numba-cuda 0.22.0__cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of numba-cuda might be problematic. Click here for more details.
- _numba_cuda_redirector.pth +4 -0
- _numba_cuda_redirector.py +89 -0
- numba_cuda/VERSION +1 -0
- numba_cuda/__init__.py +6 -0
- numba_cuda/_version.py +11 -0
- numba_cuda/numba/cuda/__init__.py +70 -0
- numba_cuda/numba/cuda/_internal/cuda_bf16.py +16394 -0
- numba_cuda/numba/cuda/_internal/cuda_fp16.py +8112 -0
- numba_cuda/numba/cuda/api.py +580 -0
- numba_cuda/numba/cuda/api_util.py +76 -0
- numba_cuda/numba/cuda/args.py +72 -0
- numba_cuda/numba/cuda/bf16.py +397 -0
- numba_cuda/numba/cuda/cache_hints.py +287 -0
- numba_cuda/numba/cuda/cext/__init__.py +2 -0
- numba_cuda/numba/cuda/cext/_devicearray.cpp +159 -0
- numba_cuda/numba/cuda/cext/_devicearray.cpython-312-aarch64-linux-gnu.so +0 -0
- numba_cuda/numba/cuda/cext/_devicearray.h +29 -0
- numba_cuda/numba/cuda/cext/_dispatcher.cpp +1098 -0
- numba_cuda/numba/cuda/cext/_dispatcher.cpython-312-aarch64-linux-gnu.so +0 -0
- numba_cuda/numba/cuda/cext/_hashtable.cpp +532 -0
- numba_cuda/numba/cuda/cext/_hashtable.h +135 -0
- numba_cuda/numba/cuda/cext/_helperlib.c +71 -0
- numba_cuda/numba/cuda/cext/_helperlib.cpython-312-aarch64-linux-gnu.so +0 -0
- numba_cuda/numba/cuda/cext/_helpermod.c +82 -0
- numba_cuda/numba/cuda/cext/_pymodule.h +38 -0
- numba_cuda/numba/cuda/cext/_typeconv.cpp +206 -0
- numba_cuda/numba/cuda/cext/_typeconv.cpython-312-aarch64-linux-gnu.so +0 -0
- numba_cuda/numba/cuda/cext/_typeof.cpp +1159 -0
- numba_cuda/numba/cuda/cext/_typeof.h +19 -0
- numba_cuda/numba/cuda/cext/capsulethunk.h +111 -0
- numba_cuda/numba/cuda/cext/mviewbuf.c +385 -0
- numba_cuda/numba/cuda/cext/mviewbuf.cpython-312-aarch64-linux-gnu.so +0 -0
- numba_cuda/numba/cuda/cext/typeconv.cpp +212 -0
- numba_cuda/numba/cuda/cext/typeconv.hpp +101 -0
- numba_cuda/numba/cuda/cg.py +67 -0
- numba_cuda/numba/cuda/cgutils.py +1294 -0
- numba_cuda/numba/cuda/cloudpickle/__init__.py +21 -0
- numba_cuda/numba/cuda/cloudpickle/cloudpickle.py +1598 -0
- numba_cuda/numba/cuda/cloudpickle/cloudpickle_fast.py +17 -0
- numba_cuda/numba/cuda/codegen.py +541 -0
- numba_cuda/numba/cuda/compiler.py +1396 -0
- numba_cuda/numba/cuda/core/analysis.py +758 -0
- numba_cuda/numba/cuda/core/annotations/__init__.py +0 -0
- numba_cuda/numba/cuda/core/annotations/pretty_annotate.py +288 -0
- numba_cuda/numba/cuda/core/annotations/type_annotations.py +305 -0
- numba_cuda/numba/cuda/core/base.py +1332 -0
- numba_cuda/numba/cuda/core/boxing.py +1411 -0
- numba_cuda/numba/cuda/core/bytecode.py +728 -0
- numba_cuda/numba/cuda/core/byteflow.py +2346 -0
- numba_cuda/numba/cuda/core/caching.py +744 -0
- numba_cuda/numba/cuda/core/callconv.py +392 -0
- numba_cuda/numba/cuda/core/codegen.py +171 -0
- numba_cuda/numba/cuda/core/compiler.py +199 -0
- numba_cuda/numba/cuda/core/compiler_lock.py +85 -0
- numba_cuda/numba/cuda/core/compiler_machinery.py +497 -0
- numba_cuda/numba/cuda/core/config.py +650 -0
- numba_cuda/numba/cuda/core/consts.py +124 -0
- numba_cuda/numba/cuda/core/controlflow.py +989 -0
- numba_cuda/numba/cuda/core/entrypoints.py +57 -0
- numba_cuda/numba/cuda/core/environment.py +66 -0
- numba_cuda/numba/cuda/core/errors.py +917 -0
- numba_cuda/numba/cuda/core/event.py +511 -0
- numba_cuda/numba/cuda/core/funcdesc.py +330 -0
- numba_cuda/numba/cuda/core/generators.py +387 -0
- numba_cuda/numba/cuda/core/imputils.py +509 -0
- numba_cuda/numba/cuda/core/inline_closurecall.py +1787 -0
- numba_cuda/numba/cuda/core/interpreter.py +3617 -0
- numba_cuda/numba/cuda/core/ir.py +1812 -0
- numba_cuda/numba/cuda/core/ir_utils.py +2638 -0
- numba_cuda/numba/cuda/core/optional.py +129 -0
- numba_cuda/numba/cuda/core/options.py +262 -0
- numba_cuda/numba/cuda/core/postproc.py +249 -0
- numba_cuda/numba/cuda/core/pythonapi.py +1859 -0
- numba_cuda/numba/cuda/core/registry.py +46 -0
- numba_cuda/numba/cuda/core/removerefctpass.py +123 -0
- numba_cuda/numba/cuda/core/rewrites/__init__.py +26 -0
- numba_cuda/numba/cuda/core/rewrites/ir_print.py +91 -0
- numba_cuda/numba/cuda/core/rewrites/registry.py +104 -0
- numba_cuda/numba/cuda/core/rewrites/static_binop.py +41 -0
- numba_cuda/numba/cuda/core/rewrites/static_getitem.py +189 -0
- numba_cuda/numba/cuda/core/rewrites/static_raise.py +100 -0
- numba_cuda/numba/cuda/core/sigutils.py +68 -0
- numba_cuda/numba/cuda/core/ssa.py +498 -0
- numba_cuda/numba/cuda/core/targetconfig.py +330 -0
- numba_cuda/numba/cuda/core/tracing.py +231 -0
- numba_cuda/numba/cuda/core/transforms.py +956 -0
- numba_cuda/numba/cuda/core/typed_passes.py +867 -0
- numba_cuda/numba/cuda/core/typeinfer.py +1950 -0
- numba_cuda/numba/cuda/core/unsafe/__init__.py +0 -0
- numba_cuda/numba/cuda/core/unsafe/bytes.py +67 -0
- numba_cuda/numba/cuda/core/unsafe/eh.py +67 -0
- numba_cuda/numba/cuda/core/unsafe/refcount.py +98 -0
- numba_cuda/numba/cuda/core/untyped_passes.py +1979 -0
- numba_cuda/numba/cuda/cpython/builtins.py +1153 -0
- numba_cuda/numba/cuda/cpython/charseq.py +1218 -0
- numba_cuda/numba/cuda/cpython/cmathimpl.py +560 -0
- numba_cuda/numba/cuda/cpython/enumimpl.py +103 -0
- numba_cuda/numba/cuda/cpython/iterators.py +167 -0
- numba_cuda/numba/cuda/cpython/listobj.py +1326 -0
- numba_cuda/numba/cuda/cpython/mathimpl.py +499 -0
- numba_cuda/numba/cuda/cpython/numbers.py +1475 -0
- numba_cuda/numba/cuda/cpython/rangeobj.py +289 -0
- numba_cuda/numba/cuda/cpython/slicing.py +322 -0
- numba_cuda/numba/cuda/cpython/tupleobj.py +456 -0
- numba_cuda/numba/cuda/cpython/unicode.py +2865 -0
- numba_cuda/numba/cuda/cpython/unicode_support.py +1597 -0
- numba_cuda/numba/cuda/cpython/unsafe/__init__.py +0 -0
- numba_cuda/numba/cuda/cpython/unsafe/numbers.py +64 -0
- numba_cuda/numba/cuda/cpython/unsafe/tuple.py +92 -0
- numba_cuda/numba/cuda/cuda_paths.py +691 -0
- numba_cuda/numba/cuda/cudadecl.py +543 -0
- numba_cuda/numba/cuda/cudadrv/__init__.py +14 -0
- numba_cuda/numba/cuda/cudadrv/devicearray.py +954 -0
- numba_cuda/numba/cuda/cudadrv/devices.py +249 -0
- numba_cuda/numba/cuda/cudadrv/driver.py +3238 -0
- numba_cuda/numba/cuda/cudadrv/drvapi.py +435 -0
- numba_cuda/numba/cuda/cudadrv/dummyarray.py +562 -0
- numba_cuda/numba/cuda/cudadrv/enums.py +613 -0
- numba_cuda/numba/cuda/cudadrv/error.py +48 -0
- numba_cuda/numba/cuda/cudadrv/libs.py +220 -0
- numba_cuda/numba/cuda/cudadrv/linkable_code.py +184 -0
- numba_cuda/numba/cuda/cudadrv/mappings.py +14 -0
- numba_cuda/numba/cuda/cudadrv/ndarray.py +26 -0
