+
true
|
|
975
|
+
gap> BruteForceInverseCheck(iso);
|
|
976
|
+
true
|
|
977
|
+
gap> S := Semigroup(RMSElement(R, 2, (), 1), RMSElement(R, 1, (), 2));;
|
|
978
|
+
gap> iso := IsomorphismReesZeroMatrixSemigroupOverPermGroup(S);;
|
|
979
|
+
gap> BruteForceIsoCheck(iso);
|
|
980
|
+
true
|
|
981
|
+
gap> BruteForceInverseCheck(iso);
|
|
982
|
+
true
|
|
983
|
+
gap> G := AllSmallGroups(8)[3];;
|
|
984
|
+
gap> G := AsSemigroup(IsTransformationSemigroup, G);
|
|
985
|
+
<transformation monoid of size 8, degree 8 with 7 generators>
|
|
986
|
+
gap> x := IdentityTransformation;;
|
|
987
|
+
gap> y := Transformation([4, 6, 7, 1, 8, 2, 3, 5]);;
|
|
988
|
+
gap> R := ReesZeroMatrixSemigroup(G, [[x, 0, 0], [0, x, 0], [0, 0, x]]);
|
|
989
|
+
<Rees 0-matrix semigroup 3x3 over <transformation monoid of size 8, degree 8
|
|
990
|
+
with 7 generators>>
|
|
991
|
+
gap> iso := IsomorphismReesZeroMatrixSemigroupOverPermGroup(R);;
|
|
992
|
+
gap> BruteForceIsoCheck(iso);
|
|
993
|
+
true
|
|
994
|
+
gap> BruteForceInverseCheck(iso);
|
|
995
|
+
true
|
|
996
|
+
gap> S := Semigroup(RMSElement(R, 1, x, 2), RMSElement(R, 2, x, 1));;
|
|
997
|
+
gap> iso := IsomorphismReesZeroMatrixSemigroupOverPermGroup(S);;
|
|
998
|
+
gap> BruteForceIsoCheck(iso);
|
|
999
|
+
true
|
|
1000
|
+
gap> BruteForceInverseCheck(iso);
|
|
1001
|
+
true
|
|
1002
|
+
gap> R := ReesZeroMatrixSemigroup(G, [[y, 0, 0], [0, y, 0], [0, 0, y]]);
|
|
1003
|
+
<Rees 0-matrix semigroup 3x3 over <transformation group of size 8,
|
|
1004
|
+
degree 8 with 7 generators>>
|
|
1005
|
+
gap> S := Semigroup(RMSElement(R, 1, x, 2), RMSElement(R, 2, x, 1));;
|
|
1006
|
+
gap> iso := IsomorphismReesZeroMatrixSemigroupOverPermGroup(S);;
|
|
1007
|
+
gap> BruteForceIsoCheck(iso);
|
|
1008
|
+
true
|
|
1009
|
+
gap> BruteForceInverseCheck(iso);
|
|
1010
|
+
true
|
|
1011
|
+
gap> S := Semigroup(MinimalIdeal(FullTransformationMonoid(5)));;
|
|
1012
|
+
gap> IsomorphismReesMatrixSemigroupOverPermGroup(S);;
|
|
1013
|
+
gap> BruteForceIsoCheck(iso);
|
|
1014
|
+
true
|
|
1015
|
+
gap> BruteForceInverseCheck(iso);
|
|
1016
|
+
true
|
|
1017
|
+
|
|
1018
|
+
# CanonicalReesZeroMatrixSemigroup
|
|
1019
|
+
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup([1 .. 4]),
|
|
1020
|
+
> [[(), (2, 3), (2, 3, 4)], [(1, 2)(3, 4), (), (1, 2, 4, 3)],
|
|
1021
|
+
> [(1, 4, 2), (1, 3)(2, 4), ()]]);;
|
|
1022
|
+
gap> T := ReesZeroMatrixSemigroup(SymmetricGroup([1 .. 4]),
|
|
1023
|
+
> [[(1, 2, 4, 3), (2, 4, 3), (1, 4)(2, 3)], [(1, 4), (), (1, 3)],
|
|
1024
|
+
> [(), (1, 3)(2, 4), (1, 3, 4, 2)]]);;
|
|
1025
|
+
gap> mat := [[(), (), ()], [(1, 4), (), (2, 4)],
|
|
1026
|
+
> [(), (1, 3), (1, 4, 3, 2)]];;
