numba-cuda 0.22.0__cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of numba-cuda might be problematic. Click here for more details.

Files changed (487) hide show
  1. _numba_cuda_redirector.pth +4 -0
  2. _numba_cuda_redirector.py +89 -0
  3. numba_cuda/VERSION +1 -0
  4. numba_cuda/__init__.py +6 -0
  5. numba_cuda/_version.py +11 -0
  6. numba_cuda/numba/cuda/__init__.py +70 -0
  7. numba_cuda/numba/cuda/_internal/cuda_bf16.py +16394 -0
  8. numba_cuda/numba/cuda/_internal/cuda_fp16.py +8112 -0
  9. numba_cuda/numba/cuda/api.py +580 -0
  10. numba_cuda/numba/cuda/api_util.py +76 -0
  11. numba_cuda/numba/cuda/args.py +72 -0
  12. numba_cuda/numba/cuda/bf16.py +397 -0
  13. numba_cuda/numba/cuda/cache_hints.py +287 -0
  14. numba_cuda/numba/cuda/cext/__init__.py +2 -0
  15. numba_cuda/numba/cuda/cext/_devicearray.cpp +159 -0
  16. numba_cuda/numba/cuda/cext/_devicearray.cpython-312-aarch64-linux-gnu.so +0 -0
  17. numba_cuda/numba/cuda/cext/_devicearray.h +29 -0
  18. numba_cuda/numba/cuda/cext/_dispatcher.cpp +1098 -0
  19. numba_cuda/numba/cuda/cext/_dispatcher.cpython-312-aarch64-linux-gnu.so +0 -0
  20. numba_cuda/numba/cuda/cext/_hashtable.cpp +532 -0
  21. numba_cuda/numba/cuda/cext/_hashtable.h +135 -0
  22. numba_cuda/numba/cuda/cext/_helperlib.c +71 -0
  23. numba_cuda/numba/cuda/cext/_helperlib.cpython-312-aarch64-linux-gnu.so +0 -0
  24. numba_cuda/numba/cuda/cext/_helpermod.c +82 -0
  25. numba_cuda/numba/cuda/cext/_pymodule.h +38 -0
  26. numba_cuda/numba/cuda/cext/_typeconv.cpp +206 -0
  27. numba_cuda/numba/cuda/cext/_typeconv.cpython-312-aarch64-linux-gnu.so +0 -0
  28. numba_cuda/numba/cuda/cext/_typeof.cpp +1159 -0
  29. numba_cuda/numba/cuda/cext/_typeof.h +19 -0
  30. numba_cuda/numba/cuda/cext/capsulethunk.h +111 -0
  31. numba_cuda/numba/cuda/cext/mviewbuf.c +385 -0
  32. numba_cuda/numba/cuda/cext/mviewbuf.cpython-312-aarch64-linux-gnu.so +0 -0
  33. numba_cuda/numba/cuda/cext/typeconv.cpp +212 -0
  34. numba_cuda/numba/cuda/cext/typeconv.hpp +101 -0
  35. numba_cuda/numba/cuda/cg.py +67 -0
  36. numba_cuda/numba/cuda/cgutils.py +1294 -0
  37. numba_cuda/numba/cuda/cloudpickle/__init__.py +21 -0
  38. numba_cuda/numba/cuda/cloudpickle/cloudpickle.py +1598 -0
  39. numba_cuda/numba/cuda/cloudpickle/cloudpickle_fast.py +17 -0
  40. numba_cuda/numba/cuda/codegen.py +541 -0
  41. numba_cuda/numba/cuda/compiler.py +1396 -0
  42. numba_cuda/numba/cuda/core/analysis.py +758 -0
  43. numba_cuda/numba/cuda/core/annotations/__init__.py +0 -0
  44. numba_cuda/numba/cuda/core/annotations/pretty_annotate.py +288 -0
  45. numba_cuda/numba/cuda/core/annotations/type_annotations.py +305 -0
  46. numba_cuda/numba/cuda/core/base.py +1332 -0
  47. numba_cuda/numba/cuda/core/boxing.py +1411 -0
  48. numba_cuda/numba/cuda/core/bytecode.py +728 -0
  49. numba_cuda/numba/cuda/core/byteflow.py +2346 -0
  50. numba_cuda/numba/cuda/core/caching.py +744 -0
  51. numba_cuda/numba/cuda/core/callconv.py +392 -0
  52. numba_cuda/numba/cuda/core/codegen.py +171 -0
  53. numba_cuda/numba/cuda/core/compiler.py +199 -0
  54. numba_cuda/numba/cuda/core/compiler_lock.py +85 -0
  55. numba_cuda/numba/cuda/core/compiler_machinery.py +497 -0
  56. numba_cuda/numba/cuda/core/config.py +650 -0
  57. numba_cuda/numba/cuda/core/consts.py +124 -0
  58. numba_cuda/numba/cuda/core/controlflow.py +989 -0
  59. numba_cuda/numba/cuda/core/entrypoints.py +57 -0
  60. numba_cuda/numba/cuda/core/environment.py +66 -0
  61. numba_cuda/numba/cuda/core/errors.py +917 -0
  62. numba_cuda/numba/cuda/core/event.py +511 -0
  63. numba_cuda/numba/cuda/core/funcdesc.py +330 -0
  64. numba_cuda/numba/cuda/core/generators.py +387 -0
  65. numba_cuda/numba/cuda/core/imputils.py +509 -0
  66. numba_cuda/numba/cuda/core/inline_closurecall.py +1787 -0
  67. numba_cuda/numba/cuda/core/interpreter.py +3617 -0
  68. numba_cuda/numba/cuda/core/ir.py +1812 -0
  69. numba_cuda/numba/cuda/core/ir_utils.py +2638 -0
  70. numba_cuda/numba/cuda/core/optional.py +129 -0
  71. numba_cuda/numba/cuda/core/options.py +262 -0
  72. numba_cuda/numba/cuda/core/postproc.py +249 -0
  73. numba_cuda/numba/cuda/core/pythonapi.py +1859 -0
  74. numba_cuda/numba/cuda/core/registry.py +46 -0
  75. numba_cuda/numba/cuda/core/removerefctpass.py +123 -0
  76. numba_cuda/numba/cuda/core/rewrites/__init__.py +26 -0
  77. numba_cuda/numba/cuda/core/rewrites/ir_print.py +91 -0
  78. numba_cuda/numba/cuda/core/rewrites/registry.py +104 -0
  79. numba_cuda/numba/cuda/core/rewrites/static_binop.py +41 -0
  80. numba_cuda/numba/cuda/core/rewrites/static_getitem.py +189 -0
  81. numba_cuda/numba/cuda/core/rewrites/static_raise.py +100 -0
  82. numba_cuda/numba/cuda/core/sigutils.py +68 -0
  83. numba_cuda/numba/cuda/core/ssa.py +498 -0
  84. numba_cuda/numba/cuda/core/targetconfig.py +330 -0
  85. numba_cuda/numba/cuda/core/tracing.py +231 -0
  86. numba_cuda/numba/cuda/core/transforms.py +956 -0
  87. numba_cuda/numba/cuda/core/typed_passes.py +867 -0
  88. numba_cuda/numba/cuda/core/typeinfer.py +1950 -0
  89. numba_cuda/numba/cuda/core/unsafe/__init__.py +0 -0
  90. numba_cuda/numba/cuda/core/unsafe/bytes.py +67 -0
  91. numba_cuda/numba/cuda/core/unsafe/eh.py +67 -0
  92. numba_cuda/numba/cuda/core/unsafe/refcount.py +98 -0
  93. numba_cuda/numba/cuda/core/untyped_passes.py +1979 -0
  94. numba_cuda/numba/cuda/cpython/builtins.py +1153 -0
  95. numba_cuda/numba/cuda/cpython/charseq.py +1218 -0
  96. numba_cuda/numba/cuda/cpython/cmathimpl.py +560 -0
  97. numba_cuda/numba/cuda/cpython/enumimpl.py +103 -0
  98. numba_cuda/numba/cuda/cpython/iterators.py +167 -0
  99. numba_cuda/numba/cuda/cpython/listobj.py +1326 -0
  100. numba_cuda/numba/cuda/cpython/mathimpl.py +499 -0
  101. numba_cuda/numba/cuda/cpython/numbers.py +1475 -0
  102. numba_cuda/numba/cuda/cpython/rangeobj.py +289 -0
  103. numba_cuda/numba/cuda/cpython/slicing.py +322 -0
  104. numba_cuda/numba/cuda/cpython/tupleobj.py +456 -0
  105. numba_cuda/numba/cuda/cpython/unicode.py +2865 -0
  106. numba_cuda/numba/cuda/cpython/unicode_support.py +1597 -0
  107. numba_cuda/numba/cuda/cpython/unsafe/__init__.py +0 -0
  108. numba_cuda/numba/cuda/cpython/unsafe/numbers.py +64 -0
  109. numba_cuda/numba/cuda/cpython/unsafe/tuple.py +92 -0
  110. numba_cuda/numba/cuda/cuda_paths.py +691 -0
  111. numba_cuda/numba/cuda/cudadecl.py +543 -0
  112. numba_cuda/numba/cuda/cudadrv/__init__.py +14 -0
  113. numba_cuda/numba/cuda/cudadrv/devicearray.py +954 -0
  114. numba_cuda/numba/cuda/cudadrv/devices.py +249 -0
  115. numba_cuda/numba/cuda/cudadrv/driver.py +3238 -0
  116. numba_cuda/numba/cuda/cudadrv/drvapi.py +435 -0
  117. numba_cuda/numba/cuda/cudadrv/dummyarray.py +562 -0
  118. numba_cuda/numba/cuda/cudadrv/enums.py +613 -0
  119. numba_cuda/numba/cuda/cudadrv/error.py +48 -0
  120. numba_cuda/numba/cuda/cudadrv/libs.py +220 -0
  121. numba_cuda/numba/cuda/cudadrv/linkable_code.py +184 -0
  122. numba_cuda/numba/cuda/cudadrv/mappings.py +14 -0
  123. numba_cuda/numba/cuda/cudadrv/ndarray.py +26 -0
  124. numba_cuda/numba/cuda/cudadrv/nvrtc.py +193 -0
  125. numba_cuda/numba/cuda/cudadrv/nvvm.py +756 -0
  126. numba_cuda/numba/cuda/cudadrv/rtapi.py +13 -0
  127. numba_cuda/numba/cuda/cudadrv/runtime.py +34 -0
  128. numba_cuda/numba/cuda/cudaimpl.py +983 -0
  129. numba_cuda/numba/cuda/cudamath.py +149 -0
  130. numba_cuda/numba/cuda/datamodel/__init__.py +7 -0
  131. numba_cuda/numba/cuda/datamodel/cuda_manager.py +66 -0
  132. numba_cuda/numba/cuda/datamodel/cuda_models.py +1446 -0
  133. numba_cuda/numba/cuda/datamodel/cuda_packer.py +224 -0
  134. numba_cuda/numba/cuda/datamodel/cuda_registry.py +22 -0
  135. numba_cuda/numba/cuda/datamodel/cuda_testing.py +153 -0
  136. numba_cuda/numba/cuda/datamodel/manager.py +11 -0
  137. numba_cuda/numba/cuda/datamodel/models.py +9 -0
  138. numba_cuda/numba/cuda/datamodel/packer.py +9 -0
  139. numba_cuda/numba/cuda/datamodel/registry.py +11 -0
  140. numba_cuda/numba/cuda/datamodel/testing.py +11 -0
  141. numba_cuda/numba/cuda/debuginfo.py +997 -0
  142. numba_cuda/numba/cuda/decorators.py +294 -0
  143. numba_cuda/numba/cuda/descriptor.py +35 -0
  144. numba_cuda/numba/cuda/device_init.py +155 -0
  145. numba_cuda/numba/cuda/deviceufunc.py +1021 -0
