optimum-rbln 0.8.2a4__py3-none-any.whl → 0.9.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. optimum/rbln/__init__.py +108 -9
  2. optimum/rbln/__version__.py +16 -3
  3. optimum/rbln/cli.py +660 -0
  4. optimum/rbln/configuration_utils.py +156 -43
  5. optimum/rbln/diffusers/__init__.py +19 -0
  6. optimum/rbln/diffusers/configurations/__init__.py +3 -0
  7. optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
  8. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +3 -3
  9. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +1 -1
  10. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
  11. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +3 -3
  12. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +4 -4
  13. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +9 -4
  14. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +9 -4
  15. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +3 -3
  16. optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
  17. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +3 -3
  18. optimum/rbln/diffusers/configurations/pipelines/__init__.py +3 -0
  19. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +35 -19
  20. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +14 -11
  21. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +30 -20
  22. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +13 -9
  23. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +17 -13
  24. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +17 -10
  25. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
  26. optimum/rbln/diffusers/modeling_diffusers.py +30 -14
  27. optimum/rbln/diffusers/models/__init__.py +4 -0
  28. optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
  29. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +31 -3
  30. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +31 -6
  31. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
  32. optimum/rbln/diffusers/models/autoencoders/vae.py +27 -8
  33. optimum/rbln/diffusers/models/autoencoders/vq_model.py +31 -3
  34. optimum/rbln/diffusers/models/controlnet.py +16 -1
  35. optimum/rbln/diffusers/models/transformers/prior_transformer.py +17 -3
  36. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +25 -2
  37. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +23 -2
  38. optimum/rbln/diffusers/models/unets/__init__.py +1 -0
  39. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +23 -4
  40. optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
  41. optimum/rbln/diffusers/pipelines/__init__.py +15 -5
  42. optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
  43. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +20 -0
  44. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +19 -16
  45. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +14 -18
  46. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +31 -1
  47. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +31 -1
  48. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
  49. optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
  50. optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
  51. optimum/rbln/modeling.py +48 -21
  52. optimum/rbln/modeling_base.py +99 -22
  53. optimum/rbln/ops/attn.py +158 -0
  54. optimum/rbln/ops/flash_attn.py +166 -0
  55. optimum/rbln/ops/kv_cache_update.py +5 -0
  56. optimum/rbln/ops/linear.py +7 -0
  57. optimum/rbln/transformers/__init__.py +92 -0
  58. optimum/rbln/transformers/configuration_generic.py +7 -32
  59. optimum/rbln/transformers/modeling_attention_utils.py +385 -0
  60. optimum/rbln/transformers/modeling_generic.py +48 -65
  61. optimum/rbln/transformers/modeling_outputs.py +37 -0
  62. optimum/rbln/transformers/models/__init__.py +91 -30
  63. optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +28 -2
  64. optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +68 -5
  65. optimum/rbln/transformers/models/auto/__init__.py +2 -0
  66. optimum/rbln/transformers/models/auto/auto_factory.py +92 -17
  67. optimum/rbln/transformers/models/auto/modeling_auto.py +45 -0
  68. optimum/rbln/transformers/models/bart/bart_architecture.py +1 -3
  69. optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
  70. optimum/rbln/transformers/models/bart/modeling_bart.py +23 -2
  71. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  72. optimum/rbln/transformers/models/bert/modeling_bert.py +93 -4
  73. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +42 -11
  74. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +135 -44
  75. optimum/rbln/transformers/models/clip/configuration_clip.py +10 -7
  76. optimum/rbln/transformers/models/clip/modeling_clip.py +67 -6
  77. optimum/rbln/transformers/models/colpali/colpali_architecture.py +3 -6
  78. optimum/rbln/transformers/models/colpali/configuration_colpali.py +37 -21
  79. optimum/rbln/transformers/models/colpali/modeling_colpali.py +82 -104
  80. optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
  81. optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
  82. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
  83. optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
  84. optimum/rbln/transformers/models/decoderonly/__init__.py +3 -2
  85. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +114 -37
  86. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  87. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +318 -309
  88. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
  89. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
  90. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  91. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +485 -905
  92. optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
  93. optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
  94. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
  95. optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +24 -0
  96. optimum/rbln/transformers/models/dpt/modeling_dpt.py +17 -0
  97. optimum/rbln/transformers/models/exaone/modeling_exaone.py +42 -4
  98. optimum/rbln/transformers/models/gemma/__init__.py +2 -2
  99. optimum/rbln/transformers/models/gemma/configuration_gemma.py +9 -1
  100. optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
  101. optimum/rbln/transformers/models/gemma/modeling_gemma.py +22 -1
  102. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +49 -13
  103. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +12 -2
  104. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
  105. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +201 -351
  106. optimum/rbln/transformers/models/gpt2/__init__.py +2 -2