- numba_cuda/numba/cuda/cudadrv/nvrtc.py +193 -0
- numba_cuda/numba/cuda/cudadrv/nvvm.py +756 -0
- numba_cuda/numba/cuda/cudadrv/rtapi.py +13 -0
- numba_cuda/numba/cuda/cudadrv/runtime.py +34 -0
- numba_cuda/numba/cuda/cudaimpl.py +983 -0
- numba_cuda/numba/cuda/cudamath.py +149 -0
- numba_cuda/numba/cuda/datamodel/__init__.py +7 -0
- numba_cuda/numba/cuda/datamodel/cuda_manager.py +66 -0
- numba_cuda/numba/cuda/datamodel/cuda_models.py +1446 -0
- numba_cuda/numba/cuda/datamodel/cuda_packer.py +224 -0
- numba_cuda/numba/cuda/datamodel/cuda_registry.py +22 -0
- numba_cuda/numba/cuda/datamodel/cuda_testing.py +153 -0
- numba_cuda/numba/cuda/datamodel/manager.py +11 -0
- numba_cuda/numba/cuda/datamodel/models.py +9 -0
- numba_cuda/numba/cuda/datamodel/packer.py +9 -0
- numba_cuda/numba/cuda/datamodel/registry.py +11 -0
- numba_cuda/numba/cuda/datamodel/testing.py +11 -0
- numba_cuda/numba/cuda/debuginfo.py +997 -0
- numba_cuda/numba/cuda/decorators.py +294 -0
- numba_cuda/numba/cuda/descriptor.py +35 -0
- numba_cuda/numba/cuda/device_init.py +155 -0
- numba_cuda/numba/cuda/deviceufunc.py +1021 -0
- numba_cuda/numba/cuda/dispatcher.py +2463 -0
- numba_cuda/numba/cuda/errors.py +72 -0
- numba_cuda/numba/cuda/extending.py +697 -0
- numba_cuda/numba/cuda/flags.py +178 -0
- numba_cuda/numba/cuda/fp16.py +357 -0
- numba_cuda/numba/cuda/include/12/cuda_bf16.h +5118 -0
- numba_cuda/numba/cuda/include/12/cuda_bf16.hpp +3865 -0
- numba_cuda/numba/cuda/include/12/cuda_fp16.h +5363 -0
- numba_cuda/numba/cuda/include/12/cuda_fp16.hpp +3483 -0
- numba_cuda/numba/cuda/include/13/cuda_bf16.h +5118 -0
- numba_cuda/numba/cuda/include/13/cuda_bf16.hpp +3865 -0
- numba_cuda/numba/cuda/include/13/cuda_fp16.h +5363 -0
- numba_cuda/numba/cuda/include/13/cuda_fp16.hpp +3483 -0
- numba_cuda/numba/cuda/initialize.py +24 -0
- numba_cuda/numba/cuda/intrinsics.py +531 -0
- numba_cuda/numba/cuda/itanium_mangler.py +214 -0
- numba_cuda/numba/cuda/kernels/__init__.py +2 -0
- numba_cuda/numba/cuda/kernels/reduction.py +265 -0
- numba_cuda/numba/cuda/kernels/transpose.py +65 -0
- numba_cuda/numba/cuda/libdevice.py +3386 -0
- numba_cuda/numba/cuda/libdevicedecl.py +20 -0
- numba_cuda/numba/cuda/libdevicefuncs.py +1060 -0
- numba_cuda/numba/cuda/libdeviceimpl.py +88 -0
- numba_cuda/numba/cuda/locks.py +19 -0
- numba_cuda/numba/cuda/lowering.py +1980 -0
- numba_cuda/numba/cuda/mathimpl.py +374 -0
- numba_cuda/numba/cuda/memory_management/__init__.py +4 -0
- numba_cuda/numba/cuda/memory_management/memsys.cu +99 -0
- numba_cuda/numba/cuda/memory_management/memsys.cuh +22 -0
- numba_cuda/numba/cuda/memory_management/nrt.cu +212 -0
- numba_cuda/numba/cuda/memory_management/nrt.cuh +48 -0
- numba_cuda/numba/cuda/memory_management/nrt.py +390 -0
- numba_cuda/numba/cuda/memory_management/nrt_context.py +438 -0
- numba_cuda/numba/cuda/misc/appdirs.py +594 -0
- numba_cuda/numba/cuda/misc/cffiimpl.py +24 -0
- numba_cuda/numba/cuda/misc/coverage_support.py +43 -0
- numba_cuda/numba/cuda/misc/dump_style.py +41 -0
- numba_cuda/numba/cuda/misc/findlib.py +75 -0
- numba_cuda/numba/cuda/misc/firstlinefinder.py +96 -0
- numba_cuda/numba/cuda/misc/gdb_hook.py +240 -0
- numba_cuda/numba/cuda/misc/literal.py +28 -0
- numba_cuda/numba/cuda/misc/llvm_pass_timings.py +412 -0
- numba_cuda/numba/cuda/misc/special.py +94 -0
- numba_cuda/numba/cuda/models.py +56 -0
- numba_cuda/numba/cuda/np/arraymath.py +5130 -0
- numba_cuda/numba/cuda/np/arrayobj.py +7635 -0
- numba_cuda/numba/cuda/np/extensions.py +11 -0
- numba_cuda/numba/cuda/np/linalg.py +3087 -0
- numba_cuda/numba/cuda/np/math/__init__.py +0 -0
- numba_cuda/numba/cuda/np/math/cmathimpl.py +558 -0
- numba_cuda/numba/cuda/np/math/mathimpl.py +487 -0
- numba_cuda/numba/cuda/np/math/numbers.py +1461 -0
- numba_cuda/numba/cuda/np/npdatetime.py +969 -0
- numba_cuda/numba/cuda/np/npdatetime_helpers.py +217 -0
- numba_cuda/numba/cuda/np/npyfuncs.py +1808 -0
- numba_cuda/numba/cuda/np/npyimpl.py +1027 -0
- numba_cuda/numba/cuda/np/numpy_support.py +798 -0
- numba_cuda/numba/cuda/np/polynomial/__init__.py +4 -0
- numba_cuda/numba/cuda/np/polynomial/polynomial_core.py +242 -0
- numba_cuda/numba/cuda/np/polynomial/polynomial_functions.py +380 -0
- numba_cuda/numba/cuda/np/ufunc/__init__.py +4 -0
- numba_cuda/numba/cuda/np/ufunc/decorators.py +203 -0
- numba_cuda/numba/cuda/np/ufunc/sigparse.py +68 -0
- numba_cuda/numba/cuda/np/ufunc/ufuncbuilder.py +65 -0
- numba_cuda/numba/cuda/np/ufunc_db.py +1282 -0
- numba_cuda/numba/cuda/np/unsafe/__init__.py +0 -0
- numba_cuda/numba/cuda/np/unsafe/ndarray.py +84 -0
- numba_cuda/numba/cuda/nvvmutils.py +254 -0
- numba_cuda/numba/cuda/printimpl.py +126 -0
- numba_cuda/numba/cuda/random.py +308 -0
- numba_cuda/numba/cuda/reshape_funcs.cu +156 -0
- numba_cuda/numba/cuda/serialize.py +267 -0
- numba_cuda/numba/cuda/simulator/__init__.py +63 -0
- numba_cuda/numba/cuda/simulator/_internal/__init__.py +4 -0
- numba_cuda/numba/cuda/simulator/_internal/cuda_bf16.py +2 -0
- numba_cuda/numba/cuda/simulator/api.py +179 -0
- numba_cuda/numba/cuda/simulator/bf16.py +4 -0
- numba_cuda/numba/cuda/simulator/compiler.py +38 -0
- numba_cuda/numba/cuda/simulator/cudadrv/__init__.py +11 -0
- numba_cuda/numba/cuda/simulator/cudadrv/devicearray.py +462 -0
- numba_cuda/numba/cuda/simulator/cudadrv/devices.py +122 -0
- numba_cuda/numba/cuda/simulator/cudadrv/driver.py +66 -0
- numba_cuda/numba/cuda/simulator/cudadrv/drvapi.py +7 -0
- numba_cuda/numba/cuda/simulator/cudadrv/dummyarray.py +7 -0
- numba_cuda/numba/cuda/simulator/cudadrv/error.py +10 -0
- numba_cuda/numba/cuda/simulator/cudadrv/libs.py +10 -0
- numba_cuda/numba/cuda/simulator/cudadrv/linkable_code.py +61 -0
- numba_cuda/numba/cuda/simulator/cudadrv/nvrtc.py +11 -0
- numba_cuda/numba/cuda/simulator/cudadrv/nvvm.py +32 -0
- numba_cuda/numba/cuda/simulator/cudadrv/runtime.py +22 -0
- numba_cuda/numba/cuda/simulator/dispatcher.py +11 -0
- numba_cuda/numba/cuda/simulator/kernel.py +320 -0
- numba_cuda/numba/cuda/simulator/kernelapi.py +509 -0
- numba_cuda/numba/cuda/simulator/memory_management/__init__.py +4 -0
- numba_cuda/numba/cuda/simulator/memory_management/nrt.py +21 -0
- numba_cuda/numba/cuda/simulator/reduction.py +19 -0
- numba_cuda/numba/cuda/simulator/tests/support.py +4 -0
- numba_cuda/numba/cuda/simulator/vector_types.py +65 -0
- numba_cuda/numba/cuda/simulator_init.py +18 -0
- numba_cuda/numba/cuda/stubs.py +624 -0
- numba_cuda/numba/cuda/target.py +505 -0
- numba_cuda/numba/cuda/testing.py +347 -0