  146. numba_cuda/numba/cuda/dispatcher.py +2463 -0
  147. numba_cuda/numba/cuda/errors.py +72 -0
  148. numba_cuda/numba/cuda/extending.py +697 -0
  149. numba_cuda/numba/cuda/flags.py +178 -0
  150. numba_cuda/numba/cuda/fp16.py +357 -0
  151. numba_cuda/numba/cuda/include/12/cuda_bf16.h +5118 -0
  152. numba_cuda/numba/cuda/include/12/cuda_bf16.hpp +3865 -0
  153. numba_cuda/numba/cuda/include/12/cuda_fp16.h +5363 -0
  154. numba_cuda/numba/cuda/include/12/cuda_fp16.hpp +3483 -0
  155. numba_cuda/numba/cuda/include/13/cuda_bf16.h +5118 -0
  156. numba_cuda/numba/cuda/include/13/cuda_bf16.hpp +3865 -0
  157. numba_cuda/numba/cuda/include/13/cuda_fp16.h +5363 -0
  158. numba_cuda/numba/cuda/include/13/cuda_fp16.hpp +3483 -0
  159. numba_cuda/numba/cuda/initialize.py +24 -0
  160. numba_cuda/numba/cuda/intrinsics.py +531 -0
  161. numba_cuda/numba/cuda/itanium_mangler.py +214 -0
  162. numba_cuda/numba/cuda/kernels/__init__.py +2 -0
  163. numba_cuda/numba/cuda/kernels/reduction.py +265 -0
  164. numba_cuda/numba/cuda/kernels/transpose.py +65 -0
  165. numba_cuda/numba/cuda/libdevice.py +3386 -0
  166. numba_cuda/numba/cuda/libdevicedecl.py +20 -0
  167. numba_cuda/numba/cuda/libdevicefuncs.py +1060 -0
  168. numba_cuda/numba/cuda/libdeviceimpl.py +88 -0
  169. numba_cuda/numba/cuda/locks.py +19 -0
  170. numba_cuda/numba/cuda/lowering.py +1980 -0
  171. numba_cuda/numba/cuda/mathimpl.py +374 -0
  172. numba_cuda/numba/cuda/memory_management/__init__.py +4 -0
  173. numba_cuda/numba/cuda/memory_management/memsys.cu +99 -0
  174. numba_cuda/numba/cuda/memory_management/memsys.cuh +22 -0
  175. numba_cuda/numba/cuda/memory_management/nrt.cu +212 -0
  176. numba_cuda/numba/cuda/memory_management/nrt.cuh +48 -0
  177. numba_cuda/numba/cuda/memory_management/nrt.py +390 -0
  178. numba_cuda/numba/cuda/memory_management/nrt_context.py +438 -0
  179. numba_cuda/numba/cuda/misc/appdirs.py +594 -0
  180. numba_cuda/numba/cuda/misc/cffiimpl.py +24 -0
  181. numba_cuda/numba/cuda/misc/coverage_support.py +43 -0
  182. numba_cuda/numba/cuda/misc/dump_style.py +41 -0
  183. numba_cuda/numba/cuda/misc/findlib.py +75 -0
  184. numba_cuda/numba/cuda/misc/firstlinefinder.py +96 -0
  185. numba_cuda/numba/cuda/misc/gdb_hook.py +240 -0
  186. numba_cuda/numba/cuda/misc/literal.py +28 -0
  187. numba_cuda/numba/cuda/misc/llvm_pass_timings.py +412 -0
  188. numba_cuda/numba/cuda/misc/special.py +94 -0
  189. numba_cuda/numba/cuda/models.py +56 -0
  190. numba_cuda/numba/cuda/np/arraymath.py +5130 -0
  191. numba_cuda/numba/cuda/np/arrayobj.py +7635 -0
  192. numba_cuda/numba/cuda/np/extensions.py +11 -0
  193. numba_cuda/numba/cuda/np/linalg.py +3087 -0
  194. numba_cuda/numba/cuda/np/math/__init__.py +0 -0
  195. numba_cuda/numba/cuda/np/math/cmathimpl.py +558 -0
  196. numba_cuda/numba/cuda/np/math/mathimpl.py +487 -0
  197. numba_cuda/numba/cuda/np/math/numbers.py +1461 -0
  198. numba_cuda/numba/cuda/np/npdatetime.py +969 -0
  199. numba_cuda/numba/cuda/np/npdatetime_helpers.py +217 -0
  200. numba_cuda/numba/cuda/np/npyfuncs.py +1808 -0
  201. numba_cuda/numba/cuda/np/npyimpl.py +1027 -0
  202. numba_cuda/numba/cuda/np/numpy_support.py +798 -0
  203. numba_cuda/numba/cuda/np/polynomial/__init__.py +4 -0
  204. numba_cuda/numba/cuda/np/polynomial/polynomial_core.py +242 -0
  205. numba_cuda/numba/cuda/np/polynomial/polynomial_functions.py +380 -0
  206. numba_cuda/numba/cuda/np/ufunc/__init__.py +4 -0
  207. numba_cuda/numba/cuda/np/ufunc/decorators.py +203 -0
  208. numba_cuda/numba/cuda/np/ufunc/sigparse.py +68 -0
  209. numba_cuda/numba/cuda/np/ufunc/ufuncbuilder.py +65 -0
  210. numba_cuda/numba/cuda/np/ufunc_db.py +1282 -0
  211. numba_cuda/numba/cuda/np/unsafe/__init__.py +0 -0
  212. numba_cuda/numba/cuda/np/unsafe/ndarray.py +84 -0
  213. numba_cuda/numba/cuda/nvvmutils.py +254 -0
  214. numba_cuda/numba/cuda/printimpl.py +126 -0
  215. numba_cuda/numba/cuda/random.py +308 -0
  216. numba_cuda/numba/cuda/reshape_funcs.cu +156 -0
  217. numba_cuda/numba/cuda/serialize.py +267 -0
  218. numba_cuda/numba/cuda/simulator/__init__.py +63 -0
  219. numba_cuda/numba/cuda/simulator/_internal/__init__.py +4 -0
  220. numba_cuda/numba/cuda/simulator/_internal/cuda_bf16.py +2 -0
  221. numba_cuda/numba/cuda/simulator/api.py +179 -0
  222. numba_cuda/numba/cuda/simulator/bf16.py +4 -0
  223. numba_cuda/numba/cuda/simulator/compiler.py +38 -0
  224. numba_cuda/numba/cuda/simulator/cudadrv/__init__.py +11 -0
  225. numba_cuda/numba/cuda/simulator/cudadrv/devicearray.py +462 -0
  226. numba_cuda/numba/cuda/simulator/cudadrv/devices.py +122 -0
  227. numba_cuda/numba/cuda/simulator/cudadrv/driver.py +66 -0
  228. numba_cuda/numba/cuda/simulator/cudadrv/drvapi.py +7 -0
  229. numba_cuda/numba/cuda/simulator/cudadrv/dummyarray.py +7 -0
  230. numba_cuda/numba/cuda/simulator/cudadrv/error.py +10 -0
  231. numba_cuda/numba/cuda/simulator/cudadrv/libs.py +10 -0
  232. numba_cuda/numba/cuda/simulator/cudadrv/linkable_code.py +61 -0
  233. numba_cuda/numba/cuda/simulator/cudadrv/nvrtc.py +11 -0
  234. numba_cuda/numba/cuda/simulator/cudadrv/nvvm.py +32 -0
  235. numba_cuda/numba/cuda/simulator/cudadrv/runtime.py +22 -0
  236. numba_cuda/numba/cuda/simulator/dispatcher.py +11 -0
  237. numba_cuda/numba/cuda/simulator/kernel.py +320 -0
  238. numba_cuda/numba/cuda/simulator/kernelapi.py +509 -0
  239. numba_cuda/numba/cuda/simulator/memory_management/__init__.py +4 -0
  240. numba_cuda/numba/cuda/simulator/memory_management/nrt.py +21 -0
  241. numba_cuda/numba/cuda/simulator/reduction.py +19 -0
  242. numba_cuda/numba/cuda/simulator/tests/support.py +4 -0
  243. numba_cuda/numba/cuda/simulator/vector_types.py +65 -0
  244. numba_cuda/numba/cuda/simulator_init.py +18 -0
  245. numba_cuda/numba/cuda/stubs.py +624 -0
  246. numba_cuda/numba/cuda/target.py +505 -0
  247. numba_cuda/numba/cuda/testing.py +347 -0
  248. numba_cuda/numba/cuda/tests/__init__.py +62 -0
  249. numba_cuda/numba/cuda/tests/benchmarks/__init__.py +0 -0
  250. numba_cuda/numba/cuda/tests/benchmarks/test_kernel_launch.py +119 -0
  251. numba_cuda/numba/cuda/tests/cloudpickle_main_class.py +9 -0
  252. numba_cuda/numba/cuda/tests/core/serialize_usecases.py +113 -0
  253. numba_cuda/numba/cuda/tests/core/test_itanium_mangler.py +83 -0
  254. numba_cuda/numba/cuda/tests/core/test_serialize.py +371 -0
  255. numba_cuda/numba/cuda/tests/cudadrv/__init__.py +9 -0
  256. numba_cuda/numba/cuda/tests/cudadrv/test_array_attr.py +147 -0
  257. numba_cuda/numba/cuda/tests/cudadrv/test_context_stack.py +161 -0
  258. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_array_slicing.py +397 -0
  259. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_auto_context.py +24 -0
  260. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_devicerecord.py +180 -0
  261. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_driver.py +313 -0
  262. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_memory.py +191 -0
  263. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_ndarray.py +621 -0
  264. numba_cuda/numba/cuda/tests/cudadrv/test_deallocations.py +247 -0
  265. numba_cuda/numba/cuda/tests/cudadrv/test_detect.py +100 -0
  266. numba_cuda/numba/cuda/tests/cudadrv/test_emm_plugins.py +200 -0
  267. numba_cuda/numba/cuda/tests/cudadrv/test_events.py +53 -0
  268. numba_cuda/numba/cuda/tests/cudadrv/test_host_alloc.py +72 -0
  269. numba_cuda/numba/cuda/tests/cudadrv/test_init.py +138 -0
  270. numba_cuda/numba/cuda/tests/cudadrv/test_inline_ptx.py +43 -0
  271. numba_cuda/numba/cuda/tests/cudadrv/test_is_fp16.py +15 -0
  272. numba_cuda/numba/cuda/tests/cudadrv/test_linkable_code.py +58 -0
  273. numba_cuda/numba/cuda/tests/cudadrv/test_linker.py +348 -0
  274. numba_cuda/numba/cuda/tests/cudadrv/test_managed_alloc.py +128 -0
  275. numba_cuda/numba/cuda/tests/cudadrv/test_module_callbacks.py +301 -0
  276. numba_cuda/numba/cuda/tests/cudadrv/test_nvjitlink.py +174 -0
  277. numba_cuda/numba/cuda/tests/cudadrv/test_nvrtc.py +28 -0
  278. numba_cuda/numba/cuda/tests/cudadrv/test_nvvm_driver.py +185 -0
  279. numba_cuda/numba/cuda/tests/cudadrv/test_pinned.py +39 -0
  280. numba_cuda/numba/cuda/tests/cudadrv/test_profiler.py +23 -0
