optimum-rbln 0.8.2a4__py3-none-any.whl → 0.9.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. optimum/rbln/__init__.py +108 -9
  2. optimum/rbln/__version__.py +16 -3
  3. optimum/rbln/cli.py +660 -0
  4. optimum/rbln/configuration_utils.py +156 -43
  5. optimum/rbln/diffusers/__init__.py +19 -0
  6. optimum/rbln/diffusers/configurations/__init__.py +3 -0
  7. optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
  8. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +3 -3
  9. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +1 -1
  10. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
  11. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +3 -3
  12. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +4 -4
  13. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +9 -4
  14. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +9 -4
  15. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +3 -3
  16. optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
  17. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +3 -3
  18. optimum/rbln/diffusers/configurations/pipelines/__init__.py +3 -0
  19. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +35 -19
  20. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +14 -11
  21. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +30 -20
  22. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +13 -9
  23. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +17 -13
  24. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +17 -10
  25. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
  26. optimum/rbln/diffusers/modeling_diffusers.py +30 -14
  27. optimum/rbln/diffusers/models/__init__.py +4 -0
  28. optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
  29. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +31 -3
  30. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +31 -6
  31. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
  32. optimum/rbln/diffusers/models/autoencoders/vae.py +27 -8
  33. optimum/rbln/diffusers/models/autoencoders/vq_model.py +31 -3
  34. optimum/rbln/diffusers/models/controlnet.py +16 -1
  35. optimum/rbln/diffusers/models/transformers/prior_transformer.py +17 -3
  36. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +25 -2
  37. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +23 -2
  38. optimum/rbln/diffusers/models/unets/__init__.py +1 -0
  39. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +23 -4
  40. optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
  41. optimum/rbln/diffusers/pipelines/__init__.py +15 -5
  42. optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
  43. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +20 -0
  44. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +19 -16
  45. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +14 -18
  46. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +31 -1
  47. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +31 -1
  48. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
  49. optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
  50. optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
  51. optimum/rbln/modeling.py +48 -21
  52. optimum/rbln/modeling_base.py +99 -22
  53. optimum/rbln/ops/attn.py +158 -0
  54. optimum/rbln/ops/flash_attn.py +166 -0
  55. optimum/rbln/ops/kv_cache_update.py +5 -0
  56. optimum/rbln/ops/linear.py +7 -0
  57. optimum/rbln/transformers/__init__.py +92 -0
  58. optimum/rbln/transformers/configuration_generic.py +7 -32
  59. optimum/rbln/transformers/modeling_attention_utils.py +385 -0
  60. optimum/rbln/transformers/modeling_generic.py +48 -65
  61. optimum/rbln/transformers/modeling_outputs.py +37 -0
  62. optimum/rbln/transformers/models/__init__.py +91 -30
  63. optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +28 -2
  64. optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +68 -5
  65. optimum/rbln/transformers/models/auto/__init__.py +2 -0
  66. optimum/rbln/transformers/models/auto/auto_factory.py +92 -17
  67. optimum/rbln/transformers/models/auto/modeling_auto.py +45 -0
  68. optimum/rbln/transformers/models/bart/bart_architecture.py +1 -3
  69. optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
  70. optimum/rbln/transformers/models/bart/modeling_bart.py +23 -2
  71. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  72. optimum/rbln/transformers/models/bert/modeling_bert.py +93 -4
  73. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +42 -11
  74. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +135 -44
  75. optimum/rbln/transformers/models/clip/configuration_clip.py +10 -7
  76. optimum/rbln/transformers/models/clip/modeling_clip.py +67 -6
  77. optimum/rbln/transformers/models/colpali/colpali_architecture.py +3 -6
  78. optimum/rbln/transformers/models/colpali/configuration_colpali.py +37 -21
  79. optimum/rbln/transformers/models/colpali/modeling_colpali.py +82 -104
  80. optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
  81. optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
  82. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
  83. optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
  84. optimum/rbln/transformers/models/decoderonly/__init__.py +3 -2
  85. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +114 -37
  86. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  87. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +318 -309
  88. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
  89. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
  90. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  91. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +485 -905
  92. optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
  93. optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
  94. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
  95. optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +24 -0
  96. optimum/rbln/transformers/models/dpt/modeling_dpt.py +17 -0
  97. optimum/rbln/transformers/models/exaone/modeling_exaone.py +42 -4
  98. optimum/rbln/transformers/models/gemma/__init__.py +2 -2
  99. optimum/rbln/transformers/models/gemma/configuration_gemma.py +9 -1
  100. optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