- numba_cuda/numba/cuda/tests/__init__.py +62 -0
- numba_cuda/numba/cuda/tests/benchmarks/__init__.py +0 -0
- numba_cuda/numba/cuda/tests/benchmarks/test_kernel_launch.py +119 -0
- numba_cuda/numba/cuda/tests/cloudpickle_main_class.py +9 -0
- numba_cuda/numba/cuda/tests/core/serialize_usecases.py +113 -0
- numba_cuda/numba/cuda/tests/core/test_itanium_mangler.py +83 -0
- numba_cuda/numba/cuda/tests/core/test_serialize.py +371 -0
- numba_cuda/numba/cuda/tests/cudadrv/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_array_attr.py +147 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_context_stack.py +161 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_array_slicing.py +397 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_auto_context.py +24 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_devicerecord.py +180 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_driver.py +313 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_memory.py +191 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_ndarray.py +621 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_deallocations.py +247 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_detect.py +100 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_emm_plugins.py +200 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_events.py +53 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_host_alloc.py +72 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_init.py +138 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_inline_ptx.py +43 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_is_fp16.py +15 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_linkable_code.py +58 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_linker.py +348 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_managed_alloc.py +128 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_module_callbacks.py +301 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_nvjitlink.py +174 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_nvrtc.py +28 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_nvvm_driver.py +185 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_pinned.py +39 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_profiler.py +23 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_reset_device.py +38 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_runtime.py +48 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_select_device.py +44 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_streams.py +127 -0
- numba_cuda/numba/cuda/tests/cudapy/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/cudapy/cache_usecases.py +231 -0
- numba_cuda/numba/cuda/tests/cudapy/cache_with_cpu_usecases.py +50 -0
- numba_cuda/numba/cuda/tests/cudapy/cg_cache_usecases.py +36 -0
- numba_cuda/numba/cuda/tests/cudapy/complex_usecases.py +116 -0
- numba_cuda/numba/cuda/tests/cudapy/enum_usecases.py +59 -0
- numba_cuda/numba/cuda/tests/cudapy/extensions_usecases.py +62 -0
- numba_cuda/numba/cuda/tests/cudapy/jitlink.ptx +28 -0
- numba_cuda/numba/cuda/tests/cudapy/overload_usecases.py +33 -0
- numba_cuda/numba/cuda/tests/cudapy/recursion_usecases.py +104 -0
- numba_cuda/numba/cuda/tests/cudapy/test_alignment.py +47 -0
- numba_cuda/numba/cuda/tests/cudapy/test_analysis.py +1122 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array.py +344 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_alignment.py +268 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_args.py +203 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_methods.py +63 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_reductions.py +360 -0
- numba_cuda/numba/cuda/tests/cudapy/test_atomics.py +1815 -0
- numba_cuda/numba/cuda/tests/cudapy/test_bfloat16.py +599 -0
- numba_cuda/numba/cuda/tests/cudapy/test_bfloat16_bindings.py +377 -0
- numba_cuda/numba/cuda/tests/cudapy/test_blackscholes.py +160 -0
- numba_cuda/numba/cuda/tests/cudapy/test_boolean.py +27 -0
- numba_cuda/numba/cuda/tests/cudapy/test_byteflow.py +98 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cache_hints.py +210 -0
- numba_cuda/numba/cuda/tests/cudapy/test_caching.py +683 -0
- numba_cuda/numba/cuda/tests/cudapy/test_casting.py +265 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cffi.py +42 -0
- numba_cuda/numba/cuda/tests/cudapy/test_compiler.py +718 -0
- numba_cuda/numba/cuda/tests/cudapy/test_complex.py +370 -0
- numba_cuda/numba/cuda/tests/cudapy/test_complex_kernel.py +23 -0
- numba_cuda/numba/cuda/tests/cudapy/test_const_string.py +142 -0
- numba_cuda/numba/cuda/tests/cudapy/test_constmem.py +178 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cooperative_groups.py +193 -0
- numba_cuda/numba/cuda/tests/cudapy/test_copy_propagate.py +131 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cuda_array_interface.py +438 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cuda_jit_no_types.py +94 -0
- numba_cuda/numba/cuda/tests/cudapy/test_datetime.py +101 -0
- numba_cuda/numba/cuda/tests/cudapy/test_debug.py +105 -0
- numba_cuda/numba/cuda/tests/cudapy/test_debuginfo.py +978 -0
- numba_cuda/numba/cuda/tests/cudapy/test_debuginfo_types.py +476 -0
- numba_cuda/numba/cuda/tests/cudapy/test_device_func.py +500 -0
- numba_cuda/numba/cuda/tests/cudapy/test_dispatcher.py +820 -0
- numba_cuda/numba/cuda/tests/cudapy/test_enums.py +152 -0
- numba_cuda/numba/cuda/tests/cudapy/test_errors.py +111 -0
- numba_cuda/numba/cuda/tests/cudapy/test_exception.py +170 -0
- numba_cuda/numba/cuda/tests/cudapy/test_extending.py +1088 -0
- numba_cuda/numba/cuda/tests/cudapy/test_extending_types.py +71 -0
- numba_cuda/numba/cuda/tests/cudapy/test_fastmath.py +265 -0
- numba_cuda/numba/cuda/tests/cudapy/test_flow_control.py +1433 -0
- numba_cuda/numba/cuda/tests/cudapy/test_forall.py +57 -0
- numba_cuda/numba/cuda/tests/cudapy/test_freevar.py +34 -0
- numba_cuda/numba/cuda/tests/cudapy/test_frexp_ldexp.py +69 -0
- numba_cuda/numba/cuda/tests/cudapy/test_globals.py +62 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc.py +474 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scalar.py +167 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scheduling.py +92 -0
- numba_cuda/numba/cuda/tests/cudapy/test_idiv.py +39 -0
- numba_cuda/numba/cuda/tests/cudapy/test_inline.py +170 -0
- numba_cuda/numba/cuda/tests/cudapy/test_inspect.py +255 -0