  281. numba_cuda/numba/cuda/tests/cudadrv/test_reset_device.py +38 -0
  282. numba_cuda/numba/cuda/tests/cudadrv/test_runtime.py +48 -0
  283. numba_cuda/numba/cuda/tests/cudadrv/test_select_device.py +44 -0
  284. numba_cuda/numba/cuda/tests/cudadrv/test_streams.py +127 -0
  285. numba_cuda/numba/cuda/tests/cudapy/__init__.py +9 -0
  286. numba_cuda/numba/cuda/tests/cudapy/cache_usecases.py +231 -0
  287. numba_cuda/numba/cuda/tests/cudapy/cache_with_cpu_usecases.py +50 -0
  288. numba_cuda/numba/cuda/tests/cudapy/cg_cache_usecases.py +36 -0
  289. numba_cuda/numba/cuda/tests/cudapy/complex_usecases.py +116 -0
  290. numba_cuda/numba/cuda/tests/cudapy/enum_usecases.py +59 -0
  291. numba_cuda/numba/cuda/tests/cudapy/extensions_usecases.py +62 -0
  292. numba_cuda/numba/cuda/tests/cudapy/jitlink.ptx +28 -0
  293. numba_cuda/numba/cuda/tests/cudapy/overload_usecases.py +33 -0
  294. numba_cuda/numba/cuda/tests/cudapy/recursion_usecases.py +104 -0
  295. numba_cuda/numba/cuda/tests/cudapy/test_alignment.py +47 -0
  296. numba_cuda/numba/cuda/tests/cudapy/test_analysis.py +1122 -0
  297. numba_cuda/numba/cuda/tests/cudapy/test_array.py +344 -0
  298. numba_cuda/numba/cuda/tests/cudapy/test_array_alignment.py +268 -0
  299. numba_cuda/numba/cuda/tests/cudapy/test_array_args.py +203 -0
  300. numba_cuda/numba/cuda/tests/cudapy/test_array_methods.py +63 -0
  301. numba_cuda/numba/cuda/tests/cudapy/test_array_reductions.py +360 -0
  302. numba_cuda/numba/cuda/tests/cudapy/test_atomics.py +1815 -0
  303. numba_cuda/numba/cuda/tests/cudapy/test_bfloat16.py +599 -0
  304. numba_cuda/numba/cuda/tests/cudapy/test_bfloat16_bindings.py +377 -0
  305. numba_cuda/numba/cuda/tests/cudapy/test_blackscholes.py +160 -0
  306. numba_cuda/numba/cuda/tests/cudapy/test_boolean.py +27 -0
  307. numba_cuda/numba/cuda/tests/cudapy/test_byteflow.py +98 -0
  308. numba_cuda/numba/cuda/tests/cudapy/test_cache_hints.py +210 -0
  309. numba_cuda/numba/cuda/tests/cudapy/test_caching.py +683 -0
  310. numba_cuda/numba/cuda/tests/cudapy/test_casting.py +265 -0
  311. numba_cuda/numba/cuda/tests/cudapy/test_cffi.py +42 -0
  312. numba_cuda/numba/cuda/tests/cudapy/test_compiler.py +718 -0
  313. numba_cuda/numba/cuda/tests/cudapy/test_complex.py +370 -0
  314. numba_cuda/numba/cuda/tests/cudapy/test_complex_kernel.py +23 -0
  315. numba_cuda/numba/cuda/tests/cudapy/test_const_string.py +142 -0
  316. numba_cuda/numba/cuda/tests/cudapy/test_constmem.py +178 -0
  317. numba_cuda/numba/cuda/tests/cudapy/test_cooperative_groups.py +193 -0
  318. numba_cuda/numba/cuda/tests/cudapy/test_copy_propagate.py +131 -0
  319. numba_cuda/numba/cuda/tests/cudapy/test_cuda_array_interface.py +438 -0
  320. numba_cuda/numba/cuda/tests/cudapy/test_cuda_jit_no_types.py +94 -0
  321. numba_cuda/numba/cuda/tests/cudapy/test_datetime.py +101 -0
  322. numba_cuda/numba/cuda/tests/cudapy/test_debug.py +105 -0
  323. numba_cuda/numba/cuda/tests/cudapy/test_debuginfo.py +978 -0
  324. numba_cuda/numba/cuda/tests/cudapy/test_debuginfo_types.py +476 -0
  325. numba_cuda/numba/cuda/tests/cudapy/test_device_func.py +500 -0
  326. numba_cuda/numba/cuda/tests/cudapy/test_dispatcher.py +820 -0
  327. numba_cuda/numba/cuda/tests/cudapy/test_enums.py +152 -0
  328. numba_cuda/numba/cuda/tests/cudapy/test_errors.py +111 -0
  329. numba_cuda/numba/cuda/tests/cudapy/test_exception.py +170 -0
  330. numba_cuda/numba/cuda/tests/cudapy/test_extending.py +1088 -0
  331. numba_cuda/numba/cuda/tests/cudapy/test_extending_types.py +71 -0
  332. numba_cuda/numba/cuda/tests/cudapy/test_fastmath.py +265 -0
  333. numba_cuda/numba/cuda/tests/cudapy/test_flow_control.py +1433 -0
  334. numba_cuda/numba/cuda/tests/cudapy/test_forall.py +57 -0
  335. numba_cuda/numba/cuda/tests/cudapy/test_freevar.py +34 -0
  336. numba_cuda/numba/cuda/tests/cudapy/test_frexp_ldexp.py +69 -0
  337. numba_cuda/numba/cuda/tests/cudapy/test_globals.py +62 -0
  338. numba_cuda/numba/cuda/tests/cudapy/test_gufunc.py +474 -0
  339. numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scalar.py +167 -0
  340. numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scheduling.py +92 -0
  341. numba_cuda/numba/cuda/tests/cudapy/test_idiv.py +39 -0
  342. numba_cuda/numba/cuda/tests/cudapy/test_inline.py +170 -0
  343. numba_cuda/numba/cuda/tests/cudapy/test_inspect.py +255 -0
  344. numba_cuda/numba/cuda/tests/cudapy/test_intrinsics.py +1219 -0
  345. numba_cuda/numba/cuda/tests/cudapy/test_ipc.py +263 -0
  346. numba_cuda/numba/cuda/tests/cudapy/test_ir.py +598 -0
  347. numba_cuda/numba/cuda/tests/cudapy/test_ir_utils.py +276 -0
  348. numba_cuda/numba/cuda/tests/cudapy/test_iterators.py +101 -0
  349. numba_cuda/numba/cuda/tests/cudapy/test_lang.py +68 -0
  350. numba_cuda/numba/cuda/tests/cudapy/test_laplace.py +123 -0
  351. numba_cuda/numba/cuda/tests/cudapy/test_libdevice.py +194 -0
  352. numba_cuda/numba/cuda/tests/cudapy/test_lineinfo.py +220 -0
  353. numba_cuda/numba/cuda/tests/cudapy/test_localmem.py +173 -0
  354. numba_cuda/numba/cuda/tests/cudapy/test_make_function_to_jit_function.py +364 -0
  355. numba_cuda/numba/cuda/tests/cudapy/test_mandel.py +47 -0
  356. numba_cuda/numba/cuda/tests/cudapy/test_math.py +842 -0
  357. numba_cuda/numba/cuda/tests/cudapy/test_matmul.py +76 -0
  358. numba_cuda/numba/cuda/tests/cudapy/test_minmax.py +78 -0
  359. numba_cuda/numba/cuda/tests/cudapy/test_montecarlo.py +25 -0
  360. numba_cuda/numba/cuda/tests/cudapy/test_multigpu.py +145 -0
  361. numba_cuda/numba/cuda/tests/cudapy/test_multiprocessing.py +39 -0
  362. numba_cuda/numba/cuda/tests/cudapy/test_multithreads.py +82 -0
  363. numba_cuda/numba/cuda/tests/cudapy/test_nondet.py +53 -0
  364. numba_cuda/numba/cuda/tests/cudapy/test_operator.py +504 -0
  365. numba_cuda/numba/cuda/tests/cudapy/test_optimization.py +93 -0
  366. numba_cuda/numba/cuda/tests/cudapy/test_overload.py +402 -0
  367. numba_cuda/numba/cuda/tests/cudapy/test_powi.py +128 -0
  368. numba_cuda/numba/cuda/tests/cudapy/test_print.py +193 -0
  369. numba_cuda/numba/cuda/tests/cudapy/test_py2_div_issue.py +37 -0
  370. numba_cuda/numba/cuda/tests/cudapy/test_random.py +117 -0
  371. numba_cuda/numba/cuda/tests/cudapy/test_record_dtype.py +614 -0
  372. numba_cuda/numba/cuda/tests/cudapy/test_recursion.py +130 -0
  373. numba_cuda/numba/cuda/tests/cudapy/test_reduction.py +94 -0
  374. numba_cuda/numba/cuda/tests/cudapy/test_retrieve_autoconverted_arrays.py +83 -0
  375. numba_cuda/numba/cuda/tests/cudapy/test_serialize.py +86 -0
  376. numba_cuda/numba/cuda/tests/cudapy/test_slicing.py +40 -0
  377. numba_cuda/numba/cuda/tests/cudapy/test_sm.py +457 -0
  378. numba_cuda/numba/cuda/tests/cudapy/test_sm_creation.py +233 -0
  379. numba_cuda/numba/cuda/tests/cudapy/test_ssa.py +454 -0
  380. numba_cuda/numba/cuda/tests/cudapy/test_stream_api.py +56 -0
  381. numba_cuda/numba/cuda/tests/cudapy/test_sync.py +277 -0
  382. numba_cuda/numba/cuda/tests/cudapy/test_tracing.py +200 -0
  383. numba_cuda/numba/cuda/tests/cudapy/test_transpose.py +90 -0
  384. numba_cuda/numba/cuda/tests/cudapy/test_typeconv.py +333 -0
  385. numba_cuda/numba/cuda/tests/cudapy/test_typeinfer.py +538 -0
  386. numba_cuda/numba/cuda/tests/cudapy/test_ufuncs.py +585 -0
  387. numba_cuda/numba/cuda/tests/cudapy/test_userexc.py +42 -0
  388. numba_cuda/numba/cuda/tests/cudapy/test_vector_type.py +485 -0
  389. numba_cuda/numba/cuda/tests/cudapy/test_vectorize.py +312 -0
  390. numba_cuda/numba/cuda/tests/cudapy/test_vectorize_complex.py +23 -0
  391. numba_cuda/numba/cuda/tests/cudapy/test_vectorize_decor.py +183 -0
  392. numba_cuda/numba/cuda/tests/cudapy/test_vectorize_device.py +40 -0
  393. numba_cuda/numba/cuda/tests/cudapy/test_vectorize_scalar_arg.py +40 -0
  394. numba_cuda/numba/cuda/tests/cudapy/test_warning.py +206 -0
  395. numba_cuda/numba/cuda/tests/cudapy/test_warp_ops.py +446 -0
  396. numba_cuda/numba/cuda/tests/cudasim/__init__.py +9 -0
  397. numba_cuda/numba/cuda/tests/cudasim/support.py +9 -0
  398. numba_cuda/numba/cuda/tests/cudasim/test_cudasim_issues.py +111 -0
  399. numba_cuda/numba/cuda/tests/data/__init__.py +2 -0
  400. numba_cuda/numba/cuda/tests/data/cta_barrier.cu +28 -0
  401. numba_cuda/numba/cuda/tests/data/cuda_include.cu +10 -0
