oscura 0.5.1__py3-none-any.whl → 0.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (497) hide show
  1. oscura/__init__.py +169 -167
  2. oscura/analyzers/__init__.py +3 -0
  3. oscura/analyzers/classification.py +659 -0
  4. oscura/analyzers/digital/edges.py +325 -65
  5. oscura/analyzers/digital/quality.py +293 -166
  6. oscura/analyzers/digital/timing.py +260 -115
  7. oscura/analyzers/digital/timing_numba.py +334 -0
  8. oscura/analyzers/entropy.py +605 -0
  9. oscura/analyzers/eye/diagram.py +176 -109
  10. oscura/analyzers/eye/metrics.py +5 -5
  11. oscura/analyzers/jitter/__init__.py +6 -4
  12. oscura/analyzers/jitter/ber.py +52 -52
  13. oscura/analyzers/jitter/classification.py +156 -0
  14. oscura/analyzers/jitter/decomposition.py +163 -113
  15. oscura/analyzers/jitter/spectrum.py +80 -64
  16. oscura/analyzers/ml/__init__.py +39 -0
  17. oscura/analyzers/ml/features.py +600 -0
  18. oscura/analyzers/ml/signal_classifier.py +604 -0
  19. oscura/analyzers/packet/daq.py +246 -158
  20. oscura/analyzers/packet/parser.py +12 -1
  21. oscura/analyzers/packet/payload.py +50 -2110
  22. oscura/analyzers/packet/payload_analysis.py +361 -181
  23. oscura/analyzers/packet/payload_patterns.py +133 -70
  24. oscura/analyzers/packet/stream.py +84 -23
  25. oscura/analyzers/patterns/__init__.py +26 -5
  26. oscura/analyzers/patterns/anomaly_detection.py +908 -0
  27. oscura/analyzers/patterns/clustering.py +169 -108
  28. oscura/analyzers/patterns/clustering_optimized.py +227 -0
  29. oscura/analyzers/patterns/discovery.py +1 -1
  30. oscura/analyzers/patterns/matching.py +581 -197
  31. oscura/analyzers/patterns/pattern_mining.py +778 -0
  32. oscura/analyzers/patterns/periodic.py +121 -38
  33. oscura/analyzers/patterns/sequences.py +175 -78
  34. oscura/analyzers/power/conduction.py +1 -1
  35. oscura/analyzers/power/soa.py +6 -6
  36. oscura/analyzers/power/switching.py +250 -110
  37. oscura/analyzers/protocol/__init__.py +17 -1
  38. oscura/analyzers/protocols/base.py +6 -6
  39. oscura/analyzers/protocols/ble/__init__.py +38 -0
  40. oscura/analyzers/protocols/ble/analyzer.py +809 -0
  41. oscura/analyzers/protocols/ble/uuids.py +288 -0
  42. oscura/analyzers/protocols/can.py +257 -127
  43. oscura/analyzers/protocols/can_fd.py +107 -80
  44. oscura/analyzers/protocols/flexray.py +139 -80
  45. oscura/analyzers/protocols/hdlc.py +93 -58
  46. oscura/analyzers/protocols/i2c.py +247 -106
  47. oscura/analyzers/protocols/i2s.py +138 -86
  48. oscura/analyzers/protocols/industrial/__init__.py +40 -0
  49. oscura/analyzers/protocols/industrial/bacnet/__init__.py +33 -0
  50. oscura/analyzers/protocols/industrial/bacnet/analyzer.py +708 -0
  51. oscura/analyzers/protocols/industrial/bacnet/encoding.py +412 -0
  52. oscura/analyzers/protocols/industrial/bacnet/services.py +622 -0
  53. oscura/analyzers/protocols/industrial/ethercat/__init__.py +30 -0
  54. oscura/analyzers/protocols/industrial/ethercat/analyzer.py +474 -0
  55. oscura/analyzers/protocols/industrial/ethercat/mailbox.py +339 -0
  56. oscura/analyzers/protocols/industrial/ethercat/topology.py +166 -0
  57. oscura/analyzers/protocols/industrial/modbus/__init__.py +31 -0
  58. oscura/analyzers/protocols/industrial/modbus/analyzer.py +525 -0
  59. oscura/analyzers/protocols/industrial/modbus/crc.py +79 -0
  60. oscura/analyzers/protocols/industrial/modbus/functions.py +436 -0
  61. oscura/analyzers/protocols/industrial/opcua/__init__.py +21 -0
  62. oscura/analyzers/protocols/industrial/opcua/analyzer.py +552 -0
  63. oscura/analyzers/protocols/industrial/opcua/datatypes.py +446 -0
  64. oscura/analyzers/protocols/industrial/opcua/services.py +264 -0
  65. oscura/analyzers/protocols/industrial/profinet/__init__.py +23 -0
  66. oscura/analyzers/protocols/industrial/profinet/analyzer.py +441 -0
  67. oscura/analyzers/protocols/industrial/profinet/dcp.py +263 -0
  68. oscura/analyzers/protocols/industrial/profinet/ptcp.py +200 -0
  69. oscura/analyzers/protocols/jtag.py +180 -98
  70. oscura/analyzers/protocols/lin.py +219 -114
  71. oscura/analyzers/protocols/manchester.py +4 -4
  72. oscura/analyzers/protocols/onewire.py +253 -149
  73. oscura/analyzers/protocols/parallel_bus/__init__.py +20 -0
  74. oscura/analyzers/protocols/parallel_bus/centronics.py +92 -0
  75. oscura/analyzers/protocols/parallel_bus/gpib.py +137 -0
  76. oscura/analyzers/protocols/spi.py +192 -95
  77. oscura/analyzers/protocols/swd.py +321 -167
  78. oscura/analyzers/protocols/uart.py +267 -125
  79. oscura/analyzers/protocols/usb.py +235 -131
  80. oscura/analyzers/side_channel/power.py +17 -12
  81. oscura/analyzers/signal/__init__.py +15 -0
  82. oscura/analyzers/signal/timing_analysis.py +1086 -0
  83. oscura/analyzers/signal_integrity/__init__.py +4 -1
  84. oscura/analyzers/signal_integrity/sparams.py +2 -19
  85. oscura/analyzers/spectral/chunked.py +129 -60
  86. oscura/analyzers/spectral/chunked_fft.py +300 -94
  87. oscura/analyzers/spectral/chunked_wavelet.py +100 -80
  88. oscura/analyzers/statistical/checksum.py +376 -217
  89. oscura/analyzers/statistical/classification.py +229 -107
  90. oscura/analyzers/statistical/entropy.py +78 -53
  91. oscura/analyzers/statistics/correlation.py +407 -211
  92. oscura/analyzers/statistics/outliers.py +2 -2
  93. oscura/analyzers/statistics/streaming.py +30 -5
  94. oscura/analyzers/validation.py +216 -101
  95. oscura/analyzers/waveform/measurements.py +9 -0
  96. oscura/analyzers/waveform/measurements_with_uncertainty.py +31 -15
  97. oscura/analyzers/waveform/spectral.py +500 -228
  98. oscura/api/__init__.py +31 -5
  99. oscura/api/dsl/__init__.py +582 -0
  100. oscura/{dsl → api/dsl}/commands.py +43 -76
  101. oscura/{dsl → api/dsl}/interpreter.py +26 -51
  102. oscura/{dsl → api/dsl}/parser.py +107 -77
