optimum-rbln 0.8.0.post2__py3-none-any.whl → 0.8.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +24 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +45 -33
- optimum/rbln/diffusers/__init__.py +21 -1
- optimum/rbln/diffusers/configurations/__init__.py +4 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +4 -2
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +70 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +4 -2
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +9 -2
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +1 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +29 -9
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +114 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +28 -12
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +18 -6
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +13 -6
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +12 -6
- optimum/rbln/diffusers/modeling_diffusers.py +72 -65
- optimum/rbln/diffusers/models/__init__.py +4 -0
- optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +17 -1
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +219 -0
- optimum/rbln/diffusers/models/autoencoders/vae.py +45 -8
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +17 -1
- optimum/rbln/diffusers/models/controlnet.py +14 -8
- optimum/rbln/diffusers/models/transformers/__init__.py +1 -0
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +10 -0
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +321 -0
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +2 -0
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +11 -1
- optimum/rbln/diffusers/pipelines/__init__.py +10 -0
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +1 -4
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +102 -0
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +455 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +98 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +98 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +48 -27
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +7 -0
- optimum/rbln/modeling.py +71 -37
- optimum/rbln/modeling_base.py +63 -109
- optimum/rbln/transformers/__init__.py +41 -47
- optimum/rbln/transformers/configuration_generic.py +16 -13
- optimum/rbln/transformers/modeling_generic.py +21 -22
- optimum/rbln/transformers/modeling_rope_utils.py +5 -2
- optimum/rbln/transformers/models/__init__.py +54 -4
- optimum/rbln/transformers/models/{wav2vec2/configuration_wav2vec.py → audio_spectrogram_transformer/__init__.py} +2 -4
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +21 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +28 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +35 -12
- optimum/rbln/transformers/models/bart/bart_architecture.py +14 -1
- optimum/rbln/transformers/models/bart/configuration_bart.py +12 -2
- optimum/rbln/transformers/models/bart/modeling_bart.py +16 -7
- optimum/rbln/transformers/models/bert/configuration_bert.py +18 -3
- optimum/rbln/transformers/models/bert/modeling_bert.py +24 -0
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +15 -3
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +50 -4
- optimum/rbln/transformers/models/clip/configuration_clip.py +15 -5
- optimum/rbln/transformers/models/clip/modeling_clip.py +38 -13
- optimum/rbln/transformers/models/colpali/__init__.py +2 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +221 -0
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +68 -0
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +383 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +111 -14
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +102 -35
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +253 -195
- optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
- optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +27 -0
- optimum/rbln/transformers/models/dpt/configuration_dpt.py +6 -1
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +6 -1
- optimum/rbln/transformers/models/exaone/configuration_exaone.py +24 -1
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +5 -1
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +66 -5
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +24 -1
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +5 -1
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +49 -0
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +3 -3
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +18 -250
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +89 -244
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +4 -1
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +6 -1
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +12 -2
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +41 -4
- optimum/rbln/transformers/models/llama/configuration_llama.py +24 -1
- optimum/rbln/transformers/models/llama/modeling_llama.py +49 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +10 -2
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +32 -4
- optimum/rbln/transformers/models/midm/configuration_midm.py +24 -1
- optimum/rbln/transformers/models/midm/midm_architecture.py +6 -1
