optimum-rbln 0.8.2a4__py3-none-any.whl → 0.9.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +108 -9
- optimum/rbln/__version__.py +16 -3
- optimum/rbln/cli.py +660 -0
- optimum/rbln/configuration_utils.py +156 -43
- optimum/rbln/diffusers/__init__.py +19 -0
- optimum/rbln/diffusers/configurations/__init__.py +3 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +3 -3
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +1 -1
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +3 -3
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +4 -4
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +9 -4
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +9 -4
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +3 -3
- optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +3 -3
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +3 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +35 -19
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +14 -11
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +30 -20
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +13 -9
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +17 -13
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +17 -10
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
- optimum/rbln/diffusers/modeling_diffusers.py +30 -14
- optimum/rbln/diffusers/models/__init__.py +4 -0
- optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +31 -3
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +31 -6
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
- optimum/rbln/diffusers/models/autoencoders/vae.py +27 -8
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +31 -3
- optimum/rbln/diffusers/models/controlnet.py +16 -1
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +17 -3
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +25 -2
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +23 -2
- optimum/rbln/diffusers/models/unets/__init__.py +1 -0
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +23 -4
- optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
- optimum/rbln/diffusers/pipelines/__init__.py +15 -5
- optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +20 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +19 -16
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +14 -18
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +31 -1
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +31 -1
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
- optimum/rbln/modeling.py +48 -21
- optimum/rbln/modeling_base.py +99 -22
- optimum/rbln/ops/attn.py +158 -0
- optimum/rbln/ops/flash_attn.py +166 -0
- optimum/rbln/ops/kv_cache_update.py +5 -0
- optimum/rbln/ops/linear.py +7 -0
- optimum/rbln/transformers/__init__.py +92 -0
- optimum/rbln/transformers/configuration_generic.py +7 -32
- optimum/rbln/transformers/modeling_attention_utils.py +385 -0
- optimum/rbln/transformers/modeling_generic.py +48 -65
- optimum/rbln/transformers/modeling_outputs.py +37 -0
- optimum/rbln/transformers/models/__init__.py +91 -30
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +28 -2
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +68 -5
- optimum/rbln/transformers/models/auto/__init__.py +2 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +92 -17
- optimum/rbln/transformers/models/auto/modeling_auto.py +45 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +1 -3
- optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
- optimum/rbln/transformers/models/bart/modeling_bart.py +23 -2
- optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +93 -4
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +42 -11
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +135 -44
- optimum/rbln/transformers/models/clip/configuration_clip.py +10 -7
- optimum/rbln/transformers/models/clip/modeling_clip.py +67 -6
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +3 -6
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +37 -21
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +82 -104
- optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
- optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
- optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
- optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
- optimum/rbln/transformers/models/decoderonly/__init__.py +3 -2
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +114 -37
- optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +318 -309