  103. oscura/{dsl → api/dsl}/repl.py +2 -2
  104. oscura/api/dsl.py +1 -1
  105. oscura/{integrations → api/integrations}/__init__.py +1 -1
  106. oscura/{integrations → api/integrations}/llm.py +201 -102
  107. oscura/api/operators.py +3 -3
  108. oscura/api/optimization.py +144 -30
  109. oscura/api/rest_server.py +921 -0
  110. oscura/api/server/__init__.py +17 -0
  111. oscura/api/server/dashboard.py +850 -0
  112. oscura/api/server/static/README.md +34 -0
  113. oscura/api/server/templates/base.html +181 -0
  114. oscura/api/server/templates/export.html +120 -0
  115. oscura/api/server/templates/home.html +284 -0
  116. oscura/api/server/templates/protocols.html +58 -0
  117. oscura/api/server/templates/reports.html +43 -0
  118. oscura/api/server/templates/session_detail.html +89 -0
  119. oscura/api/server/templates/sessions.html +83 -0
  120. oscura/api/server/templates/waveforms.html +73 -0
  121. oscura/automotive/__init__.py +8 -1
  122. oscura/automotive/can/__init__.py +10 -0
  123. oscura/automotive/can/checksum.py +3 -1
  124. oscura/automotive/can/dbc_generator.py +590 -0
  125. oscura/automotive/can/message_wrapper.py +121 -74
  126. oscura/automotive/can/patterns.py +98 -21
  127. oscura/automotive/can/session.py +292 -56
  128. oscura/automotive/can/state_machine.py +6 -3
  129. oscura/automotive/can/stimulus_response.py +97 -75
  130. oscura/automotive/dbc/__init__.py +10 -2
  131. oscura/automotive/dbc/generator.py +84 -56
  132. oscura/automotive/dbc/parser.py +6 -6
  133. oscura/automotive/dtc/data.json +17 -102
  134. oscura/automotive/dtc/database.py +2 -2
  135. oscura/automotive/flexray/__init__.py +31 -0
  136. oscura/automotive/flexray/analyzer.py +504 -0
  137. oscura/automotive/flexray/crc.py +185 -0
  138. oscura/automotive/flexray/fibex.py +449 -0
  139. oscura/automotive/j1939/__init__.py +45 -8
  140. oscura/automotive/j1939/analyzer.py +605 -0
  141. oscura/automotive/j1939/spns.py +326 -0
  142. oscura/automotive/j1939/transport.py +306 -0
  143. oscura/automotive/lin/__init__.py +47 -0
  144. oscura/automotive/lin/analyzer.py +612 -0
  145. oscura/automotive/loaders/blf.py +13 -2
  146. oscura/automotive/loaders/csv_can.py +143 -72
  147. oscura/automotive/loaders/dispatcher.py +50 -2
  148. oscura/automotive/loaders/mdf.py +86 -45
  149. oscura/automotive/loaders/pcap.py +111 -61
  150. oscura/automotive/uds/__init__.py +4 -0
  151. oscura/automotive/uds/analyzer.py +725 -0
  152. oscura/automotive/uds/decoder.py +140 -58
  153. oscura/automotive/uds/models.py +7 -1
  154. oscura/automotive/visualization.py +1 -1
  155. oscura/cli/analyze.py +348 -0
  156. oscura/cli/batch.py +142 -122
  157. oscura/cli/benchmark.py +275 -0
  158. oscura/cli/characterize.py +137 -82
  159. oscura/cli/compare.py +224 -131
  160. oscura/cli/completion.py +250 -0
  161. oscura/cli/config_cmd.py +361 -0
  162. oscura/cli/decode.py +164 -87
  163. oscura/cli/export.py +286 -0
  164. oscura/cli/main.py +115 -31
  165. oscura/{onboarding → cli/onboarding}/__init__.py +3 -3
  166. oscura/{onboarding → cli/onboarding}/help.py +80 -58
  167. oscura/{onboarding → cli/onboarding}/tutorials.py +97 -72
  168. oscura/{onboarding → cli/onboarding}/wizard.py +55 -36
  169. oscura/cli/progress.py +147 -0
  170. oscura/cli/shell.py +157 -135
  171. oscura/cli/validate_cmd.py +204 -0
  172. oscura/cli/visualize.py +158 -0
  173. oscura/convenience.py +125 -79
  174. oscura/core/__init__.py +4 -2
  175. oscura/core/backend_selector.py +3 -3
  176. oscura/core/cache.py +126 -15
  177. oscura/core/cancellation.py +1 -1
  178. oscura/{config → core/config}/__init__.py +20 -11
  179. oscura/{config → core/config}/defaults.py +1 -1
  180. oscura/{config → core/config}/loader.py +7 -5
  181. oscura/{config → core/config}/memory.py +5 -5
  182. oscura/{config → core/config}/migration.py +1 -1
  183. oscura/{config → core/config}/pipeline.py +99 -23
  184. oscura/{config → core/config}/preferences.py +1 -1
  185. oscura/{config → core/config}/protocol.py +3 -3
  186. oscura/{config → core/config}/schema.py +426 -272
  187. oscura/{config → core/config}/settings.py +1 -1
  188. oscura/{config → core/config}/thresholds.py +195 -153
  189. oscura/core/correlation.py +5 -6
  190. oscura/core/cross_domain.py +0 -2
  191. oscura/core/debug.py +9 -5
  192. oscura/{extensibility → core/extensibility}/docs.py +158 -70
  193. oscura/{extensibility → core/extensibility}/extensions.py +160 -76
  194. oscura/{extensibility → core/extensibility}/logging.py +1 -1
  195. oscura/{extensibility → core/extensibility}/measurements.py +1 -1
  196. oscura/{extensibility → core/extensibility}/plugins.py +1 -1
  197. oscura/{extensibility → core/extensibility}/templates.py +73 -3
  198. oscura/{extensibility → core/extensibility}/validation.py +1 -1
  199. oscura/core/gpu_backend.py +11 -7
  200. oscura/core/log_query.py +101 -11
  201. oscura/core/logging.py +126 -54
  202. oscura/core/logging_advanced.py +5 -5
  203. oscura/core/memory_limits.py +108 -70
  204. oscura/core/memory_monitor.py +2 -2
  205. oscura/core/memory_progress.py +7 -7
  206. oscura/core/memory_warnings.py +1 -1
  207. oscura/core/numba_backend.py +13 -13
  208. oscura/{plugins → core/plugins}/__init__.py +9 -9
  209. oscura/{plugins → core/plugins}/base.py +7 -7
  210. oscura/{plugins → core/plugins}/cli.py +3 -3
  211. oscura/{plugins → core/plugins}/discovery.py +186 -106
  212. oscura/{plugins → core/plugins}/lifecycle.py +1 -1
  213. oscura/{plugins → core/plugins}/manager.py +7 -7
  214. oscura/{plugins → core/plugins}/registry.py +3 -3
  215. oscura/{plugins → core/plugins}/versioning.py +1 -1
  216. oscura/core/progress.py +16 -1
  217. oscura/core/provenance.py +8 -2
  218. oscura/{schemas → core/schemas}/__init__.py +2 -2