|
|
1027
|
+
gap> Matrix(CanonicalReesZeroMatrixSemigroup(S)) = mat;
|
|
1028
|
+
true
|
|
1029
|
+
gap> Matrix(CanonicalReesZeroMatrixSemigroup(T)) = mat;
|
|
1030
|
+
true
|
|
1031
|
+
gap> S := ReesZeroMatrixSemigroup(Group(
|
|
1032
|
+
> [(1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
|
|
1033
|
+
> 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
|
|
1034
|
+
> 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
|
|
1035
|
+
> 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
|
|
1036
|
+
> 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
|
|
1037
|
+
> 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
|
|
1038
|
+
> 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
|
|
1039
|
+
> 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142)]), [[(),
|
|
1040
|
+
> (1, 2, 3)(4, 69, 134, 60, 125, 51, 116, 42, 107, 33, 98, 24, 89, 15, 80, 6,
|
|
1041
|
+
> 71, 136, 62, 127, 53, 118, 44, 109, 35, 100, 26, 91, 17, 82, 8, 73, 138, 64,
|
|
1042
|
+
> 129, 55, 120, 46, 111, 37, 102, 28, 93, 19, 84, 10, 75, 140, 66, 131, 57, 122,
|
|
1043
|
+
> 48, 113, 39, 104, 30, 95, 21, 86, 12, 77, 142, 68, 133, 59, 124, 50, 115, 41,
|
|
1044
|
+
> 106, 32, 97, 23, 88, 14, 79, 5, 70, 135, 61, 126, 52, 117, 43, 108, 34, 99,
|
|
1045
|
+
> 25, 90, 16, 81, 7, 72, 137, 63, 128, 54, 119, 45, 110, 36, 101, 27, 92, 18,
|
|
1046
|
+
> 83, 9, 74, 139, 65, 130, 56, 121, 47, 112, 38, 103, 29, 94, 20, 85, 11, 76,
|
|
1047
|
+
> 141, 67, 132, 58, 123, 49, 114, 40, 105, 31, 96, 22, 87, 13, 78), (), ()],
|
|
1048
|
+
> [(1, 3, 2)(4, 106, 69, 32, 134, 97, 60, 23, 125, 88, 51, 14, 116, 79, 42, 5,
|
|
1049
|
+
> 107, 70, 33, 135, 98, 61, 24, 126, 89, 52, 15, 117, 80, 43, 6, 108, 71, 34,
|
|
1050
|
+
> 136, 99, 62, 25, 127, 90, 53, 16, 118, 81, 44, 7, 109, 72, 35, 137, 100, 63,
|
|
1051
|
+
> 26, 128, 91, 54, 17, 119, 82, 45, 8, 110, 73, 36, 138, 101, 64, 27, 129, 92,
|
|
1052
|
+
> 55, 18, 120, 83, 46, 9, 111, 74, 37, 139, 102, 65, 28, 130, 93, 56, 19, 121,
|
|
1053
|
+
> 84, 47, 10, 112, 75, 38, 140, 103, 66, 29, 131, 94, 57, 20, 122, 85, 48, 11,
|
|
1054
|
+
> 113, 76, 39, 141, 104, 67, 30, 132, 95, 58, 21, 123, 86, 49, 12, 114, 77, 40,
|
|
1055
|
+
> 142, 105, 68, 31, 133, 96, 59, 22, 124, 87, 50, 13, 115, 78, 41), (), (4, 64,
|
|
1056
|
+
> 124, 45, 105, 26, 86, 7, 67, 127, 48, 108, 29, 89, 10, 70, 130, 51, 111, 32,
|
|
1057
|
+
> 92, 13, 73, 133, 54, 114, 35, 95, 16, 76, 136, 57, 117, 38, 98, 19, 79, 139,
|
|
1058
|
+
> 60, 120, 41, 101, 22, 82, 142, 63, 123, 44, 104, 25, 85, 6, 66, 126, 47, 107,
|
|
1059
|
+
> 28, 88, 9, 69, 129, 50, 110, 31, 91, 12, 72, 132, 53, 113, 34, 94, 15, 75,
|
|
1060
|
+