  107. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +31 -3
  108. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +10 -8
  109. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +18 -1
  110. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  111. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
  112. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
  113. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
  114. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +35 -7
  115. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +29 -32
  116. optimum/rbln/transformers/models/llama/__init__.py +2 -2
  117. optimum/rbln/transformers/models/llama/configuration_llama.py +9 -1
  118. optimum/rbln/transformers/models/llama/modeling_llama.py +22 -1
  119. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  120. optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
  121. optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
  122. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +15 -17
  123. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +234 -376
  124. optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
  125. optimum/rbln/transformers/models/midm/modeling_midm.py +42 -4
  126. optimum/rbln/transformers/models/mistral/__init__.py +2 -2
  127. optimum/rbln/transformers/models/mistral/configuration_mistral.py +9 -1
  128. optimum/rbln/transformers/models/mistral/mistral_architecture.py +1 -1
  129. optimum/rbln/transformers/models/mistral/modeling_mistral.py +26 -3
  130. optimum/rbln/transformers/models/opt/__init__.py +2 -2
  131. optimum/rbln/transformers/models/opt/configuration_opt.py +8 -1
  132. optimum/rbln/transformers/models/opt/modeling_opt.py +29 -17
  133. optimum/rbln/transformers/models/opt/opt_architecture.py +4 -4
  134. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  135. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
  136. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
  137. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  138. optimum/rbln/transformers/models/phi/__init__.py +2 -2
  139. optimum/rbln/transformers/models/phi/configuration_phi.py +9 -1
  140. optimum/rbln/transformers/models/phi/modeling_phi.py +10 -1
  141. optimum/rbln/transformers/models/phi/phi_architecture.py +11 -7
  142. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  143. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  144. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
  145. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  146. optimum/rbln/transformers/models/qwen2/__init__.py +2 -2
  147. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +9 -1
  148. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +27 -1
  149. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +21 -6
  150. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +15 -22
  151. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +28 -7
  152. optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  153. optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  154. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
  155. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
  156. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +2 -2
  157. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +86 -330
  158. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +1 -245
  159. optimum/rbln/transformers/models/resnet/configuration_resnet.py +17 -0
  160. optimum/rbln/transformers/models/resnet/modeling_resnet.py +73 -0
  161. optimum/rbln/transformers/models/roberta/modeling_roberta.py +33 -0
  162. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +21 -16
  163. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +58 -13
  164. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -2
  165. optimum/rbln/transformers/models/siglip/__init__.py +2 -6
  166. optimum/rbln/transformers/models/siglip/configuration_siglip.py +1 -1
  167. optimum/rbln/transformers/models/siglip/modeling_siglip.py +21 -16
  168. optimum/rbln/transformers/models/swin/__init__.py +16 -0
  169. optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
  170. optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
  171. optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
  172. optimum/rbln/transformers/models/t5/modeling_t5.py +2 -2
  173. optimum/rbln/transformers/models/t5/t5_architecture.py +8 -1
  174. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +3 -3
  175. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +20 -16
  176. optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +7 -1
  177. optimum/rbln/transformers/models/vit/modeling_vit.py +19 -0
  178. optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +15 -3
  179. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +61 -8
  180. optimum/rbln/transformers/models/whisper/configuration_whisper.py +12 -13
  181. optimum/rbln/transformers/models/whisper/generation_whisper.py +62 -6
  182. optimum/rbln/transformers/models/whisper/modeling_whisper.py +30 -5
  183. optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
  184. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +43 -0
  185. optimum/rbln/transformers/utils/rbln_quantization.py +400 -75
  186. optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
  187. optimum/rbln/utils/deprecation.py +213 -0
  188. optimum/rbln/utils/hub.py +14 -3
  189. optimum/rbln/utils/runtime_utils.py +60 -18
  190. optimum/rbln/utils/submodule.py +31 -9
  191. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/METADATA +8 -7
  192. optimum_rbln-0.9.3.dist-info/RECORD +264 -0
  193. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/WHEEL +1 -1
  194. optimum_rbln-0.9.3.dist-info/entry_points.txt +2 -0
  195. optimum_rbln-0.8.2a4.dist-info/RECORD +0 -215
  196. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,16 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .configuration_pixtral import RBLNPixtralVisionModelConfig
16
+ from .modeling_pixtral import RBLNPixtralVisionModel
@@ -0,0 +1,43 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Any, Optional, Tuple
16
+
17
+ from ....configuration_utils import RBLNModelConfig
18
+
19
+
20
+ class RBLNPixtralVisionModelConfig(RBLNModelConfig):
21
+ def __init__(
22
+ self,
23
+ max_image_size: Tuple = None,
24
+ batch_size: Optional[int] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ **kwargs: Any,
27
+ ):
28
+ """
29
+ Args:
30
+ max_image_size (Tuple): The size of max input images. A tuple (max_height, max_width)
31
+ batch_size (Optional[int]): The batch size for image processing. Defaults to 1.
