optimum-rbln 0.8.2a4__py3-none-any.whl → 0.9.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. optimum/rbln/__init__.py +108 -9
  2. optimum/rbln/__version__.py +16 -3
  3. optimum/rbln/cli.py +660 -0
  4. optimum/rbln/configuration_utils.py +156 -43
  5. optimum/rbln/diffusers/__init__.py +19 -0
  6. optimum/rbln/diffusers/configurations/__init__.py +3 -0
  7. optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
  8. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +3 -3
  9. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +1 -1
  10. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
  11. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +3 -3
  12. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +4 -4
  13. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +9 -4
  14. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +9 -4
  15. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +3 -3
  16. optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
  17. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +3 -3
  18. optimum/rbln/diffusers/configurations/pipelines/__init__.py +3 -0
  19. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +35 -19
  20. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +14 -11
  21. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +30 -20
  22. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +13 -9
  23. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +17 -13
  24. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +17 -10
  25. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
  26. optimum/rbln/diffusers/modeling_diffusers.py +30 -14
  27. optimum/rbln/diffusers/models/__init__.py +4 -0
  28. optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
  29. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +31 -3
  30. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +31 -6
  31. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
  32. optimum/rbln/diffusers/models/autoencoders/vae.py +27 -8
  33. optimum/rbln/diffusers/models/autoencoders/vq_model.py +31 -3
  34. optimum/rbln/diffusers/models/controlnet.py +16 -1
  35. optimum/rbln/diffusers/models/transformers/prior_transformer.py +17 -3
  36. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +25 -2
  37. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +23 -2
  38. optimum/rbln/diffusers/models/unets/__init__.py +1 -0
  39. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +23 -4
  40. optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
  41. optimum/rbln/diffusers/pipelines/__init__.py +15 -5
  42. optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
  43. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +20 -0
  44. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +19 -16
  45. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +14 -18
  46. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +31 -1
  47. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +31 -1
  48. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
  49. optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
  50. optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
  51. optimum/rbln/modeling.py +48 -21
  52. optimum/rbln/modeling_base.py +99 -22
  53. optimum/rbln/ops/attn.py +158 -0
  54. optimum/rbln/ops/flash_attn.py +166 -0
  55. optimum/rbln/ops/kv_cache_update.py +5 -0
  56. optimum/rbln/ops/linear.py +7 -0
  57. optimum/rbln/transformers/__init__.py +92 -0
  58. optimum/rbln/transformers/configuration_generic.py +7 -32
  59. optimum/rbln/transformers/modeling_attention_utils.py +385 -0
  60. optimum/rbln/transformers/modeling_generic.py +48 -65
  61. optimum/rbln/transformers/modeling_outputs.py +37 -0
  62. optimum/rbln/transformers/models/__init__.py +91 -30
  63. optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +28 -2
  64. optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +68 -5
  65. optimum/rbln/transformers/models/auto/__init__.py +2 -0
  66. optimum/rbln/transformers/models/auto/auto_factory.py +92 -17
  67. optimum/rbln/transformers/models/auto/modeling_auto.py +45 -0
  68. optimum/rbln/transformers/models/bart/bart_architecture.py +1 -3
  69. optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
  70. optimum/rbln/transformers/models/bart/modeling_bart.py +23 -2
  71. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  72. optimum/rbln/transformers/models/bert/modeling_bert.py +93 -4
  73. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +42 -11
  74. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +135 -44
  75. optimum/rbln/transformers/models/clip/configuration_clip.py +10 -7
  76. optimum/rbln/transformers/models/clip/modeling_clip.py +67 -6
  77. optimum/rbln/transformers/models/colpali/colpali_architecture.py +3 -6
  78. optimum/rbln/transformers/models/colpali/configuration_colpali.py +37 -21
  79. optimum/rbln/transformers/models/colpali/modeling_colpali.py +82 -104
  80. optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
  81. optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
