optimum-rbln 0.8.0.post2__py3-none-any.whl → 0.8.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +24 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +45 -33
- optimum/rbln/diffusers/__init__.py +21 -1
- optimum/rbln/diffusers/configurations/__init__.py +4 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +4 -2
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +70 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +4 -2
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +9 -2
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +1 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +29 -9
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +114 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +28 -12
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +18 -6
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +13 -6
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +12 -6
- optimum/rbln/diffusers/modeling_diffusers.py +72 -65
- optimum/rbln/diffusers/models/__init__.py +4 -0
- optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +17 -1
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +219 -0
- optimum/rbln/diffusers/models/autoencoders/vae.py +45 -8
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +17 -1
- optimum/rbln/diffusers/models/controlnet.py +14 -8
- optimum/rbln/diffusers/models/transformers/__init__.py +1 -0
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +10 -0
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +321 -0
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +2 -0
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +11 -1
- optimum/rbln/diffusers/pipelines/__init__.py +10 -0
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +1 -4
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +102 -0
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +455 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +98 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +98 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +48 -27
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +7 -0
- optimum/rbln/modeling.py +71 -37
- optimum/rbln/modeling_base.py +63 -109
- optimum/rbln/transformers/__init__.py +41 -47
- optimum/rbln/transformers/configuration_generic.py +16 -13
- optimum/rbln/transformers/modeling_generic.py +21 -22
- optimum/rbln/transformers/modeling_rope_utils.py +5 -2
- optimum/rbln/transformers/models/__init__.py +54 -4
- optimum/rbln/transformers/models/{wav2vec2/configuration_wav2vec.py → audio_spectrogram_transformer/__init__.py} +2 -4
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +21 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +28 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +35 -12
- optimum/rbln/transformers/models/bart/bart_architecture.py +14 -1
- optimum/rbln/transformers/models/bart/configuration_bart.py +12 -2
- optimum/rbln/transformers/models/bart/modeling_bart.py +16 -7
- optimum/rbln/transformers/models/bert/configuration_bert.py +18 -3
- optimum/rbln/transformers/models/bert/modeling_bert.py +24 -0
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +15 -3
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +50 -4
- optimum/rbln/transformers/models/clip/configuration_clip.py +15 -5
- optimum/rbln/transformers/models/clip/modeling_clip.py +38 -13
- optimum/rbln/transformers/models/colpali/__init__.py +2 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +221 -0
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +68 -0
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +383 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +111 -14
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +102 -35
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +253 -195
- optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
- optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +27 -0
- optimum/rbln/transformers/models/dpt/configuration_dpt.py +6 -1
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +6 -1
- optimum/rbln/transformers/models/exaone/configuration_exaone.py +24 -1
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +5 -1
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +66 -5
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +24 -1
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +5 -1
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +49 -0
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +3 -3
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +18 -250
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +89 -244
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +4 -1
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +6 -1
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +12 -2
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +41 -4
- optimum/rbln/transformers/models/llama/configuration_llama.py +24 -1
- optimum/rbln/transformers/models/llama/modeling_llama.py +49 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +10 -2
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +32 -4
- optimum/rbln/transformers/models/midm/configuration_midm.py +24 -1
- optimum/rbln/transformers/models/midm/midm_architecture.py +6 -1
- optimum/rbln/transformers/models/midm/modeling_midm.py +66 -5
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +24 -1
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +62 -4
- optimum/rbln/transformers/models/opt/configuration_opt.py +4 -1
