optimum-rbln 0.8.0.post2__py3-none-any.whl → 0.8.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +24 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +45 -33
- optimum/rbln/diffusers/__init__.py +21 -1
- optimum/rbln/diffusers/configurations/__init__.py +4 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +4 -2
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +70 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +4 -2
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +9 -2
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +1 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +29 -9
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +114 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +28 -12
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +18 -6
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +13 -6
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +12 -6
- optimum/rbln/diffusers/modeling_diffusers.py +72 -65
- optimum/rbln/diffusers/models/__init__.py +4 -0
- optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +17 -1
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +219 -0
- optimum/rbln/diffusers/models/autoencoders/vae.py +45 -8
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +17 -1
- optimum/rbln/diffusers/models/controlnet.py +14 -8
- optimum/rbln/diffusers/models/transformers/__init__.py +1 -0
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +10 -0
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +321 -0
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +2 -0
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +11 -1
- optimum/rbln/diffusers/pipelines/__init__.py +10 -0
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +1 -4
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +102 -0
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +455 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +98 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +98 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +48 -27
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +7 -0
- optimum/rbln/modeling.py +71 -37
- optimum/rbln/modeling_base.py +63 -109
- optimum/rbln/transformers/__init__.py +41 -47
- optimum/rbln/transformers/configuration_generic.py +16 -13
- optimum/rbln/transformers/modeling_generic.py +21 -22
- optimum/rbln/transformers/modeling_rope_utils.py +5 -2
- optimum/rbln/transformers/models/__init__.py +54 -4
- optimum/rbln/transformers/models/{wav2vec2/configuration_wav2vec.py → audio_spectrogram_transformer/__init__.py} +2 -4
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +21 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +28 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +35 -12
- optimum/rbln/transformers/models/bart/bart_architecture.py +14 -1
- optimum/rbln/transformers/models/bart/configuration_bart.py +12 -2
- optimum/rbln/transformers/models/bart/modeling_bart.py +16 -7
- optimum/rbln/transformers/models/bert/configuration_bert.py +18 -3
- optimum/rbln/transformers/models/bert/modeling_bert.py +24 -0
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +15 -3
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +50 -4
- optimum/rbln/transformers/models/clip/configuration_clip.py +15 -5
- optimum/rbln/transformers/models/clip/modeling_clip.py +38 -13
- optimum/rbln/transformers/models/colpali/__init__.py +2 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +221 -0
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +68 -0
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +383 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +111 -14
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +102 -35
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +253 -195
- optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
- optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +27 -0
- optimum/rbln/transformers/models/dpt/configuration_dpt.py +6 -1
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +6 -1
- optimum/rbln/transformers/models/exaone/configuration_exaone.py +24 -1
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +5 -1
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +66 -5
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +24 -1
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +5 -1
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +49 -0
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +3 -3
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +18 -250
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +89 -244
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +4 -1
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +6 -1
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +12 -2
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +41 -4
- optimum/rbln/transformers/models/llama/configuration_llama.py +24 -1
- optimum/rbln/transformers/models/llama/modeling_llama.py +49 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +10 -2
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +32 -4
- optimum/rbln/transformers/models/midm/configuration_midm.py +24 -1
- optimum/rbln/transformers/models/midm/midm_architecture.py +6 -1