> 135, 56, 116, 37, 97, 18, 78, 138, 59, 119, 40, 100, 21, 81, 141, 62, 122, 43,
|
|
1061
|
+
> 103, 24, 84, 5, 65, 125, 46, 106, 27, 87, 8, 68, 128, 49, 109, 30, 90, 11, 71,
|
|
1062
|
+
> 131, 52, 112, 33, 93, 14, 74, 134, 55, 115, 36, 96, 17, 77, 137, 58, 118, 39,
|
|
1063
|
+
> 99, 20, 80, 140, 61, 121, 42, 102, 23, 83), 0]]);;
|
|
1064
|
+
gap> mat := [[0, (), (), ()],
|
|
1065
|
+
> [(), (), (4, 96, 49, 141, 94, 47, 139, 92, 45, 137, 90, 43, 135, 88, 41,
|
|
1066
|
+
> 133, 86, 39, 131, 84, 37, 129, 82, 35, 127, 80, 33, 125, 78, 31, 123, 76, 29,
|
|
1067
|
+
> 121, 74, 27, 119, 72, 25, 117, 70, 23, 115, 68, 21, 113, 66, 19, 111, 64, 17,
|
|
1068
|
+
> 109, 62, 15, 107, 60, 13, 105, 58, 11, 103, 56, 9, 101, 54, 7, 99, 52, 5, 97,
|
|
1069
|
+
> 50, 142, 95, 48, 140, 93, 46, 138, 91, 44, 136, 89, 42, 134, 87, 40, 132, 85,
|
|
1070
|
+
> 38, 130, 83, 36, 128, 81, 34, 126, 79, 32, 124, 77, 30, 122, 75, 28, 120, 73,
|
|
1071
|
+
> 26, 118, 71, 24, 116, 69, 22, 114, 67, 20, 112, 65, 18, 110, 63, 16, 108, 61,
|
|
1072
|
+
> 14, 106, 59, 12, 104, 57, 10, 102, 55, 8, 100, 53, 6, 98, 51), (1, 2, 3)(4,
|
|
1073
|
+
> 142, 141, 140, 139, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 128,
|
|
1074
|
+
> 127, 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115, 114, 113,
|
|
1075
|
+
> 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97,
|
|
1076
|
+
> 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78,
|
|
1077
|
+
> 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59,
|
|
1078
|
+
> 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40,
|
|
1079
|
+
> 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21,
|
|
1080
|
+
> 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5)]];;
|
|
1081
|
+
gap> Matrix(CanonicalReesZeroMatrixSemigroup(S)) = mat;
|
|
1082
|
+
true
|
|
1083
|
+
gap> S := ReesZeroMatrixSemigroup(Group([(1, 2, 3, 4)]), [[(), (1, 2, 3, 4),
|
|
1084
|
+
> (1, 2, 3, 4), (1, 3)(2, 4), 0], [0, (), (1, 2, 3, 4), (), ()], [0, (), (), (1,
|
|
1085
|
+
> 2, 3, 4), ()], [(1, 4, 3, 2), (1, 4, 3, 2), 0, (), (1, 3)(2, 4)], [0, 0, (1,
|
|
1086
|
+
> 4, 3, 2), (1, 3)(2, 4), ()]]);;
|
|
1087
|
+
gap> mat := [[(), 0, 0, (), ()], [0, (), (), (1, 4, 3, 2), (1, 2, 3, 4)],
|
|
1088
|
+
> [(), (), (1, 2, 3, 4), (), 0], [(1, 3)(2, 4), 0, (), (), ()],
|
|
1089
|
+
> [(), 0, (1, 3)(2, 4), (1, 2, 3, 4), (1, 4, 3, 2)]];;
|
|
1090
|
+
gap> Matrix(CanonicalReesZeroMatrixSemigroup(S)) = mat;
|
|
1091
|
+
true
|
|
1092
|
+
gap> T := CanonicalReesZeroMatrixSemigroup(S);;
|
|
1093
|
+
gap> mat = Matrix(T);
|
|
1094
|
+
true
|
|
1095
|
+
gap> UnderlyingSemigroup(S) = UnderlyingSemigroup(T);
|
|
1096
|
+
true
|
|
1097