- optimum/rbln/transformers/models/midm/modeling_midm.py +66 -5
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +24 -1
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +62 -4
- optimum/rbln/transformers/models/opt/configuration_opt.py +4 -1
- optimum/rbln/transformers/models/opt/modeling_opt.py +10 -0
- optimum/rbln/transformers/models/opt/opt_architecture.py +7 -1
- optimum/rbln/transformers/models/phi/configuration_phi.py +24 -1
- optimum/rbln/transformers/models/phi/modeling_phi.py +49 -0
- optimum/rbln/transformers/models/phi/phi_architecture.py +1 -1
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +24 -1
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +67 -4
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +31 -3
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +54 -25
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +6 -4
- optimum/rbln/transformers/models/resnet/__init__.py +23 -0
- optimum/rbln/transformers/models/resnet/configuration_resnet.py +25 -0
- optimum/rbln/transformers/models/resnet/modeling_resnet.py +26 -0
- optimum/rbln/transformers/models/roberta/__init__.py +24 -0
- optimum/rbln/transformers/{configuration_alias.py → models/roberta/configuration_roberta.py} +12 -28
- optimum/rbln/transformers/{modeling_alias.py → models/roberta/modeling_roberta.py} +14 -28
- optimum/rbln/transformers/models/seq2seq/__init__.py +1 -1
- optimum/rbln/transformers/models/seq2seq/{configuration_seq2seq2.py → configuration_seq2seq.py} +2 -2
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +7 -3
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +41 -3
- optimum/rbln/transformers/models/siglip/configuration_siglip.py +10 -0
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +69 -21
- optimum/rbln/transformers/models/t5/configuration_t5.py +12 -2
- optimum/rbln/transformers/models/t5/modeling_t5.py +56 -8
- optimum/rbln/transformers/models/t5/t5_architecture.py +5 -1
- optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/__init__.py +1 -1
- optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/configuration_time_series_transformer.py +9 -2
- optimum/rbln/transformers/models/{time_series_transformers/modeling_time_series_transformers.py → time_series_transformer/modeling_time_series_transformer.py} +20 -11
- optimum/rbln/transformers/models/vit/__init__.py +19 -0
- optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
- optimum/rbln/transformers/models/vit/modeling_vit.py +25 -0
- optimum/rbln/transformers/models/wav2vec2/__init__.py +1 -1
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +26 -0
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -1
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +10 -1
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +41 -17
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +16 -2
- optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +15 -2
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +12 -3
- optimum/rbln/utils/model_utils.py +20 -0
- optimum/rbln/utils/runtime_utils.py +49 -1
- optimum/rbln/utils/submodule.py +6 -8
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/METADATA +6 -6
- optimum_rbln-0.8.1.dist-info/RECORD +211 -0
- optimum_rbln-0.8.0.post2.dist-info/RECORD +0 -184
- /optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/time_series_transformers_architecture.py +0 -0
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/licenses/LICENSE +0 -0
@@ -43,13 +43,20 @@ class _TextEncoder(torch.nn.Module):
|
|
43
43
|
|
44
44
|
|
45
45
|
class RBLNCLIPTextModel(RBLNModel):
|
46
|
+
"""
|
47
|
+
RBLN optimized CLIP text encoder model.
|
48
|
+
|
49
|
+
This class provides hardware-accelerated inference for CLIP text encoders
|
50
|
+
on RBLN devices, supporting text encoding for multimodal tasks.
|
51
|
+
"""
|
52
|
+
|
46
53
|
@classmethod
|
47
54
|
def wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNCLIPTextModelConfig) -> torch.nn.Module:
|
48
55
|
return _TextEncoder(model).eval()
|
49
56
|
|
50
57
|
@classmethod
|
51
58
|
def update_rbln_config_using_pipe(
|
52
|
-
cls, pipe: "RBLNDiffusionMixin", rbln_config: "RBLNDiffusionMixinConfig",
|
59
|
+
cls, pipe: "RBLNDiffusionMixin", rbln_config: "RBLNDiffusionMixinConfig", submodule_name: str
|
53
60
|
) -> "RBLNDiffusionMixinConfig":
|
54
61
|
return rbln_config
|
55
62
|
|
@@ -81,10 +88,9 @@ class RBLNCLIPTextModel(RBLNModel):
|
|
81
88
|
return output
|
82
89
|
|
83
90
|
def _prepare_output(self, output, return_dict):
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
"""
|
91
|
+
# Prepare model output based on return_dict flag.
|
92
|
+
# This method can be overridden by subclasses to provide task-specific output handling.
|
93
|
+
|
88
94
|
if not return_dict:
|
89
95
|
return (output,) if not isinstance(output, (tuple, list)) else output
|
90
96
|
else:
|
@@ -96,7 +102,12 @@ class RBLNCLIPTextModel(RBLNModel):
|
|
96
102
|
|
97
103
|
|
98
104
|
class RBLNCLIPTextModelWithProjection(RBLNCLIPTextModel):
|
99
|
-
|
105
|
+
"""
|
106
|
+
RBLN optimized CLIP text encoder model with projection layer.
|
107
|
+
|
108
|
+
This class extends RBLNCLIPTextModel with a projection layer for
|
109
|
+
multimodal embedding alignment tasks.