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
- optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
- optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +485 -905
- optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
- optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +24 -0
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +17 -0
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +42 -4
- optimum/rbln/transformers/models/gemma/__init__.py +2 -2
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +9 -1
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +22 -1
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +49 -13
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +12 -2
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +201 -351
- optimum/rbln/transformers/models/gpt2/__init__.py +2 -2
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +31 -3
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +10 -8
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +18 -1
- optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
- optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +35 -7
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +29 -32
- optimum/rbln/transformers/models/llama/__init__.py +2 -2
- optimum/rbln/transformers/models/llama/configuration_llama.py +9 -1
- optimum/rbln/transformers/models/llama/modeling_llama.py +22 -1
- optimum/rbln/transformers/models/llava/__init__.py +16 -0
- optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
- optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +15 -17
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +234 -376
- optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
- optimum/rbln/transformers/models/midm/modeling_midm.py +42 -4
- optimum/rbln/transformers/models/mistral/__init__.py +2 -2
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +9 -1
- optimum/rbln/transformers/models/mistral/mistral_architecture.py +1 -1
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +26 -3
- optimum/rbln/transformers/models/opt/__init__.py +2 -2
- optimum/rbln/transformers/models/opt/configuration_opt.py +8 -1
- optimum/rbln/transformers/models/opt/modeling_opt.py +29 -17
- optimum/rbln/transformers/models/opt/opt_architecture.py +4 -4
- optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
- optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
- optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
- optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
- optimum/rbln/transformers/models/phi/__init__.py +2 -2
- optimum/rbln/transformers/models/phi/configuration_phi.py +9 -1
- optimum/rbln/transformers/models/phi/modeling_phi.py +10 -1
- optimum/rbln/transformers/models/phi/phi_architecture.py +11 -7
- optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
- optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
- optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
- optimum/rbln/transformers/models/qwen2/__init__.py +2 -2
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +9 -1
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +27 -1
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +21 -6
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +15 -22
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +28 -7
- optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
- optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +2 -2
- optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +86 -330
- optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +1 -245
- optimum/rbln/transformers/models/resnet/configuration_resnet.py +17 -0
- optimum/rbln/transformers/models/resnet/modeling_resnet.py +73 -0
- optimum/rbln/transformers/models/roberta/modeling_roberta.py +33 -0
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +21 -16
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +58 -13
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -2
- optimum/rbln/transformers/models/siglip/__init__.py +2 -6
- optimum/rbln/transformers/models/siglip/configuration_siglip.py +1 -1
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +21 -16
- optimum/rbln/transformers/models/swin/__init__.py +16 -0
- optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
- optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
- optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
- optimum/rbln/transformers/models/t5/modeling_t5.py +2 -2
- optimum/rbln/transformers/models/t5/t5_architecture.py +8 -1
- optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +3 -3
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +20 -16
- optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +7 -1
- optimum/rbln/transformers/models/vit/modeling_vit.py +19 -0
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +15 -3
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +61 -8
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +12 -13
- optimum/rbln/transformers/models/whisper/generation_whisper.py +62 -6
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +30 -5
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +43 -0
- optimum/rbln/transformers/utils/rbln_quantization.py +400 -75
- optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
- optimum/rbln/utils/deprecation.py +213 -0
- optimum/rbln/utils/hub.py +14 -3
- optimum/rbln/utils/runtime_utils.py +60 -18
- optimum/rbln/utils/submodule.py +31 -9
- {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/METADATA +8 -7
- optimum_rbln-0.9.3.dist-info/RECORD +264 -0
- {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/WHEEL +1 -1
- optimum_rbln-0.9.3.dist-info/entry_points.txt +2 -0
- optimum_rbln-0.8.2a4.dist-info/RECORD +0 -215
- {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/licenses/LICENSE +0 -0
optimum/rbln/ops/attn.py
CHANGED
|
@@ -53,6 +53,45 @@ def paged_attn_decode_fake(
|
|
|
53
53
|
return torch.empty_like(q)
|
|
54
54
|
|
|
55
55
|
|
|
56
|
+
@torch.library.custom_op(
|
|
57
|
+
"rbln_custom_ops::paged_attn_decode_kv_fp8",
|
|
58
|
+
mutates_args=(["kcache", "vcache"]),
|
|
59
|
+
)
|
|
60
|
+
def paged_attn_decode_kv_fp8(
|
|
61
|
+
q: Tensor,
|
|
62
|
+
k: Tensor,
|
|
63
|
+
v: Tensor,
|
|
64
|
+
mask: Tensor,
|
|
65
|
+
kcache: Tensor,
|
|
66
|
+
vcache: Tensor,
|
|
67
|
+
seq: Tensor,
|
|
68
|
+
scale: Tensor,
|
|
69
|
+
block_table: Tensor,
|
|
70
|
+
block_size: int,
|
|
71
|
+
k_scale: Tensor,
|
|
72
|
+
v_scale: Tensor,
|
|
73
|
+
) -> Tensor:
|
|
74
|
+
return torch.empty_like(q)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
@paged_attn_decode_kv_fp8.register_fake
|
|
78
|
+
def paged_attn_decode_kv_fp8_fake(
|
|
79
|
+
q: Tensor,
|
|
80
|
+
k: Tensor,
|
|
81
|
+
v: Tensor,
|
|
82
|
+
mask: Tensor,
|
|
83
|
+
kcache: Tensor,
|
|
84
|
+
vcache: Tensor,
|
|
85
|
+
seq: Tensor,
|
|
86
|
+
scale: Tensor,
|
|
87
|
+
block_table: Tensor,
|
|
88
|
+
block_size: int,
|
|
89
|
+
k_scale: Tensor,
|
|
90
|
+
v_scale: Tensor,
|
|
91
|
+
) -> Tensor:
|
|
92
|
+
return torch.empty_like(q)
|
|
93
|
+
|
|
94
|
+
|
|
56
95
|
@torch.library.custom_op(
|
|
57
96
|
"rbln_custom_ops::paged_attn_prefill",
|
|
58
97
|
mutates_args=(["kcache", "vcache"]),
|
|
@@ -112,6 +151,45 @@ def paged_attn_prefill_fake(
|
|
|
112
151
|
return torch.empty_like(q)
|
|
113
152
|
|
|
114
153
|
|
|
154
|
+
@torch.library.custom_op(
|
|
155
|
+
"rbln_custom_ops::paged_attn_prefill_kv_fp8",
|
|
156
|
+
mutates_args=(["kcache", "vcache"]),
|
|
157
|
+
)
|
|
158
|
+
def paged_attn_prefill_kv_fp8(
|
|
159
|
+
q: Tensor,
|
|
160
|
+
k: Tensor,
|
|
161
|
+
v: Tensor,
|
|
162
|
+
mask: Tensor,
|
|
163
|
+
kcache: Tensor,
|
|
164
|
+
vcache: Tensor,
|
|
165
|
+
seq: Tensor,
|
|
166
|
+
scale: Tensor,
|
|
167
|
+
block_table: Tensor,
|
|
168
|
+
block_size: int,
|
|
169
|
+
k_scale: Tensor,
|
|
170
|
+
v_scale: Tensor,
|
|
171
|
+
) -> Tensor:
|
|
172
|
+
return torch.empty_like(q)
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
@paged_attn_prefill_kv_fp8.register_fake
|
|
176
|
+
def paged_attn_prefill_kv_fp8_fake(
|
|
177
|
+
q: Tensor,
|
|
178
|
+
k: Tensor,
|
|
179
|
+
v: Tensor,
|
|
180
|
+
mask: Tensor,
|
|
181
|
+
kcache: Tensor,
|
|
182
|
+
vcache: Tensor,
|
|
183
|
+
seq: Tensor,
|
|
184
|
+
scale: Tensor,
|
|
185
|
+
block_table: Tensor,
|
|
186
|
+
block_size: int,
|
|
187
|
+
k_scale: Tensor,
|
|
188
|
+
v_scale: Tensor,
|
|
189
|
+
) -> Tensor:
|
|
190
|
+
return torch.empty_like(q)
|
|
191
|
+
|
|
192
|
+
|
|
115
193
|
@torch.library.custom_op(
|
|
116
194
|
"rbln_custom_ops::paged_causal_attn_decode",
|
|
117
195
|
mutates_args=(["kcache", "vcache"]),
|
|
@@ -236,6 +314,86 @@ def paged_causal_attn_prefill_fake(
|
|
|
236
314
|
return torch.empty_like(q)
|
|
237
315
|
|
|
238
316
|
|
|
317
|
+
@torch.library.custom_op(
|
|
318
|
+
"rbln_custom_ops::paged_causal_attn_decode_kv_fp8",
|
|
319
|
+
mutates_args=(["kcache", "vcache"]),
|
|
320
|
+
)
|
|
321
|
+
def paged_causal_attn_decode_kv_fp8(
|
|
322
|
+
q: Tensor,
|
|
323
|
+
k: Tensor,