|
+
gap> S := ReesZeroMatrixSemigroup(AlternatingGroup([1 .. 5]),
|
|
1098
|
+
> [[(), 0], [(1, 3, 4), (2, 4, 5)], [(1, 5, 2), (1, 5, 2, 4, 3)]]);;
|
|
1099
|
+
gap> mat := [[0, ()], [(), ()], [(), (1, 5, 4)]];;
|
|
1100
|
+
gap> Matrix(CanonicalReesZeroMatrixSemigroup(S)) = mat;
|
|
1101
|
+
true
|
|
1102
|
+
gap> T := CanonicalReesZeroMatrixSemigroup(S);;
|
|
1103
|
+
gap> mat = Matrix(T);
|
|
1104
|
+
true
|
|
1105
|
+
gap> UnderlyingSemigroup(S) = UnderlyingSemigroup(T);
|
|
1106
|
+
true
|
|
1107
|
+
|
|
1108
|
+
# CanonicalReesMatrixSemigroup
|
|
1109
|
+
gap> S := ReesMatrixSemigroup(Group([(1, 2), (3, 4)]),
|
|
1110
|
+
> [[(), (), (3, 4), (), ()], [(), (3, 4), (), (3, 4), (1, 2)], [(), (1, 2), (3,
|
|
1111
|
+
> 4), (), ()], [(1, 2)(3, 4), (3, 4), (), (), ()], [(), (1, 2), (1, 2)(3, 4),
|
|
1112
|
+
> (), ()]]);;
|
|
1113
|
+
gap> mat := [[(), (), (), (), ()], [(), (), (), (), (1, 2)],
|
|
1114
|
+
> [(), (), (), (1, 2), ()], [(), (3, 4), (1, 2)(3, 4), (), (1, 2)],
|
|
1115
|
+
> [(), (), (3, 4), (1, 2)(3, 4), (3, 4)]];;
|
|
1116
|
+
gap> mat = Matrix(CanonicalReesMatrixSemigroup(S));
|
|
1117
|
+
true
|
|
1118
|
+
gap> mat = Matrix(CanonicalReesMatrixSemigroup(S));
|
|
1119
|
+
true
|
|
1120
|
+
gap> S := ReesMatrixSemigroup(AlternatingGroup([1 .. 5]),
|
|
1121
|
+
> [[(), (), (1, 5, 4, 2, 3)], [(1, 5, 4), (1, 3, 2, 5, 4), ()], [(), (), (1, 2,
|
|
1122
|
+
> 3, 4, 5)], [(), (), ()]]);;
|
|
1123
|
+
gap> mat :=
|
|
1124
|
+
> [[(), (), ()], [(), (), (1, 4)(2, 5)], [(), (), (1, 3, 5, 4, 2)],
|
|
1125
|
+
> [(), (1, 3, 4), (1, 3, 5)]];;
|
|
1126
|
+
gap> mat = Matrix(CanonicalReesMatrixSemigroup(S));
|
|
1127
|
+
true
|
|
1128
|
+
gap> mat = Matrix(CanonicalReesMatrixSemigroup(S));
|
|
1129
|
+
true
|
|
1130
|
+
|
|
1131
|
+
# CanonicalX error messages
|
|
1132
|
+
gap> G := Semigroup([Transformation([2, 1])]);;
|
|
1133
|
+
gap> mat := [[IdentityTransformation, IdentityTransformation,
|
|
1134
|
+
> IdentityTransformation], [IdentityTransformation, IdentityTransformation,
|
|
1135
|
+
> Transformation([2, 1])]];;
|
|
1136
|
+
gap> S := ReesZeroMatrixSemigroup(G, mat);;
|
|
1137
|
+
gap> CanonicalReesZeroMatrixSemigroup(S);
|
|
1138
|
+
Error, the underlying semigroup of the argument (a Rees 0-matrix semigroup) is\
|
|
1139
|
+
not a group
|
|
1140
|
+
gap> S := ReesMatrixSemigroup(G, mat);;
|
|
1141
|
+
gap> CanonicalReesMatrixSemigroup(S);
|
|
1142
|
+
Error, the underlying semigroup of the argument (a Rees 0-matrix semigroup) is\
|
|
1143
|
+
not a group
|
|
1144
|
+
|
|
1145
|
+
#
|
|
1146
|
+
gap> SEMIGROUPS.StopTest();
|
|
1147
|
+
gap> STOP_TEST("Semigroups package: standard/attributes/isorms.tst");
|