|
110
|
+
"""
|
100
111
|
|
101
112
|
|
102
113
|
class _VisionEncoder(torch.nn.Module):
|
@@ -110,6 +121,13 @@ class _VisionEncoder(torch.nn.Module):
|
|
110
121
|
|
111
122
|
|
112
123
|
class RBLNCLIPVisionModel(RBLNModel):
|
124
|
+
"""
|
125
|
+
RBLN optimized CLIP vision encoder model.
|
126
|
+
|
127
|
+
This class provides hardware-accelerated inference for CLIP vision encoders
|
128
|
+
on RBLN devices, supporting image encoding for multimodal tasks.
|
129
|
+
"""
|
130
|
+
|
113
131
|
@classmethod
|
114
132
|
def wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNCLIPVisionModelConfig) -> torch.nn.Module:
|
115
133
|
return _VisionEncoder(model).eval()
|
@@ -161,17 +179,17 @@ class RBLNCLIPVisionModel(RBLNModel):
|
|
161
179
|
return_dict: bool = None,
|
162
180
|
**kwargs,
|
163
181
|
) -> Union[Tuple, CLIPVisionModelOutput]:
|
164
|
-
if len(kwargs) > 0 and any(kwargs.values()):
|
165
|
-
logger.warning(
|
166
|
-
|
182
|
+
if len(kwargs) > 0 and any(value is not None for value in kwargs.values()):
|
183
|
+
logger.warning(
|
184
|
+
f"Currently, optimum-rbln does not support kwargs {kwargs.keys()} for {self.__class__.__name__}."
|
185
|
+
)
|
167
186
|
output = super().forward(pixel_values, return_dict=return_dict)
|
168
187
|
return output
|
169
188
|
|
170
189
|
def _prepare_output(self, output, return_dict):
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
"""
|
190
|
+
# Prepare model output based on return_dict flag.
|
191
|
+
# This method can be overridden by subclasses to provide task-specific output handling.
|
192
|
+
|
175
193
|
if not return_dict:
|
176
194
|
return (output,) if not isinstance(output, (tuple, list)) else output
|
177
195
|
else:
|
@@ -183,6 +201,13 @@ class RBLNCLIPVisionModel(RBLNModel):
|
|
183
201
|
|
184
202
|
|
185
203
|
class RBLNCLIPVisionModelWithProjection(RBLNCLIPVisionModel):
|
204
|
+
"""
|
205
|
+
RBLN optimized CLIP vision encoder model with projection layer.
|
206
|
+
|
207
|
+
This class extends RBLNCLIPVisionModel with a projection layer for
|
208
|
+
multimodal embedding alignment tasks.
|
209
|
+
"""
|
210
|
+
|
186
211
|
def forward(
|
187
212
|
self,
|
188
213
|
pixel_values: Optional[torch.FloatTensor] = None,
|
@@ -0,0 +1,221 @@
|
|
1
|
+
from typing import List, Optional, Tuple, Union
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from torch import nn
|
5
|
+
from transformers import GemmaForCausalLM, GemmaModel
|
6
|
+
|
7
|
+
from ..decoderonly.decoderonly_architecture import (
|
8
|
+
RotaryEmbedding,
|
9
|
+
apply_rotary_pos_emb,
|
10
|
+
)
|
11
|
+
|
12
|
+
|
13
|
+
def slice_and_unsqueeze_cos_sin(cos, sin, position_ids):
|
14
|
+
"""Slice cos[cache_position], sin[cache_position] vector for the query."""