  219. oscura/{schemas → core/schemas}/device_mapping.json +2 -8
  220. oscura/{schemas → core/schemas}/packet_format.json +4 -24
  221. oscura/{schemas → core/schemas}/protocol_definition.json +2 -12
  222. oscura/core/types.py +4 -0
  223. oscura/core/uncertainty.py +3 -3
  224. oscura/correlation/__init__.py +52 -0
  225. oscura/correlation/multi_protocol.py +811 -0
  226. oscura/discovery/auto_decoder.py +117 -35
  227. oscura/discovery/comparison.py +191 -86
  228. oscura/discovery/quality_validator.py +155 -68
  229. oscura/discovery/signal_detector.py +196 -79
  230. oscura/export/__init__.py +18 -8
  231. oscura/export/kaitai_struct.py +513 -0
  232. oscura/export/scapy_layer.py +801 -0
  233. oscura/export/wireshark/generator.py +1 -1
  234. oscura/export/wireshark/templates/dissector.lua.j2 +2 -2
  235. oscura/export/wireshark_dissector.py +746 -0
  236. oscura/guidance/wizard.py +207 -111
  237. oscura/hardware/__init__.py +19 -0
  238. oscura/{acquisition → hardware/acquisition}/__init__.py +4 -4
  239. oscura/{acquisition → hardware/acquisition}/file.py +2 -2
  240. oscura/{acquisition → hardware/acquisition}/hardware.py +7 -7
  241. oscura/{acquisition → hardware/acquisition}/saleae.py +15 -12
  242. oscura/{acquisition → hardware/acquisition}/socketcan.py +1 -1
  243. oscura/{acquisition → hardware/acquisition}/streaming.py +2 -2
  244. oscura/{acquisition → hardware/acquisition}/synthetic.py +3 -3
  245. oscura/{acquisition → hardware/acquisition}/visa.py +33 -11
  246. oscura/hardware/firmware/__init__.py +29 -0
  247. oscura/hardware/firmware/pattern_recognition.py +874 -0
  248. oscura/hardware/hal_detector.py +736 -0
  249. oscura/hardware/security/__init__.py +37 -0
  250. oscura/hardware/security/side_channel_detector.py +1126 -0
  251. oscura/inference/__init__.py +4 -0
  252. oscura/inference/active_learning/observation_table.py +4 -1
  253. oscura/inference/alignment.py +216 -123
  254. oscura/inference/bayesian.py +113 -33
  255. oscura/inference/crc_reverse.py +101 -55
  256. oscura/inference/logic.py +6 -2
  257. oscura/inference/message_format.py +342 -183
  258. oscura/inference/protocol.py +95 -44
  259. oscura/inference/protocol_dsl.py +180 -82
  260. oscura/inference/signal_intelligence.py +1439 -706
  261. oscura/inference/spectral.py +99 -57
  262. oscura/inference/state_machine.py +810 -158
  263. oscura/inference/stream.py +270 -110
  264. oscura/iot/__init__.py +34 -0
  265. oscura/iot/coap/__init__.py +32 -0
  266. oscura/iot/coap/analyzer.py +668 -0
  267. oscura/iot/coap/options.py +212 -0
  268. oscura/iot/lorawan/__init__.py +21 -0
  269. oscura/iot/lorawan/crypto.py +206 -0
  270. oscura/iot/lorawan/decoder.py +801 -0
  271. oscura/iot/lorawan/mac_commands.py +341 -0
  272. oscura/iot/mqtt/__init__.py +27 -0
  273. oscura/iot/mqtt/analyzer.py +999 -0
  274. oscura/iot/mqtt/properties.py +315 -0
  275. oscura/iot/zigbee/__init__.py +31 -0
  276. oscura/iot/zigbee/analyzer.py +615 -0
  277. oscura/iot/zigbee/security.py +153 -0
  278. oscura/iot/zigbee/zcl.py +349 -0
  279. oscura/jupyter/display.py +125 -45
  280. oscura/{exploratory → jupyter/exploratory}/__init__.py +8 -8
  281. oscura/{exploratory → jupyter/exploratory}/error_recovery.py +298 -141
  282. oscura/jupyter/exploratory/fuzzy.py +746 -0
  283. oscura/{exploratory → jupyter/exploratory}/fuzzy_advanced.py +258 -100
  284. oscura/{exploratory → jupyter/exploratory}/legacy.py +464 -242
  285. oscura/{exploratory → jupyter/exploratory}/parse.py +167 -145
  286. oscura/{exploratory → jupyter/exploratory}/recovery.py +119 -87
  287. oscura/jupyter/exploratory/sync.py +612 -0
  288. oscura/{exploratory → jupyter/exploratory}/unknown.py +299 -176
  289. oscura/jupyter/magic.py +4 -4
  290. oscura/{ui → jupyter/ui}/__init__.py +2 -2
  291. oscura/{ui → jupyter/ui}/formatters.py +3 -3
  292. oscura/{ui → jupyter/ui}/progressive_display.py +153 -82
  293. oscura/loaders/__init__.py +183 -67
  294. oscura/loaders/binary.py +88 -1
  295. oscura/loaders/chipwhisperer.py +153 -137
  296. oscura/loaders/configurable.py +208 -86
  297. oscura/loaders/csv_loader.py +458 -215
  298. oscura/loaders/hdf5_loader.py +278 -119
  299. oscura/loaders/lazy.py +87 -54
  300. oscura/loaders/mmap_loader.py +1 -1
  301. oscura/loaders/numpy_loader.py +253 -116
  302. oscura/loaders/pcap.py +226 -151
  303. oscura/loaders/rigol.py +110 -49
  304. oscura/loaders/sigrok.py +201 -78
  305. oscura/loaders/tdms.py +81 -58
  306. oscura/loaders/tektronix.py +291 -174
  307. oscura/loaders/touchstone.py +182 -87
  308. oscura/loaders/tss.py +456 -0
  309. oscura/loaders/vcd.py +215 -117
  310. oscura/loaders/wav.py +155 -68
  311. oscura/reporting/__init__.py +9 -0
  312. oscura/reporting/analyze.py +352 -146
  313. oscura/reporting/argument_preparer.py +69 -14
  314. oscura/reporting/auto_report.py +97 -61
  315. oscura/reporting/batch.py +131 -58
  316. oscura/reporting/chart_selection.py +57 -45
  317. oscura/reporting/comparison.py +63 -17
  318. oscura/reporting/content/executive.py +76 -24
  319. oscura/reporting/core_formats/multi_format.py +11 -8
  320. oscura/reporting/engine.py +312 -158
  321. oscura/reporting/enhanced_reports.py +949 -0
  322. oscura/reporting/export.py +86 -43
  323. oscura/reporting/formatting/numbers.py +69 -42
  324. oscura/reporting/html.py +139 -58
  325. oscura/reporting/index.py +137 -65
  326. oscura/reporting/output.py +158 -67
  327. oscura/reporting/pdf.py +67 -102
  328. oscura/reporting/plots.py +191 -112
  329. oscura/reporting/sections.py +88 -47
  330. oscura/reporting/standards.py +104 -61
  331. oscura/reporting/summary_generator.py +75 -55
  332. oscura/reporting/tables.py +138 -54
  333. oscura/reporting/templates/enhanced/protocol_re.html +525 -0
