optimum-rbln 0.8.2a4__py3-none-any.whl → 0.9.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +108 -9
- optimum/rbln/__version__.py +16 -3
- optimum/rbln/cli.py +660 -0
- optimum/rbln/configuration_utils.py +156 -43
- optimum/rbln/diffusers/__init__.py +19 -0
- optimum/rbln/diffusers/configurations/__init__.py +3 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +3 -3
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +1 -1
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +3 -3
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +4 -4
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +9 -4
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +9 -4
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +3 -3
- optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +3 -3
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +3 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +35 -19
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +14 -11
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +30 -20
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +13 -9
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +17 -13
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +17 -10
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
- optimum/rbln/diffusers/modeling_diffusers.py +30 -14
- optimum/rbln/diffusers/models/__init__.py +4 -0
- optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +31 -3
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +31 -6
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
- optimum/rbln/diffusers/models/autoencoders/vae.py +27 -8
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +31 -3
- optimum/rbln/diffusers/models/controlnet.py +16 -1
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +17 -3
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +25 -2
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +23 -2
- optimum/rbln/diffusers/models/unets/__init__.py +1 -0
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +23 -4
- optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
- optimum/rbln/diffusers/pipelines/__init__.py +15 -5
- optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +20 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +19 -16
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +14 -18
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +31 -1
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +31 -1
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
- optimum/rbln/modeling.py +48 -21
- optimum/rbln/modeling_base.py +99 -22
- optimum/rbln/ops/attn.py +158 -0
- optimum/rbln/ops/flash_attn.py +166 -0
- optimum/rbln/ops/kv_cache_update.py +5 -0
- optimum/rbln/ops/linear.py +7 -0
- optimum/rbln/transformers/__init__.py +92 -0
- optimum/rbln/transformers/configuration_generic.py +7 -32
- optimum/rbln/transformers/modeling_attention_utils.py +385 -0
- optimum/rbln/transformers/modeling_generic.py +48 -65
- optimum/rbln/transformers/modeling_outputs.py +37 -0
- optimum/rbln/transformers/models/__init__.py +91 -30
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +28 -2
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +68 -5
- optimum/rbln/transformers/models/auto/__init__.py +2 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +92 -17
- optimum/rbln/transformers/models/auto/modeling_auto.py +45 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +1 -3
- optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
- optimum/rbln/transformers/models/bart/modeling_bart.py +23 -2
- optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +93 -4
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +42 -11
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +135 -44
- optimum/rbln/transformers/models/clip/configuration_clip.py +10 -7
- optimum/rbln/transformers/models/clip/modeling_clip.py +67 -6
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +3 -6
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +37 -21
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +82 -104
- optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
- optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
- optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
- optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
- optimum/rbln/transformers/models/decoderonly/__init__.py +3 -2
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +114 -37
- optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +318 -309
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
- optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
- optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +485 -905
- optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
- optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +24 -0
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +17 -0
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +42 -4
- optimum/rbln/transformers/models/gemma/__init__.py +2 -2
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +9 -1
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +22 -1
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +49 -13
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +12 -2
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +201 -351
- optimum/rbln/transformers/models/gpt2/__init__.py +2 -2
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +31 -3
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +10 -8
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +18 -1
- optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
- optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +35 -7
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +29 -32
- optimum/rbln/transformers/models/llama/__init__.py +2 -2
- optimum/rbln/transformers/models/llama/configuration_llama.py +9 -1