- optimum/rbln/transformers/models/opt/modeling_opt.py +10 -0
- optimum/rbln/transformers/models/opt/opt_architecture.py +7 -1
- optimum/rbln/transformers/models/phi/configuration_phi.py +24 -1
- optimum/rbln/transformers/models/phi/modeling_phi.py +49 -0
- optimum/rbln/transformers/models/phi/phi_architecture.py +1 -1
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +24 -1
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +67 -4
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +31 -3
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +54 -25
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +6 -4
- optimum/rbln/transformers/models/resnet/__init__.py +23 -0
- optimum/rbln/transformers/models/resnet/configuration_resnet.py +25 -0
- optimum/rbln/transformers/models/resnet/modeling_resnet.py +26 -0
- optimum/rbln/transformers/models/roberta/__init__.py +24 -0
- optimum/rbln/transformers/{configuration_alias.py → models/roberta/configuration_roberta.py} +12 -28
- optimum/rbln/transformers/{modeling_alias.py → models/roberta/modeling_roberta.py} +14 -28
- optimum/rbln/transformers/models/seq2seq/__init__.py +1 -1
- optimum/rbln/transformers/models/seq2seq/{configuration_seq2seq2.py → configuration_seq2seq.py} +2 -2
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +7 -3
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +41 -3
- optimum/rbln/transformers/models/siglip/configuration_siglip.py +10 -0
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +69 -21
- optimum/rbln/transformers/models/t5/configuration_t5.py +12 -2
- optimum/rbln/transformers/models/t5/modeling_t5.py +56 -8
- optimum/rbln/transformers/models/t5/t5_architecture.py +5 -1
- optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/__init__.py +1 -1
- optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/configuration_time_series_transformer.py +9 -2
- optimum/rbln/transformers/models/{time_series_transformers/modeling_time_series_transformers.py → time_series_transformer/modeling_time_series_transformer.py} +20 -11
- optimum/rbln/transformers/models/vit/__init__.py +19 -0
- optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
- optimum/rbln/transformers/models/vit/modeling_vit.py +25 -0
- optimum/rbln/transformers/models/wav2vec2/__init__.py +1 -1
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +26 -0
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -1
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +10 -1
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +41 -17
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +16 -2
- optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +15 -2
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +12 -3
- optimum/rbln/utils/model_utils.py +20 -0
- optimum/rbln/utils/runtime_utils.py +49 -1
- optimum/rbln/utils/submodule.py +6 -8
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/METADATA +6 -6
- optimum_rbln-0.8.1.dist-info/RECORD +211 -0
- optimum_rbln-0.8.0.post2.dist-info/RECORD +0 -184
- /optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/time_series_transformers_architecture.py +0 -0
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,19 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from .configuration_distilbert import RBLNDistilBertForQuestionAnsweringConfig
|
16
|
+
from .modeling_distilbert import RBLNDistilBertForQuestionAnswering
|
17
|
+
|
18
|
+
|
19
|
+
__all__ = ["RBLNDistilBertForQuestionAnsweringConfig", "RBLNDistilBertForQuestionAnswering"]
|
@@ -0,0 +1,24 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from ...configuration_generic import RBLNModelForQuestionAnsweringConfig
|
16
|
+
|
17
|
+
|
18
|
+
class RBLNDistilBertForQuestionAnsweringConfig(RBLNModelForQuestionAnsweringConfig):
|
19
|
+
"""
|
20
|
+
Configuration class for RBLNDistilBertForQuestionAnswering.
|
21
|
+
|
22
|
+
This configuration class stores the configuration parameters specific to
|
23
|
+
RBLN-optimized DistilBERT models for question answering tasks.
|
24
|
+
"""
|
@@ -0,0 +1,27 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from ...modeling_generic import RBLNModelForQuestionAnswering
|
16
|
+
|
17
|
+
|
18
|
+
class RBLNDistilBertForQuestionAnswering(RBLNModelForQuestionAnswering):
|
19
|
+
"""
|
20
|
+
RBLN optimized DistilBERT model for question answering tasks.
|
21
|
+
|
22
|
+
This class provides hardware-accelerated inference for DistilBERT models
|
23
|
+
on RBLN devices, supporting extractive question answering tasks where
|
24
|
+
the model predicts start and end positions of answers in text.
|
25
|
+
"""
|
26
|
+
|
27
|
+
rbln_model_input_names = ["input_ids", "attention_mask"]
|
@@ -16,4 +16,9 @@ from ...configuration_generic import RBLNModelForDepthEstimationConfig
|
|
16
16
|
|
17
17
|
|
18
18
|
class RBLNDPTForDepthEstimationConfig(RBLNModelForDepthEstimationConfig):
|
19
|
-
|
19
|
+
"""
|
20
|
+
Configuration class for RBLNDPTForDepthEstimation.
|
21
|
+
|
22
|
+
This configuration class stores the configuration parameters specific to
|
23
|
+
RBLN-optimized DPT (Dense Prediction Transformer) models for depth estimation tasks.
|
24
|
+
"""
|
@@ -17,4 +17,9 @@ from ...modeling_generic import RBLNModelForDepthEstimation
|
|
17
17
|
|
18
18
|
|
19
19
|
class RBLNDPTForDepthEstimation(RBLNModelForDepthEstimation):
|
20
|
-
|
20
|
+
"""
|
21
|
+
RBLN optimized DPT model for depth estimation tasks.