|
15
|
+
cos = cos[position_ids[0]][None, None, None, :, :]
|
16
|
+
sin = sin[position_ids[0]][None, None, None, :, :]
|
17
|
+
|
18
|
+
return cos, sin
|
19
|
+
|
20
|
+
|
21
|
+
class RBLNColPaliForRetrievalWrapper(nn.Module):
|
22
|
+
def __init__(
|
23
|
+
self,
|
24
|
+
causal_lm: GemmaForCausalLM,
|
25
|
+
embedding_proj_layer: nn.Module,
|
26
|
+
max_seq_len: int,
|
27
|
+
output_hidden_states: bool = False,
|
28
|
+
):
|
29
|
+
super().__init__()
|
30
|
+
self.text_config = causal_lm.config
|
31
|
+
self.rotary_emb = self.get_rotary_emb(max_seq_len=max_seq_len)
|
32
|
+
|
33
|
+
self.output_hidden_states = output_hidden_states
|
34
|
+
self.language_model = self.convert_to_rbln_language_model(causal_lm.model, max_seq_len)
|
35
|
+
|
36
|
+
self.num_hidden_layers = getattr(self.text_config, "num_hidden_layers", None)
|
37
|
+
self.embedding_proj_layer = embedding_proj_layer
|
38
|
+
|
39
|
+
def get_rotary_emb(self, max_seq_len):
|
40
|
+
return RotaryEmbedding(config=self.text_config, max_seq_len_cached=max_seq_len)
|
41
|
+
|
42
|
+
def convert_to_rbln_language_model(self, gemma_model: GemmaModel, max_seq_len: int):
|
43
|
+
new_layers = []
|
44
|
+
for layer in gemma_model.layers:
|
45
|
+
new_self_attn = ColPaliAttention(
|
46
|
+
layer.self_attn,
|
47
|
+
)
|
48
|
+
new_layer = ColPaliLayer(layer, new_self_attn)
|
49
|
+
new_layers.append(new_layer)
|
50
|
+
|
51
|
+
new_model = ColPaliModel(
|
52
|
+
gemma_model,
|
53
|
+
new_layers,
|
54
|
+
output_hidden_states=self.output_hidden_states,
|
55
|
+
max_seq_len=max_seq_len,
|
56
|
+
)
|
57
|
+
|
58
|
+
return new_model
|
59
|
+
|
60
|
+
def forward(self, inputs_embeds: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor):
|
61
|
+
attention_mask = (1.0 - attention_mask) * torch.finfo(torch.float32).min
|
62
|
+
attention_mask = attention_mask[:, None, None, None, :]
|
63
|
+
|
64
|
+
hidden_states, all_hidden_states = self.language_model(
|
65
|
+
inputs_embeds=inputs_embeds,
|
66
|
+
attention_mask=attention_mask,
|
67
|
+
rotary_emb=self.rotary_emb,
|
68
|
+
position_ids=position_ids,
|
69
|
+
)
|
70
|
+
embeddings = self.embedding_proj_layer(hidden_states)
|
71
|
+
|
72
|
+
if self.output_hidden_states:
|
73
|
+
return embeddings, all_hidden_states
|
74
|
+
else:
|
75
|
+
return embeddings
|
76
|
+
|
77
|
+
|
78
|
+
class ColPaliModel(nn.Module):
|
79
|
+
def __init__(
|
80
|
+
self, model, layers: List["ColPaliLayer"], output_hidden_states: bool = False, max_seq_len: int = 2048
|
81
|
+
):
|
82
|
+
super().__init__()
|
83
|
+
self._original_mod = model
|
84
|
+
self.layers = nn.ModuleList(layers)
|
85
|
+
self.output_hidden_states = output_hidden_states
|
86
|
+
self.norm = self._original_mod.norm
|
87
|
+
self.hidden_size = self._original_mod.config.hidden_size
|
88
|
+
self.max_seq_len = max_seq_len
|
89
|
+
|
90
|
+
def forward(
|
91
|
+
self,
|
92
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
93
|
+
attention_mask: torch.Tensor = None,
|
94
|
+
rotary_emb: Optional[Union[nn.Module, torch.Tensor]] = None,
|
95
|
+
position_ids: Optional[torch.Tensor] = None,
|
96
|
+
):
|
97
|
+
hidden_states = inputs_embeds * self.hidden_size**0.5
|
98
|
+
|
99
|
+
cos, sin = rotary_emb(hidden_states, self.max_seq_len) # dtype carrier, max_seq_len
|
100
|
+
cos, sin = slice_and_unsqueeze_cos_sin(cos, sin, position_ids)
|
101
|
+
|
102
|
+
all_hidden_states = () if self.output_hidden_states else None
|
103
|
+
for layer in self.layers:
