optimum-rbln 0.8.0.post2__py3-none-any.whl → 0.8.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +24 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +45 -33
- optimum/rbln/diffusers/__init__.py +21 -1
- optimum/rbln/diffusers/configurations/__init__.py +4 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +4 -2
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +70 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +4 -2
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +9 -2
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +9 -2
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +1 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +29 -9
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +114 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +28 -12
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +18 -6
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +13 -6
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +12 -6
- optimum/rbln/diffusers/modeling_diffusers.py +72 -65
- optimum/rbln/diffusers/models/__init__.py +4 -0
- optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +17 -1
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +219 -0
- optimum/rbln/diffusers/models/autoencoders/vae.py +45 -8
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +17 -1
- optimum/rbln/diffusers/models/controlnet.py +14 -8
- optimum/rbln/diffusers/models/transformers/__init__.py +1 -0
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +10 -0
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +321 -0
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +2 -0
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +11 -1
- optimum/rbln/diffusers/pipelines/__init__.py +10 -0
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +1 -4
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +7 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +102 -0
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +455 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +98 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +98 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +48 -27
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +7 -0
- optimum/rbln/modeling.py +71 -37
- optimum/rbln/modeling_base.py +63 -109
- optimum/rbln/transformers/__init__.py +41 -47
- optimum/rbln/transformers/configuration_generic.py +16 -13
- optimum/rbln/transformers/modeling_generic.py +21 -22
- optimum/rbln/transformers/modeling_rope_utils.py +5 -2
- optimum/rbln/transformers/models/__init__.py +54 -4
- optimum/rbln/transformers/models/{wav2vec2/configuration_wav2vec.py → audio_spectrogram_transformer/__init__.py} +2 -4
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +21 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +28 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +35 -12
- optimum/rbln/transformers/models/bart/bart_architecture.py +14 -1
- optimum/rbln/transformers/models/bart/configuration_bart.py +12 -2
- optimum/rbln/transformers/models/bart/modeling_bart.py +16 -7
- optimum/rbln/transformers/models/bert/configuration_bert.py +18 -3
- optimum/rbln/transformers/models/bert/modeling_bert.py +24 -0
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +15 -3
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +50 -4
- optimum/rbln/transformers/models/clip/configuration_clip.py +15 -5
- optimum/rbln/transformers/models/clip/modeling_clip.py +38 -13
- optimum/rbln/transformers/models/colpali/__init__.py +2 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +221 -0
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +68 -0
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +383 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +111 -14
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +102 -35
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +253 -195
- optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
- optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +27 -0
- optimum/rbln/transformers/models/dpt/configuration_dpt.py +6 -1
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +6 -1
- optimum/rbln/transformers/models/exaone/configuration_exaone.py +24 -1
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +5 -1
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +66 -5
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +24 -1
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +5 -1
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +49 -0
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +3 -3
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +18 -250
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +89 -244
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +4 -1
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +6 -1
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +12 -2
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +41 -4
- optimum/rbln/transformers/models/llama/configuration_llama.py +24 -1
- optimum/rbln/transformers/models/llama/modeling_llama.py +49 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +10 -2
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +32 -4
- optimum/rbln/transformers/models/midm/configuration_midm.py +24 -1
- optimum/rbln/transformers/models/midm/midm_architecture.py +6 -1
- optimum/rbln/transformers/models/midm/modeling_midm.py +66 -5
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +24 -1
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +62 -4
- optimum/rbln/transformers/models/opt/configuration_opt.py +4 -1
- optimum/rbln/transformers/models/opt/modeling_opt.py +10 -0
- optimum/rbln/transformers/models/opt/opt_architecture.py +7 -1
- optimum/rbln/transformers/models/phi/configuration_phi.py +24 -1
- optimum/rbln/transformers/models/phi/modeling_phi.py +49 -0
- optimum/rbln/transformers/models/phi/phi_architecture.py +1 -1
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +24 -1
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +67 -4
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +31 -3
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +54 -25
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +6 -4
- optimum/rbln/transformers/models/resnet/__init__.py +23 -0
- optimum/rbln/transformers/models/resnet/configuration_resnet.py +25 -0
- optimum/rbln/transformers/models/resnet/modeling_resnet.py +26 -0
- optimum/rbln/transformers/models/roberta/__init__.py +24 -0
- optimum/rbln/transformers/{configuration_alias.py → models/roberta/configuration_roberta.py} +12 -28
- optimum/rbln/transformers/{modeling_alias.py → models/roberta/modeling_roberta.py} +14 -28
- optimum/rbln/transformers/models/seq2seq/__init__.py +1 -1
- optimum/rbln/transformers/models/seq2seq/{configuration_seq2seq2.py → configuration_seq2seq.py} +2 -2
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +7 -3
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +41 -3
- optimum/rbln/transformers/models/siglip/configuration_siglip.py +10 -0
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +69 -21
- optimum/rbln/transformers/models/t5/configuration_t5.py +12 -2
- optimum/rbln/transformers/models/t5/modeling_t5.py +56 -8
- optimum/rbln/transformers/models/t5/t5_architecture.py +5 -1
- optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/__init__.py +1 -1
- optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/configuration_time_series_transformer.py +9 -2
- optimum/rbln/transformers/models/{time_series_transformers/modeling_time_series_transformers.py → time_series_transformer/modeling_time_series_transformer.py} +20 -11
- optimum/rbln/transformers/models/vit/__init__.py +19 -0
- optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