- optimum/rbln/transformers/models/llama/modeling_llama.py +22 -1
- optimum/rbln/transformers/models/llava/__init__.py +16 -0
- optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
- optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +15 -17
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +234 -376
- optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
- optimum/rbln/transformers/models/midm/modeling_midm.py +42 -4
- optimum/rbln/transformers/models/mistral/__init__.py +2 -2
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +9 -1
- optimum/rbln/transformers/models/mistral/mistral_architecture.py +1 -1
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +26 -3
- optimum/rbln/transformers/models/opt/__init__.py +2 -2
- optimum/rbln/transformers/models/opt/configuration_opt.py +8 -1
- optimum/rbln/transformers/models/opt/modeling_opt.py +29 -17
- optimum/rbln/transformers/models/opt/opt_architecture.py +4 -4
- optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
- optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
- optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
- optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
- optimum/rbln/transformers/models/phi/__init__.py +2 -2
- optimum/rbln/transformers/models/phi/configuration_phi.py +9 -1
- optimum/rbln/transformers/models/phi/modeling_phi.py +10 -1
- optimum/rbln/transformers/models/phi/phi_architecture.py +11 -7
- optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
- optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
- optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
- optimum/rbln/transformers/models/qwen2/__init__.py +2 -2
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +9 -1
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +27 -1
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +21 -6
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +15 -22
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +28 -7
- optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
- optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +2 -2
- optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +86 -330
- optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +1 -245
- optimum/rbln/transformers/models/resnet/configuration_resnet.py +17 -0
- optimum/rbln/transformers/models/resnet/modeling_resnet.py +73 -0
- optimum/rbln/transformers/models/roberta/modeling_roberta.py +33 -0
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +21 -16
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +58 -13
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -2
- optimum/rbln/transformers/models/siglip/__init__.py +2 -6
- optimum/rbln/transformers/models/siglip/configuration_siglip.py +1 -1
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +21 -16
- optimum/rbln/transformers/models/swin/__init__.py +16 -0
- optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
- optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
- optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
- optimum/rbln/transformers/models/t5/modeling_t5.py +2 -2
- optimum/rbln/transformers/models/t5/t5_architecture.py +8 -1
- optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +3 -3
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +20 -16
- optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +7 -1
- optimum/rbln/transformers/models/vit/modeling_vit.py +19 -0
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +15 -3
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +61 -8
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +12 -13
- optimum/rbln/transformers/models/whisper/generation_whisper.py +62 -6
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +30 -5
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +43 -0
- optimum/rbln/transformers/utils/rbln_quantization.py +400 -75
- optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
- optimum/rbln/utils/deprecation.py +213 -0
- optimum/rbln/utils/hub.py +14 -3
- optimum/rbln/utils/runtime_utils.py +60 -18
- optimum/rbln/utils/submodule.py +31 -9
- {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/METADATA +8 -7
- optimum_rbln-0.9.3.dist-info/RECORD +264 -0
- {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/WHEEL +1 -1
- optimum_rbln-0.9.3.dist-info/entry_points.txt +2 -0
- optimum_rbln-0.8.2a4.dist-info/RECORD +0 -215
- {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,245 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
from typing import Optional
|
|
15
|
+
|
|
16
|
+
import rebel
|
|
17
|
+
import torch
|
|
18
|
+
|
|
19
|
+
from ...modeling_outputs import RBLNDecoderOnlyOutput, RBLNGemma3ForCausalLMOutput
|
|
20
|
+
from ..decoderonly.decoderonly_runtime_utils import RBLNPytorchRuntime
|
|
21
|
+
from ..decoderonly.modeling_decoderonly import RBLNRuntimeModel
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
|
|
25
|
+
def __init__(self, *args, image_prefill: Optional[rebel.Runtime] = None, **kwargs):
|
|
26
|
+
super().__init__(*args, **kwargs)
|
|
27
|
+
self.image_prefill = RBLNPytorchRuntime(image_prefill) # FIXME(taehoon)
|
|
28
|
+
self.prefill = RBLNPytorchRuntime(self.runtime) if self.phase == "prefill" else None # FIXME
|
|
29
|
+
self.decode = RBLNPytorchRuntime(self.runtime) if self.phase == "decode" else None
|
|
30
|
+
|
|
31
|
+
def _prepare_prefill_inputs(self, *args, **kwargs):
|
|
32
|
+
(
|
|
33
|
+
inputs,
|
|
34
|
+
cache_position,
|
|
35
|
+
chunked_attention_mask,
|
|
36
|
+
position_ids,
|
|
37
|
+
position_embed,
|
|
38
|
+
padded_cache_lengths,
|
|
39
|
+
query_length,
|
|
40
|
+
token_type_ids,
|
|
41
|
+
) = super()._prepare_prefill_inputs(*args, **kwargs)
|
|
42
|
+
|
|
43
|
+
# chunked_attention_mask shape
|
|
44
|
+
chunked_attention_mask = torch.zeros(1, chunked_attention_mask.shape[-1], dtype=torch.float32)