32
+ kwargs: Additional arguments passed to the parent RBLNModelConfig.
33
+
34
+ Raises:
35
+ ValueError: If batch_size is not a positive integer.
36
+ """
37
+ super().__init__(**kwargs)
38
+ self.batch_size = batch_size or 1
39
+ if not isinstance(self.batch_size, int) or self.batch_size < 0:
40
+ raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
41
+
42
+ self.max_image_size = max_image_size
43
+ self.output_hidden_states = output_hidden_states
@@ -0,0 +1,322 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from pathlib import Path
16
+ from typing import TYPE_CHECKING, Any, Optional, Tuple, Union
17
+
18
+ import rebel
19
+ import torch
20
+ import torch.nn as nn
21
+ from transformers import PixtralVisionConfig, PixtralVisionModel
22
+ from transformers.modeling_outputs import BaseModelOutput
23
+ from transformers.modeling_utils import no_init_weights
24
+ from transformers.models.pixtral.modeling_pixtral import PixtralRMSNorm, PixtralRotaryEmbedding
25
+
26
+ from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
27
+ from ....modeling import RBLNModel
28
+ from ....utils.logging import get_logger
29
+ from ....utils.runtime_utils import RBLNPytorchRuntime
30
+ from .configuration_pixtral import RBLNPixtralVisionModelConfig
31
+ from .pixtral_architecture import PixtralAttention
32
+
33
+
34
+ logger = get_logger(__name__)
35
+
36
+ if TYPE_CHECKING:
37
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
38
+
39
+
40
+ class RBLNRuntimePixtralVisionModel(RBLNPytorchRuntime):
41
+ mandatory_members = ["main_input_name"]
42
+
43
+ def __init__(
44
+ self,
45
+ runtime: rebel.Runtime,
46
+ config: PixtralVisionConfig,
47
+ rbln_config: RBLNPixtralVisionModelConfig,
48
+ **kwargs: Any,
49
+ ) -> None:
50
+ super().__init__(runtime, **kwargs)
51
+ self.patch_positional_embedding = PixtralRotaryEmbedding(config)
52
+ self.patch_size = config.patch_size
53
+ self.image_size = config.image_size
54
+ self.hidden_size = config.hidden_size
55
+ self.max_image_size = rbln_config.max_image_size
56
+
57
+ def forward(
58
+ self,
59
+ pixel_values: torch.Tensor,
60
+ image_sizes: torch.Tensor,
61
+ output_hidden_states: Optional[bool] = None,
62
+ return_dict: Optional[bool] = None,
63
+ **kwargs,
64
+ ):
65
+ if pixel_values.shape[2] > self.max_image_size[0] or pixel_values.shape[3] > self.max_image_size[1]:
66
+ raise ValueError("The height() and width of pixel_values can't be larger than max_image_size.")