  101. optimum/rbln/transformers/models/gemma/modeling_gemma.py +22 -1
  102. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +49 -13
  103. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +12 -2
  104. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
  105. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +201 -351
  106. optimum/rbln/transformers/models/gpt2/__init__.py +2 -2
  107. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +31 -3
  108. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +10 -8
  109. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +18 -1
  110. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  111. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
  112. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
  113. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
  114. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +35 -7
  115. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +29 -32
  116. optimum/rbln/transformers/models/llama/__init__.py +2 -2
  117. optimum/rbln/transformers/models/llama/configuration_llama.py +9 -1
  118. optimum/rbln/transformers/models/llama/modeling_llama.py +22 -1
  119. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  120. optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
  121. optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
  122. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +15 -17
  123. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +234 -376
  124. optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
  125. optimum/rbln/transformers/models/midm/modeling_midm.py +42 -4
  126. optimum/rbln/transformers/models/mistral/__init__.py +2 -2
  127. optimum/rbln/transformers/models/mistral/configuration_mistral.py +9 -1
  128. optimum/rbln/transformers/models/mistral/mistral_architecture.py +1 -1
  129. optimum/rbln/transformers/models/mistral/modeling_mistral.py +26 -3
  130. optimum/rbln/transformers/models/opt/__init__.py +2 -2
  131. optimum/rbln/transformers/models/opt/configuration_opt.py +8 -1
  132. optimum/rbln/transformers/models/opt/modeling_opt.py +29 -17
  133. optimum/rbln/transformers/models/opt/opt_architecture.py +4 -4
  134. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  135. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
  136. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
  137. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  138. optimum/rbln/transformers/models/phi/__init__.py +2 -2
  139. optimum/rbln/transformers/models/phi/configuration_phi.py +9 -1
  140. optimum/rbln/transformers/models/phi/modeling_phi.py +10 -1
  141. optimum/rbln/transformers/models/phi/phi_architecture.py +11 -7
  142. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  143. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  144. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
  145. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  146. optimum/rbln/transformers/models/qwen2/__init__.py +2 -2
  147. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +9 -1
  148. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +27 -1
  149. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +21 -6
  150. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +15 -22
  151. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +28 -7
  152. optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  153. optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  154. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
  155. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
  156. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +2 -2
  157. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +86 -330
  158. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +1 -245
  159. optimum/rbln/transformers/models/resnet/configuration_resnet.py +17 -0
  160. optimum/rbln/transformers/models/resnet/modeling_resnet.py +73 -0
  161. optimum/rbln/transformers/models/roberta/modeling_roberta.py +33 -0
  162. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +21 -16
  163. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +58 -13
  164. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -2
  165. optimum/rbln/transformers/models/siglip/__init__.py +2 -6
  166. optimum/rbln/transformers/models/siglip/configuration_siglip.py +1 -1
  167. optimum/rbln/transformers/models/siglip/modeling_siglip.py +21 -16
  168. optimum/rbln/transformers/models/swin/__init__.py +16 -0
  169. optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
  170. optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
  171. optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
  172. optimum/rbln/transformers/models/t5/modeling_t5.py +2 -2
  173. optimum/rbln/transformers/models/t5/t5_architecture.py +8 -1
  174. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +3 -3
  175. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +20 -16
  176. optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +7 -1
  177. optimum/rbln/transformers/models/vit/modeling_vit.py +19 -0
  178. optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +15 -3
  179. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +61 -8
  180. optimum/rbln/transformers/models/whisper/configuration_whisper.py +12 -13
  181. optimum/rbln/transformers/models/whisper/generation_whisper.py +62 -6
  182. optimum/rbln/transformers/models/whisper/modeling_whisper.py +30 -5
  183. optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
  184. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +43 -0
  185. optimum/rbln/transformers/utils/rbln_quantization.py +400 -75
  186. optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
  187. optimum/rbln/utils/deprecation.py +213 -0
  188. optimum/rbln/utils/hub.py +14 -3
  189. optimum/rbln/utils/runtime_utils.py +60 -18
  190. optimum/rbln/utils/submodule.py +31 -9
  191. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/METADATA +8 -7
  192. optimum_rbln-0.9.3.dist-info/RECORD +264 -0
  193. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/WHEEL +1 -1
  194. optimum_rbln-0.9.3.dist-info/entry_points.txt +2 -0
  195. optimum_rbln-0.8.2a4.dist-info/RECORD +0 -215
  196. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3.dist-info}/licenses/LICENSE +0 -0
@@ -14,37 +14,67 @@
14
14
 