|
|
324
|
+
v: Tensor,
|
|
325
|
+
kcache: Tensor,
|
|
326
|
+
vcache: Tensor,
|
|
327
|
+
seq: Tensor,
|
|
328
|
+
scale: Tensor,
|
|
329
|
+
block_table: Tensor,
|
|
330
|
+
block_size: int,
|
|
331
|
+
k_scale: Tensor,
|
|
332
|
+
v_scale: Tensor,
|
|
333
|
+
mask: Optional[Tensor] = None,
|
|
334
|
+
) -> Tensor:
|
|
335
|
+
return torch.empty_like(q)
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
@paged_causal_attn_decode_kv_fp8.register_fake
|
|
339
|
+
def paged_causal_attn_decode_kv_fp8_fake(
|
|
340
|
+
q: Tensor,
|
|
341
|
+
k: Tensor,
|
|
342
|
+
v: Tensor,
|
|
343
|
+
kcache: Tensor,
|
|
344
|
+
vcache: Tensor,
|
|
345
|
+
seq: Tensor,
|
|
346
|
+
scale: Tensor,
|
|
347
|
+
block_table: Tensor,
|
|
348
|
+
block_size: int,
|
|
349
|
+
k_scale: Tensor,
|
|
350
|
+
v_scale: Tensor,
|
|
351
|
+
mask: Optional[Tensor] = None,
|
|
352
|
+
) -> Tensor:
|
|
353
|
+
return torch.empty_like(q)
|
|
354
|
+
|
|
355
|
+
|
|
356
|
+
@torch.library.custom_op(
|
|
357
|
+
"rbln_custom_ops::paged_causal_attn_prefill_kv_fp8",
|
|
358
|
+
mutates_args=(["kcache", "vcache"]),
|
|
359
|
+
)
|
|
360
|
+
def paged_causal_attn_prefill_kv_fp8(
|
|
361
|
+
q: Tensor,
|
|
362
|
+
k: Tensor,
|
|
363
|
+
v: Tensor,
|
|
364
|
+
kcache: Tensor,
|
|
365
|
+
vcache: Tensor,
|
|
366
|
+
seq: Tensor,
|
|
367
|
+
scale: Tensor,
|
|
368
|
+
block_table: Tensor,
|
|
369
|
+
block_size: int,
|
|
370
|
+
is_bidirectional: bool,
|
|
371
|
+
k_scale: Tensor,
|
|
372
|
+
v_scale: Tensor,
|
|
373
|
+
mask: Optional[Tensor] = None,
|
|
374
|
+
) -> Tensor:
|
|
375
|
+
return torch.empty_like(q)
|
|
376
|
+
|
|
377
|
+
|
|
378
|
+
@paged_causal_attn_prefill_kv_fp8.register_fake
|
|
379
|
+
def paged_causal_attn_prefill_kv_fp8_fake(
|
|
380
|
+
q: Tensor,
|
|
381
|
+
k: Tensor,
|
|
382
|
+
v: Tensor,
|
|
383
|
+
kcache: Tensor,
|
|
384
|
+
vcache: Tensor,
|
|
385
|
+
seq: Tensor,
|
|
386
|
+
scale: Tensor,
|
|
387
|
+
block_table: Tensor,
|
|
388
|
+
block_size: int,
|
|
389
|
+
is_bidirectional: bool,
|
|
390
|
+
k_scale: Tensor,
|
|
391
|
+
v_scale: Tensor,
|
|
392
|
+
mask: Optional[Tensor] = None,
|
|
393
|
+
) -> Tensor:
|
|
394
|
+
return torch.empty_like(q)
|
|
395
|
+
|
|
396
|
+
|
|
239
397
|
@torch.library.custom_op(
|
|
240
398
|
"rbln_custom_ops::paged_add_softmax_attn_decode",
|
|
241
399
|
mutates_args=(["kcache", "vcache"]),
|
optimum/rbln/ops/flash_attn.py
CHANGED
|
@@ -59,6 +59,47 @@ def paged_flash_attn_decode_fake(
|
|
|
59
59
|
return torch.empty_like(q)
|
|
60
60
|
|
|
61
61
|
|
|
62
|
+
@torch.library.custom_op(
|
|
63
|
+
"rbln_custom_ops::paged_flash_attn_decode_kv_fp8",
|
|
64
|
+
mutates_args=(["kcache", "vcache"]),
|
|
65
|
+
)
|
|
66
|
+
def paged_flash_attn_decode_kv_fp8(
|
|
67
|
+
q: Tensor,
|
|
68
|
+
k: Tensor,
|
|
69
|
+
v: Tensor,
|
|
70
|
+
mask: Tensor,
|
|
71
|
+
kcache: Tensor,
|
|
72
|
+
vcache: Tensor,
|
|
73
|
+
seq: Tensor,
|
|
74
|
+
scale: Tensor,
|
|
75
|
+
block_table: Tensor,
|
|
76
|
+
block_size: int,
|
|
77
|
+
partition: int,
|
|
78
|
+
k_scale: Tensor,
|
|
79
|
+
v_scale: Tensor,
|
|
80
|
+
) -> Tensor:
|
|
81
|
+
return torch.empty_like(q)
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
@paged_flash_attn_decode_kv_fp8.register_fake
|
|
85
|
+
def paged_flash_attn_decode_kv_fp8_fake(
|
|
86
|
+
q: Tensor,
|
|
87
|
+
k: Tensor,
|
|
88
|
+
v: Tensor,
|
|
89
|
+
mask: Tensor,
|
|
90
|
+
kcache: Tensor,
|
|
91
|
+
vcache: Tensor,
|
|
92
|
+
seq: Tensor,
|
|
93
|
+
scale: Tensor,
|
|
94
|
+
block_table: Tensor,
|
|
95
|
+
block_size: int,
|
|
96
|
+
partition: int,
|
|
97
|
+
k_scale: Tensor,
|
|
98
|
+
v_scale: Tensor,
|
|
99
|
+
) -> Tensor:
|
|
100
|
+
return torch.empty_like(q)
|
|
101
|
+
|
|
102
|
+
|
|
62
103
|
@torch.library.custom_op(
|
|
63
104
|
"rbln_custom_ops::paged_flash_attn_prefill",
|
|
64
105
|
mutates_args=(["kcache", "vcache"]),
|
|
@@ -100,6 +141,47 @@ def paged_flash_attn_prefill_fake(
|
|
|
100
141
|
return torch.empty_like(q)
|
|
101
142
|
|
|
102
143
|
|
|
144
|
+
@torch.library.custom_op(
|
|
145
|
+
"rbln_custom_ops::paged_flash_attn_prefill_kv_fp8",
|
|
146
|
+
mutates_args=(["kcache", "vcache"]),
|
|
147
|
+
)
|
|
148
|
+
def paged_flash_attn_prefill_kv_fp8(
|
|
149
|
+
q: Tensor,
|
|
150
|
+
k: Tensor,
|
|
151
|
+
v: Tensor,
|
|
152
|
+
mask: Tensor,
|
|
153
|
+
kcache: Tensor,
|
|
154
|
+
vcache: Tensor,
|
|
155
|
+
seq: Tensor,
|
|
156
|
+
scale: Tensor,
|
|
157
|
+
block_table: Tensor,
|
|
158
|
+
block_size: int,
|
|
159
|
+
partition: int,