67
+
68
+ if pixel_values.shape[2] != self.max_image_size[0] or pixel_values.shape[3] != self.max_image_size[1]:
69
+ padded_pixel_values = [
70
+ torch.nn.functional.pad(
71
+ image,
72
+ pad=(
73
+ 0,
74
+ self.max_image_size[1] - pixel_values.shape[3],
75
+ 0,
76
+ self.max_image_size[0] - pixel_values.shape[2],
77
+ ),
78
+ )
79
+ for image in pixel_values
80
+ ]
81
+ pixel_values = torch.stack(padded_pixel_values)
82
+
83
+ batch_size, _, H_max, W_max = pixel_values.shape
84
+ H_max_p = H_max // self.patch_size
85
+ W_max_p = W_max // self.patch_size
86
+
87
+ final_hidden_states = None
88
+
89
+ last_hidden_state_list = []
90
+ if output_hidden_states:
91
+ batch_hidden_states_list = []
92
+
93
+ for i in range(batch_size):
94
+ h_patched_original = image_sizes[i, 0] // self.patch_size
95
+ w_patched_original = image_sizes[i, 1] // self.patch_size
96
+
97
+ single_pixel_values = pixel_values[i : i + 1]
98
+ patch_embed = self.patch_conv(single_pixel_values)
99
+ patch_embed_seq = patch_embed[:, :, :h_patched_original, :w_patched_original].flatten(2).transpose(1, 2)
100
+ patch_embed_seq = self.ln_pre(patch_embed_seq)
101
+ patch_embed_seq = nn.functional.pad(
102
+ patch_embed_seq, (0, 0, 0, H_max_p * W_max_p - patch_embed_seq.shape[1]), "constant", value=0
103
+ )
104
+
105
+ max_w_from_config = self.image_size // self.patch_size
106
+ mesh = torch.meshgrid(torch.arange(h_patched_original), torch.arange(w_patched_original), indexing="ij")
107
+ h_grid, v_grid = torch.stack(mesh, dim=-1).reshape(-1, 2).chunk(2, -1)
108
+ ids = h_grid * max_w_from_config + v_grid
109
+ position_ids = ids[:, 0]
110
+
111
+ position_embeddings = self.patch_positional_embedding(patch_embed_seq, position_ids)
112
+ cos = nn.functional.pad(
113
+ position_embeddings[0],
114
+ (0, 0, 0, H_max_p * W_max_p - position_embeddings[0].shape[0]),
115
+ "constant",
116
+ value=0,
117
+ )
118
+ sin = nn.functional.pad(
119
+ position_embeddings[1],
120
+ (0, 0, 0, H_max_p * W_max_p - position_embeddings[1].shape[0]),
121
+ "constant",
122
+ value=0,
123
+ )
124
+
125
+ attention_mask = torch.full(
126
+ (1, patch_embed_seq.shape[-2]), fill_value=torch.finfo(patch_embed_seq.dtype).min
127
+ )
128
+ attention_mask[:, : h_patched_original * w_patched_original] = 0
129
+ if "out" in kwargs:
130
+ super().forward(patch_embed_seq, attention_mask, cos, sin, **kwargs)
131
+ transformer_output = kwargs["out"]
132
+ else:
133
+ transformer_output = super().forward(patch_embed_seq, attention_mask, cos, sin, **kwargs)
134
+
135
+ last_hidden_state_list.append(transformer_output[0][:, : h_patched_original * w_patched_original, :])
136
+ hidden_states = transformer_output[1:]
137
+
138
+ if output_hidden_states:
139
+ batch_hidden_states_list.append(
140
+ [hidden_state[:, : h_patched_original * w_patched_original, :] for hidden_state in hidden_states]
141
+ )
142
+
143
+ final_last_hidden_state = torch.cat(last_hidden_state_list, dim=1)
144
+
145
+ if output_hidden_states:
146
+ hidden_states = [
147
+ torch.cat(
148
+ [batch_hidden_states[layer_idx] for batch_hidden_states in batch_hidden_states_list],
149
+ dim=1,
150
+ )
151
+ for layer_idx in range(len(batch_hidden_states_list[0]))
152
+ ]
153
+
154
+ final_hidden_states = tuple(hidden_states)
155
+
156
+ if not return_dict:
157
+ return tuple(v for v in (final_last_hidden_state, final_hidden_states) if v is not None)
158
+
159
+ # TODO: output_attentions
160
+ return BaseModelOutput(
161
+ last_hidden_state=final_last_hidden_state,
162
+ hidden_states=final_hidden_states,
163
+ )
164
+
165
+
166
+ class _PixtralVisionModel(torch.nn.Module):
167
+ def __init__(self, model: PixtralVisionModel, output_hidden_states: bool):
168
+ super().__init__()
169
+ self.transformer = self.convert_to_rbln_pixtral_vision_model(model)
170
+ self.output_hidden_states = output_hidden_states
171
+
172
+ def convert_to_rbln_pixtral_vision_model(self, model: nn.Module):
173
+ for layer in model.transformer.layers:
174
+ layer.attention = PixtralAttention(layer.attention)
175
+ return model.transformer
176
+
177
+ def forward(self, patch_embeds, attention_mask, position_embeddings_1, position_embeddings_2):
178
+ output = self.transformer(
179
+ inputs_embeds=patch_embeds,
180
+ attention_mask=attention_mask,
181
+ position_embeddings=(position_embeddings_1, position_embeddings_2),
182
+ output_hidden_states=self.output_hidden_states,
183
+ return_dict=False,
184
+ )
185
+ return output
186
+
187
+
188
+ class RBLNPixtralVisionModel(RBLNModel):
189
+ """
190
+ RBLN optimized Pixtral vision encoder model.
191
+
192
+ This class provides hardware-accelerated inference for Pixtral vision encoders
193
+ on RBLN devices, supporting image encoding for multimodal tasks.