- numba_cuda/numba/cuda/tests/cudapy/test_intrinsics.py +1219 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ipc.py +263 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ir.py +598 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ir_utils.py +276 -0
- numba_cuda/numba/cuda/tests/cudapy/test_iterators.py +101 -0
- numba_cuda/numba/cuda/tests/cudapy/test_lang.py +68 -0
- numba_cuda/numba/cuda/tests/cudapy/test_laplace.py +123 -0
- numba_cuda/numba/cuda/tests/cudapy/test_libdevice.py +194 -0
- numba_cuda/numba/cuda/tests/cudapy/test_lineinfo.py +220 -0
- numba_cuda/numba/cuda/tests/cudapy/test_localmem.py +173 -0
- numba_cuda/numba/cuda/tests/cudapy/test_make_function_to_jit_function.py +364 -0
- numba_cuda/numba/cuda/tests/cudapy/test_mandel.py +47 -0
- numba_cuda/numba/cuda/tests/cudapy/test_math.py +842 -0
- numba_cuda/numba/cuda/tests/cudapy/test_matmul.py +76 -0
- numba_cuda/numba/cuda/tests/cudapy/test_minmax.py +78 -0
- numba_cuda/numba/cuda/tests/cudapy/test_montecarlo.py +25 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multigpu.py +145 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multiprocessing.py +39 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multithreads.py +82 -0
- numba_cuda/numba/cuda/tests/cudapy/test_nondet.py +53 -0
- numba_cuda/numba/cuda/tests/cudapy/test_operator.py +504 -0
- numba_cuda/numba/cuda/tests/cudapy/test_optimization.py +93 -0
- numba_cuda/numba/cuda/tests/cudapy/test_overload.py +402 -0
- numba_cuda/numba/cuda/tests/cudapy/test_powi.py +128 -0
- numba_cuda/numba/cuda/tests/cudapy/test_print.py +193 -0
- numba_cuda/numba/cuda/tests/cudapy/test_py2_div_issue.py +37 -0
- numba_cuda/numba/cuda/tests/cudapy/test_random.py +117 -0
- numba_cuda/numba/cuda/tests/cudapy/test_record_dtype.py +614 -0
- numba_cuda/numba/cuda/tests/cudapy/test_recursion.py +130 -0
- numba_cuda/numba/cuda/tests/cudapy/test_reduction.py +94 -0
- numba_cuda/numba/cuda/tests/cudapy/test_retrieve_autoconverted_arrays.py +83 -0
- numba_cuda/numba/cuda/tests/cudapy/test_serialize.py +86 -0
- numba_cuda/numba/cuda/tests/cudapy/test_slicing.py +40 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sm.py +457 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sm_creation.py +233 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ssa.py +454 -0
- numba_cuda/numba/cuda/tests/cudapy/test_stream_api.py +56 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sync.py +277 -0
- numba_cuda/numba/cuda/tests/cudapy/test_tracing.py +200 -0
- numba_cuda/numba/cuda/tests/cudapy/test_transpose.py +90 -0
- numba_cuda/numba/cuda/tests/cudapy/test_typeconv.py +333 -0
- numba_cuda/numba/cuda/tests/cudapy/test_typeinfer.py +538 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ufuncs.py +585 -0
- numba_cuda/numba/cuda/tests/cudapy/test_userexc.py +42 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vector_type.py +485 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize.py +312 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_complex.py +23 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_decor.py +183 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_device.py +40 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_scalar_arg.py +40 -0
- numba_cuda/numba/cuda/tests/cudapy/test_warning.py +206 -0
- numba_cuda/numba/cuda/tests/cudapy/test_warp_ops.py +446 -0
- numba_cuda/numba/cuda/tests/cudasim/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/cudasim/support.py +9 -0
- numba_cuda/numba/cuda/tests/cudasim/test_cudasim_issues.py +111 -0
- numba_cuda/numba/cuda/tests/data/__init__.py +2 -0
- numba_cuda/numba/cuda/tests/data/cta_barrier.cu +28 -0
- numba_cuda/numba/cuda/tests/data/cuda_include.cu +10 -0
- numba_cuda/numba/cuda/tests/data/error.cu +12 -0
- numba_cuda/numba/cuda/tests/data/include/add.cuh +8 -0
- numba_cuda/numba/cuda/tests/data/jitlink.cu +28 -0
- numba_cuda/numba/cuda/tests/data/jitlink.ptx +49 -0
- numba_cuda/numba/cuda/tests/data/warn.cu +12 -0
- numba_cuda/numba/cuda/tests/doc_examples/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/__init__.py +2 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/functions.cu +54 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/include/mul.cuh +8 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/saxpy.cu +14 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_cg.py +86 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_cpointer.py +68 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_cpu_gpu_compat.py +81 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_ffi.py +141 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_laplace.py +160 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_matmul.py +180 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_montecarlo.py +119 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_random.py +66 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_reduction.py +80 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_sessionize.py +206 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_ufunc.py +53 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_vecadd.py +76 -0
- numba_cuda/numba/cuda/tests/nocuda/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/nocuda/test_dummyarray.py +452 -0
- numba_cuda/numba/cuda/tests/nocuda/test_function_resolution.py +48 -0
- numba_cuda/numba/cuda/tests/nocuda/test_import.py +63 -0
- numba_cuda/numba/cuda/tests/nocuda/test_library_lookup.py +252 -0
- numba_cuda/numba/cuda/tests/nocuda/test_nvvm.py +59 -0
- numba_cuda/numba/cuda/tests/nrt/__init__.py +9 -0
- numba_cuda/numba/cuda/tests/nrt/test_nrt.py +387 -0
- numba_cuda/numba/cuda/tests/nrt/test_nrt_refct.py +124 -0
- numba_cuda/numba/cuda/tests/support.py +900 -0
- numba_cuda/numba/cuda/typeconv/__init__.py +4 -0
- numba_cuda/numba/cuda/typeconv/castgraph.py +137 -0
- numba_cuda/numba/cuda/typeconv/rules.py +63 -0
- numba_cuda/numba/cuda/typeconv/typeconv.py +121 -0
- numba_cuda/numba/cuda/types/__init__.py +233 -0
- numba_cuda/numba/cuda/types/__init__.pyi +167 -0
- numba_cuda/numba/cuda/types/abstract.py +9 -0
- numba_cuda/numba/cuda/types/common.py +9 -0
- numba_cuda/numba/cuda/types/containers.py +9 -0
- numba_cuda/numba/cuda/types/cuda_abstract.py +533 -0
- numba_cuda/numba/cuda/types/cuda_common.py +110 -0
- numba_cuda/numba/cuda/types/cuda_containers.py +971 -0
- numba_cuda/numba/cuda/types/cuda_function_type.py +230 -0
- numba_cuda/numba/cuda/types/cuda_functions.py +798 -0
- numba_cuda/numba/cuda/types/cuda_iterators.py +120 -0
- numba_cuda/numba/cuda/types/cuda_misc.py +569 -0