- optimum/rbln/transformers/models/vit/modeling_vit.py +25 -0
- optimum/rbln/transformers/models/wav2vec2/__init__.py +1 -1
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +26 -0
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -1
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +10 -1
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +41 -17
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +16 -2
- optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +15 -2
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +12 -3
- optimum/rbln/utils/model_utils.py +20 -0
- optimum/rbln/utils/runtime_utils.py +49 -1
- optimum/rbln/utils/submodule.py +6 -8
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/METADATA +6 -6
- optimum_rbln-0.8.1.dist-info/RECORD +211 -0
- optimum_rbln-0.8.0.post2.dist-info/RECORD +0 -184
- /optimum/rbln/transformers/models/{time_series_transformers → time_series_transformer}/time_series_transformers_architecture.py +0 -0
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.0.post2.dist-info → optimum_rbln-0.8.1.dist-info}/licenses/LICENSE +0 -0
@@ -16,11 +16,9 @@ import copy
|
|
16
16
|
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
17
17
|
|
18
18
|
import torch
|
19
|
-
from torch import nn
|
20
19
|
from transformers.models.gemma3.modeling_gemma3 import Gemma3RMSNorm
|
21
20
|
|
22
21
|
from ..decoderonly.decoderonly_architecture import (
|
23
|
-
AttentionOp,
|
24
22
|
DecoderOnlyAttention,
|
25
23
|
DecoderOnlyFlashAttention,
|
26
24
|
DecoderOnlyForCausalLM,
|
@@ -28,7 +26,6 @@ from ..decoderonly.decoderonly_architecture import (
|
|
28
26
|
DecoderOnlyModel,
|
29
27
|
DecoderOnlyWrapper,
|
30
28
|
RotaryEmbedding,
|
31
|
-
SlidingWindowAttentionOp,
|
32
29
|
slice_and_unsqueeze_cos_sin,
|
33
30
|
)
|
34
31
|
|
@@ -50,13 +47,14 @@ class Gemma3ForCausalLMWrapper(DecoderOnlyWrapper):
|
|
50
47
|
|
51
48
|
def convert_to_rbln_causal_lm(self, causal_lm: "Gemma3ForCausalLM", max_seq_len: int):
|
52
49
|
new_layers = []
|
53
|
-
for layer in causal_lm.model.layers:
|
54
|
-
if
|
50
|
+
for layer_idx, layer in enumerate(causal_lm.model.layers):
|
51
|
+
if layer_idx in self.sliding_window_layers:
|
55
52
|
new_self_attn = Gemma3Attention(
|
56
53
|
layer.self_attn,
|
57
54
|
use_attention_mask=None, # FIXME: no use in SWA
|
58
55
|
use_position_ids=self.use_position_ids,
|
59
56
|
kvcache_block_size=self.config.sliding_window,
|
57
|
+
is_sliding=True,
|
60
58
|
)
|
61
59
|
else:
|
62
60
|
if self.attn_impl == "eager":
|
@@ -65,6 +63,7 @@ class Gemma3ForCausalLMWrapper(DecoderOnlyWrapper):
|
|
65
63
|
use_attention_mask=self.use_attention_mask,
|
66
64
|
use_position_ids=self.use_position_ids,
|
67
65
|
kvcache_block_size=self.kvcache_block_size,
|
66
|
+
is_sliding=False,
|
68
67
|
)
|
69
68
|
elif self.attn_impl == "flash_attn":
|
70
69
|
new_self_attn = Gemma3FlashAttention(
|
@@ -85,131 +84,14 @@ class Gemma3ForCausalLMWrapper(DecoderOnlyWrapper):
|
|
85
84
|
new_layers,
|
86
85
|
partition_len=self.kvcache_partition_len,
|
87
86
|
max_seq_len=max_seq_len,
|
87
|
+
sliding_window_layers=self.sliding_window_layers,
|
88
88
|
)
|
89
|
-
new_causal_lm =
|
89
|
+
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
90
90
|
return new_causal_lm
|
91
91
|
|
92
|
-
def forward(self, *args):
|
93
|
-
if self.phase == "decode":
|
94
|
-
(
|
95
|
-
input_ids_or_inputs_embeds,
|
96
|
-
attention_mask, # used in global layer, 2D attn_mask for padded KVcache.
|
97
|
-
cache_position,
|
98
|
-
position_ids,
|
99
|
-
golbal_block_tables,
|
100
|
-
local_block_tables,
|
101
|
-
*past_key_values,
|
102
|
-
) = args
|
103
|
-
query_position = None
|
104
|
-
|
105
|
-
elif "prefill" in self.phase:
|
106
|
-
(
|
107
|
-
input_ids_or_inputs_embeds,
|
108
|
-
attention_mask,
|
109
|
-
cache_position,
|
110
|
-