194
+ """
195
+
196
+ def __post_init__(self, **kwargs):
197
+ artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
198
+ with no_init_weights():
199
+ self.patch_conv = nn.Conv2d(
200
+ in_channels=self.config.num_channels,
201
+ out_channels=self.config.hidden_size,
202
+ kernel_size=self.config.patch_size,
203
+ stride=self.config.patch_size,
204
+ bias=False,
205
+ )
206
+ self.ln_pre = PixtralRMSNorm(self.config.hidden_size, eps=1e-5)
207
+ self.patch_conv.load_state_dict(artifacts["patch_conv"])
208
+ self.ln_pre.load_state_dict(artifacts["ln_pre"])
209
+ self.model = RBLNRuntimePixtralVisionModel(
210
+ self.model[0],
211
+ main_input_name="pixel_values",
212
+ config=self.config,
213
+ rbln_config=self.rbln_config,
214
+ patch_conv=self.patch_conv,
215
+ ln_pre=self.ln_pre,
216
+ )
217
+
218
+ @classmethod
219
+ def save_torch_artifacts(
220
+ cls,
221
+ model: "PreTrainedModel",
222
+ save_dir_path: Path,
223
+ subfolder: str,
224
+ rbln_config: RBLNModelConfig,
225
+ ):
226
+ save_dict = {}
227
+ save_dict["patch_conv"] = model.get_input_embeddings().state_dict()
228
+ save_dict["ln_pre"] = model.ln_pre.state_dict()
229
+ torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
230
+
231
+ @classmethod
232
+ def _wrap_model_if_needed(
233
+ cls, model: torch.nn.Module, rbln_config: RBLNPixtralVisionModelConfig
234
+ ) -> torch.nn.Module:
235
+ wrapper_cfg = {
236
+ "output_hidden_states": rbln_config.output_hidden_states,
237
+ }
238
+ return _PixtralVisionModel(model, **wrapper_cfg).eval()
239
+
240
+ @classmethod
241
+ def _update_rbln_config(
242
+ cls,
243
+ preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
244
+ model: Optional["PreTrainedModel"] = None,
245
+ model_config: "PixtralVisionConfig" = None,
246
+ rbln_config: Optional[RBLNPixtralVisionModelConfig] = None,
247
+ ) -> RBLNPixtralVisionModelConfig:
248
+ if rbln_config.max_image_size is None:
249
+ rbln_config.max_image_size = (model_config.image_size, model_config.image_size)
250
+
251
+ if rbln_config.output_hidden_states is None:
252
+ rbln_config.output_hidden_states = getattr(model_config, "output_hidden_states", False)
253
+
254
+ num_total_patches = (rbln_config.max_image_size[0] // model_config.patch_size) * (
255
+ rbln_config.max_image_size[1] // model_config.patch_size
256
+ )
257
+
258
+ rbln_compile_config = RBLNCompileConfig(
259
+ input_info=[
260
+ (
261
+ "patch_embeds",
262
+ [1, num_total_patches, model_config.hidden_size],
263
+ "float32",
264
+ ),
265
+ ("attention_mask", [1, num_total_patches], "float32"),
266
+ (
267
+ "position_embeddings_1",
268
+ [
269
+ num_total_patches,
270
+ model_config.head_dim,
271
+ ],
272
+ "float32",
273
+ ),
274
+ (
275
+ "position_embeddings_2",
276
+ [
277
+ num_total_patches,
278
+ model_config.head_dim,
279
+ ],
280
+ "float32",
281
+ ),
282
+ ]
283
+ )
284
+
285
+ rbln_config.set_compile_cfgs([rbln_compile_config])
286
+ return rbln_config
287
+
288
+ def forward(
289
+ self,
290
+ pixel_values: Optional[torch.FloatTensor] = None,
291
+ image_sizes: Optional[torch.FloatTensor] = None,
292
+ output_hidden_states: Optional[bool] = None,
293
+ return_dict: bool = True,
294
+ **kwargs,
295
+ ) -> Union[Tuple, BaseModelOutput]:
296
+ """
297
+ Forward pass for the RBLN-optimized Pixtral vision model.
298
+
299
+ Args:
300
+ pixel_values (torch.Tensor of shape (batch_size, num_channels, image_size, image_size)) — The tensors corresponding to the input images. Pixel values can be obtained using PixtralImageProcessor. See PixtralImageProcessor.call() for details (PixtralProcessor uses PixtralImageProcessor for processing images).
301
+ image_sizes (torch.Tensor of shape (batch_size, 2), optional) — The sizes of the images in the batch, being (height, width) for each image.