|
|
45
|
+
|
|
46
|
+
# In case of Gemma3ForConditionalGeneration, the loop counter may not be a prefill_chunk_size,
|
|
47
|
+
# so we cannot guarantee that the last chunk starts at a position that is a multiple of prefill_chunk_size.
|
|
48
|
+
if self.rbln_config.use_image_prefill:
|
|
49
|
+
padding_size = self.rbln_config.image_prefill_chunk_size
|
|
50
|
+
inputs = torch.nn.functional.pad(inputs, (0, 0, 0, padding_size))
|
|
51
|
+
cache_position = torch.nn.functional.pad(cache_position, (0, padding_size))
|
|
52
|
+
position_ids = torch.nn.functional.pad(position_ids, (0, padding_size))
|
|
53
|
+
token_type_ids = torch.nn.functional.pad(token_type_ids, (0, padding_size), value=-1)
|
|
54
|
+
|
|
55
|
+
return (
|
|
56
|
+
inputs,
|
|
57
|
+
cache_position,
|
|
58
|
+
chunked_attention_mask,
|
|
59
|
+
position_ids,
|
|
60
|
+
position_embed,
|
|
61
|
+
padded_cache_lengths,
|
|
62
|
+
query_length,
|
|
63
|
+
token_type_ids,
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
def prefill_forward(
|
|
67
|
+
self,
|
|
68
|
+
inputs: torch.Tensor,
|
|
69
|
+
cache_position: torch.Tensor = None,
|
|
70
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
71
|
+
batch_idx: int = None,
|
|
72
|
+
block_tables: torch.Tensor = None,
|
|
73
|
+
is_external_block_tables: bool = None,
|
|
74
|
+
position_embed: Optional[torch.Tensor] = None,
|
|
75
|
+
token_type_ids: Optional[torch.Tensor] = None,
|
|
76
|
+
local_block_tables: Optional[torch.Tensor] = None,
|
|
77
|
+
lora_int_ids: Optional[torch.Tensor] = None,
|
|
78
|
+
) -> torch.FloatTensor:
|
|
79
|
+
"""
|
|
80
|
+
Performs chunked prefill for efficient KV-cache updates and memory optimization.
|
|
81
|
+
Instead of processing the entire sequence at once, the input is divided into chunks of size `prefill_chunk_size`,
|
|
82
|
+
and each chunk is processed sequentially. This allows for better memory utilization and compatibility with continuous batching.
|
|
83
|
+
"""
|
|
84
|
+
if self.rbln_config.use_lora and lora_int_ids is None:
|
|
85
|
+
if self.lora_int_ids is None:
|
|
86
|
+
raise ValueError(
|
|
87
|
+
"lora_int_id is required when using LoRA. "
|
|
88
|
+
"You should call set_lora_int_ids() before forward() or pass lora_int_id to forward()."
|
|
89
|
+
)
|
|
90
|
+
if batch_idx is not None:
|
|
91
|
+
lora_int_ids = self.lora_int_ids[batch_idx : batch_idx + 1].clone()
|
|
92
|
+
else:
|
|
93
|
+
lora_int_ids = self.lora_int_ids.clone()
|
|
94
|
+
|
|
95
|
+
(
|
|
96
|
+
inputs,
|
|
97
|
+
cache_position,
|
|
98
|
+
chunked_attention_mask,
|
|
99
|
+
position_ids,
|
|
100
|
+
position_embed,
|
|
101
|
+
padded_cache_lengths,
|
|
102
|
+
query_length,
|
|
103
|
+
token_type_ids,
|
|
104
|
+
) = self._prepare_prefill_inputs(
|
|
105
|
+
inputs, cache_position, attention_mask, position_embed, token_type_ids=token_type_ids
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
step = 0
|
|
109
|
+
while step < query_length:
|
|
110
|
+
if self.rbln_config.use_image_prefill:
|
|
111
|
+
# Check if the prefill chunk is an image prefill
|
|
112
|
+
is_image_prefill = torch.all(
|
|
113
|
+
token_type_ids[:, step : step + self.rbln_config.image_prefill_chunk_size] == 1
|
|
114
|
+
)