  334. oscura/sessions/__init__.py +14 -23
  335. oscura/sessions/base.py +3 -3
  336. oscura/sessions/blackbox.py +106 -10
  337. oscura/sessions/generic.py +2 -2
  338. oscura/sessions/legacy.py +783 -0
  339. oscura/side_channel/__init__.py +63 -0
  340. oscura/side_channel/dpa.py +1025 -0
  341. oscura/utils/__init__.py +15 -1
  342. oscura/utils/bitwise.py +118 -0
  343. oscura/{builders → utils/builders}/__init__.py +1 -1
  344. oscura/{comparison → utils/comparison}/__init__.py +6 -6
  345. oscura/{comparison → utils/comparison}/compare.py +202 -101
  346. oscura/{comparison → utils/comparison}/golden.py +83 -63
  347. oscura/{comparison → utils/comparison}/limits.py +313 -89
  348. oscura/{comparison → utils/comparison}/mask.py +151 -45
  349. oscura/{comparison → utils/comparison}/trace_diff.py +1 -1
  350. oscura/{comparison → utils/comparison}/visualization.py +147 -89
  351. oscura/{component → utils/component}/__init__.py +3 -3
  352. oscura/{component → utils/component}/impedance.py +122 -58
  353. oscura/{component → utils/component}/reactive.py +165 -168
  354. oscura/{component → utils/component}/transmission_line.py +3 -3
  355. oscura/{filtering → utils/filtering}/__init__.py +6 -6
  356. oscura/{filtering → utils/filtering}/base.py +1 -1
  357. oscura/{filtering → utils/filtering}/convenience.py +2 -2
  358. oscura/{filtering → utils/filtering}/design.py +169 -93
  359. oscura/{filtering → utils/filtering}/filters.py +2 -2
  360. oscura/{filtering → utils/filtering}/introspection.py +2 -2
  361. oscura/utils/geometry.py +31 -0
  362. oscura/utils/imports.py +184 -0
  363. oscura/utils/lazy.py +1 -1
  364. oscura/{math → utils/math}/__init__.py +2 -2
  365. oscura/{math → utils/math}/arithmetic.py +114 -48
  366. oscura/{math → utils/math}/interpolation.py +139 -106
  367. oscura/utils/memory.py +129 -66
  368. oscura/utils/memory_advanced.py +92 -9
  369. oscura/utils/memory_extensions.py +10 -8
  370. oscura/{optimization → utils/optimization}/__init__.py +1 -1
  371. oscura/{optimization → utils/optimization}/search.py +2 -2
  372. oscura/utils/performance/__init__.py +58 -0
  373. oscura/utils/performance/caching.py +889 -0
  374. oscura/utils/performance/lsh_clustering.py +333 -0
  375. oscura/utils/performance/memory_optimizer.py +699 -0
  376. oscura/utils/performance/optimizations.py +675 -0
  377. oscura/utils/performance/parallel.py +654 -0
  378. oscura/utils/performance/profiling.py +661 -0
  379. oscura/{pipeline → utils/pipeline}/base.py +1 -1
  380. oscura/{pipeline → utils/pipeline}/composition.py +1 -1
  381. oscura/{pipeline → utils/pipeline}/parallel.py +3 -2
  382. oscura/{pipeline → utils/pipeline}/pipeline.py +1 -1
  383. oscura/{pipeline → utils/pipeline}/reverse_engineering.py +412 -221
  384. oscura/{search → utils/search}/__init__.py +3 -3
  385. oscura/{search → utils/search}/anomaly.py +188 -58
  386. oscura/utils/search/context.py +294 -0
  387. oscura/{search → utils/search}/pattern.py +138 -10
  388. oscura/utils/serial.py +51 -0
  389. oscura/utils/storage/__init__.py +61 -0
  390. oscura/utils/storage/database.py +1166 -0
  391. oscura/{streaming → utils/streaming}/chunked.py +302 -143
  392. oscura/{streaming → utils/streaming}/progressive.py +1 -1
  393. oscura/{streaming → utils/streaming}/realtime.py +3 -2
  394. oscura/{triggering → utils/triggering}/__init__.py +6 -6
  395. oscura/{triggering → utils/triggering}/base.py +6 -6
  396. oscura/{triggering → utils/triggering}/edge.py +2 -2
  397. oscura/{triggering → utils/triggering}/pattern.py +2 -2
  398. oscura/{triggering → utils/triggering}/pulse.py +115 -74
  399. oscura/{triggering → utils/triggering}/window.py +2 -2
  400. oscura/utils/validation.py +32 -0
  401. oscura/validation/__init__.py +121 -0
  402. oscura/{compliance → validation/compliance}/__init__.py +5 -5
  403. oscura/{compliance → validation/compliance}/advanced.py +5 -5
  404. oscura/{compliance → validation/compliance}/masks.py +1 -1
  405. oscura/{compliance → validation/compliance}/reporting.py +127 -53
  406. oscura/{compliance → validation/compliance}/testing.py +114 -52
  407. oscura/validation/compliance_tests.py +915 -0
  408. oscura/validation/fuzzer.py +990 -0
  409. oscura/validation/grammar_tests.py +596 -0
  410. oscura/validation/grammar_validator.py +904 -0
  411. oscura/validation/hil_testing.py +977 -0
  412. oscura/{quality → validation/quality}/__init__.py +4 -4
  413. oscura/{quality → validation/quality}/ensemble.py +251 -171
  414. oscura/{quality → validation/quality}/explainer.py +3 -3
  415. oscura/{quality → validation/quality}/scoring.py +1 -1
  416. oscura/{quality → validation/quality}/warnings.py +4 -4
  417. oscura/validation/regression_suite.py +808 -0
  418. oscura/validation/replay.py +788 -0
  419. oscura/{testing → validation/testing}/__init__.py +2 -2
  420. oscura/{testing → validation/testing}/synthetic.py +5 -5
  421. oscura/visualization/__init__.py +9 -0
  422. oscura/visualization/accessibility.py +1 -1
  423. oscura/visualization/annotations.py +64 -67
  424. oscura/visualization/colors.py +7 -7
  425. oscura/visualization/digital.py +180 -81
  426. oscura/visualization/eye.py +236 -85
  427. oscura/visualization/interactive.py +320 -143
  428. oscura/visualization/jitter.py +587 -247
  429. oscura/visualization/layout.py +169 -134
  430. oscura/visualization/optimization.py +103 -52
  431. oscura/visualization/palettes.py +1 -1
  432. oscura/visualization/power.py +427 -211
  433. oscura/visualization/power_extended.py +626 -297
  434. oscura/visualization/presets.py +2 -0
  435. oscura/visualization/protocols.py +495 -181
  436. oscura/visualization/render.py +79 -63
  437. oscura/visualization/reverse_engineering.py +171 -124
  438. oscura/visualization/signal_integrity.py +460 -279