15
15
  import glob
16
16
  import os
17
- from typing import Any, Dict, Optional, Union
17
+ from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type, Union
18
18
 
19
19
  import torch
20
+ from huggingface_hub import hf_hub_download, list_repo_files
20
21
  from safetensors.torch import load_file
21
22
  from torch.nn import Linear, Parameter
22
23
  from torch.nn import functional as F
24
+ from transformers import AutoConfig
25
+ from transformers.modeling_utils import get_state_dict_dtype, no_init_weights
23
26
 
24
27
  from ...configuration_utils import RBLNSerializableConfigProtocol
25
28
  from ...utils.logging import get_logger
26
29
 
27
30
 
31
+ if TYPE_CHECKING:
32
+ from transformers.models.auto.modeling_auto import _BaseAutoModelClass
33
+
28
34
  logger = get_logger()
29
35
 
30
36
 
37
+ # Constants
38
+ QUANTIZED_WEIGHTS = {
39
+ "q_proj",
40
+ "k_proj",
41
+ "v_proj",
42
+ "o_proj",
43
+ "gate_proj",
44
+ "up_proj",
45
+ "down_proj",
46
+ }
47
+
48
+ # Common alias sets seen in community checkpoints
49
+ VARIANT_ALIASES: Dict[str, List[str]] = {
50
+ "weight_scale": ["weight_scale", "scales", "w_scale", "scale"],
51
+ "input_scale": ["input_scale", "act_scale", "activation_scale", "a_scale"],
52
+ "kv_scale": ["kv_scale", "kv_scales"],
53
+ "k_scale": ["k_scale", "k_scales"],
54
+ "v_scale": ["v_scale", "v_scales"],
55
+ }
56
+
57
+
31
58
  class RBLNQuantizationConfig(RBLNSerializableConfigProtocol):
32
59
  SUPPORTED_FORMATS = ["rbln"]
33
- SUPPORTED_WEIGHTS = ["int4", "fp16"]
34
- SUPPORTED_ACTIVATIONS = ["fp16"]
35
-
36
- # The RBLN_QUANT_BITS environment variable defines the precision of each layer during the graph compilation process.
37
- # It specifies the quantization bit depth. For instance, setting RBLN_QUANT_BITS=4 will apply 4-bit precision for quantization.
60
+ SUPPORTED_WEIGHTS = ["int4", "int8", "fp8", "fp16"]
61
+ SUPPORTED_ACTIVATIONS = ["int8", "fp8", "fp16"]
62
+ SUPPORTED_KVCACHES = ["fp8", "fp16"]
38
63
  RBLN_QUANT_BITS_ENV = "RBLN_QUANT_BITS"
39
64
 
40
65
  def __init__(
41
66
  self,
42
67
  format: Optional[str] = None,
43
- precision: Optional[str] = None,
44
68
  weights: Optional[str] = None,
45
69
  activations: Optional[str] = None,
70
+ kv_caches: Optional[str] = None,
71
+ *,
72
+ precision: Optional[str] = None,
46
73
  ):
47
- self.format = format
74
+ self.format = format or "rbln"
75
+ if self.format not in self.SUPPORTED_FORMATS:
76
+ raise ValueError(f"Invalid format: {self.format}, supported formats are: {self.SUPPORTED_FORMATS}")
77
+
48
78
  if precision is not None:
49
79
  logger.warning("The `precision` argument is deprecated. Use `weights` and `activations` instead.")
50
80
  if any(precision_arg is not None for precision_arg in (weights, activations)):
@@ -58,6 +88,7 @@ class RBLNQuantizationConfig(RBLNSerializableConfigProtocol):
58
88
 
59
89
  self.weights = weights or "fp16"
60
90
  self.activations = activations or "fp16"
91
+ self.kv_caches = kv_caches or "fp16"
61
92
  self._validate()
62
93
 
63
94
  def _validate(self):
@@ -69,106 +100,135 @@ class RBLNQuantizationConfig(RBLNSerializableConfigProtocol):
69
100
  raise ValueError(
70
101
  f"Invalid activations: {self.activations}, supported activations are: {self.SUPPORTED_ACTIVATIONS}"
71
102
  )
103
+ if self.kv_caches not in self.SUPPORTED_KVCACHES:
104
+ raise ValueError(
105
+ f"Invalid kv_caches: {self.kv_caches}, supported kv_caches are: {self.SUPPORTED_KVCACHES}"
106
+ )
72
107
  if self.weights == "fp16" and self.activations == "fp16":
73
- raise ValueError("weights and activations cannot be both fp16. It is meaningless.")
108
+ raise ValueError("weights and activations of QuantizationConfig cannot be both fp16. It is meaningless.")
74
109
 
75
110
  def _prepare_for_serialization(self) -> Dict[str, Any]:
76
111
  return {
77
112
  "format": self.format,
78
113
  "weights": self.weights,
79
114
  "activations": self.activations,
115
+ "kv_caches": self.kv_caches,
80
116
  }
81
117
 
82
118
  def maybe_set_quantization_env(self):
83
- quant_bits = None
84
119
  if self.weights == "int4":
85
- quant_bits = "4"
86
- os.environ[self.RBLN_QUANT_BITS_ENV] = quant_bits
120
+ os.environ[self.RBLN_QUANT_BITS_ENV] = "4"
87
121
 
88
122
  def maybe_reset_quantization_env(self):
89
123
  if self.RBLN_QUANT_BITS_ENV in os.environ:
90
124
  os.environ.pop(self.RBLN_QUANT_BITS_ENV)
91
125
 