|
22
|
+
|
23
|
+
This class provides hardware-accelerated inference for DPT (Dense Prediction Transformer)
|
24
|
+
models on RBLN devices, supporting monocular depth estimation from single images.
|
25
|
+
"""
|
@@ -16,4 +16,27 @@ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausa
|
|
16
16
|
|
17
17
|
|
18
18
|
class RBLNExaoneForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
19
|
-
|
19
|
+
"""
|
20
|
+
Configuration class for RBLN Exaone models.
|
21
|
+
|
22
|
+
This class is an alias of RBLNDecoderOnlyModelForCausalLMConfig.
|
23
|
+
|
24
|
+
Example usage:
|
25
|
+
```python
|
26
|
+
from optimum.rbln import RBLNExaoneForCausalLM, RBLNExaoneForCausalLMConfig
|
27
|
+
|
28
|
+
# Create a configuration object
|
29
|
+
config = RBLNExaoneForCausalLMConfig(
|
30
|
+
batch_size=1,
|
31
|
+
max_seq_len=4096,
|
32
|
+
tensor_parallel_size=4
|
33
|
+
)
|
34
|
+
|
35
|
+
# Use the configuration with from_pretrained
|
36
|
+
model = RBLNExaoneForCausalLM.from_pretrained(
|
37
|
+
"LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",
|
38
|
+
export=True,
|
39
|
+
rbln_config=config
|
40
|
+
)
|
41
|
+
```
|
42
|
+
"""
|
@@ -60,7 +60,11 @@ class ExaoneForCausalLMWrapper(DecoderOnlyWrapper):
|
|
60
60
|
new_layer = ExaoneLayer(layer, new_self_attn)
|
61
61
|
new_layers.append(new_layer)
|
62
62
|
new_model = ExaoneModel(
|
63
|
-
causal_lm.transformer,
|
63
|
+
causal_lm.transformer,
|
64
|
+
new_layers,
|
65
|
+
partition_len=self.kvcache_partition_len,
|
66
|
+
max_seq_len=max_seq_len,
|
67
|
+
sliding_window_layers=self.sliding_window_layers,
|
64
68
|
)
|
65
69
|
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
66
70
|
return new_causal_lm
|
@@ -13,7 +13,11 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
|
16
|
+
import inspect
|
17
|
+
from typing import Any, Callable
|
18
|
+
|
16
19
|
from transformers import AutoModelForCausalLM
|
20
|
+
from transformers.generation.utils import GenerationMixin
|
17
21
|
|
18
22
|
from ....utils import logging
|
19
23
|
from ..decoderonly import RBLNDecoderOnlyModelForCausalLM
|
@@ -25,22 +29,79 @@ logger = logging.get_logger(__name__)
|
|
25
29
|
|
26
30
|
class RBLNExaoneForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
27
31
|
"""
|
28
|
-
The Exaone Model transformer with a language modeling head
|
29
|
-
|
32
|
+
The Exaone Model transformer with a language modeling head (linear layer) on top.
|
33
|
+
This model inherits from [`RBLNDecoderOnlyModelForCausalLM`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
30
34
|
|
31
|
-
|
32
|
-
|
35
|
+
A class to convert and run pre-trained transformers based ExaoneForCausalLM model on RBLN devices.
|
36
|
+
It implements the methods to convert a pre-trained transformers ExaoneForCausalLM model into a RBLN transformer model by:
|
33
37
|
|
34
|
-
It implements the methods to convert a pre-trained transformers Exaone model into a RBLN transformer model by:
|
35
38
|
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
36
39
|
- compiling the resulting graph using the RBLN compiler.
|
37
40
|
|
41
|
+
**Configuration:**
|
42
|
+
This model uses [`RBLNExaoneForCausalLMConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
|
43
|
+
the `rbln_config` parameter should be an instance of [`RBLNExaoneForCausalLMConfig`] or a dictionary conforming to its structure.
|
44
|
+
|
45
|
+
See the [`RBLNExaoneForCausalLMConfig`] class for all available configuration options.