  439. oscura/visualization/specialized.py +190 -100
  440. oscura/visualization/spectral.py +670 -255
  441. oscura/visualization/thumbnails.py +166 -137
  442. oscura/visualization/waveform.py +150 -63
  443. oscura/workflows/__init__.py +3 -0
  444. oscura/{batch → workflows/batch}/__init__.py +5 -5
  445. oscura/{batch → workflows/batch}/advanced.py +150 -75
  446. oscura/workflows/batch/aggregate.py +531 -0
  447. oscura/workflows/batch/analyze.py +236 -0
  448. oscura/{batch → workflows/batch}/logging.py +2 -2
  449. oscura/{batch → workflows/batch}/metrics.py +1 -1
  450. oscura/workflows/complete_re.py +1144 -0
  451. oscura/workflows/compliance.py +44 -54
  452. oscura/workflows/digital.py +197 -51
  453. oscura/workflows/legacy/__init__.py +12 -0
  454. oscura/{workflow → workflows/legacy}/dag.py +4 -1
  455. oscura/workflows/multi_trace.py +9 -9
  456. oscura/workflows/power.py +42 -62
  457. oscura/workflows/protocol.py +82 -49
  458. oscura/workflows/reverse_engineering.py +351 -150
  459. oscura/workflows/signal_integrity.py +157 -82
  460. oscura-0.7.0.dist-info/METADATA +661 -0
  461. oscura-0.7.0.dist-info/RECORD +591 -0
  462. oscura/batch/aggregate.py +0 -300
  463. oscura/batch/analyze.py +0 -139
  464. oscura/dsl/__init__.py +0 -73
  465. oscura/exceptions.py +0 -59
  466. oscura/exploratory/fuzzy.py +0 -513
  467. oscura/exploratory/sync.py +0 -384
  468. oscura/exporters/__init__.py +0 -94
  469. oscura/exporters/csv.py +0 -303
  470. oscura/exporters/exporters.py +0 -44
  471. oscura/exporters/hdf5.py +0 -217
  472. oscura/exporters/html_export.py +0 -701
  473. oscura/exporters/json_export.py +0 -291
  474. oscura/exporters/markdown_export.py +0 -367
  475. oscura/exporters/matlab_export.py +0 -354
  476. oscura/exporters/npz_export.py +0 -219
  477. oscura/exporters/spice_export.py +0 -210
  478. oscura/search/context.py +0 -149
  479. oscura/session/__init__.py +0 -34
  480. oscura/session/annotations.py +0 -289
  481. oscura/session/history.py +0 -313
  482. oscura/session/session.py +0 -520
  483. oscura/workflow/__init__.py +0 -13
  484. oscura-0.5.1.dist-info/METADATA +0 -583
  485. oscura-0.5.1.dist-info/RECORD +0 -481
  486. /oscura/core/{config.py → config/legacy.py} +0 -0
  487. /oscura/{extensibility → core/extensibility}/__init__.py +0 -0
  488. /oscura/{extensibility → core/extensibility}/registry.py +0 -0
  489. /oscura/{plugins → core/plugins}/isolation.py +0 -0
  490. /oscura/{schemas → core/schemas}/bus_configuration.json +0 -0
  491. /oscura/{builders → utils/builders}/signal_builder.py +0 -0
  492. /oscura/{optimization → utils/optimization}/parallel.py +0 -0
  493. /oscura/{pipeline → utils/pipeline}/__init__.py +0 -0
  494. /oscura/{streaming → utils/streaming}/__init__.py +0 -0
  495. {oscura-0.5.1.dist-info → oscura-0.7.0.dist-info}/WHEEL +0 -0
  496. {oscura-0.5.1.dist-info → oscura-0.7.0.dist-info}/entry_points.txt +0 -0
  497. {oscura-0.5.1.dist-info → oscura-0.7.0.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,604 @@
1
+ """ML-based signal classification for automatic protocol detection.
2
+
3
+ This module implements machine learning classifiers for identifying signal types
4
+ and protocols from waveform data. Supports multiple ML algorithms and provides
5
+ comprehensive feature extraction for accurate classification.
6
+
7
+ Key capabilities:
8
+ - Multi-class classification (UART, SPI, I2C, CAN, analog, digital, PWM, etc.)
9
+ - Multiple ML algorithms (Random Forest, SVM, Neural Network, Gradient Boosting)
10
+ - Confidence scores and probability distributions
11
+ - Feature importance analysis (for tree-based models)
12
+ - Model persistence (save/load trained models)
13
+ - Incremental learning (online updates)
14
+
15
+ Example:
16
+ >>> from oscura.analyzers.ml import MLSignalClassifier, TrainingDataset
17
+ >>> # Create and train classifier
18
+ >>> classifier = MLSignalClassifier(algorithm="random_forest")
19
+ >>> dataset = TrainingDataset(
20
+ ... signals=[uart_data, spi_data, i2c_data],
21
+ ... labels=["uart", "spi", "i2c"],
22
+ ... sample_rates=[1e6, 1e6, 1e6]
23
+ ... )
24
+ >>> metrics = classifier.train(dataset, test_size=0.2)
25
+ >>> print(f"Accuracy: {metrics['accuracy']:.2%}")
26
+ >>>
27
+ >>> # Classify unknown signal
28
+ >>> result = classifier.predict(unknown_signal, sample_rate=1e6)
29
+ >>> print(f"Signal type: {result.signal_type}")
30
+ >>> print(f"Confidence: {result.confidence:.2%}")
31
+ >>> print(f"All probabilities: {result.probabilities}")
32
+ """
33
+
34
+ from __future__ import annotations
35
+
36
+ import logging
37
+ import pickle
38
+ from dataclasses import dataclass, field
39
+ from pathlib import Path
40
+ from typing import TYPE_CHECKING, Any, ClassVar
41
+
42
+ import numpy as np
43
+
44
+ from oscura.analyzers.ml.features import FeatureExtractor
45
+
46
+ if TYPE_CHECKING:
47
+ from numpy.typing import NDArray
48
+
49
+ logger = logging.getLogger(__name__)
50
+
51
+
52
+ @dataclass
53
+ class MLClassificationResult:
54
+ """Result from ML-based signal classification.
55
+
56
+ Attributes:
57
+ signal_type: Detected signal type (e.g., "uart", "spi", "i2c", "analog").
58
+ confidence: Classification confidence score (0.0-1.0). Higher values
59
+ indicate more certain predictions.
60
+ probabilities: Dictionary mapping each signal type to its probability.
61
+ All values sum to 1.0.
62
+ features: Dictionary of extracted features used for classification.
63
+ Useful for debugging and understanding model decisions.
64
+ feature_importance: Dictionary of feature importance scores (only for
65
+ tree-based models like Random Forest). Higher values indicate
66
+ features that contribute more to the classification.
67
+ model_type: Algorithm used for classification.