- optimum/rbln/transformers/models/midm/modeling_midm.py +66 -5
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +24 -1
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +62 -4
- optimum/rbln/transformers/models/opt/configuration_opt.py +4 -1
- optimum/rbln/transformers/models/opt/modeling_opt.py +10 -0
- optimum/rbln/transformers/models/opt/opt_architecture.py +7 -1
- optimum/rbln/transformers/models/phi/configuration_phi.py +24 -1
- optimum/rbln/transformers/models/phi/modeling_phi.py +49 -0
- optimum/rbln/transformers/models/phi/phi_architecture.py +1 -1
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +24 -1
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +67 -4
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +31 -3
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +54 -25
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +6 -4
- optimum/rbln/transformers/models/resnet/__init__.py +23 -0
- optimum/rbln/transformers/models/resnet/configuration_resnet.py +25 -0
- optimum/rbln/transformers/models/resnet/modeling_resnet.py +26 -0
- optimum/rbln/transformers/models/roberta/__init__.py +24 -0
- optimum/rbln/transformers/{configuration_alias.py → models/roberta/configuration_roberta.py} +12 -28
- optimum/rbln/transformers/{modeling_alias.py → models/roberta/modeling_roberta.py} +14 -28
- optimum/rbln/transformers/models/seq2seq/__init__.py +1 -1
- optimum/rbln/transformers/models/seq2seq/{configuration_seq2seq2.py → configuration_seq2seq.py} +2 -2
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +7 -3
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +41 -3
- optimum/rbln/transformers/models/siglip/configuration_siglip.py +10 -0
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +69 -21
- optimum/rbln/transformers/models/t5/configuration_t5.py +12 -2
- optimum/rbln/transformers/models/t5/modeling_t5.py +56 -8
- optimum/rbln/transformers/models/t5/t5_architecture.py +5 -1
- optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/__init__.py +1 -1
- optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/configuration_time_series_transformer.py +9 -2
- optimum/rbln/transformers/models/{time_series_transformers/modeling_time_series_transformers.py → time_series_transformer/modeling_time_series_transformer.py} +20 -11
- optimum/rbln/transformers/models/vit/__init__.py +19 -0
- optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
- optimum/rbln/transformers/models/vit/modeling_vit.py +25 -0
- optimum/rbln/transformers/models/wav2vec2/__init__.py +1 -1
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +26 -0
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -1
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +10 -1
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +41 -17
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +16 -2
- optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +15 -2
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +12 -3
- optimum/rbln/utils/model_utils.py +20 -0
- optimum/rbln/utils/runtime_utils.py +49 -1
- optimum/rbln/utils/submodule.py +6 -8
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/METADATA +6 -6
- optimum_rbln-0.8.1.dist-info/RECORD +211 -0
- optimum_rbln-0.8.0.post2.dist-info/RECORD +0 -184
- /optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/time_series_transformers_architecture.py +0 -0
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/licenses/LICENSE +0 -0
@@ -16,4 +16,27 @@ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausa
|
|
16
16
|
|
17
17
|
|
18
18
|
class RBLNLlamaForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
19
|
-
|
19
|
+
"""
|
20
|
+
Configuration class for RBLN Llama models.
|
21
|
+
|
22
|
+
This class is an alias of RBLNDecoderOnlyModelForCausalLMConfig.
|
23
|
+
|
24
|
+
Example usage:
|
25
|
+
```python
|
26
|
+
from optimum.rbln import RBLNLlamaForCausalLM, RBLNLlamaForCausalLMConfig
|
27
|
+
|
28
|
+
# Create a configuration object
|
29
|
+
config = RBLNLlamaForCausalLMConfig(
|
30
|
+
batch_size=1,
|
31
|
+
max_seq_len=4096,
|
32
|
+
tensor_parallel_size=4
|
33
|
+
)
|
34
|
+
|
35
|
+
# Use the configuration with from_pretrained
|
36
|
+
model = RBLNLlamaForCausalLM.from_pretrained(
|
37
|
+
"meta-llama/Llama-2-7b-hf",
|
38
|
+
export=True,
|
39
|
+
rbln_config=config
|
40
|
+
)
|
41
|
+
```
|
42
|
+
"""
|
@@ -27,8 +27,57 @@ class RBLNLlamaForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
27
27
|
|
28
28
|
A class to convert and run pre-trained transformers based LlamaForCausalLM model on RBLN devices.
|
29
29
|
It implements the methods to convert a pre-trained transformers LlamaForCausalLM model into a RBLN transformer model by:
|
30
|
+
|
30
31
|
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
31
32
|
- compiling the resulting graph using the RBLN compiler.
|
33
|
+
|
34
|
+
**Configuration:**
|
35
|
+
This model uses [`RBLNLlamaForCausalLMConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
|
36
|
+
the `rbln_config` parameter should be an instance of [`RBLNLlamaForCausalLMConfig`] or a dictionary conforming to its structure.
|
37
|
+
|
38
|
+
See the [`RBLNLlamaForCausalLMConfig`] class for all available configuration options.