position_ids,
|
111
|
-
query_position,
|
112
|
-
golbal_block_tables,
|
113
|
-
local_block_tables,
|
114
|
-
*past_key_values,
|
115
|
-
) = args
|
116
|
-
|
117
|
-
else:
|
118
|
-
raise ValueError(f"Unknown phase: {self.phase}")
|
119
|
-
|
120
|
-
if input_ids_or_inputs_embeds.ndim == 2:
|
121
|
-
input_ids = input_ids_or_inputs_embeds
|
122
|
-
inputs_embeds = None
|
123
|
-
elif input_ids_or_inputs_embeds.ndim == 3:
|
124
|
-
input_ids = None
|
125
|
-
inputs_embeds = input_ids_or_inputs_embeds
|
126
|
-
else:
|
127
|
-
raise NotImplementedError(f"Unknown ndim of input : {input_ids_or_inputs_embeds.ndim}")
|
128
|
-
|
129
|
-
if len(past_key_values) != 2 * self.num_hidden_layers:
|
130
|
-
raise ValueError(
|
131
|
-
f"Different past_key_values to model's config. {len(past_key_values)} != {2 * self.num_hidden_layers}"
|
132
|
-
)
|
133
|
-
|
134
|
-
# [key, value] * n_layer -> ( (key, value) ) * n_layer
|
135
|
-
# cache shape : batch, n_heads, 1, max_seq_len, head_dim
|
136
|
-
_past_key_values = []
|
137
|
-
for i in range(self.config.num_hidden_layers):
|
138
|
-
key_states = past_key_values[i * 2]
|
139
|
-
value_states = past_key_values[i * 2 + 1]
|
140
|
-
past_key_value = [key_states, value_states]
|
141
|
-
_past_key_values.append(past_key_value)
|
142
|
-
past_key_values = _past_key_values
|
143
|
-
|
144
|
-
logit = self.causal_lm(
|
145
|
-
input_ids=input_ids,
|
146
|
-
inputs_embeds=inputs_embeds,
|
147
|
-
attention_mask=attention_mask,
|
148
|
-
cache_position=cache_position,
|
149
|
-
position_ids=position_ids,
|
150
|
-
query_position=query_position,
|
151
|
-
past_key_values=past_key_values,
|
152
|
-
rotary_emb=(self.rotary_emb_global, self.rotary_emb_local),
|
153
|
-
global_block_tables=golbal_block_tables,
|
154
|
-
local_block_tables=local_block_tables,
|
155
|
-
)
|
156
|
-
|
157
|
-
return logit
|
158
|
-
|
159
|
-
|
160
|
-
class Gemma3ForCausalLM(DecoderOnlyForCausalLM):
|
161
|
-
def forward(
|
162
|
-
self,
|
163
|
-
input_ids: torch.Tensor = None,
|
164
|
-
inputs_embeds: torch.Tensor = None,
|
165
|
-
attention_mask: torch.Tensor = None,
|
166
|
-
cache_position: torch.Tensor = None,
|
167
|
-
position_ids: torch.Tensor = None,
|
168
|
-
query_position: torch.Tensor = None,
|
169
|
-
past_key_values: Tuple[Tuple[torch.Tensor]] = None,
|
170
|
-
rotary_emb: nn.Module = None,
|
171
|
-
global_block_tables: Optional[torch.Tensor] = None,
|
172
|
-
local_block_tables: Optional[torch.Tensor] = None,
|
173
|
-
):
|
174
|
-
# outputs
|
175
|
-
hidden_states = self.model(
|
176
|
-
input_ids=input_ids,
|
177
|
-
inputs_embeds=inputs_embeds,
|
178
|
-
attention_mask=attention_mask,
|
179
|
-
cache_position=cache_position,
|
180
|
-
position_ids=position_ids,
|
181
|
-
query_position=query_position,
|
182
|
-
past_key_values=past_key_values,
|
183
|
-
rotary_emb=rotary_emb,
|
184
|
-
global_block_tables=global_block_tables,
|
185
|
-
local_block_tables=local_block_tables,
|
186
|
-
)
|
187
|
-
|
188
|
-
if "prefill" in self.phase:
|
189
|
-
hidden_states = hidden_states[:, query_position.to(torch.int).unsqueeze(0)]
|
190
|
-
|
191
|
-
logits = self.lm_head(hidden_states)
|
192
|
-
|
193
|
-
# Apply final logit softmaxing if configured, e.g. for Gemma2
|
194
|
-
if getattr(self.config, "final_logit_softcapping", None) is not None:
|
195
|
-
logits = logits / self.config.final_logit_softcapping
|
196
|
-
logits = torch.tanh(logits)
|
197
|
-
logits = logits * self.config.final_logit_softcapping
|
198
|
-
|
199
|
-
return logits
|
200
|
-
|
201
92
|
|
202
93
|
class Gemma3TextModel(DecoderOnlyModel):
|
203
|
-
|
204
|
-
max_cache_len = self._original_mod.config.sliding_window
|
205
|
-
valid_input_len = 1 if query_position is None else query_position + 1
|
206
|
-
cache_seq_len = torch.clamp(position_ids, max=max_cache_len)[:, :1] # past seen tokens