|
|
160
|
+
k_scale: Tensor,
|
|
161
|
+
v_scale: Tensor,
|
|
162
|
+
) -> Tensor:
|
|
163
|
+
return torch.empty_like(q)
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
@paged_flash_attn_prefill_kv_fp8.register_fake
|
|
167
|
+
def paged_flash_attn_prefill_kv_fp8_fake(
|
|
168
|
+
q: Tensor,
|
|
169
|
+
k: Tensor,
|
|
170
|
+
v: Tensor,
|
|
171
|
+
mask: Tensor,
|
|
172
|
+
kcache: Tensor,
|
|
173
|
+
vcache: Tensor,
|
|
174
|
+
seq: Tensor,
|
|
175
|
+
scale: Tensor,
|
|
176
|
+
block_table: Tensor,
|
|
177
|
+
block_size: int,
|
|
178
|
+
partition: int,
|
|
179
|
+
k_scale: Tensor,
|
|
180
|
+
v_scale: Tensor,
|
|
181
|
+
) -> Tensor:
|
|
182
|
+
return torch.empty_like(q)
|
|
183
|
+
|
|
184
|
+
|
|
103
185
|
@torch.library.custom_op(
|
|
104
186
|
"rbln_custom_ops::paged_flash_causal_attn_decode",
|
|
105
187
|
mutates_args=(["kcache", "vcache"]),
|
|
@@ -141,6 +223,47 @@ def paged_flash_causal_attn_decode_fake(
|
|
|
141
223
|
return torch.empty_like(q)
|
|
142
224
|
|
|
143
225
|
|
|
226
|
+
@torch.library.custom_op(
|
|
227
|
+
"rbln_custom_ops::paged_flash_causal_attn_decode_kv_fp8",
|
|
228
|
+
mutates_args=(["kcache", "vcache"]),
|
|
229
|
+
)
|
|
230
|
+
def paged_flash_causal_attn_decode_kv_fp8(
|
|
231
|
+
q: Tensor,
|
|
232
|
+
k: Tensor,
|
|
233
|
+
v: Tensor,
|
|
234
|
+
kcache: Tensor,
|
|
235
|
+
vcache: Tensor,
|
|
236
|
+
seq: Tensor,
|
|
237
|
+
scale: Tensor,
|
|
238
|
+
block_table: Tensor,
|
|
239
|
+
block_size: int,
|
|
240
|
+
partition: int,
|
|
241
|
+
k_scale: Tensor,
|
|
242
|
+
v_scale: Tensor,
|
|
243
|
+
mask: Optional[Tensor] = None,
|
|
244
|
+
) -> Tensor:
|
|
245
|
+
return torch.empty_like(q)
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
@paged_flash_causal_attn_decode_kv_fp8.register_fake
|
|
249
|
+
def paged_flash_causal_attn_decode_kv_fp8_fake(
|
|
250
|
+
q: Tensor,
|
|
251
|
+
k: Tensor,
|
|
252
|
+
v: Tensor,
|
|
253
|
+
kcache: Tensor,
|
|
254
|
+
vcache: Tensor,
|
|
255
|
+
seq: Tensor,
|
|
256
|
+
scale: Tensor,
|
|
257
|
+
block_table: Tensor,
|
|
258
|
+
block_size: int,
|
|
259
|
+
partition: int,
|
|
260
|
+
k_scale: Tensor,
|
|
261
|
+
v_scale: Tensor,
|
|
262
|
+
mask: Optional[Tensor] = None,
|
|
263
|
+
) -> Tensor:
|
|
264
|
+
return torch.empty_like(q)
|
|
265
|
+
|
|
266
|
+
|
|
144
267
|
@torch.library.custom_op(
|
|
145
268
|
"rbln_custom_ops::paged_flash_causal_attn_prefill",
|
|
146
269
|
mutates_args=(["kcache", "vcache"]),
|
|
@@ -182,3 +305,46 @@ def paged_flash_causal_attn_prefill_fake(
|
|
|
182
305
|
mask: Optional[Tensor] = None,
|
|
183
306
|
) -> Tensor:
|
|
184
307
|
return torch.empty_like(q)
|
|
308
|
+
|
|
309
|
+
|
|
310
|
+
@torch.library.custom_op(
|
|
311
|
+
"rbln_custom_ops::paged_flash_causal_attn_prefill_kv_fp8",
|
|
312
|
+
mutates_args=(["kcache", "vcache"]),
|
|
313
|
+
)
|
|
314
|
+
def paged_flash_causal_attn_prefill_kv_fp8(
|
|
315
|
+
q: Tensor,
|
|
316
|
+
k: Tensor,
|
|
317
|
+
v: Tensor,
|
|
318
|
+
kcache: Tensor,
|
|
319
|
+
vcache: Tensor,
|
|
320
|
+
seq: Tensor,
|
|
321
|
+
scale: Tensor,
|
|
322
|
+
block_table: Tensor,
|
|
323
|
+
block_size: int,
|
|
324
|
+
partition: int,
|
|
325
|
+
is_bidirectional: bool,
|
|
326
|
+
k_scale: Tensor,
|
|
327
|
+
v_scale: Tensor,
|
|
328
|
+
mask: Optional[Tensor] = None,
|
|
329
|
+
) -> Tensor:
|
|
330
|
+
return torch.empty_like(q)
|
|
331
|
+
|
|
332
|
+
|
|
333
|
+
@paged_flash_causal_attn_prefill_kv_fp8.register_fake
|
|
334
|
+
def paged_flash_causal_attn_prefill_kv_fp8_fake(
|
|
335
|
+
q: Tensor,
|
|
336
|
+
k: Tensor,
|
|
337
|
+
v: Tensor,
|
|
338
|
+
kcache: Tensor,
|
|
339
|
+
vcache: Tensor,
|
|
340
|
+
seq: Tensor,
|
|
341
|
+
scale: Tensor,
|
|
342
|
+
block_table: Tensor,
|
|
343
|
+
block_size: int,
|
|
344
|
+
partition: int,
|
|
345
|
+
is_bidirectional: bool,
|
|
346
|
+
k_scale: Tensor,
|
|
347
|
+
v_scale: Tensor,
|
|
348
|
+
mask: Optional[Tensor] = None,
|
|
349
|
+
) -> Tensor:
|
|
350
|
+
return torch.empty_like(q)
|
|
@@ -22,3 +22,8 @@ def rbln_cache_update(cache: Tensor, state: Tensor, position: Tensor, axis: Tens
|
|
|
22
22
|
# This operation is designed to perform in-place updates directly on the device without needing to transfer the cache back to the host.
|
|
23
23
|
# The `position` parameter specifies the start index for the update along the specified axis, allowing flexible updates to any part of the cache tensor.
|
|
24
24
|
return torch.empty_like(cache)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@rbln_cache_update.register_fake