|
39
|
+
|
40
|
+
Examples:
|
41
|
+
```python
|
42
|
+
from optimum.rbln import RBLNLlamaForCausalLM
|
43
|
+
|
44
|
+
# Simple usage using rbln_* arguments
|
45
|
+
# `max_seq_len` is automatically inferred from the model config
|
46
|
+
model = RBLNLlamaForCausalLM.from_pretrained(
|
47
|
+
"meta-llama/Llama-2-7b-hf",
|
48
|
+
export=True,
|
49
|
+
rbln_batch_size=1,
|
50
|
+
rbln_tensor_parallel_size=4,
|
51
|
+
)
|
52
|
+
|
53
|
+
|
54
|
+
# Using a config dictionary
|
55
|
+
rbln_config = {
|
56
|
+
"batch_size": 1,
|
57
|
+
"max_seq_len": 4096,
|
58
|
+
"tensor_parallel_size": 4,
|
59
|
+
}
|
60
|
+
model = RBLNLlamaForCausalLM.from_pretrained(
|
61
|
+
"meta-llama/Llama-2-7b-hf",
|
62
|
+
export=True,
|
63
|
+
rbln_config=rbln_config
|
64
|
+
)
|
65
|
+
|
66
|
+
|
67
|
+
# Using a RBLNLlamaForCausalLMConfig instance (recommended for type checking)
|
68
|
+
from optimum.rbln import RBLNLlamaForCausalLMConfig
|
69
|
+
|
70
|
+
config = RBLNLlamaForCausalLMConfig(
|
71
|
+
batch_size=1,
|
72
|
+
max_seq_len=4096,
|
73
|
+
tensor_parallel_size=4
|
74
|
+
)
|
75
|
+
model = RBLNLlamaForCausalLM.from_pretrained(
|
76
|
+
"meta-llama/Llama-2-7b-hf",
|
77
|
+
export=True,
|
78
|
+
rbln_config=config
|
79
|
+
)
|
80
|
+
```
|
32
81
|
"""
|
33
82
|
|
34
83
|
_decoder_wrapper_cls = LlamaWrapper
|
@@ -12,12 +12,20 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
|
-
from typing import Optional
|
15
|
+
from typing import Any, Dict, Optional
|
16
16
|
|
17
17
|
from ....configuration_utils import RBLNModelConfig
|
18
18
|
|
19
19
|
|
20
20
|
class RBLNLlavaNextForConditionalGenerationConfig(RBLNModelConfig):
|
21
|
+
"""
|
22
|
+
Configuration class for RBLNLlavaNextForConditionalGeneration.
|
23
|
+
|
24
|
+
This configuration class stores the configuration parameters specific to
|
25
|
+
RBLN-optimized LLaVA-Next models for multimodal conditional generation tasks
|
26
|
+
that combine vision and language processing capabilities.
|
27
|
+
"""
|
28
|
+
|
21
29
|
submodules = ["vision_tower", "language_model"]
|
22
30
|
|
23
31
|
def __init__(
|
@@ -25,7 +33,7 @@ class RBLNLlavaNextForConditionalGenerationConfig(RBLNModelConfig):
|
|
25
33
|
batch_size: Optional[int] = None,
|
26
34
|
vision_tower: Optional[RBLNModelConfig] = None,
|
27
35
|
language_model: Optional[RBLNModelConfig] = None,
|
28
|
-
**kwargs,
|
36
|
+
**kwargs: Dict[str, Any],
|
29
37
|
):
|
30
38
|
"""
|
31
39
|
Args:
|
@@ -109,6 +109,36 @@ class LoopProjector:
|
|
109
109
|
|
110
110
|
|
111
111
|
class RBLNLlavaNextForConditionalGeneration(RBLNModel):
|
112
|
+
"""
|
113
|
+
RBLNLlavaNextForConditionalGeneration is a multi-modal model that combines vision and language processing capabilities,
|
114
|
+
optimized for RBLN NPUs. It is designed for conditional generation tasks that involve both image and text inputs.
|
115
|
+
|
116
|
+
This model inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
117
|
+
|
118
|
+
Important Note:
|
119
|
+
This model includes a Large Language Model (LLM) as a submodule. For optimal performance, it is highly recommended to use
|
120
|
+
tensor parallelism for the language model. This can be achieved by using the `rbln_config` parameter in the
|
121
|
+
`from_pretrained` method. Refer to the `from_pretrained` documentation and the RBLNLlavaNextForConditionalGenerationConfig class for details.
|
122
|
+
|
123
|
+
Examples:
|
124
|
+
```python
|
125
|
+
from optimum.rbln import RBLNLlavaNextForConditionalGeneration
|
126
|
+
|
127
|
+
model = RBLNLlavaNextForConditionalGeneration.from_pretrained(
|
128
|
+
"llava-hf/llava-v1.6-mistral-7b-hf",
|
129
|
+
export=True,
|
130
|
+
rbln_config={
|
131
|
+
"language_model": {
|
132
|
+
"tensor_parallel_size": 4,
|
133
|
+
"use_inputs_embeds": True, # In Llava-Next, language model must use inputs_embeds as input.