68
+
69
+ Example:
70
+ >>> result = classifier.predict(signal, sample_rate=1e6)
71
+ >>> if result.confidence > 0.8:
72
+ ... print(f"High confidence: {result.signal_type}")
73
+ >>> # Inspect feature importance
74
+ >>> if result.feature_importance:
75
+ ... top_features = sorted(
76
+ ... result.feature_importance.items(),
77
+ ... key=lambda x: x[1],
78
+ ... reverse=True
79
+ ... )[:5]
80
+ ... print(f"Top features: {top_features}")
81
+ """
82
+
83
+ signal_type: str
84
+ confidence: float
85
+ probabilities: dict[str, float]
86
+ features: dict[str, float]
87
+ feature_importance: dict[str, float] | None = None
88
+ model_type: str = "random_forest"
89
+
90
+
91
+ @dataclass
92
+ class TrainingDataset:
93
+ """Training dataset for ML signal classifier.
94
+
95
+ Attributes:
96
+ signals: List of signal arrays (1D numpy arrays).
97
+ labels: List of signal type labels corresponding to each signal.
98
+ Must use consistent naming (e.g., "uart", "spi", "i2c").
99
+ sample_rates: List of sample rates (Hz) for each signal.
100
+ metadata: Optional metadata dictionary for dataset tracking.
101
+
102
+ Example:
103
+ >>> # Create dataset from synthetic signals
104
+ >>> uart_signals = [generate_uart() for _ in range(100)]
105
+ >>> spi_signals = [generate_spi() for _ in range(100)]
106
+ >>> dataset = TrainingDataset(
107
+ ... signals=uart_signals + spi_signals,
108
+ ... labels=["uart"] * 100 + ["spi"] * 100,
109
+ ... sample_rates=[1e6] * 200,
110
+ ... metadata={"source": "synthetic", "version": "1.0"}
111
+ ... )
112
+ """
113
+
114
+ signals: list[NDArray[np.floating[Any]]]
115
+ labels: list[str]
116
+ sample_rates: list[float]
117
+ metadata: dict[str, Any] = field(default_factory=dict)
118
+
119
+ def __post_init__(self) -> None:
120
+ """Validate dataset consistency."""
121
+ if not (len(self.signals) == len(self.labels) == len(self.sample_rates)):
122
+ raise ValueError(
123
+ f"Dataset length mismatch: {len(self.signals)} signals, "
124
+ f"{len(self.labels)} labels, {len(self.sample_rates)} sample_rates"
125
+ )
126
+
127
+
128
+ class MLSignalClassifier:
129
+ """ML-based signal classifier using scikit-learn.
130
+
131
+ This class provides automatic signal type classification using machine learning.
132
+ It supports multiple algorithms and provides comprehensive feature extraction
133
+ for accurate protocol detection.
134
+
135
+ Supported algorithms:
136
+ - random_forest: Fast, robust, provides feature importance
137
+ - svm: Good for high-dimensional data, slower training
138
+ - neural_network: Can capture complex patterns, requires more data
139
+ - gradient_boosting: Often highest accuracy, slower training
140
+
141
+ Supported signal types:
142
+ - Digital: digital, uart, spi, i2c, can, manchester, nrz, rz
143
+ - Analog: analog, pwm, amplitude_modulated, frequency_modulated
144
+ - Mixed: Various combinations
145
+
146
+ Example:
147
+ >>> # Train classifier
148
+ >>> classifier = MLSignalClassifier(algorithm="random_forest")
149
+ >>> metrics = classifier.train(training_dataset)
150
+ >>>
151
+ >>> # Save model for later use
152
+ >>> classifier.save_model(Path("models/signal_classifier.pkl"))
153
+ >>>
154
+ >>> # Load and use
155
+ >>> classifier2 = MLSignalClassifier()
156
+ >>> classifier2.load_model(Path("models/signal_classifier.pkl"))
157
+ >>> result = classifier2.predict(signal, sample_rate=1e6)
158
+ """
159
+
160
+ # Supported ML algorithms
161
+ ALGORITHMS: ClassVar[list[str]] = [
162
+ "random_forest",
163
+ "svm",
164
+ "neural_network",
165
+ "gradient_boosting",
166
+ ]
167
+
168
+ # Common signal types (can be extended during training)
169
+ SIGNAL_TYPES: ClassVar[list[str]] = [
170
+ "digital",
171
+ "analog",
172
+ "pwm",
173
+ "uart",
174
+ "spi",
175
+ "i2c",
176
+ "can",
177
+ "manchester",
178
+ "nrz",
179
+ "rz",
180
+ "amplitude_modulated",
181
+ "frequency_modulated",
182
+ ]
183
+
184
+ def __init__(self, algorithm: str = "random_forest") -> None:
185
+ """Initialize ML classifier with specified algorithm.
186
+
187
+ Args:
188
+ algorithm: ML algorithm to use. Must be one of ALGORITHMS.
189
+
190
+ Raises:
191
+ ValueError: If algorithm is not supported.
192
+
193
+ Example:
194
+ >>> classifier = MLSignalClassifier(algorithm="random_forest")
195
+ >>> classifier.algorithm
196
+ 'random_forest'
197
+ """
198
+ if algorithm not in self.ALGORITHMS:
199
+ raise ValueError(
200
+ f"Unsupported algorithm: {algorithm}. Choose from: {', '.join(self.ALGORITHMS)}"
201
+ )
202
+
203
+ self.algorithm = algorithm
204
+ self.model: Any = None
205
+ self.scaler: Any = None
206
+ self.feature_extractor = FeatureExtractor()
207
+ self.feature_names: list[str] = []
208
+ self.classes: list[str] = []
209
+
210
+ def train(
211
+ self, dataset: TrainingDataset, test_size: float = 0.2, random_state: int = 42
212
+ ) -> dict[str, float]:
213
+ """Train classifier on labeled dataset.
214
+
215
+ Extracts features from all signals, splits into train/test sets,
216
+ standardizes features, trains the selected ML model, and evaluates
217
+ performance on the test set.
218
+
219
+ Args:
220
+ dataset: Training dataset containing signals and labels.
221
+ test_size: Fraction of data to use for testing (0.0-1.0).
222
+ random_state: Random seed for reproducibility.
223
+
224
+ Returns:
225
+ Dictionary with performance metrics:
226
+ - accuracy: Overall classification accuracy (0.0-1.0)
227
+ - precision: Weighted precision score (0.0-1.0)
228
+ - recall: Weighted recall score (0.0-1.0)
229
+ - f1_score: Weighted F1 score (0.0-1.0)
230
+
231
+ Raises:
232
+ ImportError: If scikit-learn is not installed.
233
+ ValueError: If dataset is too small or has invalid labels.