|
46
|
+
|
47
|
+
Examples:
|
48
|
+
```python
|
49
|
+
from optimum.rbln import RBLNExaoneForCausalLM
|
50
|
+
|
51
|
+
# Simple usage using rbln_* arguments
|
52
|
+
# `max_seq_len` is automatically inferred from the model config
|
53
|
+
model = RBLNExaoneForCausalLM.from_pretrained(
|
54
|
+
"LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",
|
55
|
+
export=True,
|
56
|
+
rbln_batch_size=1,
|
57
|
+
rbln_tensor_parallel_size=4,
|
58
|
+
)
|
59
|
+
|
60
|
+
|
61
|
+
# Using a config dictionary
|
62
|
+
rbln_config = {
|
63
|
+
"batch_size": 1,
|
64
|
+
"max_seq_len": 4096,
|
65
|
+
"tensor_parallel_size": 4,
|
66
|
+
}
|
67
|
+
model = RBLNExaoneForCausalLM.from_pretrained(
|
68
|
+
"LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",
|
69
|
+
export=True,
|
70
|
+
rbln_config=rbln_config
|
71
|
+
)
|
72
|
+
|
73
|
+
|
74
|
+
# Using a RBLNExaoneForCausalLMConfig instance (recommended for type checking)
|
75
|
+
from optimum.rbln import RBLNExaoneForCausalLMConfig
|
76
|
+
|
77
|
+
config = RBLNExaoneForCausalLMConfig(
|
78
|
+
batch_size=1,
|
79
|
+
max_seq_len=4096,
|
80
|
+
tensor_parallel_size=4
|
81
|
+
)
|
82
|
+
model = RBLNExaoneForCausalLM.from_pretrained(
|
83
|
+
"LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",
|
84
|
+
export=True,
|
85
|
+
rbln_config=config
|
86
|
+
)
|
87
|
+
```
|
38
88
|
"""
|
39
89
|
|
40
90
|
_decoder_wrapper_cls = ExaoneForCausalLMWrapper
|
41
91
|
_hf_class = AutoModelForCausalLM
|
92
|
+
_supports_cache_class = True
|
42
93
|
|
43
94
|
@classmethod
|
44
95
|
def from_pretrained(cls, *args, **kwargs):
|
45
96
|
kwargs.setdefault("trust_remote_code", True)
|
46
97
|
return super().from_pretrained(*args, **kwargs)
|
98
|
+
|
99
|
+
def __getattr__(self, __name: str) -> Any:
|
100
|
+
def redirect(func):
|
101
|
+
return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
|
102
|
+
|
103
|
+
val = getattr(GenerationMixin, __name)
|
104
|
+
|
105
|
+
if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
|
106
|
+
return redirect(val)
|
107
|
+
return val
|
@@ -16,4 +16,27 @@ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausa
|
|
16
16
|
|
17
17
|
|
18
18
|
class RBLNGemmaForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
19
|
-
|
19
|
+
"""
|
20
|
+
Configuration class for RBLN Gemma models.
|
21
|
+
|
22
|
+
This class is an alias of RBLNDecoderOnlyModelForCausalLMConfig.
|
23
|
+
|
24
|
+
Example usage:
|
25
|
+
```python
|
26
|
+
from optimum.rbln import RBLNGemmaForCausalLM, RBLNGemmaForCausalLMConfig
|
27
|
+
|
28
|
+
# Create a configuration object
|
29
|
+
config = RBLNGemmaForCausalLMConfig(
|
30
|
+
batch_size=1,
|
31
|
+
max_seq_len=4096,
|
32
|
+
tensor_parallel_size=4
|
33
|
+
)
|
34
|
+
|
35
|
+
# Use the configuration with from_pretrained
|
36
|
+
model = RBLNGemmaForCausalLM.from_pretrained(
|
37
|
+
"google/gemma-7b",
|
38
|
+
export=True,
|
39
|
+
rbln_config=config
|
40
|
+
)
|
41
|
+
```
|
42
|
+
"""
|
@@ -52,7 +52,11 @@ class GemmaWrapper(DecoderOnlyWrapper):
|
|
52
52
|
new_layer = DecoderOnlyLayer(layer, new_self_attn)
|
53
53
|
new_layers.append(new_layer)
|
54
54
|
new_model = GemmaModel(
|
55
|
-
causal_lm.model,
|
55
|
+
causal_lm.model,
|
56
|
+
new_layers,
|
57
|
+
partition_len=self.kvcache_partition_len,
|
58
|
+
max_seq_len=max_seq_len,
|
59
|
+
sliding_window_layers=self.sliding_window_layers,
|
56
60
|
)
|
57
61
|
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
58
62
|
return new_causal_lm
|
@@ -27,8 +27,57 @@ class RBLNGemmaForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
27
27
|
|
28
28
|
A class to convert and run pre-trained transformers based GemmaForCausalLM model on RBLN devices.