|
134
|
+
},
|
135
|
+
},
|
136
|
+
)
|
137
|
+
|
138
|
+
model.save_pretrained("compiled-llava-next-mistral-7b-hf")
|
139
|
+
```
|
140
|
+
"""
|
141
|
+
|
112
142
|
auto_model_class = AutoModelForVision2Seq
|
113
143
|
_rbln_submodules = [
|
114
144
|
{"name": "vision_tower"},
|
@@ -136,10 +166,8 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
|
|
136
166
|
subfolder: str,
|
137
167
|
rbln_config: RBLNModelConfig,
|
138
168
|
):
|
139
|
-
|
140
|
-
|
141
|
-
store the torch tensor, weight, etc. in this function.
|
142
|
-
"""
|
169
|
+
# If you are unavoidably running on a CPU rather than an RBLN device,
|
170
|
+
# store the torch tensor, weight, etc. in this function.
|
143
171
|
save_dict = {}
|
144
172
|
save_dict["image_newline"] = model.image_newline
|
145
173
|
torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
|
@@ -16,4 +16,27 @@ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausa
|
|
16
16
|
|
17
17
|
|
18
18
|
class RBLNMidmLMHeadModelConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
19
|
-
|
19
|
+
"""
|
20
|
+
Configuration class for MIDM models.
|
21
|
+
|
22
|
+
This class is an alias of RBLNDecoderOnlyModelForCausalLMConfig.
|
23
|
+
|
24
|
+
Example usage:
|
25
|
+
```python
|
26
|
+
from optimum.rbln import RBLNMidmLMHeadModel, RBLNMidmLMHeadModelConfig
|
27
|
+
|
28
|
+
# Create a configuration object
|
29
|
+
config = RBLNMidmLMHeadModelConfig(
|
30
|
+
batch_size=1,
|
31
|
+
max_seq_len=4096,
|
32
|
+
tensor_parallel_size=4
|
33
|
+
)
|
34
|
+
|
35
|
+
# Use the configuration with from_pretrained
|
36
|
+
model = RBLNMidmLMHeadModel.from_pretrained(
|
37
|
+
"KT-AI/midm-bitext-S-7B-inst-v1",
|
38
|
+
export=True,
|
39
|
+
rbln_config=config
|
40
|
+
)
|
41
|
+
```
|
42
|
+
"""
|
@@ -68,7 +68,12 @@ class MidmLMHeadModelWrapper(DecoderOnlyWrapper):
|
|
68
68
|
)
|
69
69
|
new_layer = MidmLayer(layer, new_self_attn)
|
70
70
|
new_layers.append(new_layer)
|
71
|
-
new_model = MidmModel(
|
71
|
+
new_model = MidmModel(
|
72
|
+
causal_lm.transformer,
|
73
|
+
new_layers,
|
74
|
+
max_seq_len=max_seq_len,
|
75
|
+
sliding_window_layers=self.sliding_window_layers,
|
76
|
+
)
|
72
77
|
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
73
78
|
return new_causal_lm
|
74
79
|
|
@@ -12,7 +12,11 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
|
+
import inspect
|
16
|
+
from typing import Any, Callable
|
17
|
+
|
15
18
|
from transformers import AutoModelForCausalLM
|
19
|
+
from transformers.generation.utils import GenerationMixin
|
16
20
|
|
17
21
|
from ....utils import logging
|
18
22
|
from ..decoderonly import RBLNDecoderOnlyModelForCausalLM
|
@@ -24,22 +28,79 @@ logger = logging.get_logger(__name__)
|
|
24
28
|
|
25
29
|
class RBLNMidmLMHeadModel(RBLNDecoderOnlyModelForCausalLM):
|
26
30
|
"""
|
27
|
-
The
|
28
|
-
|
31
|
+
The MIDM Model transformer with a language modeling head (linear layer) on top.
|
32
|
+
This model inherits from [`RBLNDecoderOnlyModelForCausalLM`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
29
33
|
|
30
|
-
|
31
|
-
|
34
|
+
A class to convert and run pre-trained transformers based MidmForCausalLM model on RBLN devices.
|
35
|
+
It implements the methods to convert a pre-trained transformers MidmForCausalLM model into a RBLN transformer model by:
|
32
36
|
|
33
|
-
It implements the methods to convert a pre-trained transformers Midm model into a RBLN transformer model by:
|
34
37
|
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
35
38
|
- compiling the resulting graph using the RBLN compiler.