- numba_cuda/numba/cuda/types/cuda_npytypes.py +690 -0
- numba_cuda/numba/cuda/types/cuda_scalars.py +280 -0
- numba_cuda/numba/cuda/types/ext_types.py +101 -0
- numba_cuda/numba/cuda/types/function_type.py +11 -0
- numba_cuda/numba/cuda/types/functions.py +9 -0
- numba_cuda/numba/cuda/types/iterators.py +9 -0
- numba_cuda/numba/cuda/types/misc.py +9 -0
- numba_cuda/numba/cuda/types/npytypes.py +9 -0
- numba_cuda/numba/cuda/types/scalars.py +9 -0
- numba_cuda/numba/cuda/typing/__init__.py +19 -0
- numba_cuda/numba/cuda/typing/arraydecl.py +939 -0
- numba_cuda/numba/cuda/typing/asnumbatype.py +130 -0
- numba_cuda/numba/cuda/typing/bufproto.py +70 -0
- numba_cuda/numba/cuda/typing/builtins.py +1209 -0
- numba_cuda/numba/cuda/typing/cffi_utils.py +219 -0
- numba_cuda/numba/cuda/typing/cmathdecl.py +47 -0
- numba_cuda/numba/cuda/typing/collections.py +138 -0
- numba_cuda/numba/cuda/typing/context.py +782 -0
- numba_cuda/numba/cuda/typing/ctypes_utils.py +125 -0
- numba_cuda/numba/cuda/typing/dictdecl.py +63 -0
- numba_cuda/numba/cuda/typing/enumdecl.py +74 -0
- numba_cuda/numba/cuda/typing/listdecl.py +147 -0
- numba_cuda/numba/cuda/typing/mathdecl.py +158 -0
- numba_cuda/numba/cuda/typing/npdatetime.py +322 -0
- numba_cuda/numba/cuda/typing/npydecl.py +749 -0
- numba_cuda/numba/cuda/typing/setdecl.py +115 -0
- numba_cuda/numba/cuda/typing/templates.py +1446 -0
- numba_cuda/numba/cuda/typing/typeof.py +301 -0
- numba_cuda/numba/cuda/ufuncs.py +746 -0
- numba_cuda/numba/cuda/utils.py +724 -0
- numba_cuda/numba/cuda/vector_types.py +214 -0
- numba_cuda/numba/cuda/vectorizers.py +260 -0
- numba_cuda-0.22.0.dist-info/METADATA +109 -0
- numba_cuda-0.22.0.dist-info/RECORD +487 -0
- numba_cuda-0.22.0.dist-info/WHEEL +6 -0
- numba_cuda-0.22.0.dist-info/licenses/LICENSE +26 -0
- numba_cuda-0.22.0.dist-info/licenses/LICENSE.numba +24 -0
- numba_cuda-0.22.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,798 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: BSD-2-Clause
|
|
3
|
+
|
|
4
|
+
import collections
|
|
5
|
+
import ctypes
|
|
6
|
+
import re
|
|
7
|
+
import numpy as np
|
|
8
|
+
|
|
9
|
+
from numba.cuda import types
|
|
10
|
+
from numba.cuda.core import errors
|
|
11
|
+
from numba.cuda.typing.templates import signature
|
|
12
|
+
from numba.cuda.np import npdatetime_helpers
|
|
13
|
+
from numba.cuda.core.errors import TypingError
|
|
14
|
+
|
|
15
|
+
# re-export
|
|
16
|
+
from numba.cuda.cgutils import is_nonelike # noqa: F401
|
|
17
|
+
|
|
18
|
+
numpy_version = tuple(map(int, np.__version__.split(".")[:2]))
|
|
19
|
+
|
|
20
|
+
FROM_DTYPE = {
|
|
21
|
+
np.dtype("bool"): types.boolean,
|
|
22
|
+
np.dtype("int8"): types.int8,
|
|
23
|
+
np.dtype("int16"): types.int16,
|
|
24
|
+
np.dtype("int32"): types.int32,
|
|
25
|
+
np.dtype("int64"): types.int64,
|
|
26
|
+
np.dtype("uint8"): types.uint8,
|
|
27
|
+
np.dtype("uint16"): types.uint16,
|
|
28
|
+
np.dtype("uint32"): types.uint32,
|
|
29
|
+
np.dtype("uint64"): types.uint64,
|
|
30
|
+
np.dtype("float32"): types.float32,
|
|
31
|
+
np.dtype("float64"): types.float64,
|
|
32
|
+
np.dtype("float16"): types.float16,
|
|
33
|
+
np.dtype("complex64"): types.complex64,
|
|
34
|
+
np.dtype("complex128"): types.complex128,
|
|
35
|
+
np.dtype(object): types.pyobject,
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
re_typestr = re.compile(r"[<>=\|]([a-z])(\d+)?$", re.I)
|
|
39
|
+
re_datetimestr = re.compile(r"[<>=\|]([mM])8?(\[([a-z]+)\])?$", re.I)
|
|
40
|
+
|
|
41
|
+
sizeof_unicode_char = np.dtype("U1").itemsize
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
def _from_str_dtype(dtype):
|
|
45
|
+
m = re_typestr.match(dtype.str)
|
|
46
|
+
if not m:
|
|
47
|
+
raise errors.NumbaNotImplementedError(dtype)
|
|
48
|
+
groups = m.groups()
|
|
49
|
+
typecode = groups[0]
|
|
50
|
+
if typecode == "U":
|
|
51
|
+
# unicode
|
|
52
|
+
if dtype.byteorder not in "=|":
|
|
53
|
+
raise errors.NumbaNotImplementedError(
|
|
54
|
+
"Does not support non-native byteorder"
|
|
55
|
+
)
|
|
56
|
+
count = dtype.itemsize // sizeof_unicode_char
|
|
57
|
+
assert count == int(groups[1]), "Unicode char size mismatch"
|
|
58
|
+
return types.UnicodeCharSeq(count)
|
|
59
|
+
|
|
60
|
+
elif typecode == "S":
|
|
61
|
+
# char
|
|
62
|
+
count = dtype.itemsize
|
|
63
|
+
assert count == int(groups[1]), "Char size mismatch"
|
|
64
|
+
return types.CharSeq(count)
|
|
65
|
+
|
|
66
|
+
else:
|
|
67
|
+
raise errors.NumbaNotImplementedError(dtype)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def _from_datetime_dtype(dtype):
|
|
71
|
+
m = re_datetimestr.match(dtype.str)
|
|
72
|
+
if not m:
|
|
73
|
+
raise errors.NumbaNotImplementedError(dtype)
|
|
74
|
+
groups = m.groups()
|
|
75
|
+
typecode = groups[0]
|
|
76
|
+
unit = groups[2] or ""
|
|
77
|
+
if typecode == "m":
|
|
78
|
+
return types.NPTimedelta(unit)
|
|
79
|
+
elif typecode == "M":
|
|
80
|
+
return types.NPDatetime(unit)
|
|
81
|
+
else:
|
|
82
|
+
raise errors.NumbaNotImplementedError(dtype)
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
def from_dtype(dtype):
|
|
86
|
+
"""
|
|
87
|
+
Return a Numba Type instance corresponding to the given Numpy *dtype*.
|
|
88
|
+
NumbaNotImplementedError is raised on unsupported Numpy dtypes.
|
|
89
|
+
"""
|
|
90
|
+
if type(dtype) is type and issubclass(dtype, np.generic):
|
|
91
|
+
dtype = np.dtype(dtype)
|
|
92
|
+
elif getattr(dtype, "fields", None) is not None:
|
|
93
|
+
return from_struct_dtype(dtype)
|
|
94
|
+
|
|
95
|
+
try:
|
|
96
|
+
return FROM_DTYPE[dtype]
|
|
97
|
+
except KeyError:
|
|
98
|
+
pass
|
|
99
|
+
|
|
100
|
+
try:
|
|
101
|
+
char = dtype.char
|
|
102
|
+
except AttributeError:
|
|
103
|
+
pass
|
|
104
|
+
else:
|
|
105
|
+
if char in "SU":
|
|
106
|
+
return _from_str_dtype(dtype)
|
|
107
|
+
if char in "mM":
|
|
108
|
+
return _from_datetime_dtype(dtype)
|
|
109
|
+
if char in "V" and dtype.subdtype is not None:
|
|
110
|
+
subtype = from_dtype(dtype.subdtype[0])
|
|
111
|
+
return types.NestedArray(subtype, dtype.shape)
|
|
112
|
+
|
|
113
|
+
raise errors.NumbaNotImplementedError(dtype)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
_as_dtype_letters = {
|
|
117
|
+
types.NPDatetime: "M8",
|
|
118
|
+
types.NPTimedelta: "m8",
|
|
119
|
+
types.CharSeq: "S",
|
|
120
|
+
types.UnicodeCharSeq: "U",
|
|
121
|
+
}
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def as_dtype(nbtype):
|
|
125
|
+
"""
|
|
126
|
+
Return a numpy dtype instance corresponding to the given Numba type.