|
|
28
|
+
def rbln_cache_update_fake(cache: Tensor, state: Tensor, position: Tensor, axis: Tensor) -> Tensor:
|
|
29
|
+
return torch.empty_like(cache)
|
optimum/rbln/ops/linear.py
CHANGED
|
@@ -23,3 +23,10 @@ def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tens
|
|
|
23
23
|
output_shape = list(input.shape[:-1])
|
|
24
24
|
output_shape += [weight.shape[0]]
|
|
25
25
|
return torch.empty(size=output_shape, dtype=input.dtype, device=input.device, requires_grad=input.requires_grad)
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@linear.register_fake
|
|
29
|
+
def linear_fake(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor:
|
|
30
|
+
output_shape = list(input.shape[:-1])
|
|
31
|
+
output_shape += [weight.shape[0]]
|
|
32
|
+
return torch.empty(size=output_shape, dtype=input.dtype, device=input.device, requires_grad=input.requires_grad)
|
|
@@ -34,6 +34,8 @@ _import_structure = {
|
|
|
34
34
|
"RBLNAutoModelForSequenceClassification",
|
|
35
35
|
"RBLNAutoModelForSpeechSeq2Seq",
|
|
36
36
|
"RBLNAutoModelForVision2Seq",
|
|
37
|
+
"RBLNAutoModelForTextEncoding",
|
|
38
|
+
"RBLNAutoModelForZeroShotObjectDetection",
|
|
37
39
|
"RBLNBartForConditionalGeneration",
|
|
38
40
|
"RBLNBartForConditionalGenerationConfig",
|
|
39
41
|
"RBLNBartModel",
|
|
@@ -52,6 +54,8 @@ _import_structure = {
|
|
|
52
54
|
"RBLNBlip2VisionModelConfig",
|
|
53
55
|
"RBLNColPaliForRetrieval",
|
|
54
56
|
"RBLNColPaliForRetrievalConfig",
|
|
57
|
+
"RBLNColQwen2ForRetrieval",
|
|
58
|
+
"RBLNColQwen2ForRetrievalConfig",
|
|
55
59
|
"RBLNCLIPTextModel",
|
|
56
60
|
"RBLNCLIPTextModelConfig",
|
|
57
61
|
"RBLNCLIPTextModelWithProjection",
|
|
@@ -62,12 +66,18 @@ _import_structure = {
|
|
|
62
66
|
"RBLNCLIPVisionModelWithProjectionConfig",
|
|
63
67
|
"RBLNDecoderOnlyModelForCausalLM",
|
|
64
68
|
"RBLNDecoderOnlyModelForCausalLMConfig",
|
|
69
|
+
"RBLNDecoderOnlyModelConfig",
|
|
70
|
+
"RBLNDecoderOnlyModel",
|
|
65
71
|
"RBLNDistilBertForQuestionAnswering",
|
|
66
72
|
"RBLNDistilBertForQuestionAnsweringConfig",
|
|
67
73
|
"RBLNDPTForDepthEstimation",
|
|
68
74
|
"RBLNDPTForDepthEstimationConfig",
|
|
75
|
+
"RBLNDepthAnythingForDepthEstimation",
|
|
76
|
+
"RBLNDepthAnythingForDepthEstimationConfig",
|
|
69
77
|
"RBLNExaoneForCausalLM",
|
|
70
78
|
"RBLNExaoneForCausalLMConfig",
|
|
79
|
+
"RBLNGemmaModel",
|
|
80
|
+
"RBLNGemmaModelConfig",
|
|
71
81
|
"RBLNGemma3ForCausalLM",
|
|
72
82
|
"RBLNGemma3ForCausalLMConfig",
|
|
73
83
|
"RBLNGemma3ForConditionalGeneration",
|
|
@@ -76,26 +86,60 @@ _import_structure = {
|
|
|
76
86
|
"RBLNGemmaForCausalLMConfig",
|
|
77
87
|
"RBLNGPT2LMHeadModel",
|
|
78
88
|
"RBLNGPT2LMHeadModelConfig",
|
|
89
|
+
"RBLNGPT2Model",
|
|
90
|
+
"RBLNGPT2ModelConfig",
|
|
91
|
+
"RBLNGroundingDinoDecoder",
|
|
92
|
+
"RBLNGroundingDinoDecoderConfig",
|
|
93
|
+
"RBLNGroundingDinoForObjectDetection",
|
|
94
|
+
"RBLNGroundingDinoForObjectDetectionConfig",
|
|
95
|
+
"RBLNGroundingDinoEncoder",
|
|
96
|
+
"RBLNGroundingDinoEncoderConfig",
|
|
79
97
|
"RBLNIdefics3ForConditionalGeneration",
|
|
80
98
|
"RBLNIdefics3ForConditionalGenerationConfig",
|
|
81
99
|
"RBLNIdefics3VisionTransformer",
|
|
82
100
|
"RBLNIdefics3VisionTransformerConfig",
|
|
83
101
|
"RBLNLlamaForCausalLM",
|
|
84
102
|
"RBLNLlamaForCausalLMConfig",
|
|
103
|
+
"RBLNLlavaForConditionalGeneration",
|
|
104
|
+
"RBLNLlavaForConditionalGenerationConfig",
|
|
105
|
+
"RBLNLlamaModel",
|
|
106
|
+
"RBLNLlamaModelConfig",
|
|
107
|
+
"RBLNOPTForCausalLM",
|
|
108
|
+
"RBLNOPTForCausalLMConfig",
|
|
109
|
+
"RBLNPegasusForConditionalGeneration",
|
|
110
|
+
"RBLNPegasusForConditionalGenerationConfig",
|
|
111
|
+
"RBLNPegasusModel",
|
|
112
|
+
"RBLNPegasusModelConfig",
|
|
85
113
|
"RBLNLlavaNextForConditionalGeneration",
|
|
86
114
|
"RBLNLlavaNextForConditionalGenerationConfig",
|
|
115
|
+
"RBLNLoRAAdapterConfig",
|
|
116
|
+
"RBLNLoRAConfig",
|
|
87
117
|
"RBLNMidmLMHeadModel",
|
|
88
118
|
"RBLNMidmLMHeadModelConfig",
|
|
89
119
|
"RBLNMistralForCausalLM",
|
|
90
120
|
"RBLNMistralForCausalLMConfig",
|
|
121
|
+
"RBLNMistralModel",
|
|
122
|
+
"RBLNMistralModelConfig",
|
|
91
123
|
"RBLNOPTForCausalLM",
|
|
92
124
|
"RBLNOPTForCausalLMConfig",
|
|
125
|
+
"RBLNOPTModel",
|
|
126
|
+
"RBLNOPTModelConfig",
|
|
93
127
|
"RBLNPhiForCausalLM",
|
|
94
128
|
"RBLNPhiForCausalLMConfig",
|
|
129
|
+
"RBLNPixtralVisionModelConfig",
|
|
130
|
+
"RBLNPixtralVisionModel",
|
|
131
|
+