|
36
39
|
|
40
|
+
**Configuration:**
|
41
|
+
This model uses [`RBLNMidmLMHeadModelConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
|
42
|
+
the `rbln_config` parameter should be an instance of [`RBLNMidmLMHeadModelConfig`] or a dictionary conforming to its structure.
|
43
|
+
|
44
|
+
See the [`RBLNMidmLMHeadModelConfig`] class for all available configuration options.
|
45
|
+
|
46
|
+
Examples:
|
47
|
+
```python
|
48
|
+
from optimum.rbln import RBLNMidmLMHeadModel
|
49
|
+
|
50
|
+
# Simple usage using rbln_* arguments
|
51
|
+
# `max_seq_len` is automatically inferred from the model config
|
52
|
+
model = RBLNMidmLMHeadModel.from_pretrained(
|
53
|
+
"KT-AI/midm-bitext-S-7B-inst-v1",
|
54
|
+
export=True,
|
55
|
+
rbln_batch_size=1,
|
56
|
+
rbln_tensor_parallel_size=4,
|
57
|
+
)
|
58
|
+
|
59
|
+
|
60
|
+
# Using a config dictionary
|
61
|
+
rbln_config = {
|
62
|
+
"batch_size": 1,
|
63
|
+
"max_seq_len": 4096,
|
64
|
+
"tensor_parallel_size": 4,
|
65
|
+
}
|
66
|
+
model = RBLNMidmLMHeadModel.from_pretrained(
|
67
|
+
"KT-AI/midm-bitext-S-7B-inst-v1",
|
68
|
+
export=True,
|
69
|
+
rbln_config=rbln_config
|
70
|
+
)
|
71
|
+
|
72
|
+
|
73
|
+
# Using a RBLNMidmLMHeadModelConfig instance (recommended for type checking)
|
74
|
+
from optimum.rbln import RBLNMidmLMHeadModelConfig
|
75
|
+
|
76
|
+
config = RBLNMidmLMHeadModelConfig(
|
77
|
+
batch_size=1,
|
78
|
+
max_seq_len=4096,
|
79
|
+
tensor_parallel_size=4
|
80
|
+
)
|
81
|
+
model = RBLNMidmLMHeadModel.from_pretrained(
|
82
|
+
"KT-AI/midm-bitext-S-7B-inst-v1",
|
83
|
+
export=True,
|
84
|
+
rbln_config=config
|
85
|
+
)
|
86
|
+
```
|
37
87
|
"""
|
38
88
|
|
39
89
|
_decoder_wrapper_cls = MidmLMHeadModelWrapper
|
40
90
|
_hf_class = AutoModelForCausalLM
|
91
|
+
_supports_cache_class = True
|
41
92
|
|
42
93
|
@classmethod
|
43
94
|
def from_pretrained(cls, *args, **kwargs):
|
44
95
|
kwargs.setdefault("trust_remote_code", True)
|
45
96
|
return super().from_pretrained(*args, **kwargs)
|
97
|
+
|
98
|
+
def __getattr__(self, __name: str) -> Any:
|
99
|
+
def redirect(func):
|
100
|
+
return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
|
101
|
+
|
102
|
+
val = getattr(GenerationMixin, __name)
|
103
|
+
|
104
|
+
if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
|
105
|
+
return redirect(val)
|
106
|
+
return val
|
@@ -16,4 +16,27 @@ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausa
|
|
16
16
|
|
17
17
|
|
18
18
|
class RBLNMistralForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
19
|
-
|
19
|
+
"""
|
20
|
+
Configuration class for RBLN Mistral models.
|
21
|
+
|
22
|
+
This class is an alias of RBLNDecoderOnlyModelForCausalLMConfig.