  82. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
  83. optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
  84. optimum/rbln/transformers/models/decoderonly/__init__.py +3 -2
  85. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +114 -37
  86. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  87. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +318 -309
  88. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
  89. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
  90. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  91. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +485 -905
  92. optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
  93. optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
  94. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
  95. optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +24 -0
  96. optimum/rbln/transformers/models/dpt/modeling_dpt.py +17 -0
  97. optimum/rbln/transformers/models/exaone/modeling_exaone.py +42 -4
  98. optimum/rbln/transformers/models/gemma/__init__.py +2 -2
  99. optimum/rbln/transformers/models/gemma/configuration_gemma.py +9 -1
  100. optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
  101. optimum/rbln/transformers/models/gemma/modeling_gemma.py +22 -1
  102. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +49 -13
  103. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +12 -2
  104. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
  105. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +201 -351
  106. optimum/rbln/transformers/models/gpt2/__init__.py +2 -2
  107. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +31 -3
  108. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +10 -8
  109. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +18 -1
  110. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  111. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
  112. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
  113. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
  114. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +35 -7
  115. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +29 -32
  116. optimum/rbln/transformers/models/llama/__init__.py +2 -2
  117. optimum/rbln/transformers/models/llama/configuration_llama.py +9 -1
  118. optimum/rbln/transformers/models/llama/modeling_llama.py +22 -1
  119. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  120. optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
  121. optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
  122. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +15 -17
  123. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +234 -376
  124. optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
  125. optimum/rbln/transformers/models/midm/modeling_midm.py +42 -4
  126. optimum/rbln/transformers/models/mistral/__init__.py +2 -2
  127. optimum/rbln/transformers/models/mistral/configuration_mistral.py +9 -1
  128. optimum/rbln/transformers/models/mistral/mistral_architecture.py +1 -1
  129. optimum/rbln/transformers/models/mistral/modeling_mistral.py +26 -3
  130. optimum/rbln/transformers/models/opt/__init__.py +2 -2
  131. optimum/rbln/transformers/models/opt/configuration_opt.py +8 -1
  132. optimum/rbln/transformers/models/opt/modeling_opt.py +29 -17
  133. optimum/rbln/transformers/models/opt/opt_architecture.py +4 -4
  134. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  135. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
  136. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
  137. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  138. optimum/rbln/transformers/models/phi/__init__.py +2 -2
  139. optimum/rbln/transformers/models/phi/configuration_phi.py +9 -1
  140. optimum/rbln/transformers/models/phi/modeling_phi.py +10 -1
  141. optimum/rbln/transformers/models/phi/phi_architecture.py +11 -7
  142. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  143. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  144. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
  145. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  146. optimum/rbln/transformers/models/qwen2/__init__.py +2 -2
  147. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +9 -1
  148. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +27 -1
  149. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +21 -6
  150. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +15 -22
  151. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +28 -7
  152. optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  153. optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  154. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
  155. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
  156. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +2 -2
  157. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +86 -330
  158. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +1 -245
  159. optimum/rbln/transformers/models/resnet/configuration_resnet.py +17 -0