302
+ output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
303
+ return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
304
+
305
+ Returns:
306
+ BaseModelOutput or tuple(torch.FloatTensor)
307
+ """
308
+ output_hidden_states = (
309
+ output_hidden_states if output_hidden_states is not None else self.rbln_config.output_hidden_states
310
+ )
311
+
312
+ if output_hidden_states != self.rbln_config.output_hidden_states:
313
+ raise ValueError(
314
+ f"Variable output_hidden_states {output_hidden_states} is not equal to rbln_config.output_hidden_states {self.rbln_config.output_hidden_states} "
315
+ f"Please compile again with the correct argument."
316
+ )
317
+
318
+ output = self.model(
319
+ pixel_values, image_sizes, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs
320
+ )
321
+
322
+ return output
@@ -0,0 +1,73 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Optional, Tuple
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+
20
+ from ..decoderonly.decoderonly_architecture import apply_rotary_pos_emb
21
+
22
+
23
+ class PixtralAttention(nn.Module):
24
+ def __init__(self, self_attention):
25
+ super().__init__()
26
+ self.original_model = self_attention
27
+ self.num_heads = getattr(self.original_model, "num_heads", None) or getattr(
28
+ self.original_model.config, "num_attention_heads"
29
+ )
30
+ self.head_dim = self.original_model.head_dim
31
+ self.scaling = self.head_dim**-0.5
32
+
33
+ self.__post_init__()
34
+
35
+ def __post_init__(self):
36
+ self.q_proj = self.original_model.q_proj
37
+ self.k_proj = self.original_model.k_proj
38
+ self.v_proj = self.original_model.v_proj
39
+ self.o_proj = self.original_model.o_proj
40
+
41
+ def forward(
42
+ self,
43
+ hidden_states: torch.Tensor,
44
+ attention_mask: Optional[torch.Tensor] = None,
45
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
46
+ output_attentions: Optional[bool] = False,
47
+ ):
48
+ batch_size, patches, _ = hidden_states.size()
49
+
50
+ query_states = self.q_proj(hidden_states)
51
+ key_states = self.k_proj(hidden_states)
52
+ value_states = self.v_proj(hidden_states)
53
+
54
+ # TODO: return output attention
55
+ query_states = query_states.view(batch_size, patches, 1, self.num_heads, self.head_dim).transpose(1, 3)
56
+ key_states = key_states.view(batch_size, patches, 1, self.num_heads, self.head_dim).transpose(1, 3)
57
+ value_states = value_states.view(batch_size, patches, 1, self.num_heads, self.head_dim).transpose(1, 3)
58
+
59
+ cos, sin = position_embeddings
60
+ cos = cos[None, None, None, :, :]
61
+ sin = sin[None, None, None, :, :]
62
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
63
+
64
+ attn_weights = torch.matmul(query_states, key_states.transpose(3, 4)) * self.scaling
65
+ attn_weights = attn_weights + attention_mask
66
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32)
67
+ attn_output = torch.matmul(attn_weights, value_states)
68
+ attn_output = attn_output.transpose(1, 3)
69
+
70
+ attn_output = attn_output.reshape(batch_size, patches, -1)
71
+ attn_output = self.o_proj(attn_output)
72
+
73
+ return attn_output, _
@@ -12,5 +12,5 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from .configuration_qwen2 import RBLNQwen2ForCausalLMConfig
16
- from .modeling_qwen2 import RBLNQwen2ForCausalLM
15
+ from .configuration_qwen2 import RBLNQwen2ForCausalLMConfig, RBLNQwen2ModelConfig
16
+ from .modeling_qwen2 import RBLNQwen2ForCausalLM, RBLNQwen2Model
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
15
+ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelConfig, RBLNDecoderOnlyModelForCausalLMConfig
16
16
 
17
17
 
18
18
  class RBLNQwen2ForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
@@ -40,3 +40,11 @@ class RBLNQwen2ForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
40
40
  )
41
41
  ```
42
42
  """
43
+
44
+
45
+ class RBLNQwen2ModelConfig(RBLNDecoderOnlyModelConfig):
46
+ """
47
+ Configuration class for RBLN Qwen2 models.
48
+
49
+ This class is an alias of RBLNDecoderOnlyModelConfig.