"RBLNPhiModel",
|
|
132
|
+
"RBLNPhiModelConfig",
|
|
95
133
|
"RBLNQwen2_5_VisionTransformerPretrainedModel",
|
|
96
134
|
"RBLNQwen2_5_VisionTransformerPretrainedModelConfig",
|
|
97
135
|
"RBLNQwen2_5_VLForConditionalGeneration",
|
|
98
136
|
"RBLNQwen2_5_VLForConditionalGenerationConfig",
|
|
137
|
+
"RBLNQwen2VisionTransformerPretrainedModel",
|
|
138
|
+
"RBLNQwen2VisionTransformerPretrainedModelConfig",
|
|
139
|
+
"RBLNQwen2VLForConditionalGeneration",
|
|
140
|
+
"RBLNQwen2VLForConditionalGenerationConfig",
|
|
141
|
+
"RBLNQwen2Model",
|
|
142
|
+
"RBLNQwen2ModelConfig",
|
|
99
143
|
"RBLNQwen2ForCausalLM",
|
|
100
144
|
"RBLNQwen2ForCausalLMConfig",
|
|
101
145
|
"RBLNQwen3ForCausalLM",
|
|
@@ -110,6 +154,8 @@ _import_structure = {
|
|
|
110
154
|
"RBLNRobertaForSequenceClassificationConfig",
|
|
111
155
|
"RBLNSiglipVisionModel",
|
|
112
156
|
"RBLNSiglipVisionModelConfig",
|
|
157
|
+
"RBLNSwinBackbone",
|
|
158
|
+
"RBLNSwinBackboneConfig",
|
|
113
159
|
"RBLNT5EncoderModel",
|
|
114
160
|
"RBLNT5EncoderModelConfig",
|
|
115
161
|
"RBLNT5ForConditionalGeneration",
|
|
@@ -145,7 +191,9 @@ if TYPE_CHECKING:
|
|
|
145
191
|
RBLNAutoModelForSeq2SeqLM,
|
|
146
192
|
RBLNAutoModelForSequenceClassification,
|
|
147
193
|
RBLNAutoModelForSpeechSeq2Seq,
|
|
194
|
+
RBLNAutoModelForTextEncoding,
|
|
148
195
|
RBLNAutoModelForVision2Seq,
|
|
196
|
+
RBLNAutoModelForZeroShotObjectDetection,
|
|
149
197
|
RBLNBartForConditionalGeneration,
|
|
150
198
|
RBLNBartForConditionalGenerationConfig,
|
|
151
199
|
RBLNBartModel,
|
|
@@ -170,8 +218,16 @@ if TYPE_CHECKING:
|
|
|
170
218
|
RBLNCLIPVisionModelConfig,
|
|
171
219
|
RBLNCLIPVisionModelWithProjection,
|
|
172
220
|
RBLNCLIPVisionModelWithProjectionConfig,
|
|
221
|
+
RBLNColPaliForRetrieval,
|
|
222
|
+
RBLNColPaliForRetrievalConfig,
|
|
223
|
+
RBLNColQwen2ForRetrieval,
|
|
224
|
+
RBLNColQwen2ForRetrievalConfig,
|
|
225
|
+
RBLNDecoderOnlyModel,
|
|
226
|
+
RBLNDecoderOnlyModelConfig,
|
|
173
227
|
RBLNDecoderOnlyModelForCausalLM,
|
|
174
228
|
RBLNDecoderOnlyModelForCausalLMConfig,
|
|
229
|
+
RBLNDepthAnythingForDepthEstimation,
|
|
230
|
+
RBLNDepthAnythingForDepthEstimationConfig,
|
|
175
231
|
RBLNDistilBertForQuestionAnswering,
|
|
176
232
|
RBLNDistilBertForQuestionAnsweringConfig,
|
|
177
233
|
RBLNDPTForDepthEstimation,
|
|
@@ -184,30 +240,64 @@ if TYPE_CHECKING:
|
|
|
184
240
|
RBLNGemma3ForConditionalGenerationConfig,
|
|
185
241
|
RBLNGemmaForCausalLM,
|
|
186
242
|
RBLNGemmaForCausalLMConfig,
|
|
243
|
+
RBLNGemmaModel,
|
|
244
|
+
RBLNGemmaModelConfig,
|
|
187
245
|
RBLNGPT2LMHeadModel,
|
|
188
246
|
RBLNGPT2LMHeadModelConfig,
|
|
247
|
+
RBLNGPT2Model,
|
|
248
|
+
RBLNGPT2ModelConfig,
|
|
249
|
+
RBLNGroundingDinoDecoder,
|
|
250
|
+
RBLNGroundingDinoDecoderConfig,
|
|
251
|
+
RBLNGroundingDinoEncoder,
|
|
252
|
+
RBLNGroundingDinoEncoderConfig,
|
|
253
|
+
RBLNGroundingDinoForObjectDetection,
|
|
254
|
+
RBLNGroundingDinoForObjectDetectionConfig,
|
|
189
255
|
RBLNIdefics3ForConditionalGeneration,
|
|
190
256
|
RBLNIdefics3ForConditionalGenerationConfig,
|
|
191
257
|
RBLNIdefics3VisionTransformer,
|
|
192
258
|
RBLNIdefics3VisionTransformerConfig,
|
|
193
259
|
RBLNLlamaForCausalLM,
|
|
194
260
|
RBLNLlamaForCausalLMConfig,
|
|
261
|
+
RBLNLlamaModel,
|
|
262
|
+
RBLNLlamaModelConfig,
|
|
263
|
+
RBLNLlavaForConditionalGeneration,
|
|
264
|
+
RBLNLlavaForConditionalGenerationConfig,
|
|
195
265
|
RBLNLlavaNextForConditionalGeneration,
|
|
196
266
|
RBLNLlavaNextForConditionalGenerationConfig,
|
|
267
|
+
RBLNLoRAAdapterConfig,
|
|
268
|
+
RBLNLoRAConfig,
|
|
197
269
|
RBLNMidmLMHeadModel,
|
|
198
270
|
RBLNMidmLMHeadModelConfig,
|
|
199
271
|
RBLNMistralForCausalLM,
|
|
200
272
|
RBLNMistralForCausalLMConfig,
|
|
273
|
+
RBLNMistralModel,
|
|
274
|
+
RBLNMistralModelConfig,
|
|
201
275
|
RBLNOPTForCausalLM,
|
|
202
276
|
RBLNOPTForCausalLMConfig,
|
|
277
|
+
RBLNOPTModel,
|
|
278
|
+
RBLNOPTModelConfig,
|
|
279
|
+
RBLNPegasusForConditionalGeneration,
|
|
280
|
+
RBLNPegasusForConditionalGenerationConfig,
|
|
281
|
+
RBLNPegasusModel,
|
|
282
|
+
RBLNPegasusModelConfig,
|
|
203
283
|
RBLNPhiForCausalLM,
|
|
204
284
|
RBLNPhiForCausalLMConfig,
|
|
285
|
+
RBLNPhiModel,
|
|
286
|
+
RBLNPhiModelConfig,
|
|
287
|
+
RBLNPixtralVisionModel,
|
|
288
|
+
RBLNPixtralVisionModelConfig,
|
|
205
289
|
RBLNQwen2_5_VisionTransformerPretrainedModel,
|
|
206
290
|
RBLNQwen2_5_VisionTransformerPretrainedModelConfig,
|
|
207
291
|