|
23
|
+
|
24
|
+
Example usage:
|
25
|
+
```python
|
26
|
+
from optimum.rbln import RBLNMistralForCausalLM, RBLNMistralForCausalLMConfig
|
27
|
+
|
28
|
+
# Create a configuration object
|
29
|
+
config = RBLNMistralForCausalLMConfig(
|
30
|
+
batch_size=1,
|
31
|
+
max_seq_len=4096,
|
32
|
+
tensor_parallel_size=4
|
33
|
+
)
|
34
|
+
|
35
|
+
# Use the configuration with from_pretrained
|
36
|
+
model = RBLNMistralForCausalLM.from_pretrained(
|
37
|
+
"mistralai/Mistral-7B-v0.1",
|
38
|
+
export=True,
|
39
|
+
rbln_config=config
|
40
|
+
)
|
41
|
+
```
|
42
|
+
"""
|
@@ -12,8 +12,10 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
|
+
from transformers import PretrainedConfig
|
16
|
+
|
15
17
|
from ....utils import logging
|
16
|
-
from ...models.decoderonly import RBLNDecoderOnlyModelForCausalLM
|
18
|
+
from ...models.decoderonly import RBLNDecoderOnlyModelForCausalLM, RBLNDecoderOnlyModelForCausalLMConfig
|
17
19
|
from .mistral_architecture import MistralForCausalLMWrapper
|
18
20
|
|
19
21
|
|
@@ -22,13 +24,69 @@ logger = logging.get_logger(__name__)
|
|
22
24
|
|
23
25
|
class RBLNMistralForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
24
26
|
"""
|
25
|
-
The
|
27
|
+
The Mistral Model transformer with a language modeling head (linear layer) on top.
|
26
28
|
This model inherits from [`RBLNDecoderOnlyModelForCausalLM`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
27
29
|
|
28
|
-
A class to convert and run pre-trained transformers based
|
29
|
-
It implements the methods to convert a pre-trained transformers
|
30
|
+
A class to convert and run pre-trained transformers based MistralForCausalLM model on RBLN devices.
|
31
|
+
It implements the methods to convert a pre-trained transformers MistralForCausalLM model into a RBLN transformer model by:
|
30
32
|
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
31
33
|
- compiling the resulting graph using the RBLN compiler.
|
34
|
+
|
35
|
+
**Configuration:**
|
36
|
+
This model uses [`RBLNMistralForCausalLMConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
|
37
|
+
the `rbln_config` parameter should be an instance of [`RBLNMistralForCausalLMConfig`] or a dictionary conforming to its structure.
|
38
|
+
|
39
|
+
See the [`RBLNMistralForCausalLMConfig`] class for all available configuration options.
|
40
|
+
|
41
|
+
Examples:
|
42
|
+
```python
|
43
|
+
from optimum.rbln import RBLNMistralForCausalLM
|
44
|
+
|
45
|
+
# Simple usage using rbln_* arguments
|
46
|
+
# `max_seq_len` is automatically inferred from the model config
|
47
|
+
model = RBLNMistralForCausalLM.from_pretrained(
|
48
|
+
"mistralai/Mistral-7B-v0.1",
|
49
|
+
export=True,
|
50
|
+
rbln_batch_size=1,
|
51
|
+
rbln_tensor_parallel_size=4,
|
52
|
+
)
|
53
|
+
|
54
|
+
# Using a config dictionary
|
55
|
+
rbln_config = {
|
56
|
+
"batch_size": 1,
|
57
|
+
"max_seq_len": 4096,
|
58
|
+
"tensor_parallel_size": 4,
|
59
|
+
}
|
60
|
+
model = RBLNMistralForCausalLM.from_pretrained(
|
61
|
+
"mistralai/Mistral-7B-v0.1",
|
62
|
+
export=True,
|
63
|
+
rbln_config=rbln_config
|
64
|
+
)
|
65
|
+
|
66
|
+
# Using a RBLNMistralForCausalLMConfig instance (recommended for type checking)
|
67
|
+
from optimum.rbln import RBLNMistralForCausalLMConfig
|
68
|
+
|
69
|
+
config = RBLNMistralForCausalLMConfig(
|
70
|
+
batch_size=1,
|
71
|
+
max_seq_len=4096,
|
72
|
+
tensor_parallel_size=4
|
73
|
+
)
|
74
|
+
model = RBLNMistralForCausalLM.from_pretrained(
|
75
|
+
"mistralai/Mistral-7B-v0.1",
|
76
|
+
export=True,
|
77
|
+
rbln_config=config
|
78
|
+
)
|
79
|
+
```
|
32
80
|
"""
|
33
81
|
|
34
82
|
_decoder_wrapper_cls = MistralForCausalLMWrapper
|
83
|
+
|
84
|
+
@classmethod
|
85
|
+
def _update_sliding_window_config(
|
86
|
+
cls, model_config: PretrainedConfig, rbln_config: RBLNDecoderOnlyModelForCausalLMConfig
|
87
|
+
):
|
88
|
+
rbln_config.cache_impl = "sliding_window"
|
89
|
+
rbln_config.sliding_window = model_config.sliding_window
|
90
|
+
rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
|
91
|
+
|
92
|
+
return rbln_config
|
@@ -16,4 +16,7 @@ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausa
|
|
16
16
|
|
17
17
|
|
18
18
|
class RBLNOPTForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
19
|
-
|
19
|
+
"""
|
20
|
+
Configuration class for OPT causal language model.