50
+ """
@@ -15,7 +15,11 @@
15
15
  from transformers import PretrainedConfig
16
16
 
17
17
  from ....utils import logging
18
- from ...models.decoderonly import RBLNDecoderOnlyModelForCausalLM, RBLNDecoderOnlyModelForCausalLMConfig
18
+ from ...models.decoderonly import (
19
+ RBLNDecoderOnlyModel,
20
+ RBLNDecoderOnlyModelForCausalLM,
21
+ RBLNDecoderOnlyModelForCausalLMConfig,
22
+ )
19
23
  from .qwen2_architecture import QWEN2Wrapper
20
24
 
21
25
 
@@ -95,3 +99,25 @@ class RBLNQwen2ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
95
99
  rbln_config.sliding_window = model_config.sliding_window
96
100
  rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
97
101
  return rbln_config
102
+
103
+
104
+ class RBLNQwen2Model(RBLNDecoderOnlyModel):
105
+ """
106
+ The Qwen2 Model transformer without a language modeling head.
107
+ This model inherits from [`RBLNDecoderOnlyModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
108
+ """
109
+
110
+ _decoder_wrapper_cls = QWEN2Wrapper
111
+
112
+ @classmethod
113
+ def _update_sliding_window_config(
114
+ cls, model_config: PretrainedConfig, rbln_config: RBLNDecoderOnlyModelForCausalLMConfig
115
+ ):
116
+ # https://github.com/huggingface/transformers/issues/35896
117
+ # There seems to be a bug in transformers(v4.52.4). Therefore, similar to when attn_implementation is eager,
118
+ # we set all layers to use sliding window in this version. This should be updated once the bug is fixed.
119
+
120
+ rbln_config.cache_impl = "sliding_window"
121
+ rbln_config.sliding_window = model_config.sliding_window
122
+ rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
123
+ return rbln_config
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from typing import Any, Dict, List, Optional, Union
15
+ from typing import Any, List, Optional, Union
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
@@ -31,10 +31,22 @@ class RBLNQwen2_5_VLForConditionalGenerationConfig(RBLNDecoderOnlyModelForCausal
31
31
 
32
32
  def __init__(
33
33
  self,
34
- visual: Optional[RBLNModelConfig] = None,
35
34
  use_inputs_embeds: bool = True,
36
- **kwargs: Dict[str, Any],
35
+ visual: Optional[RBLNModelConfig] = None,
36
+ **kwargs: Any,
37
37
  ):
38
+ """
39
+ Args:
40
+ use_inputs_embeds (bool): Whether or not to use `inputs_embeds` as input. Defaults to `True`.
41
+ visual (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
42
+ kwargs: Additional arguments passed to the parent `RBLNDecoderOnlyModelForCausalLMConfig`.
43
+
44
+ Raises:
45
+ ValueError: If `use_inputs_embeds` is False.
46
+ ValueError: If the visual configuration is provided but contains invalid settings, such as an invalid max_seq_lens (e.g., not a positive integer, not a multiple of the window-based attention unit, or insufficient for the expected resolution).
47
+ ValueError: If visual is None and no default vision configuration can be inferred for the model architecture.
48
+ ValueError: If any inherited parameters violate constraints defined in the parent class, such as batch_size not being a positive integer, prefill_chunk_size not being divisible by 64, or max_seq_len not meeting requirements for Flash Attention.
49
+ """
38
50
  super().__init__(use_inputs_embeds=use_inputs_embeds, **kwargs)
39
51
  if not self.use_inputs_embeds:
40
52
  raise ValueError(
@@ -53,7 +65,7 @@ class RBLNQwen2_5_VisionTransformerPretrainedModelConfig(RBLNModelConfig):
53
65
  mechanisms for processing images and videos.
54
66
  """
55
67
 
56
- def __init__(self, max_seq_lens: Union[int, List[int]] = None, **kwargs: Dict[str, Any]):
68
+ def __init__(self, max_seq_lens: Union[int, List[int]] = None, **kwargs: Any):
57
69
  """
58
70
  Args:
59
71
  max_seq_lens (Optional[Union[int, List[int]]]): Maximum sequence lengths for Vision
@@ -66,10 +78,13 @@ class RBLNQwen2_5_VisionTransformerPretrainedModelConfig(RBLNModelConfig):
66
78
  making 256 (64 * 4) valid. RBLN optimization runs inference per image or video
67
79
  frame, so set `max_seq_len` to match the maximum expected resolution to reduce
68
80
  computation. If not provided, a `ValueError` is raised.
69
- **kwargs: Additional arguments passed to the parent RBLNModelConfig.
81
+ kwargs: Additional arguments passed to the parent RBLNModelConfig.
70
82
 
71
83
  Raises:
72
- ValueError: If batch_size is not a positive integer.
84
+ ValueError: If `max_seq_lens` is None or not provided.
85
+ ValueError: If `max_seq_lens` (or any value in the list) is not a positive integer.
86
+ ValueError: If `max_seq_lens` is not a multiple of (window_size / patch_size)^2 for window-based attention, or is insufficient for the expected image/video resolution.