126
+ @property
127
+ def nbits_per_param(self) -> int:
128
+ if self.weights in ["int4", "fp4"]:
129
+ return 4
130
+ elif self.weights in ["int8", "fp8"]:
131
+ return 8
132
+ else:
133
+ raise ValueError(f"Invalid weights: {self.weights}")
92
134
 
93
- # Constants
94
- QUANTIZED_WEIGHTS = {
95
- "q_proj",
96
- "k_proj",
97
- "v_proj",
98
- "o_proj",
99
- "gate_proj",
100
- "up_proj",
101
- "down_proj",
102
- }
103
135
 
136
+ class QuantizedLayerFactory:
137
+ def __init__(self, quantization_config: RBLNQuantizationConfig):
138
+ self.quantization_config = quantization_config
104
139
 
105
- def prepare_model_for_quantization(
106
- model: torch.nn.Module,
140
+ def create_linear(self, layer: Linear) -> Linear:
141
+ if self.quantization_config.weights in ["int4", "int8"]:
142
+ return self.create_qlinear(layer)
143
+ elif self.quantization_config.weights == "fp8":
144
+ return self.create_fp8linear(layer)
145
+ else:
146
+ raise ValueError(f"Invalid quantization weights: {self.quantization_config.weights}")
147
+
148
+ def create_qlinear(self, layer: Linear) -> Linear:
149
+ return create_qlinear(layer, self.quantization_config)
150
+
151
+ def create_fp8linear(self, layer: Linear) -> Linear:
152
+ return create_fp8linear(layer, self.quantization_config)
153
+
154
+
155
+ def get_quantized_model(
156
+ hf_auto_model_class: Type["_BaseAutoModelClass"],
107
157
  model_id: str,
108
- n_layer: Optional[int] = None,
109
158
  use_auth_token: Optional[Union[bool, str]] = None,
110
159
  revision: Optional[str] = None,
111
160
  cache_dir: Optional[str] = None,
112
161
  force_download: bool = False,
113
162
  local_files_only: bool = False,
114
- ) -> torch.nn.Module:
163
+ rbln_quantization: Optional[RBLNQuantizationConfig] = None,
164
+ **kwargs,
165
+ ):
115
166
  """
116
- Prepare the model for quantization by updating specified linear layers to quantized (qlinear) layers.
167
+ Get a quantized model from a model class and model id.
117
168
  """
118
- update_layers_to_quantize(model)
119
- load_weights(
120
- model,
169
+ # torch_dtype should not be passed to AutoConfig.from_pretrained
170
+ # since it doesn't support 'auto'
171
+ torch_dtype = kwargs.pop("torch_dtype", None)
172
+ if torch_dtype is not None:
173
+ logger.warning(
174
+ "torch_dtype is not supported for quantized models. "
175
+ "It will be ignored and the dtype of the model will be determined by the weights."
176
+ )
177
+ torch_dtype = None
178
+
179
+ # get paths of safetensors files in the model repo
180
+ safetensor_files = load_weight_files(
121
181
  model_id,
122
- n_layer,
123
182
  use_auth_token=use_auth_token,
124
183
  revision=revision,
125
184
  cache_dir=cache_dir,
126
185
  force_download=force_download,
127
186
  local_files_only=local_files_only,
128
187
  )
129
- return model
130
188
 
189
+ # load safetensors files into memory
190
+ safetensors = [load_file(safetensor_file) for safetensor_file in safetensor_files]
131
191
 
132
- def update_layers_to_quantize(module: torch.nn.Module) -> None:
133
- """
134
- Updates specified linear layers to quantized (qlinear) layers in the given module.
135
- """
192
+ # get the dtype of the model from the first safetensor file
193
+ torch_dtype = get_state_dict_dtype(safetensors[0])
136
194
 
137
- logger.debug("Updating layers to be quantized") # TODO(jongho): remove.
138
- processed_layers = []
195
+ config = AutoConfig.from_pretrained(
196
+ model_id,
197
+ use_auth_token=use_auth_token,
198
+ revision=revision,
199
+ cache_dir=cache_dir,
200
+ force_download=force_download,
201
+ local_files_only=local_files_only,
202
+ **kwargs,
203
+ )
139
204
 
140
- for name, layer in module.named_modules():
141
- if is_target_for_qlinear_replacement(name, layer):
142
- parent_module, layer_name = get_parent_and_child(module, name)
143
- setattr(parent_module, layer_name, create_qlinear(layer))
144
- processed_layers.append(name)
205
+ with no_init_weights():
206
+ model = hf_auto_model_class.from_config(config, torch_dtype=torch_dtype)
145
207
 
146
- if processed_layers:
147
- logger.debug(f"Updated the following linear layers to quantized layers:\n {{{', '.join(processed_layers)}}}")
208
+ # Quantize the model
209
+ update_layers_to_quantize(model, rbln_quantization)
148
210
 
211
+ # Load weights into the model
212
+ load_weights_from_files(model, safetensors, rbln_quantization)
149
213
 