|
|
127
|
+
NotImplementedError is if no correspondence is known.
|
|
128
|
+
"""
|
|
129
|
+
nbtype = types.unliteral(nbtype)
|
|
130
|
+
if isinstance(nbtype, (types.Complex, types.Integer, types.Float)):
|
|
131
|
+
return np.dtype(str(nbtype))
|
|
132
|
+
if isinstance(nbtype, (types.Boolean)):
|
|
133
|
+
return np.dtype("?")
|
|
134
|
+
if isinstance(nbtype, (types.NPDatetime, types.NPTimedelta)):
|
|
135
|
+
letter = _as_dtype_letters[type(nbtype)]
|
|
136
|
+
if nbtype.unit:
|
|
137
|
+
return np.dtype("%s[%s]" % (letter, nbtype.unit))
|
|
138
|
+
else:
|
|
139
|
+
return np.dtype(letter)
|
|
140
|
+
if isinstance(nbtype, (types.CharSeq, types.UnicodeCharSeq)):
|
|
141
|
+
letter = _as_dtype_letters[type(nbtype)]
|
|
142
|
+
return np.dtype("%s%d" % (letter, nbtype.count))
|
|
143
|
+
if isinstance(nbtype, types.Record):
|
|
144
|
+
return as_struct_dtype(nbtype)
|
|
145
|
+
if isinstance(nbtype, types.EnumMember):
|
|
146
|
+
return as_dtype(nbtype.dtype)
|
|
147
|
+
if isinstance(nbtype, types.npytypes.DType):
|
|
148
|
+
return as_dtype(nbtype.dtype)
|
|
149
|
+
if isinstance(nbtype, types.NumberClass):
|
|
150
|
+
return as_dtype(nbtype.dtype)
|
|
151
|
+
if isinstance(nbtype, types.NestedArray):
|
|
152
|
+
spec = (as_dtype(nbtype.dtype), tuple(nbtype.shape))
|
|
153
|
+
return np.dtype(spec)
|
|
154
|
+
if isinstance(nbtype, types.PyObject):
|
|
155
|
+
return np.dtype(object)
|
|
156
|
+
|
|
157
|
+
msg = f"{nbtype} cannot be represented as a NumPy dtype"
|
|
158
|
+
raise errors.NumbaNotImplementedError(msg)
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
def as_struct_dtype(rec):
|
|
162
|
+
"""Convert Numba Record type to NumPy structured dtype"""
|
|
163
|
+
assert isinstance(rec, types.Record)
|
|
164
|
+
names = []
|
|
165
|
+
formats = []
|
|
166
|
+
offsets = []
|
|
167
|
+
titles = []
|
|
168
|
+
# Fill the fields if they are not a title.
|
|
169
|
+
for k, t in rec.members:
|
|
170
|
+
if not rec.is_title(k):
|
|
171
|
+
names.append(k)
|
|
172
|
+
formats.append(as_dtype(t))
|
|
173
|
+
offsets.append(rec.offset(k))
|
|
174
|
+
titles.append(rec.fields[k].title)
|
|
175
|
+
|
|
176
|
+
fields = {
|
|
177
|
+
"names": names,
|
|
178
|
+
"formats": formats,
|
|
179
|
+
"offsets": offsets,
|
|
180
|
+
"itemsize": rec.size,
|
|
181
|
+
"titles": titles,
|
|
182
|
+
}
|
|
183
|
+
_check_struct_alignment(rec, fields)
|
|
184
|
+
return np.dtype(fields, align=rec.aligned)
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
def _check_struct_alignment(rec, fields):
|
|
188
|
+
"""Check alignment compatibility with Numpy"""
|
|
189
|
+
if rec.aligned:
|
|
190
|
+
for k, dt in zip(fields["names"], fields["formats"]):
|
|
191
|
+
llvm_align = rec.alignof(k)
|
|
192
|
+
npy_align = dt.alignment
|
|
193
|
+
if llvm_align is not None and npy_align != llvm_align:
|
|
194
|
+
msg = (
|
|
195
|
+
"NumPy is using a different alignment ({}) "
|
|
196
|
+
"than Numba/LLVM ({}) for {}. "
|
|
197
|
+
"This is likely a NumPy bug."
|
|
198
|
+
)
|
|
199
|
+
raise ValueError(msg.format(npy_align, llvm_align, dt))
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
def map_arrayscalar_type(val):
|
|
203
|
+
if isinstance(val, np.generic):
|
|
204
|
+
# We can't blindly call np.dtype() as it loses information
|
|
205
|
+
# on some types, e.g. datetime64 and timedelta64.
|
|
206
|
+
dtype = val.dtype
|
|
207
|
+
else:
|
|
208
|
+
try:
|
|
209
|
+
dtype = np.dtype(type(val))
|
|
210
|
+
except TypeError:
|
|
211
|
+
raise errors.NumbaNotImplementedError(
|
|
212
|
+
"no corresponding numpy dtype for %r" % type(val)
|
|
213
|
+
)
|
|
214
|
+
return from_dtype(dtype)
|
|
215
|
+
|
|
216
|
+
|
|
217
|
+
def is_array(val):
|
|
218
|
+
return isinstance(val, np.ndarray)
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+
def map_layout(val):
|
|
222
|
+
if val.flags["C_CONTIGUOUS"]:
|
|
223
|
+
layout = "C"
|
|
224
|
+
elif val.flags["F_CONTIGUOUS"]:
|
|
225
|
+
layout = "F"
|
|
226
|
+
else:
|
|
227
|
+
layout = "A"
|
|
228
|
+
return layout
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
def select_array_wrapper(inputs):
|
|
232
|
+
"""
|
|
233
|
+
Given the array-compatible input types to an operation (e.g. ufunc),
|
|
234
|
+
select the appropriate input for wrapping the operation output,
|
|
235
|
+
according to each input's __array_priority__.
|
|
236
|
+
|
|
237
|
+
An index into *inputs* is returned.
|
|
238
|
+
"""
|
|
239
|
+
max_prio = float("-inf")
|
|
240
|
+
selected_index = None
|
|
241
|
+
for index, ty in enumerate(inputs):
|
|
242
|
+
# Ties are broken by choosing the first winner, as in Numpy
|
|
243
|
+
if (
|
|
244
|
+
isinstance(ty, types.ArrayCompatible)
|
|
245
|
+
and ty.array_priority > max_prio
|
|
246
|
+
):
|
|
247
|
+
selected_index = index
|
|
248
|
+
max_prio = ty.array_priority
|
|
249
|
+
|
|
250
|
+
assert selected_index is not None
|
|
251
|
+
return selected_index
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
def resolve_output_type(context, inputs, formal_output):
|
|
255
|
+
"""
|
|
256
|
+
Given the array-compatible input types to an operation (e.g. ufunc),
|
|
257
|
+
and the operation's formal output type (a types.Array instance),
|
|
258
|
+
resolve the actual output type using the typing *context*.
|
|
259
|
+
|
|
260
|
+
This uses a mechanism compatible with Numpy's __array_priority__ /
|
|
261
|
+
__array_wrap__.
|
|
262
|
+
"""
|
|
263
|
+
selected_input = inputs[select_array_wrapper(inputs)]
|
|
264
|
+
args = selected_input, formal_output
|
|
265
|
+
sig = context.resolve_function_type("__array_wrap__", args, {})
|
|
266
|
+
if sig is None:
|
|
267
|
+
if selected_input.array_priority == types.Array.array_priority:
|
|
268
|
+
# If it's the same priority as a regular array, assume we
|
|
269
|
+
# should return the output unchanged.
|
|
270
|
+
# (we can't define __array_wrap__ explicitly for types.Buffer,
|
|
271
|
+
# as that would be inherited by most array-compatible objects)
|
|
272
|
+
return formal_output
|
|
273
|
+
raise errors.TypingError("__array_wrap__ failed for %s" % (args,))
|
|
274
|
+
return sig.return_type
|
|
275
|
+
|
|
276
|
+
|
|
277
|
+
def supported_ufunc_loop(ufunc, loop):
|
|
278
|
+
"""Return whether the *loop* for the *ufunc* is supported -in nopython-.