|
29
29
|
It implements the methods to convert a pre-trained transformers GemmaForCausalLM model into a RBLN transformer model by:
|
30
|
+
|
30
31
|
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
31
32
|
- compiling the resulting graph using the RBLN compiler.
|
33
|
+
|
34
|
+
**Configuration:**
|
35
|
+
This model uses [`RBLNGemmaForCausalLMConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
|
36
|
+
the `rbln_config` parameter should be an instance of [`RBLNGemmaForCausalLMConfig`] or a dictionary conforming to its structure.
|
37
|
+
|
38
|
+
See the [`RBLNGemmaForCausalLMConfig`] class for all available configuration options.
|
39
|
+
|
40
|
+
Examples:
|
41
|
+
```python
|
42
|
+
from optimum.rbln import RBLNGemmaForCausalLM
|
43
|
+
|
44
|
+
# Simple usage using rbln_* arguments
|
45
|
+
# `max_seq_len` is automatically inferred from the model config
|
46
|
+
model = RBLNGemmaForCausalLM.from_pretrained(
|
47
|
+
"google/gemma-7b",
|
48
|
+
export=True,
|
49
|
+
rbln_batch_size=1,
|
50
|
+
rbln_tensor_parallel_size=4,
|
51
|
+
)
|
52
|
+
|
53
|
+
|
54
|
+
# Using a config dictionary
|
55
|
+
rbln_config = {
|
56
|
+
"batch_size": 1,
|
57
|
+
"max_seq_len": 4096,
|
58
|
+
"tensor_parallel_size": 4,
|
59
|
+
}
|
60
|
+
model = RBLNGemmaForCausalLM.from_pretrained(
|
61
|
+
"google/gemma-7b",
|
62
|
+
export=True,
|
63
|
+
rbln_config=rbln_config
|
64
|
+
)
|
65
|
+
|
66
|
+
|
67
|
+
# Using a RBLNGemmaForCausalLMConfig instance (recommended for type checking)
|
68
|
+
from optimum.rbln import RBLNGemmaForCausalLMConfig
|
69
|
+
|
70
|
+
config = RBLNGemmaForCausalLMConfig(
|
71
|
+
batch_size=1,
|
72
|
+
max_seq_len=4096,
|
73
|
+
tensor_parallel_size=4
|
74
|
+
)
|
75
|
+
model = RBLNGemmaForCausalLM.from_pretrained(
|
76
|
+
"google/gemma-7b",
|
77
|
+
export=True,
|
78
|
+
rbln_config=config
|
79
|
+
)
|
80
|
+
```
|
32
81
|
"""
|
33
82
|
|
34
83
|
_decoder_wrapper_cls = GemmaWrapper
|
@@ -11,7 +11,7 @@
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
|
-
from typing import Optional
|
14
|
+
from typing import Any, Dict, Optional
|
15
15
|
|
16
16
|
import rebel
|
17
17
|
|
@@ -26,7 +26,7 @@ class RBLNGemma3ForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
|
26
26
|
prefill_chunk_size: Optional[int] = None,
|
27
27
|
use_position_ids: Optional[bool] = None,
|
28
28
|
use_attention_mask: Optional[bool] = None,
|
29
|
-
**kwargs,
|
29
|
+
**kwargs: Dict[str, Any],
|
30
30
|
):
|
31
31
|
# use_attention_mask and use_position_ids are always True for Gemma3
|
32
32
|
use_attention_mask = use_attention_mask or True
|
@@ -53,7 +53,7 @@ class RBLNGemma3ForConditionalGenerationConfig(RBLNModelConfig):
|
|
53
53
|
batch_size: Optional[int] = None,
|
54
54
|
vision_tower: Optional[RBLNModelConfig] = None,
|
55
55
|
language_model: Optional[RBLNModelConfig] = None,
|
56
|
-
**kwargs,
|
56
|
+
**kwargs: Dict[str, Any],
|
57
57
|
):
|
58
58
|
"""
|
59
59
|
Args:
|