  160. optimum/rbln/transformers/models/resnet/modeling_resnet.py +73 -0
  161. optimum/rbln/transformers/models/roberta/modeling_roberta.py +33 -0
  162. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +21 -16
  163. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +58 -13
  164. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -2
  165. optimum/rbln/transformers/models/siglip/__init__.py +2 -6
  166. optimum/rbln/transformers/models/siglip/configuration_siglip.py +1 -1
  167. optimum/rbln/transformers/models/siglip/modeling_siglip.py +21 -16
  168. optimum/rbln/transformers/models/swin/__init__.py +16 -0
  169. optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
  170. optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
  171. optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
  172. optimum/rbln/transformers/models/t5/modeling_t5.py +2 -2
  173. optimum/rbln/transformers/models/t5/t5_architecture.py +8 -1
  174. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +3 -3
  175. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +20 -16
  176. optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +7 -1
  177. optimum/rbln/transformers/models/vit/modeling_vit.py +19 -0
  178. optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +15 -3
  179. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +61 -8
  180. optimum/rbln/transformers/models/whisper/configuration_whisper.py +12 -13
  181. optimum/rbln/transformers/models/whisper/generation_whisper.py +62 -6
  182. optimum/rbln/transformers/models/whisper/modeling_whisper.py +30 -5
  183. optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
  184. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +43 -0
  185. optimum/rbln/transformers/utils/rbln_quantization.py +400 -75
  186. optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
  187. optimum/rbln/utils/deprecation.py +213 -0
  188. optimum/rbln/utils/hub.py +14 -3
  189. optimum/rbln/utils/runtime_utils.py +60 -18
  190. optimum/rbln/utils/submodule.py +31 -9
  191. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/METADATA +8 -7
  192. optimum_rbln-0.9.3.dist-info/RECORD +264 -0
  193. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/WHEEL +1 -1
  194. optimum_rbln-0.9.3.dist-info/entry_points.txt +2 -0
  195. optimum_rbln-0.8.2a4.dist-info/RECORD +0 -215
  196. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,245 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Optional
15
+
16
+ import rebel
17
+ import torch
18
+
19
+ from ...modeling_outputs import RBLNDecoderOnlyOutput, RBLNGemma3ForCausalLMOutput
20
+ from ..decoderonly.decoderonly_runtime_utils import RBLNPytorchRuntime
21
+ from ..decoderonly.modeling_decoderonly import RBLNRuntimeModel
22
+
23
+
24
+ class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
25
+ def __init__(self, *args, image_prefill: Optional[rebel.Runtime] = None, **kwargs):
26
+ super().__init__(*args, **kwargs)
27
+ self.image_prefill = RBLNPytorchRuntime(image_prefill) # FIXME(taehoon)
28
+ self.prefill = RBLNPytorchRuntime(self.runtime) if self.phase == "prefill" else None # FIXME
29
+ self.decode = RBLNPytorchRuntime(self.runtime) if self.phase == "decode" else None
30
+
31
+ def _prepare_prefill_inputs(self, *args, **kwargs):
32
+ (
33
+ inputs,
34
+ cache_position,
35
+ chunked_attention_mask,
36
+ position_ids,
37
+ position_embed,
38
+ padded_cache_lengths,
39
+ query_length,
40
+ token_type_ids,
41
+ ) = super()._prepare_prefill_inputs(*args, **kwargs)
42
+
43
+ # chunked_attention_mask shape
44
+ chunked_attention_mask = torch.zeros(1, chunked_attention_mask.shape[-1], dtype=torch.float32)
45
+
46
+ # In case of Gemma3ForConditionalGeneration, the loop counter may not be a prefill_chunk_size,
47
+ # so we cannot guarantee that the last chunk starts at a position that is a multiple of prefill_chunk_size.
48
+ if self.rbln_config.use_image_prefill:
49
+ padding_size = self.rbln_config.image_prefill_chunk_size
50
+ inputs = torch.nn.functional.pad(inputs, (0, 0, 0, padding_size))
51
+ cache_position = torch.nn.functional.pad(cache_position, (0, padding_size))
52
+ position_ids = torch.nn.functional.pad(position_ids, (0, padding_size))
53
+ token_type_ids = torch.nn.functional.pad(token_type_ids, (0, padding_size), value=-1)
54
+
55
+ return (
56
+ inputs,
57
+ cache_position,
58
+ chunked_attention_mask,
59
+ position_ids,
60
+ position_embed,
61
+ padded_cache_lengths,
62
+ query_length,
63
+ token_type_ids,
64
+ )
65
+
66
+ def prefill_forward(
67
+ self,
68
+ inputs: torch.Tensor,
69
+ cache_position: torch.Tensor = None,
70
+ attention_mask: Optional[torch.Tensor] = None,
71
+ batch_idx: int = None,
72
+ block_tables: torch.Tensor = None,
73
+ is_external_block_tables: bool = None,
74
+ position_embed: Optional[torch.Tensor] = None,
75
+ token_type_ids: Optional[torch.Tensor] = None,
76
+ local_block_tables: Optional[torch.Tensor] = None,
77
+ lora_int_ids: Optional[torch.Tensor] = None,
78
+ ) -> torch.FloatTensor:
79
+ """
80
+ Performs chunked prefill for efficient KV-cache updates and memory optimization.