|
207
|
-
cache_offset = (
|
208
|
-
torch.clamp(position_ids, max=max_cache_len)[:, :1] + valid_input_len
|
209
|
-
) # cache offset for next steps
|
210
|
-
|
211
|
-
return cache_seq_len, cache_offset
|
212
|
-
|
94
|
+
# Different from DecoderOnlyModel, this model has global and local rotary embeddings.
|
213
95
|
def forward(
|
214
96
|
self,
|
215
97
|
input_ids: torch.Tensor = None,
|
@@ -254,37 +136,23 @@ class Gemma3TextModel(DecoderOnlyModel):
|
|
254
136
|
|
255
137
|
sliding_cache_pos = self.get_local_cache_positions(position_ids, query_position)
|
256
138
|
|
257
|
-
for layer in self.layers:
|
258
|
-
if
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
else:
|
269
|
-
hidden_states = layer(
|
270
|
-
hidden_states=hidden_states,
|
271
|
-
attention_mask=attention_mask,
|
272
|
-
seq_positions=seq_positions,
|
273
|
-
past_key_values=past_key_values,
|
274
|
-
cos=cos_global,
|
275
|
-
sin=sin_global,
|
276
|
-
block_tables=global_block_tables,
|
277
|
-
)
|
139
|
+
for layer_idx, layer in enumerate(self.layers):
|
140
|
+
is_sliding = True if layer_idx in self.sliding_window_layers else False
|
141
|
+
hidden_states = layer(
|
142
|
+
hidden_states=hidden_states,
|
143
|
+
attention_mask=attention_mask,
|
144
|
+
seq_positions=sliding_cache_pos if is_sliding else seq_positions,
|
145
|
+
past_key_values=past_key_values,
|
146
|
+
cos=cos_local if is_sliding else cos_global,
|
147
|
+
sin=sin_local if is_sliding else sin_global,
|
148
|
+
block_tables=local_block_tables if is_sliding else global_block_tables,
|
149
|
+
)
|
278
150
|
|
279
151
|
hidden_states = self.get_last_layernorm()(hidden_states)
|
280
152
|
return hidden_states
|
281
153
|
|
282
154
|
|
283
155
|
class Gemma3DecoderLayer(DecoderOnlyLayer):
|
284
|
-
def __init__(self, layer, self_attn: "DecoderOnlyAttention"):
|
285
|
-
super().__init__(layer, self_attn)
|
286
|
-
self.is_sliding = self._original_mod.is_sliding
|
287
|
-
|
288
156
|
def get_pre_feedforward_layernorm(self) -> Gemma3RMSNorm:
|
289
157
|
return self._original_mod.pre_feedforward_layernorm
|
290
158
|
|
@@ -328,69 +196,10 @@ class Gemma3Attention(DecoderOnlyAttention):
|
|
328
196
|
self.o_proj = self._original_mod.o_proj
|
329
197
|
self.q_norm = self._original_mod.q_norm
|
330
198
|
self.k_norm = self._original_mod.k_norm
|
331
|
-
self.is_sliding = self._original_mod.is_sliding
|
332
199
|
|
333
200
|
def get_attn_scale(self):
|
334
201
|
return self._original_mod.config.query_pre_attn_scalar**-0.5
|
335
202
|
|
336
|
-
def get_attention(self):
|
337
|
-
if self._original_mod.is_sliding:
|
338
|
-
return SlidingWindowAttentionOp(
|
339
|
-
self.num_heads,
|
340
|
-
self.head_dim,
|
341
|
-
self.num_key_value_heads,
|
342
|
-
self.use_attention_mask,
|
343
|
-
self.use_position_ids,
|
344
|
-
)
|
345
|
-
else:
|
346
|
-
return AttentionOp(
|
347
|
-
self.num_heads, self.head_dim, self.num_key_value_heads, self.use_attention_mask, self.use_position_ids
|
348
|
-
)
|
349
|
-
|
350
|
-
def forward(
|
351
|
-
self,
|
352
|
-
hidden_states: torch.Tensor,
|
353
|
-
attention_mask: torch.Tensor,
|
354
|
-
seq_positions: torch.LongTensor,
|
355
|
-
past_key_values: Tuple[Tuple[torch.Tensor]],
|
356
|
-
cos: Optional[torch.Tensor] = None,
|
357
|
-
sin: Optional[torch.Tensor] = None,
|
358
|
-
block_tables: Optional[torch.Tensor] = None,
|
359
|
-
):
|
360
|
-
batch_size, query_length, _ = hidden_states.size()
|
361
|
-
|
362
|
-
query_states, key_states, value_states = self.projection(hidden_states=hidden_states)
|
363
|
-
|
364
|
-
query_states = query_states.view(batch_size, query_length, self.num_heads, self.head_dim).transpose(1, 2)
|
365
|
-
key_states = key_states.view(batch_size, query_length, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
366
|
-
value_states = value_states.view(batch_size, query_length, self.num_key_value_heads, self.head_dim).transpose(
|
367
|
-
1, 2
|
368
|
-
)
|
369
|
-
|
370
|
-
query_states = self.q_norm(query_states)
|
371
|
-
key_states = self.k_norm(key_states)
|
372
|
-
query_states, key_states = self.apply_rotary_pos_embed(query_states, key_states, cos, sin)
|
373
|
-
|
374
|
-
batch_size = query_states.shape[0]
|
375
|
-
if batch_size > 1 and "prefill" in self.phase:
|
376
|
-
raise NotImplementedError(f"batch size should be 1 if prefill phase, but got {batch_size}.")