|
|
279
|
+
|
|
280
|
+
*loop* should be a UFuncLoopSpec instance, and *ufunc* a numpy ufunc.
|
|
281
|
+
|
|
282
|
+
For ufuncs implemented using the ufunc_db, it is supported if the ufunc_db
|
|
283
|
+
contains a lowering definition for 'loop' in the 'ufunc' entry.
|
|
284
|
+
|
|
285
|
+
For other ufuncs, it is type based. The loop will be considered valid if it
|
|
286
|
+
only contains the following letter types: '?bBhHiIlLqQfd'. Note this is
|
|
287
|
+
legacy and when implementing new ufuncs the ufunc_db should be preferred,
|
|
288
|
+
as it allows for a more fine-grained incremental support.
|
|
289
|
+
"""
|
|
290
|
+
# NOTE: Assuming ufunc for the CPUContext
|
|
291
|
+
from numba.cuda.np import ufunc_db
|
|
292
|
+
|
|
293
|
+
loop_sig = loop.ufunc_sig
|
|
294
|
+
try:
|
|
295
|
+
# check if the loop has a codegen description in the
|
|
296
|
+
# ufunc_db. If so, we can proceed.
|
|
297
|
+
|
|
298
|
+
# note that as of now not all ufuncs have an entry in the
|
|
299
|
+
# ufunc_db
|
|
300
|
+
supported_loop = loop_sig in ufunc_db.get_ufunc_info(ufunc)
|
|
301
|
+
except KeyError:
|
|
302
|
+
# for ufuncs not in ufunc_db, base the decision of whether the
|
|
303
|
+
# loop is supported on its types
|
|
304
|
+
loop_types = [x.char for x in loop.numpy_inputs + loop.numpy_outputs]
|
|
305
|
+
supported_types = "?bBhHiIlLqQfd"
|
|
306
|
+
# check if all the types involved in the ufunc loop are
|
|
307
|
+
# supported in this mode
|
|
308
|
+
supported_loop = all(t in supported_types for t in loop_types)
|
|
309
|
+
|
|
310
|
+
return supported_loop
|
|
311
|
+
|
|
312
|
+
|
|
313
|
+
class UFuncLoopSpec(
|
|
314
|
+
collections.namedtuple("_UFuncLoopSpec", ("inputs", "outputs", "ufunc_sig"))
|
|
315
|
+
):
|
|
316
|
+
"""
|
|
317
|
+
An object describing a ufunc loop's inner types. Properties:
|
|
318
|
+
- inputs: the inputs' Numba types
|
|
319
|
+
- outputs: the outputs' Numba types
|
|
320
|
+
- ufunc_sig: the string representing the ufunc's type signature, in
|
|
321
|
+
Numpy format (e.g. "ii->i")
|
|
322
|
+
"""
|
|
323
|
+
|
|
324
|
+
__slots__ = ()
|
|
325
|
+
|
|
326
|
+
@property
|
|
327
|
+
def numpy_inputs(self):
|
|
328
|
+
return [as_dtype(x) for x in self.inputs]
|
|
329
|
+
|
|
330
|
+
@property
|
|
331
|
+
def numpy_outputs(self):
|
|
332
|
+
return [as_dtype(x) for x in self.outputs]
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
def _ufunc_loop_sig(out_tys, in_tys):
|
|
336
|
+
if len(out_tys) == 1:
|
|
337
|
+
return signature(out_tys[0], *in_tys)
|
|
338
|
+
else:
|
|
339
|
+
return signature(types.Tuple(out_tys), *in_tys)
|
|
340
|
+
|
|
341
|
+
|
|
342
|
+
def ufunc_can_cast(from_, to, has_mixed_inputs, casting="safe"):
|
|
343
|
+
"""
|
|
344
|
+
A variant of np.can_cast() that can allow casting any integer to
|
|
345
|
+
any real or complex type, in case the operation has mixed-kind
|
|
346
|
+
inputs.
|
|
347
|
+
|
|
348
|
+
For example we want `np.power(float32, int32)` to be computed using
|
|
349
|
+
SP arithmetic and return `float32`.
|
|
350
|
+
However, `np.sqrt(int32)` should use DP arithmetic and return `float64`.
|
|
351
|
+
"""
|
|
352
|
+
from_ = np.dtype(from_)
|
|
353
|
+
to = np.dtype(to)
|
|
354
|
+
if has_mixed_inputs and from_.kind in "iu" and to.kind in "cf":
|
|
355
|
+
# Decide that all integers can cast to any real or complex type.
|
|
356
|
+
return True
|
|
357
|
+
return np.can_cast(from_, to, casting)
|
|
358
|
+
|
|
359
|
+
|
|
360
|
+
def ufunc_find_matching_loop(ufunc, arg_types):
|
|
361
|
+
"""Find the appropriate loop to be used for a ufunc based on the types
|
|
362
|
+
of the operands
|
|
363
|
+
|
|
364
|
+
ufunc - The ufunc we want to check
|
|
365
|
+
arg_types - The tuple of arguments to the ufunc, including any
|
|
366
|
+
explicit output(s).
|
|
367
|
+
return value - A UFuncLoopSpec identifying the loop, or None
|
|
368
|
+
if no matching loop is found.
|
|
369
|
+
"""
|
|
370
|
+
|
|
371
|
+
# Separate logical input from explicit output arguments
|
|
372
|
+
input_types = arg_types[: ufunc.nin]
|
|
373
|
+
output_types = arg_types[ufunc.nin :]
|
|
374
|
+
assert len(input_types) == ufunc.nin
|
|
375
|
+
|
|
376
|
+
try:
|
|
377
|
+
np_input_types = [as_dtype(x) for x in input_types]
|
|
378
|
+
except errors.NumbaNotImplementedError:
|
|
379
|
+
return None
|
|
380
|
+
try:
|
|
381
|
+
np_output_types = [as_dtype(x) for x in output_types]
|
|
382
|
+
except errors.NumbaNotImplementedError:
|
|
383
|
+
return None
|
|
384
|
+
|
|
385
|
+
# Whether the inputs are mixed integer / floating-point
|
|
386
|
+
has_mixed_inputs = any(dt.kind in "iu" for dt in np_input_types) and any(
|
|
387
|
+
dt.kind in "cf" for dt in np_input_types
|
|
388
|
+
)
|
|
389
|
+
|
|
390
|
+
def choose_types(numba_types, ufunc_letters):
|
|
391
|
+
"""
|
|
392
|
+
Return a list of Numba types representing *ufunc_letters*,
|
|
393
|
+
except when the letter designates a datetime64 or timedelta64,
|
|
394
|
+
in which case the type is taken from *numba_types*.
|
|
395
|
+
"""
|
|
396
|
+
assert len(ufunc_letters) >= len(numba_types)
|
|
397
|
+
types = [
|
|
398
|
+
tp if letter in "mM" else from_dtype(np.dtype(letter))
|
|
399
|
+
for tp, letter in zip(numba_types, ufunc_letters)
|
|
400
|
+
]
|
|
401
|
+
# Add missing types (presumably implicit outputs)
|
|
402
|
+
types += [
|
|
403
|
+
from_dtype(np.dtype(letter))
|
|
404
|
+
for letter in ufunc_letters[len(numba_types) :]
|
|
405
|
+
]
|
|
406
|
+
return types
|
|
407
|
+
|
|
408
|
+
def set_output_dt_units(inputs, outputs, ufunc_inputs, ufunc_name):
|
|
409
|
+
"""
|
|
410
|
+
Sets the output unit of a datetime type based on the input units
|
|
411
|
+
|
|
412
|
+
Timedelta is a special dtype that requires the time unit to be
|
|
413
|
+
specified (day, month, etc). Not every operation with timedelta inputs
|
|
414
|
+
leads to an output of timedelta output. However, for those that do,
|
|
415
|
+
the unit of output must be inferred based on the units of the inputs.