|
|
115
|
+
# Check if the prefill chunk is a text prefill which have image_tokens in it.
|
|
116
|
+
is_text_prefill_with_image_tokens = not is_image_prefill and torch.any(
|
|
117
|
+
token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
|
|
118
|
+
)
|
|
119
|
+
else:
|
|
120
|
+
is_image_prefill, is_text_prefill_with_image_tokens = False, False
|
|
121
|
+
|
|
122
|
+
# Check if the prefill chunk is the last chunk
|
|
123
|
+
is_last_chunk = step + self.rbln_config.prefill_chunk_size >= query_length
|
|
124
|
+
|
|
125
|
+
input_chunk = inputs[:, step : step + self.rbln_config.prefill_chunk_size]
|
|
126
|
+
cache_pos_chunk = (
|
|
127
|
+
cache_position[:, step : step + self.rbln_config.prefill_chunk_size] + padded_cache_lengths
|
|
128
|
+
)
|
|
129
|
+
position_ids_chunk = position_ids[:, step : step + self.rbln_config.prefill_chunk_size]
|
|
130
|
+
|
|
131
|
+
# if text_prefill end with image_tokens, we only treat the text part.
|
|
132
|
+
num_processed_tokens = self.rbln_config.prefill_chunk_size
|
|
133
|
+
current_padded_cache_lengths = 0
|
|
134
|
+
if is_text_prefill_with_image_tokens:
|
|
135
|
+
first_image_token_idx = torch.where(
|
|
136
|
+
token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
|
|
137
|
+
)[1][0]
|
|
138
|
+
num_processed_tokens = first_image_token_idx.item()
|
|
139
|
+
current_padded_cache_lengths = self.rbln_config.prefill_chunk_size - num_processed_tokens
|
|
140
|
+
if is_last_chunk:
|
|
141
|
+
num_processed_tokens = query_length - step
|
|
142
|
+
|
|
143
|
+
chunked_attention_mask[
|
|
144
|
+
:, step + padded_cache_lengths : step + num_processed_tokens + padded_cache_lengths
|
|
145
|
+
] = 1
|
|
146
|
+
query_position = torch.tensor(num_processed_tokens - 1, dtype=torch.int16)
|
|
147
|
+
|
|
148
|
+
if is_image_prefill:
|
|
149
|
+
logits = self.image_prefill(
|
|
150
|
+
input_chunk,
|
|
151
|
+
cache_pos_chunk,
|
|
152
|
+
block_tables,
|
|
153
|
+
local_block_tables,
|
|
154
|
+
query_position,
|
|
155
|
+
chunked_attention_mask,
|
|
156
|
+
position_ids_chunk,
|
|
157
|
+
lora_int_ids if self.rbln_config.use_lora else None,
|
|
158
|
+
)
|
|
159
|
+
else:
|
|
160
|
+
logits = self.prefill(
|
|
161
|
+
input_chunk,
|
|
162
|
+
cache_pos_chunk,
|
|
163
|
+
block_tables,
|
|
164
|
+
local_block_tables,
|
|
165
|
+
query_position,
|
|
166
|
+
chunked_attention_mask,
|
|
167
|
+
position_ids_chunk,
|
|
168
|
+
lora_int_ids if self.rbln_config.use_lora else None,
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
padded_cache_lengths += current_padded_cache_lengths
|
|
172
|
+
step += num_processed_tokens
|
|
173
|
+
|
|
174
|
+
if not is_external_block_tables:
|
|
175
|
+
self.dec_attn_mask[batch_idx : batch_idx + 1] = chunked_attention_mask
|
|
176
|
+
|
|
177
|
+
return RBLNGemma3ForCausalLMOutput(
|
|
178
|
+
logits=logits, padded_cache_lengths=padded_cache_lengths, attention_mask=chunked_attention_mask
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
def decode_forward(
|
|
182
|
+
self,
|
|
183
|
+
inputs: torch.Tensor,
|
|
184
|
+
cache_position: torch.Tensor = None,
|
|
185
|
+
block_tables: torch.Tensor = None,
|
|
186
|
+
is_external_block_tables: bool = None,
|
|
187
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
188
|
+
position_embed: Optional[torch.Tensor] = None,
|
|
189
|
+
position_ids: Optional[torch.Tensor] = None,
|
|
190
|
+
local_block_tables: Optional[torch.Tensor] = None,
|
|
191
|
+
lora_int_ids: Optional[torch.Tensor] = None,
|
|
192
|
+
) -> torch.FloatTensor:
|
|
193
|
+
if self.rbln_config.use_lora and lora_int_ids is None:
|
|
194
|
+
if self.lora_int_ids is None:
|
|
195
|
+
raise ValueError(
|
|
196
|
+
"lora_int_id is required when using LoRA. "
|
|
197
|
+
"You should call set_lora_int_ids() before forward() or pass lora_int_id to forward()."