|
377
|
-
|
378
|
-
attn_output = self.attention(
|
379
|
-
query_states,
|
380
|
-
key_states,
|
381
|
-
value_states,
|
382
|
-
attention_mask,
|
383
|
-
past_key_state=past_key_values[self.layer_idx][0],
|
384
|
-
past_value_state=past_key_values[self.layer_idx][1],
|
385
|
-
seq_position=seq_positions,
|
386
|
-
scale=self.scale,
|
387
|
-
block_tables=block_tables,
|
388
|
-
block_size=self.kvcache_block_size,
|
389
|
-
)
|
390
|
-
|
391
|
-
attn_outputs = self.o_proj(attn_output)
|
392
|
-
return attn_outputs
|
393
|
-
|
394
203
|
|
395
204
|
class Gemma3FlashAttention(DecoderOnlyFlashAttention):
|
396
205
|
def __post_init__(self):
|
@@ -400,47 +209,6 @@ class Gemma3FlashAttention(DecoderOnlyFlashAttention):
|
|
400
209
|
self.o_proj = self._original_mod.o_proj
|
401
210
|
self.q_norm = self._original_mod.q_norm
|
402
211
|
self.k_norm = self._original_mod.k_norm
|
403
|
-
self.is_sliding = self._original_mod.is_sliding
|
404
212
|
|
405
213
|
def get_attn_scale(self):
|
406
214
|
return self._original_mod.config.query_pre_attn_scalar**-0.5
|
407
|
-
|
408
|
-
def forward(
|
409
|
-
self,
|
410
|
-
hidden_states: torch.Tensor,
|
411
|
-
attention_mask: torch.Tensor,
|
412
|
-
seq_positions: torch.LongTensor,
|
413
|
-
past_key_values: Tuple[Tuple[torch.Tensor]],
|
414
|
-
cos: Optional[torch.Tensor] = None,
|
415
|
-
sin: Optional[torch.Tensor] = None,
|
416
|
-
block_tables: Optional[torch.Tensor] = None,
|
417
|
-
):
|
418
|
-
batch_size, query_length, _ = hidden_states.size()
|
419
|
-
|
420
|
-
query_states, key_states, value_states = self.projection(hidden_states=hidden_states)
|
421
|
-
|
422
|
-
query_states = query_states.view(batch_size, query_length, self.num_heads, self.head_dim).transpose(1, 2)
|
423
|
-
key_states = key_states.view(batch_size, query_length, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
424
|
-
value_states = value_states.view(batch_size, query_length, self.num_key_value_heads, self.head_dim).transpose(
|
425
|
-
1, 2
|
426
|
-
)
|
427
|
-
|
428
|
-
query_states = self.q_norm(query_states)
|
429
|
-
key_states = self.k_norm(key_states)
|
430
|
-
query_states, key_states = self.apply_rotary_pos_embed(query_states, key_states, cos, sin)
|
431
|
-
|
432
|
-
attn_output = self.attention(
|
433
|
-
query_states,
|
434
|
-
key_states,
|
435
|
-
value_states,
|
436
|
-
attention_mask,
|
437
|
-
past_key_state=past_key_values[self.layer_idx][0],
|
438
|
-
past_value_state=past_key_values[self.layer_idx][1],
|
439
|
-
seq_position=seq_positions,
|
440
|
-
scale=self.scale,
|
441
|
-
block_tables=block_tables,
|
442
|
-
kvcache_block_size=self.kvcache_block_size,
|
443
|
-
)
|
444
|
-
|
445
|
-
attn_outputs = self.o_proj(attn_output)
|
446
|
-
return attn_outputs
|