81
+ Instead of processing the entire sequence at once, the input is divided into chunks of size `prefill_chunk_size`,
82
+ and each chunk is processed sequentially. This allows for better memory utilization and compatibility with continuous batching.
83
+ """
84
+ if self.rbln_config.use_lora and lora_int_ids is None:
85
+ if self.lora_int_ids is None:
86
+ raise ValueError(
87
+ "lora_int_id is required when using LoRA. "
88
+ "You should call set_lora_int_ids() before forward() or pass lora_int_id to forward()."
89
+ )
90
+ if batch_idx is not None:
91
+ lora_int_ids = self.lora_int_ids[batch_idx : batch_idx + 1].clone()
92
+ else:
93
+ lora_int_ids = self.lora_int_ids.clone()
94
+
95
+ (
96
+ inputs,
97
+ cache_position,
98
+ chunked_attention_mask,
99
+ position_ids,
100
+ position_embed,
101
+ padded_cache_lengths,
102
+ query_length,
103
+ token_type_ids,
104
+ ) = self._prepare_prefill_inputs(
105
+ inputs, cache_position, attention_mask, position_embed, token_type_ids=token_type_ids
106
+ )
107
+
108
+ step = 0
109
+ while step < query_length:
110
+ if self.rbln_config.use_image_prefill:
111
+ # Check if the prefill chunk is an image prefill
112
+ is_image_prefill = torch.all(
113
+ token_type_ids[:, step : step + self.rbln_config.image_prefill_chunk_size] == 1
114
+ )
115
+ # Check if the prefill chunk is a text prefill which have image_tokens in it.
116
+ is_text_prefill_with_image_tokens = not is_image_prefill and torch.any(
117
+ token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
118
+ )
119
+ else:
120
+ is_image_prefill, is_text_prefill_with_image_tokens = False, False
121
+
122
+ # Check if the prefill chunk is the last chunk
123
+ is_last_chunk = step + self.rbln_config.prefill_chunk_size >= query_length
124
+
125
+ input_chunk = inputs[:, step : step + self.rbln_config.prefill_chunk_size]
126
+ cache_pos_chunk = (
127
+ cache_position[:, step : step + self.rbln_config.prefill_chunk_size] + padded_cache_lengths
128
+ )
129
+ position_ids_chunk = position_ids[:, step : step + self.rbln_config.prefill_chunk_size]
130
+
131
+ # if text_prefill end with image_tokens, we only treat the text part.
132
+ num_processed_tokens = self.rbln_config.prefill_chunk_size
133
+ current_padded_cache_lengths = 0
134
+ if is_text_prefill_with_image_tokens:
135
+ first_image_token_idx = torch.where(
136
+ token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
137
+ )[1][0]
138
+ num_processed_tokens = first_image_token_idx.item()
139
+ current_padded_cache_lengths = self.rbln_config.prefill_chunk_size - num_processed_tokens
140
+ if is_last_chunk:
141
+ num_processed_tokens = query_length - step
142
+
143
+ chunked_attention_mask[
144
+ :, step + padded_cache_lengths : step + num_processed_tokens + padded_cache_lengths
145
+ ] = 1
146
+ query_position = torch.tensor(num_processed_tokens - 1, dtype=torch.int16)
147
+
148
+ if is_image_prefill:
149
+ logits = self.image_prefill(
150
+ input_chunk,
151
+ cache_pos_chunk,
152
+ block_tables,
153
+ local_block_tables,
154
+ query_position,
155
+ chunked_attention_mask,
156
+ position_ids_chunk,
157
+ lora_int_ids if self.rbln_config.use_lora else None,
158
+ )
159
+ else:
160
+ logits = self.prefill(
161
+ input_chunk,
162
+ cache_pos_chunk,
163
+ block_tables,
164
+ local_block_tables,
165
+ query_position,
166
+ chunked_attention_mask,