150
- def load_weights(
151
- model,
152
- model_id,
153
- n_layer=None,
154
- use_auth_token=None,
155
- revision=None,
156
- cache_dir=None,
157
- force_download=False,
158
- local_files_only=False,
159
- ):
214
+ return model
215
+
216
+
217
+ def load_weight_files(
218
+ model_id: str,
219
+ use_auth_token: Optional[Union[bool, str]] = None,
220
+ revision: Optional[str] = None,
221
+ cache_dir: Optional[str] = None,
222
+ force_download: bool = False,
223
+ local_files_only: bool = False,
224
+ ) -> list[str]:
160
225
  """
161
- Load safetensor file data directly into the model, filtering by layer if n_layer is provided.
226
+ Discover and download safetensors files for the given model id.
162
227
  """
163
228
 
164
- model_params = dict(model.named_parameters(recurse=True))
165
- model_buffers = dict(model.named_buffers(recurse=True))
166
-
167
229
  if os.path.isdir(model_id):
168
230
  safetensor_files = glob.glob(f"{model_id}/*.safetensors")
169
231
  else:
170
- from huggingface_hub import hf_hub_download, list_repo_files
171
-
172
232
  try:
173
233
  # List all files in the repository
174
234
  repo_files = list_repo_files(model_id, revision=revision, token=use_auth_token)
@@ -195,27 +255,226 @@ def load_weights(
195
255
  if not safetensor_files:
196
256
  raise FileNotFoundError(f"No safetensors files found for model_id: {model_id}")
197
257
 
198
- target_layers = list(range(n_layer)) if n_layer is not None else None
258
+ return safetensor_files
259
+
260
+
261
+ def update_layers_to_quantize(
262
+ module: torch.nn.Module,
263
+ rbln_quantization: Optional[RBLNQuantizationConfig] = None,
264
+ ) -> None:
265
+ """
266
+ Updates specified linear layers to quantized (qlinear) layers in the given module.
267
+ """
268
+
269
+ processed_layers = []
270
+ quantized_layer_factory = QuantizedLayerFactory(rbln_quantization)
271
+
272
+ for name, layer in module.named_modules():
273
+ if is_target_for_qlinear_replacement(name, layer):
274
+ parent_module, layer_name = get_parent_and_child(module, name)
275
+ setattr(parent_module, layer_name, quantized_layer_factory.create_linear(layer))
276
+ processed_layers.append(name)
277
+
278
+ if processed_layers:
279
+ logger.debug(f"Updated the following linear layers to quantized layers:\n {{{', '.join(processed_layers)}}}")
280
+
281
+
282
+ def _last_segment(key: str) -> str:
283
+ parts = key.split(".")
284
+ return parts[-1]
285
+
286
+
287
+ def _replace_last_with(key: str, new_tail: str) -> str:
288
+ parts = key.split(".")
289
+ return ".".join(parts[:-1] + new_tail.split("."))
290
+
291
+
292
+ def _matches_any_alias(key: str, kind: str) -> bool:
293
+ tail = _last_segment(key)
294
+ return tail in VARIANT_ALIASES.get(kind, [])
295
+
296
+
297
+ def _reduce_to_scalar(t: torch.Tensor) -> torch.Tensor:
298
+ if t.ndim == 0:
299
+ return t
300
+ return t.reshape(-1).amax()
301
+
302
+
303
+ def _coerce_per_out_channel_scale(scale: torch.Tensor, out_features: int) -> torch.Tensor:
304
+ s = scale
305
+ if s.ndim == 0:
306
+ # scalar -> expand to [out_features, 1]
307
+ return s.reshape(1, 1).expand(out_features, 1).contiguous()
308
+ if s.ndim == 1:
309
+ if s.numel() == 1:
310
+ return s.reshape(1, 1).expand(out_features, 1).contiguous()
311
+ if s.numel() == out_features:
312
+ return s.reshape(out_features, 1).contiguous()
313
+ # fallback: reduce to scalar then expand
314
+ v = _reduce_to_scalar(s)
315
+ return v.reshape(1, 1).expand(out_features, 1).contiguous()
316
+ if s.ndim == 2:
317
+ if s.shape == (out_features, 1):
318
+ return s.contiguous()
319
+ if s.shape == (1, out_features):
320
+ return s.transpose(0, 1).contiguous()
321
+ # fallback: reduce to [out_features] on non-out dims if possible
322
+ if s.shape[0] == out_features:
323
+ v = s
324
+ while v.ndim > 2:
325
+ v = v.amax(dim=-1)
326
+ if v.shape[-1] != 1:
327
+ v = v.amax(dim=-1, keepdim=True)
328
+ return v.contiguous()
329
+ # otherwise reduce to scalar then expand
330
+ v = _reduce_to_scalar(s)
331
+ return v.reshape(1, 1).expand(out_features, 1).contiguous()
332
+ # high-rank: reduce to scalar then expand
333
+ v = _reduce_to_scalar(s)
334
+ return v.reshape(1, 1).expand(out_features, 1).contiguous()
335
+
336
+
337
+ def _kv_split_items(base_key: str, tensor: torch.Tensor) -> List[Tuple[str, torch.Tensor]]:
338
+ # base_key is the original key whose last token was 'kv_scale'
339
+ # We produce keys with 'k_proj.k_scale' and 'v_proj.v_scale'
340
+ if tensor.ndim == 1 and tensor.numel() >= 2:
341
+ tk, tv = tensor[0], tensor[1]
342
+ elif tensor.ndim == 2 and tensor.shape[0] >= 2 and tensor.shape[1] == 1:
343
+ tk, tv = tensor[0, 0], tensor[1, 0]
344
+ else:
345
+ tk = tv = tensor
346
+ k_key = _replace_last_with(base_key, "k_proj.k_scale")
347
+ v_key = _replace_last_with(base_key, "v_proj.v_scale")
348
+ return [(k_key, tk), (v_key, tv)]
199
349
 