|
104
|
+
if self.output_hidden_states:
|
105
|
+
all_hidden_states += (hidden_states,)
|
106
|
+
|
107
|
+
hidden_states = layer(
|
108
|
+
hidden_states=hidden_states,
|
109
|
+
attention_mask=attention_mask,
|
110
|
+
cos=cos,
|
111
|
+
sin=sin,
|
112
|
+
)
|
113
|
+
hidden_states = self.norm(hidden_states)
|
114
|
+
|
115
|
+
if self.output_hidden_states:
|
116
|
+
all_hidden_states += (hidden_states,)
|
117
|
+
|
118
|
+
return hidden_states, all_hidden_states
|
119
|
+
|
120
|
+
|
121
|
+
class ColPaliLayer(nn.Module):
|
122
|
+
def __init__(self, layer, self_attn: "ColPaliAttention"):
|
123
|
+
super().__init__()
|
124
|
+
self._original_mod = layer
|
125
|
+
self.self_attn = self_attn
|
126
|
+
self.mlp = layer.mlp
|
127
|
+
self.input_layernorm = layer.input_layernorm
|
128
|
+
self.post_attention_layernorm = layer.post_attention_layernorm
|
129
|
+
|
130
|
+
def forward(
|
131
|
+
self,
|
132
|
+
hidden_states: torch.Tensor,
|
133
|
+
attention_mask: Optional[torch.Tensor] = None,
|
134
|
+
cos: Optional[torch.Tensor] = None,
|
135
|
+
sin: Optional[torch.Tensor] = None,
|
136
|
+
) -> Tuple[torch.FloatTensor]:
|
137
|
+
residual = hidden_states
|
138
|
+
hidden_states = self.input_layernorm(hidden_states)
|
139
|
+
|
140
|
+
# Self Attention
|
141
|
+
hidden_states = self.self_attn(
|
142
|
+
hidden_states=hidden_states,
|
143
|
+
attention_mask=attention_mask,
|
144
|
+
cos=cos,
|
145
|
+
sin=sin,
|
146
|
+
)
|
147
|
+
hidden_states = residual + hidden_states
|
148
|
+
|
149
|
+
# Fully Connected
|
150
|
+
residual = hidden_states
|
151
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
152
|
+
hidden_states = self.mlp(hidden_states)
|
153
|
+
hidden_states = residual + hidden_states
|
154
|
+
|
155
|
+
return hidden_states
|
156
|
+
|
157
|
+
|
158
|
+
class ColPaliAttention(nn.Module):
|
159
|
+
def __init__(self, self_attn):
|
160
|
+
super().__init__()
|
161
|
+
self._original_mod = self_attn
|
162
|
+
self.num_heads = getattr(self._original_mod, "num_heads", None) or getattr(
|
163
|
+
self._original_mod.config, "num_attention_heads"
|
164
|
+
)
|
165
|
+
self.head_dim = self._original_mod.head_dim
|
166
|
+
self.scaling = self.head_dim**-0.5
|
167
|
+
|
168
|
+
if hasattr(self._original_mod, "num_key_value_heads"):
|
169
|
+
self.num_key_value_heads = self._original_mod.num_key_value_heads
|
170
|
+
elif hasattr(self._original_mod, "config") and hasattr(self._original_mod.config, "num_key_value_heads"):
|
171
|
+
self.num_key_value_heads = self._original_mod.config.num_key_value_heads
|
172
|
+
else:
|
173
|
+
self.num_key_value_heads = self.num_heads
|
174
|
+
|
175
|
+
self.__post_init__()
|
176
|
+
|
177
|
+
def __post_init__(self):
|
178
|
+
self.q_proj = self._original_mod.q_proj
|
179
|
+
self.k_proj = self._original_mod.k_proj
|
180
|
+
self.v_proj = self._original_mod.v_proj
|
181
|
+
self.o_proj = self._original_mod.o_proj
|
182
|
+
|
183
|
+
def projection(self, hidden_states) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
184
|
+
query_states = self.q_proj(hidden_states)
|
185
|
+
key_states = self.k_proj(hidden_states)
|
186
|
+
value_states = self.v_proj(hidden_states)
|
187
|
+
|
188
|
+
return query_states, key_states, value_states
|
189
|
+
|
190
|
+
def forward(
|
191
|
+
self,
|
192
|
+
hidden_states: torch.Tensor,
|
193
|
+
attention_mask: torch.Tensor,
|
194
|
+
cos: Optional[torch.Tensor] = None,
|
195
|
+
sin: Optional[torch.Tensor] = None,
|
196
|