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
lora_int_ids = self.lora_int_ids
|
|
201
|
+
|
|
202
|
+
if lora_int_ids is not None and lora_int_ids.shape[0] != self.batch_size:
|
|
203
|
+
raise ValueError(f"lora_int_ids size mismatch: got {lora_int_ids.shape[0]}, expected {self.batch_size}.")
|
|
204
|
+
|
|
205
|
+
batch_size = inputs.shape[0]
|
|
206
|
+
if batch_size != self.batch_size:
|
|
207
|
+
raise RuntimeError(
|
|
208
|
+
f"Batch size mismatch: got {batch_size}, expected {self.batch_size} (compiled batch size)."
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
if batch_size != cache_position.shape[0]:
|
|
212
|
+
raise RuntimeError(f"Cache position size mismatch: got {cache_position.shape[0]}, expected {batch_size}.")
|
|
213
|
+
|
|
214
|
+
# FIXME(taehoon): how to handle pos_attn_mask with external block tables
|
|
215
|
+
if is_external_block_tables:
|
|
216
|
+
if attention_mask is None:
|
|
217
|
+
raise ValueError("attention_mask should be provided with external block tables.")
|
|
218
|
+
if local_block_tables is None:
|
|
219
|
+
raise ValueError("local_block_tables should be provided with external block tables.")
|
|
220
|
+
else:
|
|
221
|
+
local_block_tables = (
|
|
222
|
+
local_block_tables
|
|
223
|
+
if local_block_tables is not None
|
|
224
|
+
else torch.arange(0, self.batch_size, dtype=torch.int16).view(self.batch_size, -1)
|
|
225
|
+
)
|
|
226
|
+
if self.rbln_config.use_attention_mask and attention_mask is None:
|
|
227
|
+
for b_idx in range(batch_size):
|
|
228
|
+
decoding_step = cache_position[b_idx].item()
|
|
229
|
+
if not (0 <= decoding_step < self.dec_attn_mask.shape[-1]):
|
|
230
|
+
raise ValueError(
|
|
231
|
+
f"Decoding step {decoding_step} out of bounds for attention mask with shape {self.dec_attn_mask.shape}."
|
|
232
|
+
)
|
|
233
|
+
self.dec_attn_mask[b_idx, decoding_step] = 1
|
|
234
|
+
|
|
235
|
+
attention_mask = self.dec_attn_mask
|
|
236
|
+
|
|
237
|
+
if self.batch_size < block_tables.shape[0]:
|
|
238
|
+
block_tables = block_tables[: self.batch_size]
|
|
239
|
+
|
|
240
|
+
if attention_mask is not None and self.batch_size < attention_mask.shape[0]:
|
|
241
|
+
attention_mask = attention_mask[: self.batch_size]
|
|
242
|
+
|
|
243
|
+
logits = self.decode(inputs, cache_position, block_tables, local_block_tables, attention_mask, position_ids)
|
|
244
|
+
|
|
245
|
+
return RBLNDecoderOnlyOutput(logits=logits)
|