200
- unloaded_keys = []
201
- for safetensor_file in safetensor_files:
202
- file_data = load_file(safetensor_file)
203
- for key, value in file_data.items():
204
- if target_layers is not None:
205
- parts = key.split(".")
206
350
 
207
- if len(parts) > 2 and parts[2].isdigit() and (int(parts[2]) not in target_layers):
208
- continue
351
+ def canonicalize_checkpoint_items(
352
+ model: torch.nn.Module,
353
+ items: Iterable[Tuple[str, torch.Tensor]],
354
+ rbln_quantization: Optional[RBLNQuantizationConfig],
355
+ ) -> List[Tuple[str, torch.Tensor]]:
356
+ params = dict(model.named_parameters(recurse=True))
357
+ results: List[Tuple[str, torch.Tensor]] = []
358
+
359
+ for key, value in items:
360
+ t = value
361
+ # Normalize weight scale variants
362
+ if _matches_any_alias(key, "weight_scale"):
363
+ # rename last token to the canonical weight scale key
364
+ target_key = _replace_last_with(key, "weight_scale")
365
+
366
+ # Determine associated weight param to infer shape
367
+ weight_key = _replace_last_with(target_key, "weight")
368
+ out_features = None
369
+ if weight_key in params:
370
+ wshape = params[weight_key].shape
371
+ if len(wshape) == 2:
372
+ out_features = int(wshape[0])
373
+
374
+ if rbln_quantization.weights in ["int4", "int8"] and out_features is not None:
375
+ t = _coerce_per_out_channel_scale(t.to(torch.float32), out_features)
376
+ elif rbln_quantization.weights == "fp8":
377
+ # Use a conservative scalar scale to ensure broadcastability
378
+ t = _reduce_to_scalar(t.to(torch.float32))
379
+ else:
380
+ t = t.to(torch.float32)
381
+
382
+ results.append((target_key, t))
383
+ continue
384
+
385
+ # Normalize input/activation scale variants
386
+ if _matches_any_alias(key, "input_scale"):
387
+ target_key = _replace_last_with(key, "input_scale")
388
+ t = _reduce_to_scalar(t.to(torch.float32))
389
+ results.append((target_key, t))
390
+ continue
391
+
392
+ # KV scale handling
393
+ if _matches_any_alias(key, "kv_scale"):
394
+ # For quark-like formats, expand to k/v
395
+ kv_items = _kv_split_items(key, t.to(torch.float32))
396
+ for k2, v2 in kv_items:
397
+ results.append((k2, v2))
398
+ continue
399
+
400
+ if _matches_any_alias(key, "k_scale") or _matches_any_alias(key, "v_scale"):
401
+ results.append((key, t.to(torch.float32)))
402
+ continue
403
+
404
+ # Default: passthrough
405
+ results.append((key, t))
406
+
407
+ return results
408
+
409
+
410
+ def load_weights_from_files(
411
+ model: torch.nn.Module,
412
+ safetensors: List[Dict[str, torch.Tensor]],
413
+ rbln_quantization: Optional[RBLNQuantizationConfig] = None,
414
+ ):
415
+ """
416
+ Load safetensor file data directly into the model from provided safetensor files.
417
+ """
418
+
419
+ model_params = dict(model.named_parameters(recurse=True))
420
+ model_buffers = dict(model.named_buffers(recurse=True))
209
421
 