167
+ position_ids_chunk,
168
+ lora_int_ids if self.rbln_config.use_lora else None,
169
+ )
170
+
171
+ padded_cache_lengths += current_padded_cache_lengths
172
+ step += num_processed_tokens
173
+
174
+ if not is_external_block_tables:
175
+ self.dec_attn_mask[batch_idx : batch_idx + 1] = chunked_attention_mask
176
+
177
+ return RBLNGemma3ForCausalLMOutput(
178
+ logits=logits, padded_cache_lengths=padded_cache_lengths, attention_mask=chunked_attention_mask
179
+ )
180
+
181
+ def decode_forward(
182
+ self,
183
+ inputs: torch.Tensor,
184
+ cache_position: torch.Tensor = None,
185
+ block_tables: torch.Tensor = None,
186
+ is_external_block_tables: bool = None,
187
+ attention_mask: Optional[torch.Tensor] = None,
188
+ position_embed: Optional[torch.Tensor] = None,
189
+ position_ids: Optional[torch.Tensor] = None,
190
+ local_block_tables: Optional[torch.Tensor] = None,
191
+ lora_int_ids: Optional[torch.Tensor] = None,
192
+ ) -> torch.FloatTensor:
193
+ if self.rbln_config.use_lora and lora_int_ids is None:
194
+ if self.lora_int_ids is None:
195
+ raise ValueError(
196
+ "lora_int_id is required when using LoRA. "
197
+ "You should call set_lora_int_ids() before forward() or pass lora_int_id to forward()."
198
+ )
199
+
200
+ lora_int_ids = self.lora_int_ids
201
+
202
+ if lora_int_ids is not None and lora_int_ids.shape[0] != self.batch_size:
203
+ raise ValueError(f"lora_int_ids size mismatch: got {lora_int_ids.shape[0]}, expected {self.batch_size}.")
204
+
205
+ batch_size = inputs.shape[0]
206
+ if batch_size != self.batch_size:
207
+ raise RuntimeError(
208
+ f"Batch size mismatch: got {batch_size}, expected {self.batch_size} (compiled batch size)."
209
+ )
210
+
211
+ if batch_size != cache_position.shape[0]:
212
+ raise RuntimeError(f"Cache position size mismatch: got {cache_position.shape[0]}, expected {batch_size}.")
213
+
214
+ # FIXME(taehoon): how to handle pos_attn_mask with external block tables
215
+ if is_external_block_tables:
216
+ if attention_mask is None:
217
+ raise ValueError("attention_mask should be provided with external block tables.")
218
+ if local_block_tables is None:
219
+ raise ValueError("local_block_tables should be provided with external block tables.")
220
+ else:
221
+ local_block_tables = (
222
+ local_block_tables
223
+ if local_block_tables is not None
224
+ else torch.arange(0, self.batch_size, dtype=torch.int16).view(self.batch_size, -1)
225
+ )
226
+ if self.rbln_config.use_attention_mask and attention_mask is None:
227
+ for b_idx in range(batch_size):
228
+ decoding_step = cache_position[b_idx].item()
229
+ if not (0 <= decoding_step < self.dec_attn_mask.shape[-1]):
230
+ raise ValueError(
231
+ f"Decoding step {decoding_step} out of bounds for attention mask with shape {self.dec_attn_mask.shape}."
232
+ )
233
+ self.dec_attn_mask[b_idx, decoding_step] = 1
234
+
235
+ attention_mask = self.dec_attn_mask
236
+
237
+ if self.batch_size < block_tables.shape[0]:
238
+ block_tables = block_tables[: self.batch_size]
239
+
240
+ if attention_mask is not None and self.batch_size < attention_mask.shape[0]:
241
+ attention_mask = attention_mask[: self.batch_size]
242
+
243
+ logits = self.decode(inputs, cache_position, block_tables, local_block_tables, attention_mask, position_ids)
244
+
245
+ return RBLNDecoderOnlyOutput(logits=logits)