|
21
|
+
Inherits from RBLNDecoderOnlyModelForCausalLMConfig with no additional parameters.
|
22
|
+
"""
|
@@ -45,8 +45,15 @@ class RBLNOPTForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
45
45
|
|
46
46
|
A class to convert and run pre-trained transformers based OPTForCausalLM model on RBLN devices.
|
47
47
|
It implements the methods to convert a pre-trained transformers OPTForCausalLM model into a RBLN transformer model by:
|
48
|
+
|
48
49
|
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
49
50
|
- compiling the resulting graph using the RBLN compiler.
|
51
|
+
|
52
|
+
**Configuration:**
|
53
|
+
This model uses [`RBLNOPTForCausalLM`] for configuration. When calling methods like `from_pretrained` or `from_model`,
|
54
|
+
the `rbln_config` parameter should be an instance of [`RBLNOPTForCausalLM`] or a dictionary conforming to its structure.
|
55
|
+
|
56
|
+
See the [`RBLNOPTForCausalLM`] class for all available configuration options.
|
50
57
|
"""
|
51
58
|
|
52
59
|
_decoder_wrapper_cls = OPTWrapper
|
@@ -72,6 +79,9 @@ class RBLNOPTForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
72
79
|
"use_attention_mask": rbln_config.use_attention_mask,
|
73
80
|
"use_position_ids": rbln_config.use_position_ids,
|
74
81
|
"use_inputs_embeds": rbln_config.use_inputs_embeds,
|
82
|
+
"cache_impl": rbln_config.cache_impl,
|
83
|
+
"sliding_window": rbln_config.sliding_window,
|
84
|
+
"sliding_window_layers": rbln_config.sliding_window_layers,
|
75
85
|
}
|
76
86
|
|
77
87
|
for i in range(len(model.model.decoder.layers)):
|
@@ -45,7 +45,13 @@ class OPTWrapper(DecoderOnlyWrapper):
|
|
45
45
|
)
|
46
46
|
new_layer = OPTDecoderLayer(layer, new_self_attn)
|
47
47
|
new_layers.append(new_layer)
|
48
|
-
new_model = OPTModel(
|
48
|
+
new_model = OPTModel(
|
49
|
+
causal_lm.model.decoder,
|
50
|
+
new_layers,
|
51
|
+
max_seq_len=max_seq_len,
|
52
|
+
use_learned_pos_emb=True,
|
53
|
+
sliding_window_layers=self.sliding_window_layers,
|
54
|
+
)
|
49
55
|
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
50
56
|
return new_causal_lm
|
51
57
|
|
@@ -16,4 +16,27 @@ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausa
|
|
16
16
|
|
17
17
|
|
18
18
|
class RBLNPhiForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
19
|
-
|
19
|
+
"""
|
20
|
+
Configuration class for RBLN Phi models.
|
21
|
+
|
22
|
+
This class is an alias of RBLNDecoderOnlyModelForCausalLMConfig.
|
23
|
+
|
24
|
+
Example usage:
|
25
|
+
```python
|
26
|
+
from optimum.rbln import RBLNPhiForCausalLM, RBLNPhiForCausalLMConfig
|
27
|
+
|
28
|
+
# Create a configuration object
|
29
|
+
config = RBLNPhiForCausalLMConfig(
|
30
|
+
batch_size=1,
|
31
|
+
max_seq_len=4096,
|
32
|
+
tensor_parallel_size=4
|
33
|
+
)
|
34
|
+
|
35
|
+
# Use the configuration with from_pretrained
|
36
|
+
model = RBLNPhiForCausalLM.from_pretrained(
|
37
|
+
"microsoft/phi-2",
|
38
|
+
export=True,
|
39
|
+
rbln_config=config
|
40
|
+
)
|
41
|
+
```
|
42
|
+
"""
|
@@ -27,8 +27,57 @@ class RBLNPhiForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
27
27
|
|
28
28
|
A class to convert and run pre-trained transformers based PhiForCausalLM model on RBLN devices.