422
+ unloaded_keys = []
423
+ loaded_input_scale = False
424
+ loaded_kv_scale = False
425
+ loaded_weight_scale = False
426
+
427
+ for safetensor in safetensors:
428
+ # Normalize all (key, tensor) pairs to the internal schema
429
+ normalized_items = canonicalize_checkpoint_items(
430
+ model=model,
431
+ items=safetensor.items(),
432
+ rbln_quantization=rbln_quantization,
433
+ )
434
+
435
+ for key, value in normalized_items:
436
+ # Track which types of scales were observed (post-normalization)
437
+ if key.endswith("input_scale"):
438
+ loaded_input_scale = True
439
+ if key.endswith("weight_scale"):
440
+ loaded_weight_scale = True
441
+ if key.endswith("k_scale") or key.endswith("v_scale"):
442
+ loaded_kv_scale = True
443
+
444
+ # Copy into parameters or buffers
210
445
  if key in model_params:
446
+ # Ensure dtype compatibility
447
+ if model_params[key].dtype != value.dtype:
448
+ value = value.to(model_params[key].dtype)
211
449
  model_params[key].data.copy_(value)
212
450
  elif key in model_buffers:
451
+ if model_buffers[key].dtype != value.dtype:
452
+ value = value.to(model_buffers[key].dtype)
213
453
  model_buffers[key].data.copy_(value)
214
454
  else:
215
455
  unloaded_keys.append(key)
216
456
 
217
457
  if len(unloaded_keys) > 0:
218
458
  logger.warning(f"There are unexpected parameters/buffers on the checkpoint: {unloaded_keys}")
459
+ if not loaded_input_scale and rbln_quantization.activations == "fp8":
460
+ raise ValueError(
461
+ "No input_scale found in the checkpoint. Did you use the correct quantization config? "
462
+ "If you are using fp8 quantization, you need to use the correct quantization config."
463
+ )
464
+ if not loaded_weight_scale and rbln_quantization.weights == "fp8":
465
+ raise ValueError(
466
+ "No weight_scale found in the checkpoint. Did you use the correct quantization config? "
467
+ "If you are using fp8 quantization, you need to use the correct quantization config."
468
+ )
469
+ if not loaded_kv_scale and rbln_quantization.kv_caches == "fp8":
470
+ raise ValueError(
471
+ "No kv_scale found in the checkpoint. Did you use the correct quantization config? "
472
+ "If you are using fp8 quantization, you need to use the correct quantization config."
473
+ )
474
+ if loaded_kv_scale and rbln_quantization.kv_caches != "fp8":
475
+ logger.warning(
476
+ "kv_scale found in the checkpoint, but kv_caches of quantization config is not fp8. Ignoring kv_scale."
477
+ )
219
478
 
220
479
 
221
480
  def is_target_for_qlinear_replacement(layer_name: str, layer: torch.nn.Module) -> bool:
@@ -225,6 +484,10 @@ def is_target_for_qlinear_replacement(layer_name: str, layer: torch.nn.Module) -
225
484
  return layer_name.split(".")[-1] in QUANTIZED_WEIGHTS and isinstance(layer, torch.nn.Linear)
226
485
 
227
486
 
487
+ def is_target_for_adding_kv_scales(layer_name: str) -> bool:
488
+ return layer_name.split(".")[-1] in ["self_attn"]
489
+
490
+
228
491
  def get_parent_and_child(module: torch.nn.Module, full_name: str) -> tuple:
229
492
  """
230
493
  Splits the full layer name to retrieve the parent module and the child layer.
@@ -243,22 +506,84 @@ def access_attribute(obj: Any, attributes: list[str]) -> Any:
243
506
  return obj
244
507
 
245
508
 
246
- def create_qlinear(layer: Linear) -> Linear:
509
+ def create_qlinear(layer: Linear, rbln_quantization: RBLNQuantizationConfig) -> Linear:
247
510
  """
248
511
  Converts a standard linear layer to a quantized linear (qlinear) layer with a custom forward pass.
249
512
  """
250
513
 
251
514
  def qlinear_forward(self, inputs: torch.Tensor) -> torch.Tensor:
252
- if inputs.dtype != self.scales.dtype:
253
- raise TypeError(f"Expected input dtype {self.scales.dtype}, but got {inputs.dtype}")
515
+ weight_scale = self.weight_scale
516
+ if inputs.dtype != weight_scale.dtype:
517
+ raise TypeError(f"Expected input dtype {weight_scale.dtype}, but got {inputs.dtype}")
254
518
 
255
519
  w_fp = self.weight.type(inputs.dtype)
256
- w_fp *= self.scales.view(-1, 1)
520
+ w_fp *= weight_scale.view(-1, 1)
257
521
  return F.linear(inputs, w_fp, self.bias)
258
522
 
259
523
  # Convert weight to int8 and add scale parameter
260
524
  layer.weight = Parameter(layer.weight.to(torch.int8), requires_grad=False)
261
- layer.scales = Parameter(torch.ones(layer.out_features, dtype=torch.float32), requires_grad=False)
525
+ layer.weight_scale = Parameter(torch.ones(layer.out_features, 1, dtype=torch.float32), requires_grad=False)
262
526
  layer.forward = lambda inputs: qlinear_forward(layer, inputs)
263
527
 