87
+ ValueError: If `batch_size` (inherited from RBLNModelConfig) is not a positive integer.
73
88
 
74
89
  Max Seq Lens:
75
90
  Since `Qwen2_5_VLForConditionalGeneration` performs inference on a per-image or per-frame basis,
@@ -17,24 +17,21 @@ from pathlib import Path
17
17
  from typing import TYPE_CHECKING, Any, Callable, List, Optional, Tuple, Union
18
18
 
19
19
  import torch
20
- from transformers import (
21
- AutoModelForVision2Seq,
22
- PretrainedConfig,
23
- PreTrainedModel,
24
- Qwen2_5_VLForConditionalGeneration,
25
- )
20
+ from transformers import AutoModelForVision2Seq, PretrainedConfig, PreTrainedModel, Qwen2_5_VLForConditionalGeneration
26
21
  from transformers.modeling_utils import no_init_weights
27
22
  from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
28
23
  Qwen2_5_VisionPatchEmbed,
29
24
  Qwen2_5_VisionRotaryEmbedding,
30
25
  Qwen2_5_VisionTransformerPretrainedModel,
26
+ Qwen2_5_VLModel,
31
27
  Qwen2_5_VLRotaryEmbedding,
32
28
  )
33
29
 
34
30
  from ....configuration_utils import RBLNCompileConfig
35
31
  from ....modeling import RBLNModel
36
32
  from ....utils.logging import get_logger
37
- from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyModelForCausalLM, RBLNDecoderOnlyOutput
33
+ from ...modeling_outputs import RBLNDecoderOnlyOutput
34
+ from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyModelForCausalLM
38
35
  from .configuration_qwen2_5_vl import (
39
36
  RBLNQwen2_5_VisionTransformerPretrainedModelConfig,
40
37
  RBLNQwen2_5_VLForConditionalGenerationConfig,
@@ -45,12 +42,7 @@ from .qwen2_5_vl_architecture import Qwen2_5_VisionTransformerWrapper, Qwen2_5_V
45
42
  logger = get_logger(__name__)
46
43
 
47
44
  if TYPE_CHECKING:
48
- from transformers import (
49
- AutoFeatureExtractor,
50
- AutoProcessor,
51
- AutoTokenizer,
52
- PretrainedConfig,
53
- )
45
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PretrainedConfig
54
46
 
55
47
 
56
48
  class RBLNQwen2_5_VisionTransformerPretrainedModel(RBLNModel):
@@ -96,7 +88,7 @@ class RBLNQwen2_5_VisionTransformerPretrainedModel(RBLNModel):
96
88
  torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
97
89
 
98
90
  @classmethod
99
- def wrap_model_if_needed(
91
+ def _wrap_model_if_needed(
100
92
  cls, model: "PreTrainedModel", rbln_config: RBLNQwen2_5_VisionTransformerPretrainedModelConfig
101
93
  ):
102
94
  return Qwen2_5_VisionTransformerWrapper(model).eval()
@@ -381,6 +373,8 @@ class RBLNQwen2_5_VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
381
373
  ```
382
374
  """
383
375
 
376
+ _supports_non_fp32 = False
377
+
384
378
  auto_model_class = AutoModelForVision2Seq
385
379
  _rbln_submodules = [
386
380
  {"name": "visual"},
@@ -399,13 +393,11 @@ class RBLNQwen2_5_VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
399
393
  return True
400
394
 
401
395
  @classmethod
402
- def update_kwargs(cls, kwargs):
403
- kwargs.update(
404
- {
405
- "_attn_implementation": "eager",
406
- }
407
- )
408
- return super().update_kwargs(kwargs)
396
+ def _reconstruct_model_if_needed(cls, model: "PreTrainedModel"):
397
+ model.model.lm_head = model.lm_head
398
+ model.lm_head = None
399
+ del model.lm_head
400
+ return model
409
401
 
410
402
  @classmethod
411
403
  def get_input_info(
@@ -539,7 +531,8 @@ class RBLNQwen2_5_VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
539
531
  vision_tokens = input_id[0][vision_start_indices + 1]
540
532
  image_nums = (vision_tokens == image_token_id).sum()
541
533
  video_nums = (vision_tokens == video_token_id).sum()
542
- position_ids, rope_deltas = self.get_rope_index(
534
+ position_ids, rope_deltas = Qwen2_5_VLModel.get_rope_index(
535
+ self,
543
536
  input_id,
544
537
  image_grid_thw[image_idx : image_idx + image_nums] if image_grid_thw is not None else None,
545
538
  video_grid_thw[video_idx : video_idx + video_nums] if video_grid_thw is not None else None,