|
29
29
|
It implements the methods to convert a pre-trained transformers PhiForCausalLM model into a RBLN transformer model by:
|
30
|
+
|
30
31
|
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
31
32
|
- compiling the resulting graph using the RBLN compiler.
|
33
|
+
|
34
|
+
**Configuration:**
|
35
|
+
This model uses [`RBLNPhiForCausalLMConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
|
36
|
+
the `rbln_config` parameter should be an instance of [`RBLNPhiForCausalLMConfig`] or a dictionary conforming to its structure.
|
37
|
+
|
38
|
+
See the [`RBLNPhiForCausalLMConfig`] class for all available configuration options.
|
39
|
+
|
40
|
+
Examples:
|
41
|
+
```python
|
42
|
+
from optimum.rbln import RBLNPhiForCausalLM
|
43
|
+
|
44
|
+
# Simple usage using rbln_* arguments
|
45
|
+
# `max_seq_len` is automatically inferred from the model config
|
46
|
+
model = RBLNPhiForCausalLM.from_pretrained(
|
47
|
+
"microsoft/phi-2",
|
48
|
+
export=True,
|
49
|
+
rbln_batch_size=1,
|
50
|
+
rbln_tensor_parallel_size=4,
|
51
|
+
)
|
52
|
+
|
53
|
+
|
54
|
+
# Using a config dictionary
|
55
|
+
rbln_config = {
|
56
|
+
"batch_size": 1,
|
57
|
+
"max_seq_len": 4096,
|
58
|
+
"tensor_parallel_size": 4,
|
59
|
+
}
|
60
|
+
model = RBLNPhiForCausalLM.from_pretrained(
|
61
|
+
"microsoft/phi-2",
|
62
|
+
export=True,
|
63
|
+
rbln_config=rbln_config
|
64
|
+
)
|
65
|
+
|
66
|
+
|
67
|
+
# Using a RBLNPhiForCausalLMConfig instance (recommended for type checking)
|
68
|
+
from optimum.rbln import RBLNPhiForCausalLMConfig
|
69
|
+
|
70
|
+
config = RBLNPhiForCausalLMConfig(
|
71
|
+
batch_size=1,
|
72
|
+
max_seq_len=4096,
|
73
|
+
tensor_parallel_size=4
|
74
|
+
)
|
75
|
+
model = RBLNPhiForCausalLM.from_pretrained(
|
76
|
+
"microsoft/phi-2",
|
77
|
+
export=True,
|
78
|
+
rbln_config=config
|
79
|
+
)
|
80
|
+
```
|
32
81
|
"""
|
33
82
|
|
34
83
|
_decoder_wrapper_cls = PhiWrapper
|
@@ -48,7 +48,7 @@ class PhiWrapper(DecoderOnlyWrapper):
|
|
48
48
|
raise NotImplementedError(f"Unknwon attn : {self.attn_impl}")
|
49
49
|
new_layer = PhiLayer(layer, new_self_attn)
|
50
50
|
new_layers.append(new_layer)
|
51
|
-
new_model = PhiModel(causal_lm.model, new_layers)
|
51
|
+
new_model = PhiModel(causal_lm.model, new_layers, sliding_window_layers=self.sliding_window_layers)
|
52
52
|
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
53
53
|
return new_causal_lm
|
54
54
|
|
@@ -16,4 +16,27 @@ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausa
|
|
16
16
|
|
17
17
|
|
18
18
|
class RBLNQwen2ForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
19
|
-
|
19
|
+
"""
|
20
|
+
Configuration class for RBLN Qwen2 models.
|
21
|
+
|
22
|
+
This class is an alias of RBLNDecoderOnlyModelForCausalLMConfig.
|
23
|
+
|
24
|
+
Example usage:
|
25
|
+
```python
|
26
|
+
from optimum.rbln import RBLNQwen2ForCausalLM, RBLNQwen2ForCausalLMConfig
|
27
|
+
|
28
|
+
# Create a configuration object
|
29
|
+
config = RBLNQwen2ForCausalLMConfig(
|
30
|
+
batch_size=1,
|
31
|
+
max_seq_len=4096,
|
32
|
+
tensor_parallel_size=4
|
33
|
+
)
|
34
|
+
|
35
|
+
# Use the configuration with from_pretrained
|
36
|
+
model = RBLNQwen2ForCausalLM.from_pretrained(
|
37
|
+
"Qwen/Qwen2-7B",
|
38
|
+
export=True,
|
39
|
+
rbln_config=config
|
40
|
+
)
|
41
|
+
```
|
42
|
+
"""
|