264
528
  return layer
529
+
530
+
531
+ def create_fp8linear(layer: Linear, rbln_quantization: RBLNQuantizationConfig) -> Linear:
532
+ """
533
+ Converts a standard linear layer to a fp8 linear layer with a custom forward pass.
534
+ """
535
+
536
+ def static_per_tensor_quantize(tensor: torch.Tensor, inv_scale: float) -> torch.Tensor:
537
+ finfo = torch.finfo(torch.float8_e4m3fn)
538
+ qweight = (tensor / inv_scale).clamp(min=finfo.min, max=finfo.max)
539
+ return qweight
540
+
541
+ def fp8_gemm(A: torch.Tensor, A_scale, B: torch.Tensor, B_scale, bias, out_dtype: torch.dtype):
542
+ A = A.type(out_dtype)
543
+ B = B.type(out_dtype)
544
+
545
+ if A_scale is not None:
546
+ A *= A_scale
547
+ if B_scale is not None:
548
+ B *= B_scale.to(out_dtype)
549
+
550
+ output = torch.nn.functional.linear(A, B, bias=bias)
551
+ return output
552
+
553
+ def fp8linear_forward(self, x: torch.Tensor) -> torch.Tensor:
554
+ if self.input_scale:
555
+ input = static_per_tensor_quantize(x, self.input_scale)
556
+ else:
557
+ input = x
558
+
559
+ if self.weight_scale:
560
+ # broadcast weight_scale to vector
561
+ weight_scale = self.weight_scale.broadcast_to(self.weight.shape[-1:])
562
+ else:
563
+ weight_scale = None
564
+ output = fp8_gemm(
565
+ A=input,
566
+ A_scale=self.input_scale,
567
+ B=self.weight,
568
+ B_scale=weight_scale,
569
+ bias=self.bias,
570
+ out_dtype=x.dtype,
571
+ )
572
+
573
+ return output
574
+
575
+ layer.weight = Parameter(layer.weight.to(torch.float8_e4m3fn), requires_grad=False)
576
+ layer.weight_scale = Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False)
577
+
578
+ if rbln_quantization.activations == "fp8":
579
+ layer.input_scale = Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False)
580
+ else:
581
+ layer.input_scale = None
582
+
583
+ if rbln_quantization.kv_caches == "fp8":
584
+ layer.k_scale = Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False)
585
+ layer.v_scale = Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False)
586
+
587
+ layer.forward = lambda inputs: fp8linear_forward(layer, inputs)
588
+
589
+ return layer
@@ -0,0 +1,79 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from abc import ABC, abstractmethod
17
+ from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union
18
+
19
+ from torch.nn import Module
20
+
21
+ from ...modeling import RBLNModel
22
+
23
+
24
+ if TYPE_CHECKING:
25
+ import rebel
26
+
27
+
28
+ class LoopProcessor(Module, ABC):
29
+ def __init__(self, model: Union[RBLNModel, "rebel.Runtime"]):
30
+ super().__init__()
31
+ self.model = model
32
+
33
+ def __repr__(self) -> str:
34
+ return repr(self.model)
35
+
36
+ def _is_batch_implemented(self) -> bool:
37
+ return self._forward_batch.__func__ is not LoopProcessor._forward_batch
38
+
39
+ def forward(self, *args, force_loop: bool = False, **kwargs) -> Any:
40
+ if not force_loop and self._is_batch_implemented():
41
+ return self._forward_batch(*args, **kwargs)
42
+ else:
43
+ return self._forward_loop(*args, **kwargs)
44
+
45
+ def _forward_loop(self, *args, **kwargs) -> Any:
46
+ batch_size = self._get_batch_size(*args, **kwargs)
47
+
48
+ if not isinstance(batch_size, int) or batch_size == 0:
49
+ return self._process_outputs([])
50
+
51
+ common_inputs = self._prepare_inputs_before_loop(*args, **kwargs)
52
+
53
+ outputs = []
54
+ for i in range(batch_size):
55
+ item_args, item_kwargs = self._prepare_inputs_for_iteration(i, common_inputs, *args, **kwargs)
56
+ item_output = self.model(*item_args, **item_kwargs)
57
+ outputs.append(item_output)
58
+
59
+ return self._process_outputs(outputs, **kwargs)
60
+
61
+ def _forward_batch(self, *args, **kwargs) -> Any:
62
+ raise NotImplementedError("The batch processing logic (_forward_batch) is not implemented in this class.")
63
+
64
+ @abstractmethod
65
+ def _get_batch_size(self, *args, **kwargs) -> int:
66
+ pass
67
+
68
+ @abstractmethod
69
+ def _prepare_inputs_for_iteration(
70
+ self, index: int, common_inputs: Dict[str, Any], *args, **kwargs
71
+ ) -> Tuple[List[Any], Dict[str, Any]]:
72
+ pass
73
+
74
+ def _prepare_inputs_before_loop(self, *args, **kwargs) -> Dict[str, Any]:
75
+ pass
76
+
77
+ @abstractmethod
78
+ def _process_outputs(self, outputs: List[Any], **kwargs) -> Any:
79
+ pass