  402. numba_cuda/numba/cuda/tests/data/error.cu +12 -0
  403. numba_cuda/numba/cuda/tests/data/include/add.cuh +8 -0
  404. numba_cuda/numba/cuda/tests/data/jitlink.cu +28 -0
  405. numba_cuda/numba/cuda/tests/data/jitlink.ptx +49 -0
  406. numba_cuda/numba/cuda/tests/data/warn.cu +12 -0
  407. numba_cuda/numba/cuda/tests/doc_examples/__init__.py +9 -0
  408. numba_cuda/numba/cuda/tests/doc_examples/ffi/__init__.py +2 -0
  409. numba_cuda/numba/cuda/tests/doc_examples/ffi/functions.cu +54 -0
  410. numba_cuda/numba/cuda/tests/doc_examples/ffi/include/mul.cuh +8 -0
  411. numba_cuda/numba/cuda/tests/doc_examples/ffi/saxpy.cu +14 -0
  412. numba_cuda/numba/cuda/tests/doc_examples/test_cg.py +86 -0
  413. numba_cuda/numba/cuda/tests/doc_examples/test_cpointer.py +68 -0
  414. numba_cuda/numba/cuda/tests/doc_examples/test_cpu_gpu_compat.py +81 -0
  415. numba_cuda/numba/cuda/tests/doc_examples/test_ffi.py +141 -0
  416. numba_cuda/numba/cuda/tests/doc_examples/test_laplace.py +160 -0
  417. numba_cuda/numba/cuda/tests/doc_examples/test_matmul.py +180 -0
  418. numba_cuda/numba/cuda/tests/doc_examples/test_montecarlo.py +119 -0
  419. numba_cuda/numba/cuda/tests/doc_examples/test_random.py +66 -0
  420. numba_cuda/numba/cuda/tests/doc_examples/test_reduction.py +80 -0
  421. numba_cuda/numba/cuda/tests/doc_examples/test_sessionize.py +206 -0
  422. numba_cuda/numba/cuda/tests/doc_examples/test_ufunc.py +53 -0
  423. numba_cuda/numba/cuda/tests/doc_examples/test_vecadd.py +76 -0
  424. numba_cuda/numba/cuda/tests/nocuda/__init__.py +9 -0
  425. numba_cuda/numba/cuda/tests/nocuda/test_dummyarray.py +452 -0
  426. numba_cuda/numba/cuda/tests/nocuda/test_function_resolution.py +48 -0
  427. numba_cuda/numba/cuda/tests/nocuda/test_import.py +63 -0
  428. numba_cuda/numba/cuda/tests/nocuda/test_library_lookup.py +252 -0
  429. numba_cuda/numba/cuda/tests/nocuda/test_nvvm.py +59 -0
  430. numba_cuda/numba/cuda/tests/nrt/__init__.py +9 -0
  431. numba_cuda/numba/cuda/tests/nrt/test_nrt.py +387 -0
  432. numba_cuda/numba/cuda/tests/nrt/test_nrt_refct.py +124 -0
  433. numba_cuda/numba/cuda/tests/support.py +900 -0
  434. numba_cuda/numba/cuda/typeconv/__init__.py +4 -0
  435. numba_cuda/numba/cuda/typeconv/castgraph.py +137 -0
  436. numba_cuda/numba/cuda/typeconv/rules.py +63 -0
  437. numba_cuda/numba/cuda/typeconv/typeconv.py +121 -0
  438. numba_cuda/numba/cuda/types/__init__.py +233 -0
  439. numba_cuda/numba/cuda/types/__init__.pyi +167 -0
  440. numba_cuda/numba/cuda/types/abstract.py +9 -0
  441. numba_cuda/numba/cuda/types/common.py +9 -0
  442. numba_cuda/numba/cuda/types/containers.py +9 -0
  443. numba_cuda/numba/cuda/types/cuda_abstract.py +533 -0
  444. numba_cuda/numba/cuda/types/cuda_common.py +110 -0
  445. numba_cuda/numba/cuda/types/cuda_containers.py +971 -0
  446. numba_cuda/numba/cuda/types/cuda_function_type.py +230 -0
  447. numba_cuda/numba/cuda/types/cuda_functions.py +798 -0
  448. numba_cuda/numba/cuda/types/cuda_iterators.py +120 -0
  449. numba_cuda/numba/cuda/types/cuda_misc.py +569 -0
  450. numba_cuda/numba/cuda/types/cuda_npytypes.py +690 -0
  451. numba_cuda/numba/cuda/types/cuda_scalars.py +280 -0
  452. numba_cuda/numba/cuda/types/ext_types.py +101 -0
  453. numba_cuda/numba/cuda/types/function_type.py +11 -0
  454. numba_cuda/numba/cuda/types/functions.py +9 -0
  455. numba_cuda/numba/cuda/types/iterators.py +9 -0
  456. numba_cuda/numba/cuda/types/misc.py +9 -0
  457. numba_cuda/numba/cuda/types/npytypes.py +9 -0
  458. numba_cuda/numba/cuda/types/scalars.py +9 -0
  459. numba_cuda/numba/cuda/typing/__init__.py +19 -0
  460. numba_cuda/numba/cuda/typing/arraydecl.py +939 -0
  461. numba_cuda/numba/cuda/typing/asnumbatype.py +130 -0
  462. numba_cuda/numba/cuda/typing/bufproto.py +70 -0
  463. numba_cuda/numba/cuda/typing/builtins.py +1209 -0
  464. numba_cuda/numba/cuda/typing/cffi_utils.py +219 -0
  465. numba_cuda/numba/cuda/typing/cmathdecl.py +47 -0
  466. numba_cuda/numba/cuda/typing/collections.py +138 -0
  467. numba_cuda/numba/cuda/typing/context.py +782 -0
  468. numba_cuda/numba/cuda/typing/ctypes_utils.py +125 -0
  469. numba_cuda/numba/cuda/typing/dictdecl.py +63 -0
  470. numba_cuda/numba/cuda/typing/enumdecl.py +74 -0
  471. numba_cuda/numba/cuda/typing/listdecl.py +147 -0
  472. numba_cuda/numba/cuda/typing/mathdecl.py +158 -0
  473. numba_cuda/numba/cuda/typing/npdatetime.py +322 -0
  474. numba_cuda/numba/cuda/typing/npydecl.py +749 -0
  475. numba_cuda/numba/cuda/typing/setdecl.py +115 -0
  476. numba_cuda/numba/cuda/typing/templates.py +1446 -0
  477. numba_cuda/numba/cuda/typing/typeof.py +301 -0
  478. numba_cuda/numba/cuda/ufuncs.py +746 -0
  479. numba_cuda/numba/cuda/utils.py +724 -0
  480. numba_cuda/numba/cuda/vector_types.py +214 -0
  481. numba_cuda/numba/cuda/vectorizers.py +260 -0
  482. numba_cuda-0.22.0.dist-info/METADATA +109 -0
  483. numba_cuda-0.22.0.dist-info/RECORD +487 -0
  484. numba_cuda-0.22.0.dist-info/WHEEL +6 -0
  485. numba_cuda-0.22.0.dist-info/licenses/LICENSE +26 -0
  486. numba_cuda-0.22.0.dist-info/licenses/LICENSE.numba +24 -0
  487. numba_cuda-0.22.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,983 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: BSD-2-Clause
3
+
4
+ from functools import reduce
5
+ import operator
6
+ import math
7
+ import struct
8
+
9
+ from llvmlite import ir
10
+ import llvmlite.binding as ll
11
+
12
+ from numba.cuda.core.imputils import Registry
13
+ from numba.cuda.typing.npydecl import parse_dtype
14
+ from numba.cuda.datamodel.models import StructModel
15
+ from numba.cuda import types
16
+ from numba.cuda import cgutils
17
+ from numba.cuda.np import ufunc_db
18
+ from numba.cuda.np.npyimpl import register_ufuncs
19
+ from .cudadrv import nvvm
20
+ from numba import cuda
21
+ from numba.cuda.api_util import normalize_indices
22
+ from numba.cuda import nvvmutils, stubs
23
+ from numba.cuda.types.ext_types import dim3, CUDADispatcher
24
+
25
+ if cuda.HAS_NUMBA:
26
+ from numba.core.datamodel.models import StructModel as CoreStructModel
27
+ from numba.core import types as core_types
28
+
29
+ registry = Registry("cudaimpl")
30
+ lower = registry.lower
31
+ lower_attr = registry.lower_getattr
32
+ lower_constant = registry.lower_constant
33
+ lower_getattr_generic = registry.lower_getattr_generic
34
+ lower_setattr = registry.lower_setattr
35
+ lower_setattr_generic = registry.lower_setattr_generic
36
+ lower_cast = registry.lower_cast
37
+
38
+
39
+ def initialize_dim3(builder, prefix):
40
+ x = nvvmutils.call_sreg(builder, "%s.x" % prefix)
41
+ y = nvvmutils.call_sreg(builder, "%s.y" % prefix)
42
+ z = nvvmutils.call_sreg(builder, "%s.z" % prefix)
43
+ return cgutils.pack_struct(builder, (x, y, z))
44
+
45
+
46
+ @lower_attr(types.Module(cuda), "threadIdx")
47
+ def cuda_threadIdx(context, builder, sig, args):
48
+ return initialize_dim3(builder, "tid")
49
+
50
+
51
+ @lower_attr(types.Module(cuda), "blockDim")
52
+ def cuda_blockDim(context, builder, sig, args):
53
+ return initialize_dim3(builder, "ntid")
54
+
55
+
56
+ @lower_attr(types.Module(cuda), "blockIdx")
57
+ def cuda_blockIdx(context, builder, sig, args):
58
+ return initialize_dim3(builder, "ctaid")
59
+
60
+
61
+ @lower_attr(types.Module(cuda), "gridDim")
62
+ def cuda_gridDim(context, builder, sig, args):
63
+ return initialize_dim3(builder, "nctaid")
64
+
65
+
66
+ @lower_attr(types.Module(cuda), "laneid")
67
+ def cuda_laneid(context, builder, sig, args):
68
+ return nvvmutils.call_sreg(builder, "laneid")
69
+
70
+
71
+ @lower_attr(dim3, "x")
72
+ def dim3_x(context, builder, sig, args):
73
+ return builder.extract_value(args, 0)
74
+
75
+
76
+ @lower_attr(dim3, "y")
77
+ def dim3_y(context, builder, sig, args):
78
+ return builder.extract_value(args, 1)
79
+
80
+
81
+ @lower_attr(dim3, "z")
82
+ def dim3_z(context, builder, sig, args):
83
+ return builder.extract_value(args, 2)
84
+
85
+
86
+ # -----------------------------------------------------------------------------
87
+
88
+
89
+ @lower(cuda.const.array_like, types.Array)
90
+ def cuda_const_array_like(context, builder, sig, args):
91
+ # This is a no-op because CUDATargetContext.make_constant_array already
92
+ # created the constant array.