RBLNQwen2_5_VLForConditionalGeneration,
|
|
208
292
|
RBLNQwen2_5_VLForConditionalGenerationConfig,
|
|
209
293
|
RBLNQwen2ForCausalLM,
|
|
210
294
|
RBLNQwen2ForCausalLMConfig,
|
|
295
|
+
RBLNQwen2Model,
|
|
296
|
+
RBLNQwen2ModelConfig,
|
|
297
|
+
RBLNQwen2VisionTransformerPretrainedModel,
|
|
298
|
+
RBLNQwen2VisionTransformerPretrainedModelConfig,
|
|
299
|
+
RBLNQwen2VLForConditionalGeneration,
|
|
300
|
+
RBLNQwen2VLForConditionalGenerationConfig,
|
|
211
301
|
RBLNQwen3ForCausalLM,
|
|
212
302
|
RBLNQwen3ForCausalLMConfig,
|
|
213
303
|
RBLNQwen3Model,
|
|
@@ -220,6 +310,8 @@ if TYPE_CHECKING:
|
|
|
220
310
|
RBLNRobertaForSequenceClassificationConfig,
|
|
221
311
|
RBLNSiglipVisionModel,
|
|
222
312
|
RBLNSiglipVisionModelConfig,
|
|
313
|
+
RBLNSwinBackbone,
|
|
314
|
+
RBLNSwinBackboneConfig,
|
|
223
315
|
RBLNT5EncoderModel,
|
|
224
316
|
RBLNT5EncoderModelConfig,
|
|
225
317
|
RBLNT5ForConditionalGeneration,
|
|
@@ -12,7 +12,7 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import Any,
|
|
15
|
+
from typing import Any, List, Optional, Tuple, Union
|
|
16
16
|
|
|
17
17
|
from ..configuration_utils import RBLNModelConfig
|
|
18
18
|
|
|
@@ -25,7 +25,8 @@ class RBLNTransformerEncoderConfig(RBLNModelConfig):
|
|
|
25
25
|
max_seq_len: Optional[int] = None,
|
|
26
26
|
batch_size: Optional[int] = None,
|
|
27
27
|
model_input_names: Optional[List[str]] = None,
|
|
28
|
-
|
|
28
|
+
model_input_shapes: Optional[List[Tuple[int, int]]] = None,
|
|
29
|
+
**kwargs: Any,
|
|
29
30
|
):
|
|
30
31
|
"""
|
|
31
32
|
Args:
|
|
@@ -33,7 +34,7 @@ class RBLNTransformerEncoderConfig(RBLNModelConfig):
|
|
|
33
34
|
batch_size (Optional[int]): The batch size for inference. Defaults to 1.
|
|
34
35
|
model_input_names (Optional[List[str]]): Names of the input tensors for the model.
|
|
35
36
|
Defaults to class-specific rbln_model_input_names if not provided.
|
|
36
|
-
|
|
37
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
37
38
|
|
|
38
39
|
Raises:
|
|
39
40
|
ValueError: If batch_size is not a positive integer.
|
|
@@ -45,6 +46,7 @@ class RBLNTransformerEncoderConfig(RBLNModelConfig):
|
|
|
45
46
|
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
|
46
47
|
|
|
47
48
|
self.model_input_names = model_input_names or self.rbln_model_input_names
|
|
49
|
+
self.model_input_shapes = model_input_shapes
|
|
48
50
|
|
|
49
51
|
|
|
50
52
|
class RBLNImageModelConfig(RBLNModelConfig):
|
|
@@ -52,14 +54,14 @@ class RBLNImageModelConfig(RBLNModelConfig):
|
|
|
52
54
|
self,
|
|
53
55
|
image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
|
54
56
|
batch_size: Optional[int] = None,
|
|
55
|
-
**kwargs:
|
|
57
|
+
**kwargs: Any,
|
|
56
58
|
):
|
|
57
59
|
"""
|
|
58
60
|
Args:
|
|
59
61
|
image_size (Optional[Union[int, Tuple[int, int]]]): The size of input images.
|
|
60
62
|
Can be an integer for square images or a tuple (height, width).
|
|
61
63
|
batch_size (Optional[int]): The batch size for inference. Defaults to 1.
|
|
62
|
-
|
|
64
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
63
65
|
|
|
64
66
|
Raises:
|
|
65
67
|
ValueError: If batch_size is not a positive integer.
|
|
@@ -116,30 +118,3 @@ class RBLNModelForImageClassificationConfig(RBLNImageModelConfig):
|
|
|
116
118
|
|
|
117
119
|
class RBLNModelForDepthEstimationConfig(RBLNImageModelConfig):
|
|
118
120
|
pass
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
class RBLNModelForAudioClassificationConfig(RBLNModelConfig):
|
|
122
|
-
def __init__(
|
|
123
|
-
self,
|
|
124
|
-
batch_size: Optional[int] = None,
|
|
125
|
-
max_length: Optional[int] = None,
|
|
126
|
-
num_mel_bins: Optional[int] = None,
|
|
127
|
-
**kwargs: Dict[str, Any],
|
|
128
|
-
):
|
|
129
|
-
"""
|
|
130
|
-
Args:
|
|
131
|
-
batch_size (Optional[int]): The batch size for inference. Defaults to 1.
|
|
132
|
-
max_length (Optional[int]): Maximum length of the audio input in time dimension.
|
|
133
|
-
num_mel_bins (Optional[int]): Number of Mel frequency bins for audio processing.
|
|
134
|
-
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
135
|
-
|
|
136
|
-
Raises:
|
|
137
|
-
ValueError: If batch_size is not a positive integer.
|
|
138
|
-
"""
|
|
139
|
-
super().__init__(**kwargs)
|
|
140
|
-
self.batch_size = batch_size or 1
|
|
141
|
-
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
|
142
|
-
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
|
143
|
-
|
|
144
|
-
self.max_length = max_length
|
|
145
|
-
self.num_mel_bins = num_mel_bins
|