+
):
|
197
|
+
batch_size, query_length, _ = hidden_states.size()
|
198
|
+
|
199
|
+
query_states, key_states, value_states = self.projection(hidden_states=hidden_states)
|
200
|
+
|
201
|
+
query_states = query_states.view(batch_size, query_length, 1, self.num_heads, self.head_dim).transpose(1, 3)
|
202
|
+
key_states = key_states.view(batch_size, query_length, 1, self.num_key_value_heads, self.head_dim).transpose(
|
203
|
+
1, 3
|
204
|
+
)
|
205
|
+
value_states = value_states.view(
|
206
|
+
batch_size, query_length, 1, self.num_key_value_heads, self.head_dim
|
207
|
+
).transpose(1, 3)
|
208
|
+
|
209
|
+
if cos is not None and sin is not None:
|
210
|
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
211
|
+
|
212
|
+
attn_weights = torch.matmul(query_states, key_states.transpose(3, 4)) * self.scaling
|
213
|
+
attn_weights = attn_weights + attention_mask
|
214
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32)
|
215
|
+
attn_output = torch.matmul(attn_weights, value_states)
|
216
|
+
attn_output = attn_output.transpose(1, 3)
|
217
|
+
|
218
|
+
attn_output = attn_output.reshape(batch_size, query_length, -1)
|
219
|
+
attn_output = self.o_proj(attn_output)
|
220
|
+
|
221
|
+
return attn_output
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
from typing import Any, Dict, List, Optional, Union
|
15
|
+
|
16
|
+
from ....configuration_utils import RBLNModelConfig
|
17
|
+
|
18
|
+
|
19
|
+
class RBLNColPaliForRetrievalConfig(RBLNModelConfig):
|
20
|
+
"""
|
21
|
+
Configuration class for RBLN ColPali models for document retrieval.
|
22
|
+
|
23
|
+
This class extends RBLNModelConfig with specific configurations for ColPali models,
|
24
|
+
including vision tower settings and multi-sequence length support.
|
25
|
+
|
26
|
+
Example usage:
|
27
|
+
```python
|
28
|
+
from optimum.rbln import RBLNColPaliForRetrieval, RBLNColPaliForRetrievalConfig
|
29
|
+
|
30
|
+
# Create a configuration object
|
31
|
+
config = RBLNColPaliForRetrievalConfig(
|
32
|
+
max_seq_lens=1152,
|
33
|
+
output_hidden_states=False,
|
34
|
+
tensor_parallel_size=4
|
35
|
+
)
|
36
|
+
|
37
|
+
# Use the configuration with from_pretrained
|
38
|
+
model = RBLNColPaliForRetrieval.from_pretrained(
|
39
|
+
"vidore/colpali-v1.3-hf",
|
40
|
+
export=True,
|
41
|
+
rbln_config=config
|
42
|
+
)
|
43
|
+
```
|
44
|
+
"""
|
45
|
+
|
46
|
+
submodules = ["vision_tower"]
|
47
|
+
|
48
|
+
def __init__(
|
49
|
+
self,
|
50
|
+
max_seq_lens: Union[int, List[int]] = None,
|
51
|
+
output_hidden_states: Optional[bool] = None,
|
52
|
+
vision_tower: Optional[RBLNModelConfig] = None,
|
53
|
+
**kwargs: Dict[str, Any],
|
54
|
+
):
|
55
|
+
"""
|
56
|
+
Args:
|
57
|
+
vision_tower (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
|
58
|
+
max_seq_lens (Union[int, List[int]]): The maximum sequence lengths for the language model.
|
59
|
+
This can be multiple values, and the model will be compiled for each max_seq_len, allowing selection of the most appropriate max_seq_len at inference time.
|
60
|
+
output_hidden_states (Optional[bool]): Whether to output the hidden states of the language model.
|
61
|
+
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
62
|
+
Raises:
|
63
|
+
ValueError: If batch_size is not a positive integer.
|
64
|
+
"""
|
65
|
+
super().__init__(**kwargs)
|
66
|
+
self.vision_tower = vision_tower
|
67
|
+
self.max_seq_lens = max_seq_lens
|
68
|
+
self.output_hidden_states = output_hidden_states
|