93
+ return args[0]
94
+
95
+
96
+ _unique_smem_id = 0
97
+
98
+
99
+ def _get_unique_smem_id(name):
100
+ """Due to bug with NVVM invalid internalizing of shared memory in the
101
+ PTX output. We can't mark shared memory to be internal. We have to
102
+ ensure unique name is generated for shared memory symbol.
103
+ """
104
+ global _unique_smem_id
105
+ _unique_smem_id += 1
106
+ return "{0}_{1}".format(name, _unique_smem_id)
107
+
108
+
109
+ def _validate_alignment(alignment: int):
110
+ """
111
+ Ensures that *alignment*, if not None, is a) greater than zero, b) a power
112
+ of two, and c) a multiple of the size of a pointer. If any of these
113
+ conditions are not met, a ValueError is raised. Otherwise, this
114
+ function returns None, indicating that the alignment is valid.
115
+ """
116
+ if alignment is None:
117
+ return
118
+ if not isinstance(alignment, int):
119
+ raise ValueError("Alignment must be an integer")
120
+ if alignment <= 0:
121
+ raise ValueError("Alignment must be positive")
122
+ if (alignment & (alignment - 1)) != 0:
123
+ raise ValueError("Alignment must be a power of 2")
124
+ pointer_size = struct.calcsize("P")
125
+ if (alignment % pointer_size) != 0:
126
+ msg = f"Alignment must be a multiple of {pointer_size}"
127
+ raise ValueError(msg)
128
+
129
+
130
+ def _try_extract_and_validate_alignment(sig: types.Tuple):
131
+ """
132
+ Extracts and validates the alignment from the supplied signature.
133
+
134
+ Returns the alignment if it is present and is an integer literal;
135
+ otherwise, returns None.
136
+
137
+ N.B. Currently, this routine assumes the signature has exactly
138
+ three arguments, with the alignment (if present) as the third
139
+ argument, as is the case with the shared and local array
140
+ helper routines below.
141
+
142
+ If this routine is called from new places, you may need to
143
+ review this implicit assumption.
144
+ """
145
+ if len(sig.args) != 3:
146
+ return None
147
+
148
+ alignment_arg = sig.args[2]
149
+ if not isinstance(alignment_arg, types.IntegerLiteral):
150
+ return None
151
+
152
+ alignment_arg = alignment_arg.literal_value
153
+ _validate_alignment(alignment_arg)
154
+ return alignment_arg
155
+
156
+
157
+ @lower(cuda.shared.array, types.IntegerLiteral, types.Any)
158
+ @lower(cuda.shared.array, types.IntegerLiteral, types.Any, types.IntegerLiteral)
159
+ @lower(cuda.shared.array, types.IntegerLiteral, types.Any, types.NoneType)
160
+ def cuda_shared_array_integer(context, builder, sig, args):
161
+ length = sig.args[0].literal_value
162
+ dtype = parse_dtype(sig.args[1])
163
+ alignment = _try_extract_and_validate_alignment(sig)
164
+ return _generic_array(
165
+ context,
166
+ builder,
167
+ shape=(length,),
168
+ dtype=dtype,
169
+ symbol_name=_get_unique_smem_id("_cudapy_smem"),
170
+ addrspace=nvvm.ADDRSPACE_SHARED,
171
+ can_dynsized=True,
172
+ alignment=alignment,
173
+ )
174
+
175
+
176
+ @lower(cuda.shared.array, types.BaseTuple, types.Any)
177
+ @lower(cuda.shared.array, types.BaseTuple, types.Any, types.IntegerLiteral)
178
+ @lower(cuda.shared.array, types.BaseTuple, types.Any, types.NoneType)
179
+ def cuda_shared_array_tuple(context, builder, sig, args):
180
+ shape = [s.literal_value for s in sig.args[0]]
181
+ dtype = parse_dtype(sig.args[1])
182
+ alignment = _try_extract_and_validate_alignment(sig)
183
+ return _generic_array(
184
+ context,
185
+ builder,
186
+ shape=shape,
187
+ dtype=dtype,
188
+ symbol_name=_get_unique_smem_id("_cudapy_smem"),
189
+ addrspace=nvvm.ADDRSPACE_SHARED,
190
+ can_dynsized=True,
191
+ alignment=alignment,
192
+ )
193
+
194
+
195
+ @lower(cuda.local.array, types.IntegerLiteral, types.Any)
196
+ @lower(cuda.local.array, types.IntegerLiteral, types.Any, types.IntegerLiteral)
197
+ @lower(cuda.local.array, types.IntegerLiteral, types.Any, types.NoneType)
198
+ def cuda_local_array_integer(context, builder, sig, args):
199
+ length = sig.args[0].literal_value
200
+ dtype = parse_dtype(sig.args[1])
201
+ alignment = _try_extract_and_validate_alignment(sig)
202
+ return _generic_array(
203
+ context,
204
+ builder,
205
+ shape=(length,),
206
+ dtype=dtype,
207
+ symbol_name="_cudapy_lmem",
208
+ addrspace=nvvm.ADDRSPACE_LOCAL,
209
+ can_dynsized=False,
210
+ alignment=alignment,
211
+ )
212
+
213
+
214
+ @lower(cuda.local.array, types.BaseTuple, types.Any)
215
+ @lower(cuda.local.array, types.BaseTuple, types.Any, types.IntegerLiteral)
216
+ @lower(cuda.local.array, types.BaseTuple, types.Any, types.NoneType)
217
+ def cuda_local_array_tuple(context, builder, sig, args):
218
+ shape = [s.literal_value for s in sig.args[0]]
219
+ dtype = parse_dtype(sig.args[1])
220
+ alignment = _try_extract_and_validate_alignment(sig)
221
+ return _generic_array(
222
+ context,
223
+ builder,
224
+ shape=shape,
225
+ dtype=dtype,
226
+ symbol_name="_cudapy_lmem",
227
+ addrspace=nvvm.ADDRSPACE_LOCAL,
228
+ can_dynsized=False,
229
+ alignment=alignment,
230
+ )
231
+
232
+
233
+ @lower(stubs.threadfence_block)
234
+ def ptx_threadfence_block(context, builder, sig, args):
235
+ assert not args
236
+ fname = "llvm.nvvm.membar.cta"
237
+ lmod = builder.module
238
+ fnty = ir.FunctionType(ir.VoidType(), ())
239
+ sync = cgutils.get_or_insert_function(lmod, fnty, fname)
240
+ builder.call(sync, ())
241
+ return context.get_dummy_value()
242
+
243
+
244
+ @lower(stubs.threadfence_system)
245
+ def ptx_threadfence_system(context, builder, sig, args):
246
+ assert not args
247
+ fname = "llvm.nvvm.membar.sys"
248
+ lmod = builder.module
249
+ fnty = ir.FunctionType(ir.VoidType(), ())
250
+ sync = cgutils.get_or_insert_function(lmod, fnty, fname)
251
+ builder.call(sync, ())
252
+ return context.get_dummy_value()
253
+
254
+
255
+ @lower(stubs.threadfence)
256
+ def ptx_threadfence_device(context, builder, sig, args):
257
+ assert not args
258
+ fname = "llvm.nvvm.membar.gl"
259
+ lmod = builder.module
260
+ fnty = ir.FunctionType(ir.VoidType(), ())
261
+ sync = cgutils.get_or_insert_function(lmod, fnty, fname)
262
+ builder.call(sync, ())
263
+ return context.get_dummy_value()
264
+
265
+
266
+ @lower(stubs.syncwarp)
267
+ def ptx_syncwarp(context, builder, sig, args):
268
+ mask = context.get_constant(types.int32, 0xFFFFFFFF)
269
+ mask_sig = types.none(types.int32)
270
+ return ptx_syncwarp_mask(context, builder, mask_sig, [mask])
271
+
272
+
273
+ @lower(stubs.syncwarp, types.i4)
274
+ def ptx_syncwarp_mask(context, builder, sig, args):
275
+ fname = "llvm.nvvm.bar.warp.sync"
276
+ lmod = builder.module
277
+ fnty = ir.FunctionType(ir.VoidType(), (ir.IntType(32),))
278
+ sync = cgutils.get_or_insert_function(lmod, fnty, fname)
279
+ builder.call(sync, args)
280
+ return context.get_dummy_value()
281
+
282
+
283
+ @lower(stubs.match_any_sync, types.i4, types.i4)
284
+ @lower(stubs.match_any_sync, types.i4, types.i8)
285
+ @lower(stubs.match_any_sync, types.i4, types.f4)
286
+ @lower(stubs.match_any_sync, types.i4, types.f8)
287
+ def ptx_match_any_sync(context, builder, sig, args):
288
+ mask, value = args
289
+ width = sig.args[1].bitwidth
290
+ if sig.args[1] in types.real_domain:
291
+ value = builder.bitcast(value, ir.IntType(width))
292