234
+
235
+ Example:
236
+ >>> dataset = TrainingDataset(
237
+ ... signals=[uart1, uart2, spi1, spi2],
238
+ ... labels=["uart", "uart", "spi", "spi"],
239
+ ... sample_rates=[1e6, 1e6, 1e6, 1e6]
240
+ ... )
241
+ >>> metrics = classifier.train(dataset, test_size=0.25)
242
+ >>> print(f"Accuracy: {metrics['accuracy']:.2%}")
243
+ >>> print(f"F1 Score: {metrics['f1_score']:.2%}")
244
+ """
245
+ _check_sklearn_available()
246
+ _validate_dataset_size(dataset)
247
+
248
+ # Extract features and split data
249
+ X_train, X_test, y_train, y_test = self._prepare_training_data(
250
+ dataset, test_size, random_state
251
+ )
252
+
253
+ # Train and evaluate model
254
+ self._train_model(X_train, y_train, random_state)
255
+ return self._evaluate_model(X_test, y_test)
256
+
257
+ def _prepare_training_data(
258
+ self, dataset: TrainingDataset, test_size: float, random_state: int
259
+ ) -> tuple[Any, Any, Any, Any]:
260
+ """Extract features, split, and scale training data."""
261
+ from sklearn.model_selection import train_test_split
262
+ from sklearn.preprocessing import StandardScaler
263
+
264
+ logger.info(f"Extracting features from {len(dataset.signals)} signals...")
265
+ X, y = self._extract_features(dataset)
266
+
267
+ X_train, X_test, y_train, y_test = train_test_split(
268
+ X, y, test_size=test_size, random_state=random_state, stratify=y
269
+ )
270
+
271
+ logger.info("Standardizing features...")
272
+ self.scaler = StandardScaler()
273
+ X_train_scaled = self.scaler.fit_transform(X_train)
274
+ X_test_scaled = self.scaler.transform(X_test)
275
+
276
+ return X_train_scaled, X_test_scaled, y_train, y_test
277
+
278
+ def _extract_features(self, dataset: TrainingDataset) -> tuple[NDArray[Any], list[str]]:
279
+ """Extract features from all signals in dataset."""
280
+ X = []
281
+ for signal, sample_rate in zip(dataset.signals, dataset.sample_rates, strict=True):
282
+ features = self.feature_extractor.extract_all(signal, sample_rate)
283
+ X.append(list(features.values()))
284
+
285
+ if not self.feature_names:
286
+ self.feature_names = list(features.keys())
287
+
288
+ X_array = np.array(X)
289
+ logger.info(f"Extracted {X_array.shape[1]} features per signal")
290
+ return X_array, dataset.labels
291
+
292
+ def _train_model(self, X_train: Any, y_train: Any, random_state: int) -> None:
293
+ """Train the selected ML model."""
294
+ logger.info(f"Training {self.algorithm} classifier...")
295
+ self.model = _create_classifier(self.algorithm, random_state)
296
+ self.model.fit(X_train, y_train)
297
+ self.classes = list(self.model.classes_)
298
+ logger.info(f"Trained on {len(self.classes)} classes: {self.classes}")
299
+
300
+ def _evaluate_model(self, X_test: Any, y_test: Any) -> dict[str, float]:
301
+ """Evaluate model performance on test set."""
302
+ from sklearn.metrics import accuracy_score, precision_recall_fscore_support
303
+
304
+ logger.info("Evaluating on test set...")
305
+ y_pred = self.model.predict(X_test)
306
+ accuracy = float(accuracy_score(y_test, y_pred))
307
+
308
+ precision, recall, f1, _ = precision_recall_fscore_support(
309
+ y_test, y_pred, average="weighted", zero_division=0.0
310
+ )
311
+
312
+ metrics = {
313
+ "accuracy": accuracy,
314
+ "precision": float(precision),
315
+ "recall": float(recall),
316
+ "f1_score": float(f1),
317
+ }
318
+
319
+ logger.info(f"Training complete: {metrics}")
320
+ return metrics
321
+
322
+ def predict(
323
+ self, signal: NDArray[np.floating[Any]], sample_rate: float
324
+ ) -> MLClassificationResult:
325
+ """Classify a single signal using trained model.
326
+
327
+ Args:
328
+ signal: Input signal as 1D numpy array.
329
+ sample_rate: Sampling rate in Hz.
330
+
331
+ Returns:
332
+ MLClassificationResult with predicted signal type, confidence,
333
+ probabilities, and extracted features.
334
+
335
+ Raises:
336
+ ValueError: If model has not been trained yet.
337
+
338
+ Example:
339
+ >>> result = classifier.predict(unknown_signal, sample_rate=1e6)
340
+ >>> print(f"Type: {result.signal_type}")
341
+ >>> print(f"Confidence: {result.confidence:.2%}")
342
+ >>> for signal_type, prob in result.probabilities.items():
343
+ ... print(f" {signal_type}: {prob:.2%}")
344
+ """
345
+ if self.model is None or self.scaler is None:
346
+ raise ValueError("Model not trained. Call train() or load_model() first.")
347
+
348
+ # Extract features
349
+ features = self.feature_extractor.extract_all(signal, sample_rate)
350
+ X = np.array([list(features.values())])
351
+
352
+ # Standardize
353
+ X_scaled = self.scaler.transform(X)
354
+
355
+ # Predict
356
+ prediction = self.model.predict(X_scaled)[0]
357
+ probabilities_array = self.model.predict_proba(X_scaled)[0]
358
+
359
+ # Build probability dictionary
360
+ probabilities = {
361
+ str(class_): float(prob)
362
+ for class_, prob in zip(self.classes, probabilities_array, strict=True)
363
+ }
364
+
365
+ # Confidence is the maximum probability
366
+ confidence = float(max(probabilities_array))
367
+
368
+ # Extract feature importance if available (tree-based models)
369
+ feature_importance: dict[str, float] | None = None
370
+ if hasattr(self.model, "feature_importances_"):
371
+ feature_importance = {
372
+ name: float(importance)
373
+ for name, importance in zip(
374
+ self.feature_names, self.model.feature_importances_, strict=True
375
+ )
376
+ }
377
+
378
+ return MLClassificationResult(
379
+ signal_type=str(prediction),
380
+ confidence=confidence,
381
+ probabilities=probabilities,
382
+ features=features,
383
+ feature_importance=feature_importance,
384
+ model_type=self.algorithm,
385
+ )
386
+
387
+ def predict_batch(
388
+ self, signals: list[NDArray[np.floating[Any]]], sample_rate: float
389
+ ) -> list[MLClassificationResult]:
390
+ """Classify multiple signals in batch.
391
+
392
+ More efficient than calling predict() repeatedly for large batches.
393
+
394
+ Args:
395
+ signals: List of signal arrays.
396
+ sample_rate: Sampling rate in Hz (same for all signals).
397
+
398
+ Returns:
399
+ List of MLClassificationResult objects, one per input signal.
400
+
401
+ Raises:
402
+ ValueError: If model has not been trained yet.
403
+
404
+ Example:
405
+ >>> signals = [signal1, signal2, signal3]
406
+ >>> results = classifier.predict_batch(signals, sample_rate=1e6)
407
+ >>> for i, result in enumerate(results):
408
+ ... print(f"Signal {i}: {result.signal_type} ({result.confidence:.2%})")
409
+ """
410
+ if self.model is None or self.scaler is None:
411
+ raise ValueError("Model not trained. Call train() or load_model() first.")
412
+
413
+ results = []
414
+ for signal in signals:
415
+ result = self.predict(signal, sample_rate)
416
+ results.append(result)
417
+
418
+ return results
419
+
420
+ def save_model(self, path: Path) -> None:
421
+ """Save trained model to disk.