+ fname = "llvm.nvvm.match.any.sync.i{}".format(width)
293
+ lmod = builder.module
294
+ fnty = ir.FunctionType(ir.IntType(32), (ir.IntType(32), ir.IntType(width)))
295
+ func = cgutils.get_or_insert_function(lmod, fnty, fname)
296
+ return builder.call(func, (mask, value))
297
+
298
+
299
+ @lower(stubs.match_all_sync, types.i4, types.i4)
300
+ @lower(stubs.match_all_sync, types.i4, types.i8)
301
+ @lower(stubs.match_all_sync, types.i4, types.f4)
302
+ @lower(stubs.match_all_sync, types.i4, types.f8)
303
+ def ptx_match_all_sync(context, builder, sig, args):
304
+ mask, value = args
305
+ width = sig.args[1].bitwidth
306
+ if sig.args[1] in types.real_domain:
307
+ value = builder.bitcast(value, ir.IntType(width))
308
+ fname = "llvm.nvvm.match.all.sync.i{}".format(width)
309
+ lmod = builder.module
310
+ fnty = ir.FunctionType(
311
+ ir.LiteralStructType((ir.IntType(32), ir.IntType(1))),
312
+ (ir.IntType(32), ir.IntType(width)),
313
+ )
314
+ func = cgutils.get_or_insert_function(lmod, fnty, fname)
315
+ return builder.call(func, (mask, value))
316
+
317
+
318
+ @lower(stubs.activemask)
319
+ def ptx_activemask(context, builder, sig, args):
320
+ activemask = ir.InlineAsm(
321
+ ir.FunctionType(ir.IntType(32), []),
322
+ "activemask.b32 $0;",
323
+ "=r",
324
+ side_effect=True,
325
+ )
326
+ return builder.call(activemask, [])
327
+
328
+
329
+ @lower(stubs.lanemask_lt)
330
+ def ptx_lanemask_lt(context, builder, sig, args):
331
+ activemask = ir.InlineAsm(
332
+ ir.FunctionType(ir.IntType(32), []),
333
+ "mov.u32 $0, %lanemask_lt;",
334
+ "=r",
335
+ side_effect=True,
336
+ )
337
+ return builder.call(activemask, [])
338
+
339
+
340
+ @lower(stubs.popc, types.Any)
341
+ def ptx_popc(context, builder, sig, args):
342
+ return builder.ctpop(args[0])
343
+
344
+
345
+ @lower(stubs.fma, types.Any, types.Any, types.Any)
346
+ def ptx_fma(context, builder, sig, args):
347
+ return builder.fma(*args)
348
+
349
+
350
+ # See:
351
+ # https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cbrt.html#__nv_cbrt
352
+ # https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cbrtf.html#__nv_cbrtf
353
+
354
+
355
+ cbrt_funcs = {
356
+ types.float32: "__nv_cbrtf",
357
+ types.float64: "__nv_cbrt",
358
+ }
359
+
360
+
361
+ @lower(stubs.cbrt, types.float32)
362
+ @lower(stubs.cbrt, types.float64)
363
+ def ptx_cbrt(context, builder, sig, args):
364
+ ty = sig.return_type
365
+ fname = cbrt_funcs[ty]
366
+ fty = context.get_value_type(ty)
367
+ lmod = builder.module
368
+ fnty = ir.FunctionType(fty, [fty])
369
+ fn = cgutils.get_or_insert_function(lmod, fnty, fname)
370
+ return builder.call(fn, args)
371
+
372
+
373
+ @lower(stubs.brev, types.u4)
374
+ def ptx_brev_u4(context, builder, sig, args):
375
+ # FIXME the llvm.bitreverse.i32 intrinsic isn't supported by nvcc
376
+ # return builder.bitreverse(args[0])
377
+
378
+ fn = cgutils.get_or_insert_function(
379
+ builder.module,
380
+ ir.FunctionType(ir.IntType(32), (ir.IntType(32),)),
381
+ "__nv_brev",
382
+ )
383
+ return builder.call(fn, args)
384
+
385
+
386
+ @lower(stubs.brev, types.u8)
387
+ def ptx_brev_u8(context, builder, sig, args):
388
+ # FIXME the llvm.bitreverse.i64 intrinsic isn't supported by nvcc
389
+ # return builder.bitreverse(args[0])
390
+
391
+ fn = cgutils.get_or_insert_function(
392
+ builder.module,
393
+ ir.FunctionType(ir.IntType(64), (ir.IntType(64),)),
394
+ "__nv_brevll",
395
+ )
396
+ return builder.call(fn, args)
397
+
398
+
399
+ @lower(stubs.clz, types.Any)
400
+ def ptx_clz(context, builder, sig, args):
401
+ return builder.ctlz(args[0], context.get_constant(types.boolean, 0))
402
+
403
+
404
+ @lower(stubs.ffs, types.i4)
405
+ @lower(stubs.ffs, types.u4)
406
+ def ptx_ffs_32(context, builder, sig, args):
407
+ fn = cgutils.get_or_insert_function(
408
+ builder.module,
409
+ ir.FunctionType(ir.IntType(32), (ir.IntType(32),)),
410
+ "__nv_ffs",
411
+ )
412
+ return builder.call(fn, args)
413
+
414
+
415
+ @lower(stubs.ffs, types.i8)
416
+ @lower(stubs.ffs, types.u8)
417
+ def ptx_ffs_64(context, builder, sig, args):
418
+ fn = cgutils.get_or_insert_function(
419
+ builder.module,
420
+ ir.FunctionType(ir.IntType(32), (ir.IntType(64),)),
421
+ "__nv_ffsll",
422
+ )
423
+ return builder.call(fn, args)
424
+
425
+
426
+ @lower(stubs.selp, types.Any, types.Any, types.Any)
427
+ def ptx_selp(context, builder, sig, args):
428
+ test, a, b = args
429
+ return builder.select(test, a, b)
430
+
431
+
432
+ @lower(max, types.f4, types.f4)
433
+ def ptx_max_f4(context, builder, sig, args):
434
+ fn = cgutils.get_or_insert_function(
435
+ builder.module,
436
+ ir.FunctionType(ir.FloatType(), (ir.FloatType(), ir.FloatType())),
437
+ "__nv_fmaxf",
438
+ )
439
+ return builder.call(fn, args)
440
+
441
+
442
+ @lower(max, types.f8, types.f4)
443
+ @lower(max, types.f4, types.f8)
444
+ @lower(max, types.f8, types.f8)
445
+ def ptx_max_f8(context, builder, sig, args):
446
+ fn = cgutils.get_or_insert_function(
447
+ builder.module,
448
+ ir.FunctionType(ir.DoubleType(), (ir.DoubleType(), ir.DoubleType())),
449
+ "__nv_fmax",
450
+ )
451
+
452
+ return builder.call(
453
+ fn,
454
+ [
455
+ context.cast(builder, args[0], sig.args[0], types.double),
456
+ context.cast(builder, args[1], sig.args[1], types.double),
457
+ ],
458
+ )
459
+
460
+
461
+ @lower(min, types.f4, types.f4)
462
+ def ptx_min_f4(context, builder, sig, args):
463
+ fn = cgutils.get_or_insert_function(
464
+ builder.module,
465
+ ir.FunctionType(ir.FloatType(), (ir.FloatType(), ir.FloatType())),
466
+ "__nv_fminf",
467
+ )
468
+ return builder.call(fn, args)
469
+
470
+
471
+ @lower(min, types.f8, types.f4)
472
+ @lower(min, types.f4, types.f8)
473
+ @lower(min, types.f8, types.f8)
474
+ def ptx_min_f8(context, builder, sig, args):
475
+ fn = cgutils.get_or_insert_function(
476
+ builder.module,
477
+ ir.FunctionType(ir.DoubleType(), (ir.DoubleType(), ir.DoubleType())),
478
+ "__nv_fmin",
479
+ )
480
+
481
+ return builder.call(
482
+ fn,
483
+ [
484
+ context.cast(builder, args[0], sig.args[0], types.double),
485
+ context.cast(builder, args[1], sig.args[1], types.double),
486
+ ],
487
+ )
488
+
489
+
490
+ @lower(round, types.f4)
491
+ @lower(round, types.f8)
492
+ def ptx_round(context, builder, sig, args):
493
+ fn = cgutils.get_or_insert_function(
494
+ builder.module,
495
+ ir.FunctionType(ir.IntType(64), (ir.DoubleType(),)),
496
+ "__nv_llrint",
497
+ )
498
+ return builder.call(
499
+ fn,
500
+ [
501
+ context.cast(builder, args[0], sig.args[0], types.double),
502
+ ],
503
+ )
504
+
505
+
506
+ # This rounding implementation follows the algorithm used in the "fallback
507
+ # version" of double_round in CPython.
508
+ # https://github.com/python/cpython/blob/a755410e054e1e2390de5830befc08fe80706c66/Objects/floatobject.c#L964-L1007
509
+
510
+
511
+ @lower(round, types.f4, types.Integer)
512
+ @lower(round, types.f8, types.Integer)
513
+ def round_to_impl(context, builder, sig, args):
514
+ def round_ndigits(x, ndigits):
515
+ if math.isinf(x) or math.isnan(x):
516
+ return x
517
+
518
+ if ndigits >= 0:
519
+ if ndigits > 22:
520
+ # pow1 and pow2 are each safe from overflow, but
521
+ # pow1*pow2 ~= pow(10.0, ndigits) might overflow.
522
+ pow1 = 10.0 ** (ndigits - 22)
523
+ pow2 = 1e22
524
+ else:
525
+ pow1 = 10.0**ndigits
526
+ pow2 = 1.0
527
+ y = (x * pow1) * pow2
528
+ if math.isinf(y):
529
+ return x
530
+
531
+ else:
532
+ pow1 = 10.0 ** (-ndigits)
533
+ y = x / pow1
534
+
535
+ z = round(y)
536
+ if math.fabs(y - z) == 0.5:
537
+ # halfway between two integers; use round-half-even
538
+ z = 2.0 * round(y / 2.0)
539
+
540
+ if ndigits >= 0:
541
+ z = (z / pow2) / pow1
542
+ else:
543
+ z *= pow1
544
+
545
+ return z
546
+
547
+ return context.compile_internal(
548
+ builder,
549
+ round_ndigits,
550
+ sig,
551
+ args,
552
+ )
553
+
554
+
555
+ def gen_deg_rad(const):
556
+ def impl(context, builder, sig, args):
557
+ (argty,) = sig.args
558
+ factor = context.get_constant(argty, const)
559
+ return builder.fmul(factor, args[0])
560
+
561
+ return impl
562
+
563
+
564
+ _deg2rad = math.pi / 180.0
565
+ _rad2deg = 180.0 / math.pi
566
+ lower(math.radians, types.f4)(gen_deg_rad(_deg2rad))
567
+ lower(math.radians, types.f8)(gen_deg_rad(_deg2rad))
568
+ lower(math.degrees, types.f4)(gen_deg_rad(_rad2deg))
569
+ lower(math.degrees, types.f8)(gen_deg_rad(_rad2deg))
570
+
571
+
572
+ def _atomic_dispatcher(dispatch_fn):
573
+ def imp(context, builder, sig, args):
574
+ # The common argument handling code
575
+ aryty, indty, valty = sig.args
576
+ ary, inds, val = args
577
+ dtype = aryty.dtype
578
+
579
+ indty, indices = normalize_indices(
580
+ context, builder, indty, inds, aryty, valty
581
+ )
582
+
583
+ lary = context.make_array(aryty)(context, builder, ary)
584
+ ptr = cgutils.get_item_pointer(
585
+ context, builder, aryty, lary, indices, wraparound=True
586
+ )
587
+ # dispatcher to implementation base on dtype
588
+ return dispatch_fn(context, builder, dtype, ptr, val)
589
+
590
+ return imp
591
+
592
+
593
+ @lower(stubs.atomic.add, types.Array, types.intp, types.Any)
594
+ @lower(stubs.atomic.add, types.Array, types.UniTuple, types.Any)
595
+ @lower(stubs.atomic.add, types.Array, types.Tuple, types.Any)
596
+ @_atomic_dispatcher
597
+ def ptx_atomic_add_tuple(context, builder, dtype, ptr, val):
598
+ if dtype == types.float32:
599
+ lmod = builder.module
600
+ return builder.call(
601
+ nvvmutils.declare_atomic_add_float32(lmod), (ptr, val)
602
+ )
603
+ elif dtype == types.float64:
604
+ lmod = builder.module
605
+ return builder.call(
606
+ nvvmutils.declare_atomic_add_float64(lmod), (ptr, val)
607
+ )
608
+ else:
609
+ return builder.atomic_rmw("add", ptr, val, "monotonic")
610
+
611
+
612
+ @lower(stubs.atomic.sub, types.Array, types.intp, types.Any)
613
+ @lower(stubs.atomic.sub, types.Array, types.UniTuple, types.Any)
614
+ @lower(stubs.atomic.sub, types.Array, types.Tuple, types.Any)
615
+ @_atomic_dispatcher
616
+ def ptx_atomic_sub(context, builder, dtype, ptr, val):
617
+ if dtype == types.float32:
618
+ lmod = builder.module
619
+ return builder.call(
620
+ nvvmutils.declare_atomic_sub_float32(lmod), (ptr, val)
621
+ )
622
+ elif dtype == types.float64:
623
+ lmod = builder.module
624
+ return builder.call(
625
+ nvvmutils.declare_atomic_sub_float64(lmod), (ptr, val)
626
+ )
627
+ else:
628
+ return builder.atomic_rmw("sub", ptr, val, "monotonic")
629
+
630
+
631
+ @lower(stubs.atomic.inc, types.Array, types.intp, types.Any)
632
+ @lower(stubs.atomic.inc, types.Array, types.UniTuple, types.Any)
633
+ @lower(stubs.atomic.inc, types.Array, types.Tuple, types.Any)
634
+ @_atomic_dispatcher
635
+ def ptx_atomic_inc(context, builder, dtype, ptr, val):
636
+ if dtype in cuda.cudadecl.unsigned_int_numba_types:
637
+ bw = dtype.bitwidth
638
+ lmod = builder.module
639
+ fn = getattr(nvvmutils, f"declare_atomic_inc_int{bw}")
640
+ return builder.call(fn(lmod), (ptr, val))
641
+ else:
642
+ raise TypeError(f"Unimplemented atomic inc with {dtype} array")
643
+
644
+
645
+ @lower(stubs.atomic.dec, types.Array, types.intp, types.Any)
646
+ @lower(stubs.atomic.dec, types.Array, types.UniTuple, types.Any)
647
+ @lower(stubs.atomic.dec, types.Array, types.Tuple, types.Any)
648
+ @_atomic_dispatcher
649
+ def ptx_atomic_dec(context, builder, dtype, ptr, val):
650
+ if dtype in cuda.cudadecl.unsigned_int_numba_types:
651
+ bw = dtype.bitwidth
652
+ lmod = builder.module
653
+ fn = getattr(nvvmutils, f"declare_atomic_dec_int{bw}")
654
+ return builder.call(fn(lmod), (ptr, val))
655
+ else:
656
+ raise TypeError(f"Unimplemented atomic dec with {dtype} array")
657
+
658
+
659
+ def ptx_atomic_bitwise(stub, op):
660
+ @_atomic_dispatcher
661
+ def impl_ptx_atomic(context, builder, dtype, ptr, val):
662
+ if dtype in (cuda.cudadecl.integer_numba_types):
663
+ return builder.atomic_rmw(op, ptr, val, "monotonic")
664
+ else:
665
+ raise TypeError(f"Unimplemented atomic {op} with {dtype} array")
666
+
667
+ for ty in (types.intp, types.UniTuple, types.Tuple):
668
+ lower(stub, types.Array, ty, types.Any)(impl_ptx_atomic)
669
+
670
+
671
+ ptx_atomic_bitwise(stubs.atomic.and_, "and")
672
+ ptx_atomic_bitwise(stubs.atomic.or_, "or")
673
+ ptx_atomic_bitwise(stubs.atomic.xor, "xor")
674
+
675
+
676
+ @lower(stubs.atomic.exch, types.Array, types.intp, types.Any)
677
+ @lower(stubs.atomic.exch, types.Array, types.UniTuple, types.Any)
678
+ @lower(stubs.atomic.exch, types.Array, types.Tuple, types.Any)
679
+ @_atomic_dispatcher
680
+ def ptx_atomic_exch(context, builder, dtype, ptr, val):
681
+ if dtype in (cuda.cudadecl.integer_numba_types):
682
+ return builder.atomic_rmw("xchg", ptr, val, "monotonic")
683
+ else:
684
+ raise TypeError(f"Unimplemented atomic exch with {dtype} array")
685
+
686
+
687
+ @lower(stubs.atomic.max, types.Array, types.intp, types.Any)
688
+ @lower(stubs.atomic.max, types.Array, types.Tuple, types.Any)
689
+ @lower(stubs.atomic.max, types.Array, types.UniTuple, types.Any)
690
+ @_atomic_dispatcher
691
+ def ptx_atomic_max(context, builder, dtype, ptr, val):
692
+ lmod = builder.module
693
+ if dtype == types.float64:
694
+ return builder.call(
695
+ nvvmutils.declare_atomic_max_float64(lmod), (ptr, val)
696
+ )
697
+ elif dtype == types.float32:
698
+ return builder.call(
699
+ nvvmutils.declare_atomic_max_float32(lmod), (ptr, val)
700
+ )
701
+ elif dtype in (types.int32, types.int64):
702
+ return builder.atomic_rmw("max", ptr, val, ordering="monotonic")
703
+ elif dtype in (types.uint32, types.uint64):
704
+ return builder.atomic_rmw("umax", ptr, val, ordering="monotonic")
705
+ else:
706
+ raise TypeError("Unimplemented atomic max with %s array" % dtype)
707
+
708
+
709
+ @lower(stubs.atomic.min, types.Array, types.intp, types.Any)
710
+ @lower(stubs.atomic.min, types.Array, types.Tuple, types.Any)
711
+ @lower(stubs.atomic.min, types.Array, types.UniTuple, types.Any)
712
+ @_atomic_dispatcher
713
+ def ptx_atomic_min(context, builder, dtype, ptr, val):
714
+ lmod = builder.module
715
+ if dtype == types.float64:
716
+ return builder.call(
717
+ nvvmutils.declare_atomic_min_float64(lmod), (ptr, val)
718
+ )
719
+ elif dtype == types.float32:
720
+ return builder.call(
721
+ nvvmutils.declare_atomic_min_float32(lmod), (ptr, val)
722
+ )
723
+ elif dtype in (types.int32, types.int64):
724
+ return builder.atomic_rmw("min", ptr, val, ordering="monotonic")
725
+ elif dtype in (types.uint32, types.uint64):
726
+ return builder.atomic_rmw("umin", ptr, val, ordering="monotonic")
727
+ else:
728
+ raise TypeError("Unimplemented atomic min with %s array" % dtype)
729
+
730
+
731
+ @lower(stubs.atomic.nanmax, types.Array, types.intp, types.Any)
732
+ @lower(stubs.atomic.nanmax, types.Array, types.Tuple, types.Any)
733
+ @lower(stubs.atomic.nanmax, types.Array, types.UniTuple, types.Any)
734
+ @_atomic_dispatcher
735
+ def ptx_atomic_nanmax(context, builder, dtype, ptr, val):
736
+ lmod = builder.module
737
+ if dtype == types.float64:
738
+ return builder.call(
739
+ nvvmutils.declare_atomic_nanmax_float64(lmod), (ptr, val)
740
+ )
741
+ elif dtype == types.float32:
742
+ return builder.call(
743
+ nvvmutils.declare_atomic_nanmax_float32(lmod), (ptr, val)
744
+ )
745
+ elif dtype in (types.int32, types.int64):
746
+ return builder.atomic_rmw("max", ptr, val, ordering="monotonic")
747
+ elif dtype in (types.uint32, types.uint64):
748
+ return builder.atomic_rmw("umax", ptr, val, ordering="monotonic")
749
+ else:
750
+ raise TypeError("Unimplemented atomic max with %s array" % dtype)
751
+
752
+
753
+ @lower(stubs.atomic.nanmin, types.Array, types.intp, types.Any)
754