422
+
423
+ Saves the complete model state including the ML model, feature scaler,
424
+ feature names, and class labels. Can be loaded later with load_model().
425
+
426
+ Args:
427
+ path: Path to save model file. Convention: use .pkl extension.
428
+
429
+ Raises:
430
+ ValueError: If model has not been trained yet.
431
+
432
+ Example:
433
+ >>> classifier.save_model(Path("models/uart_detector.pkl"))
434
+ >>> # Later...
435
+ >>> new_classifier = MLSignalClassifier()
436
+ >>> new_classifier.load_model(Path("models/uart_detector.pkl"))
437
+ """
438
+ if self.model is None or self.scaler is None:
439
+ raise ValueError("Model not trained. Nothing to save.")
440
+
441
+ model_state = {
442
+ "algorithm": self.algorithm,
443
+ "model": self.model,
444
+ "scaler": self.scaler,
445
+ "feature_names": self.feature_names,
446
+ "classes": self.classes,
447
+ }
448
+
449
+ path.parent.mkdir(parents=True, exist_ok=True)
450
+ with open(path, "wb") as f:
451
+ pickle.dump(model_state, f)
452
+
453
+ logger.info(f"Model saved to {path}")
454
+
455
+ def load_model(self, path: Path) -> None:
456
+ """Load trained model from disk.
457
+
458
+ Restores the complete model state including the ML model, feature scaler,
459
+ feature names, and class labels.
460
+
461
+ Args:
462
+ path: Path to saved model file.
463
+
464
+ Raises:
465
+ FileNotFoundError: If model file does not exist.
466
+ ValueError: If model file is corrupted or incompatible.
467
+
468
+ Example:
469
+ >>> classifier = MLSignalClassifier()
470
+ >>> classifier.load_model(Path("models/uart_detector.pkl"))
471
+ >>> result = classifier.predict(signal, sample_rate=1e6)
472
+ """
473
+ if not path.exists():
474
+ raise FileNotFoundError(f"Model file not found: {path}")
475
+
476
+ with open(path, "rb") as f:
477
+ model_state = pickle.load(f)
478
+
479
+ # Validate model state
480
+ required_keys = {"algorithm", "model", "scaler", "feature_names", "classes"}
481
+ if not required_keys.issubset(model_state.keys()):
482
+ raise ValueError(
483
+ f"Invalid model file. Missing keys: {required_keys - set(model_state.keys())}"
484
+ )
485
+
486
+ self.algorithm = model_state["algorithm"]
487
+ self.model = model_state["model"]
488
+ self.scaler = model_state["scaler"]
489
+ self.feature_names = model_state["feature_names"]
490
+ self.classes = model_state["classes"]
491
+
492
+ logger.info(f"Model loaded from {path} ({len(self.classes)} classes)")
493
+
494
+ def partial_fit(
495
+ self,
496
+ signals: list[NDArray[np.floating[Any]]],
497
+ labels: list[str],
498
+ sample_rate: float,
499
+ ) -> None:
500
+ """Incrementally update model with new data (online learning).
501
+
502
+ Only supported for algorithms that implement partial_fit (currently
503
+ neural_network). For other algorithms, retrain with combined dataset.
504
+
505
+ Args:
506
+ signals: List of new signal arrays.
507
+ labels: List of labels for new signals.
508
+ sample_rate: Sampling rate in Hz (same for all signals).
509
+
510
+ Raises:
511
+ ValueError: If model has not been trained yet or algorithm doesn't
512
+ support incremental learning.
513
+ ImportError: If scikit-learn is not installed.
514
+
515
+ Example:
516
+ >>> # Initial training
517
+ >>> classifier.train(initial_dataset)
518
+ >>>
519
+ >>> # Later, add more data
520
+ >>> new_signals = [signal1, signal2]
521
+ >>> new_labels = ["uart", "spi"]
522
+ >>> classifier.partial_fit(new_signals, new_labels, sample_rate=1e6)
523
+ """
524
+ if self.model is None or self.scaler is None:
525
+ raise ValueError("Model not trained. Call train() first.")
526
+
527
+ try:
528
+ from sklearn.neural_network import MLPClassifier
529
+ except ImportError as e:
530
+ raise ImportError(
531
+ "scikit-learn is required for ML classification. "
532
+ "Install with: uv pip install 'scikit-learn>=1.3.0'"
533
+ ) from e
534
+
535
+ # Only neural network supports partial_fit in scikit-learn
536
+ if not isinstance(self.model, MLPClassifier):
537
+ raise ValueError(
538
+ f"Incremental learning not supported for {self.algorithm}. "
539
+ "Use 'neural_network' algorithm or retrain with full dataset."
540
+ )
541
+
542
+ # Extract features
543
+ X = []
544
+ for signal in signals:
545
+ features = self.feature_extractor.extract_all(signal, sample_rate)
546
+ X.append(list(features.values()))
547
+
548
+ X_array = np.array(X)
549
+
550
+ # Standardize using existing scaler
551
+ X_scaled = self.scaler.transform(X_array)
552
+
553
+ # Partial fit
554
+ self.model.partial_fit(X_scaled, labels, classes=self.classes)
555
+ logger.info(f"Updated model with {len(signals)} new samples")
556
+
557
+
558
+ def _check_sklearn_available() -> None:
559
+ """Check if scikit-learn is available."""
560
+ try:
561
+ import sklearn # noqa: F401
562
+ except ImportError as e:
563
+ raise ImportError(
564
+ "scikit-learn is required for ML classification. "
565
+ "Install with: uv pip install 'scikit-learn>=1.3.0'"
566
+ ) from e
567
+
568
+
569
+ def _validate_dataset_size(dataset: TrainingDataset) -> None:
570
+ """Validate that dataset has minimum required samples."""
571
+ if len(dataset.signals) < 10:
572
+ raise ValueError(f"Dataset too small: {len(dataset.signals)} samples (need ≥10)")
573
+
574
+
575
+ def _create_classifier(algorithm: str, random_state: int) -> Any:
576
+ """Create classifier instance based on algorithm type."""
577
+ from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
578
+ from sklearn.neural_network import MLPClassifier
579
+ from sklearn.svm import SVC
580
+
581
+ if algorithm == "random_forest":
582
+ return RandomForestClassifier(
583
+ n_estimators=100,
584
+ max_depth=None,
585
+ min_samples_split=2,
586
+ random_state=random_state,
587
+ n_jobs=-1,
588
+ )
589
+ elif algorithm == "svm":
590
+ return SVC(kernel="rbf", C=1.0, gamma="scale", probability=True, random_state=random_state)
591
+ elif algorithm == "neural_network":
592
+ return MLPClassifier(
593
+ hidden_layer_sizes=(100, 50),
594
+ activation="relu",
595
+ solver="adam",
596
+ max_iter=1000,
597
+ random_state=random_state,
598
+ )
599
+ elif algorithm == "gradient_boosting":
600
+ return GradientBoostingClassifier(
601
+ n_estimators=100, learning_rate=0.1, max_depth=3, random_state=random_state
602
+ )
603
+ else:
604
+ raise ValueError(f"Unknown algorithm: {algorithm}")