+ @lower(stubs.atomic.nanmin, types.Array, types.Tuple, types.Any)
755
+ @lower(stubs.atomic.nanmin, types.Array, types.UniTuple, types.Any)
756
+ @_atomic_dispatcher
757
+ def ptx_atomic_nanmin(context, builder, dtype, ptr, val):
758
+ lmod = builder.module
759
+ if dtype == types.float64:
760
+ return builder.call(
761
+ nvvmutils.declare_atomic_nanmin_float64(lmod), (ptr, val)
762
+ )
763
+ elif dtype == types.float32:
764
+ return builder.call(
765
+ nvvmutils.declare_atomic_nanmin_float32(lmod), (ptr, val)
766
+ )
767
+ elif dtype in (types.int32, types.int64):
768
+ return builder.atomic_rmw("min", ptr, val, ordering="monotonic")
769
+ elif dtype in (types.uint32, types.uint64):
770
+ return builder.atomic_rmw("umin", ptr, val, ordering="monotonic")
771
+ else:
772
+ raise TypeError("Unimplemented atomic min with %s array" % dtype)
773
+
774
+
775
+ @lower(stubs.atomic.compare_and_swap, types.Array, types.Any, types.Any)
776
+ def ptx_atomic_compare_and_swap(context, builder, sig, args):
777
+ sig = sig.return_type(sig.args[0], types.intp, sig.args[1], sig.args[2])
778
+ args = (args[0], context.get_constant(types.intp, 0), args[1], args[2])
779
+ return ptx_atomic_cas(context, builder, sig, args)
780
+
781
+
782
+ @lower(stubs.atomic.cas, types.Array, types.intp, types.Any, types.Any)
783
+ @lower(stubs.atomic.cas, types.Array, types.Tuple, types.Any, types.Any)
784
+ @lower(stubs.atomic.cas, types.Array, types.UniTuple, types.Any, types.Any)
785
+ def ptx_atomic_cas(context, builder, sig, args):
786
+ aryty, indty, oldty, valty = sig.args
787
+ ary, inds, old, val = args
788
+
789
+ indty, indices = normalize_indices(
790
+ context, builder, indty, inds, aryty, valty
791
+ )
792
+
793
+ lary = context.make_array(aryty)(context, builder, ary)
794
+ ptr = cgutils.get_item_pointer(
795
+ context, builder, aryty, lary, indices, wraparound=True
796
+ )
797
+
798
+ if aryty.dtype in (cuda.cudadecl.integer_numba_types):
799
+ lmod = builder.module
800
+ bitwidth = aryty.dtype.bitwidth
801
+ return nvvmutils.atomic_cmpxchg(builder, lmod, bitwidth, ptr, old, val)
802
+ else:
803
+ raise TypeError("Unimplemented atomic cas with %s array" % aryty.dtype)
804
+
805
+
806
+ # -----------------------------------------------------------------------------
807
+
808
+
809
+ @lower(breakpoint)
810
+ def ptx_brkpt(context, builder, sig, args):
811
+ brkpt = ir.InlineAsm(
812
+ ir.FunctionType(ir.VoidType(), []), "brkpt;", "", side_effect=True
813
+ )
814
+ builder.call(brkpt, ())
815
+
816
+
817
+ @lower(stubs.nanosleep, types.uint32)
818
+ def ptx_nanosleep(context, builder, sig, args):
819
+ nanosleep = ir.InlineAsm(
820
+ ir.FunctionType(ir.VoidType(), [ir.IntType(32)]),
821
+ "nanosleep.u32 $0;",
822
+ "r",
823
+ side_effect=True,
824
+ )
825
+ ns = args[0]
826
+ builder.call(nanosleep, [ns])
827
+
828
+
829
+ # -----------------------------------------------------------------------------
830
+
831
+
832
+ def _generic_array(
833
+ context,
834
+ builder,
835
+ shape,
836
+ dtype,
837
+ symbol_name,
838
+ addrspace,
839
+ can_dynsized=False,
840
+ alignment=None,
841
+ ):
842
+ elemcount = reduce(operator.mul, shape, 1)
843
+
844
+ # Check for valid shape for this type of allocation.
845
+ # Only 1d arrays can be dynamic.
846
+ dynamic_smem = elemcount <= 0 and can_dynsized and len(shape) == 1
847
+ if elemcount <= 0 and not dynamic_smem:
848
+ raise ValueError("array length <= 0")
849
+
850
+ # Check that we support the requested dtype
851
+ number_domain = types.number_domain
852
+ struct_model_types = (StructModel,)
853
+ if cuda.HAS_NUMBA:
854
+ number_domain |= core_types.number_domain
855
+ struct_model_types = (StructModel, CoreStructModel)
856
+
857
+ data_model = context.data_model_manager[dtype]
858
+ other_supported_type = (
859
+ isinstance(dtype, (types.Record, types.Boolean))
860
+ or isinstance(data_model, struct_model_types)
861
+ or dtype == types.float16
862
+ )
863
+ if dtype not in number_domain and not other_supported_type:
864
+ raise TypeError("unsupported type: %s" % dtype)
865
+
866
+ lldtype = context.get_data_type(dtype)
867
+ laryty = ir.ArrayType(lldtype, elemcount)
868
+
869
+ if addrspace == nvvm.ADDRSPACE_LOCAL:
870
+ # Special case local address space allocation to use alloca
871
+ # NVVM is smart enough to only use local memory if no register is
872
+ # available
873
+ dataptr = cgutils.alloca_once(builder, laryty, name=symbol_name)
874
+
875
+ # If the caller has specified a custom alignment, just set the align
876
+ # attribute on the alloca IR directly. We don't do any additional
877
+ # hand-holding here like checking the underlying data type's alignment
878
+ # or rounding up to the next power of 2--those checks will have already
879
+ # been done by the time we see the alignment value.
880
+ if alignment is not None:
881
+ dataptr.align = alignment
882
+ else:
883
+ lmod = builder.module
884
+
885
+ # Create global variable in the requested address space
886
+ gvmem = cgutils.add_global_variable(
887
+ lmod, laryty, symbol_name, addrspace
888
+ )
889
+
890
+ # If the caller hasn't specified a custom alignment, obtain the
891
+ # underlying dtype alignment from the ABI and then round it up to
892
+ # a power of two. Otherwise, just use the caller's alignment.
893
+ #
894
+ # N.B. The caller *could* provide a valid-but-smaller-than-natural
895
+ # alignment here; we'll assume the caller knows what they're
896
+ # doing and let that through without error.
897
+
898
+ if alignment is None:
899
+ abi_alignment = context.get_abi_alignment(lldtype)
900
+ # Alignment is required to be a power of 2 for shared memory.
901
+ # If it is not a power of 2 (e.g. for a Record array) then round
902
+ # up accordingly.
903
+ actual_alignment = 1 << (abi_alignment - 1).bit_length()
904
+ else:
905
+ actual_alignment = alignment
906
+
907
+ gvmem.align = actual_alignment
908
+
909
+ if dynamic_smem:
910
+ gvmem.linkage = "external"
911
+ else:
912
+ ## Comment out the following line to workaround a NVVM bug
913
+ ## which generates a invalid symbol name when the linkage
914
+ ## is internal and in some situation.
915
+ ## See _get_unique_smem_id()
916
+ # gvmem.linkage = lc.LINKAGE_INTERNAL
917
+
918
+ gvmem.initializer = ir.Constant(laryty, ir.Undefined)
919
+
920
+ # Convert to generic address-space
921
+ dataptr = builder.addrspacecast(
922
+ gvmem, ir.PointerType(ir.IntType(8)), "generic"
923
+ )
924
+
925
+ targetdata = ll.create_target_data(nvvm.NVVM().data_layout)
926
+ lldtype = context.get_data_type(dtype)
927
+ itemsize = lldtype.get_abi_size(targetdata)
928
+
929
+ # Compute strides
930
+ laststride = itemsize
931
+ rstrides = []
932
+ for i, lastsize in enumerate(reversed(shape)):
933
+ rstrides.append(laststride)
934
+ laststride *= lastsize
935
+ strides = [s for s in reversed(rstrides)]
936
+ kstrides = [context.get_constant(types.intp, s) for s in strides]
937
+
938
+ # Compute shape
939
+ if dynamic_smem:
940
+ # Compute the shape based on the dynamic shared memory configuration.
941
+ # Unfortunately NVVM does not provide an intrinsic for the
942
+ # %dynamic_smem_size register, so we must read it using inline
943
+ # assembly.
944
+ get_dynshared_size = ir.InlineAsm(
945
+ ir.FunctionType(ir.IntType(32), []),
946
+ "mov.u32 $0, %dynamic_smem_size;",
947
+ "=r",
948
+ side_effect=True,
949
+ )
950
+ dynsmem_size = builder.zext(
951
+ builder.call(get_dynshared_size, []), ir.IntType(64)
952
+ )
953
+ # Only 1-D dynamic shared memory is supported so the following is a
954
+ # sufficient construction of the shape
955
+ kitemsize = context.get_constant(types.intp, itemsize)
956
+ kshape = [builder.udiv(dynsmem_size, kitemsize)]
957
+ else:
958
+ kshape = [context.get_constant(types.intp, s) for s in shape]
959
+
960
+ # Create array object
961
+ ndim = len(shape)
962
+ aryty = types.Array(dtype=dtype, ndim=ndim, layout="C")
963
+ ary = context.make_array(aryty)(context, builder)
964
+
965
+ context.populate_array(
966
+ ary,
967
+ data=builder.bitcast(dataptr, ary.data.type),
968
+ shape=kshape,
969
+ strides=kstrides,
970
+ itemsize=context.get_constant(types.intp, itemsize),
971
+ meminfo=None,
972
+ )
973
+ return ary._getvalue()
974
+
975
+
976
+ @lower_constant(CUDADispatcher)
977
+ def cuda_dispatcher_const(context, builder, ty, pyval):
978
+ return context.get_dummy_value()
979
+
980
+
981
+ # NumPy
982
+
983
+ register_ufuncs(ufunc_db.get_ufuncs(), lower)