|
|
416
|
+
|
|
417
|
+
At the moment this function takes care of two cases:
|
|
418
|
+
a) where all inputs are timedelta with the same unit (mm), and
|
|
419
|
+
therefore the output has the same unit.
|
|
420
|
+
This case is used for arr.sum, and for arr1+arr2 where all arrays
|
|
421
|
+
are timedeltas.
|
|
422
|
+
If in the future this needs to be extended to a case with mixed units,
|
|
423
|
+
the rules should be implemented in `npdatetime_helpers` and called
|
|
424
|
+
from this function to set the correct output unit.
|
|
425
|
+
b) where left operand is a timedelta, i.e. the "m?" case. This case
|
|
426
|
+
is used for division, eg timedelta / int.
|
|
427
|
+
|
|
428
|
+
At the time of writing, Numba does not support addition of timedelta
|
|
429
|
+
and other types, so this function does not consider the case "?m",
|
|
430
|
+
i.e. where timedelta is the right operand to a non-timedelta left
|
|
431
|
+
operand. To extend it in the future, just add another elif clause.
|
|
432
|
+
"""
|
|
433
|
+
|
|
434
|
+
def make_specific(outputs, unit):
|
|
435
|
+
new_outputs = []
|
|
436
|
+
for out in outputs:
|
|
437
|
+
if isinstance(out, types.NPTimedelta) and out.unit == "":
|
|
438
|
+
new_outputs.append(types.NPTimedelta(unit))
|
|
439
|
+
else:
|
|
440
|
+
new_outputs.append(out)
|
|
441
|
+
return new_outputs
|
|
442
|
+
|
|
443
|
+
def make_datetime_specific(outputs, dt_unit, td_unit):
|
|
444
|
+
new_outputs = []
|
|
445
|
+
for out in outputs:
|
|
446
|
+
if isinstance(out, types.NPDatetime) and out.unit == "":
|
|
447
|
+
unit = npdatetime_helpers.combine_datetime_timedelta_units(
|
|
448
|
+
dt_unit, td_unit
|
|
449
|
+
)
|
|
450
|
+
if unit is None:
|
|
451
|
+
raise TypingError(
|
|
452
|
+
f"ufunc '{ufunc_name}' is not "
|
|
453
|
+
+ "supported between "
|
|
454
|
+
+ f"datetime64[{dt_unit}] "
|
|
455
|
+
+ f"and timedelta64[{td_unit}]"
|
|
456
|
+
)
|
|
457
|
+
new_outputs.append(types.NPDatetime(unit))
|
|
458
|
+
else:
|
|
459
|
+
new_outputs.append(out)
|
|
460
|
+
return new_outputs
|
|
461
|
+
|
|
462
|
+
if ufunc_inputs == "mm":
|
|
463
|
+
if all(inp.unit == inputs[0].unit for inp in inputs):
|
|
464
|
+
# Case with operation on same units. Operations on different
|
|
465
|
+
# units not adjusted for now but might need to be
|
|
466
|
+
# added in the future
|
|
467
|
+
unit = inputs[0].unit
|
|
468
|
+
new_outputs = make_specific(outputs, unit)
|
|
469
|
+
else:
|
|
470
|
+
return outputs
|
|
471
|
+
return new_outputs
|
|
472
|
+
elif ufunc_inputs == "mM":
|
|
473
|
+
# case where the left operand has timedelta type
|
|
474
|
+
# and the right operand has datetime
|
|
475
|
+
td_unit = inputs[0].unit
|
|
476
|
+
dt_unit = inputs[1].unit
|
|
477
|
+
return make_datetime_specific(outputs, dt_unit, td_unit)
|
|
478
|
+
|
|
479
|
+
elif ufunc_inputs == "Mm":
|
|
480
|
+
# case where the right operand has timedelta type
|
|
481
|
+
# and the left operand has datetime
|
|
482
|
+
dt_unit = inputs[0].unit
|
|
483
|
+
td_unit = inputs[1].unit
|
|
484
|
+
return make_datetime_specific(outputs, dt_unit, td_unit)
|
|
485
|
+
|
|
486
|
+
elif ufunc_inputs[0] == "m":
|
|
487
|
+
# case where the left operand has timedelta type
|
|
488
|
+
unit = inputs[0].unit
|
|
489
|
+
new_outputs = make_specific(outputs, unit)
|
|
490
|
+
return new_outputs
|
|
491
|
+
|
|
492
|
+
# In NumPy, the loops are evaluated from first to last. The first one
|
|
493
|
+
# that is viable is the one used. One loop is viable if it is possible
|
|
494
|
+
# to cast every input operand to the one expected by the ufunc.
|
|
495
|
+
# Also under NumPy 1.10+ the output must be able to be cast back
|
|
496
|
+
# to a close enough type ("same_kind").
|
|
497
|
+
|
|
498
|
+
for candidate in ufunc.types:
|
|
499
|
+
ufunc_inputs = candidate[: ufunc.nin]
|
|
500
|
+
ufunc_outputs = candidate[-ufunc.nout :] if ufunc.nout else []
|
|
501
|
+
|
|
502
|
+
if "e" in ufunc_inputs:
|
|
503
|
+
# Skip float16 arrays since we don't have implementation for them
|
|
504
|
+
continue
|
|
505
|
+
if "O" in ufunc_inputs:
|
|
506
|
+
# Skip object arrays
|
|
507
|
+
continue
|
|
508
|
+
found = True
|
|
509
|
+
# Skip if any input or output argument is mismatching
|
|
510
|
+
for outer, inner in zip(np_input_types, ufunc_inputs):
|
|
511
|
+
# (outer is a dtype instance, inner is a type char)
|
|
512
|
+
if outer.char in "mM" or inner in "mM":
|
|
513
|
+
# For datetime64 and timedelta64, we want to retain
|
|
514
|
+
# precise typing (i.e. the units); therefore we look for
|
|
515
|
+
# an exact match.
|
|
516
|
+
if outer.char != inner:
|
|
517
|
+
found = False
|
|
518
|
+
break
|
|
519
|
+
elif not ufunc_can_cast(
|
|
520
|
+
outer.char, inner, has_mixed_inputs, "safe"
|
|
521
|
+
):
|
|
522
|
+
found = False
|
|
523
|
+
break
|
|
524
|
+
if found:
|
|
525
|
+
# Can we cast the inner result to the outer result type?
|
|
526
|
+
for outer, inner in zip(np_output_types, ufunc_outputs):
|
|
527
|
+
if outer.char not in "mM" and not ufunc_can_cast(
|
|
528
|
+
inner, outer.char, has_mixed_inputs, "same_kind"
|
|
529
|
+
):
|
|
530
|
+
found = False
|
|
531
|
+
break
|
|
532
|
+
if found:
|
|
533
|
+
# Found: determine the Numba types for the loop's inputs and
|
|
534
|
+
# outputs.
|
|
535
|
+
try:
|
|
536
|
+
inputs = choose_types(input_types, ufunc_inputs)
|
|
537
|
+
outputs = choose_types(output_types, ufunc_outputs)
|
|
538
|
+
# if the left operand or both are timedeltas, or the first
|
|
539
|
+
# argument is datetime and the second argument is timedelta,
|
|
540
|
+
# then the output units need to be determined.
|
|
541
|
+
if ufunc_inputs[0] == "m" or ufunc_inputs == "Mm":
|
|
542
|
+
outputs = set_output_dt_units(
|
|
543
|
+
inputs, outputs, ufunc_inputs, ufunc.__name__
|
|
544
|
+
)
|
|
545
|
+
|
|
546
|
+
except errors.NumbaNotImplementedError:
|
|
547
|
+
# One of the selected dtypes isn't supported by Numba
|
|
548
|
+
# (e.g. float16), try other candidates
|
|
549
|
+
continue
|
|
550
|
+
else:
|
|
551
|
+
return UFuncLoopSpec(inputs, outputs, candidate)
|
|
552
|
+
|
|
553
|
+
return None
|
|
554
|
+
|
|
555
|
+
|
|
556
|
+
def _is_aligned_struct(struct):
|
|
557
|
+
return struct.isalignedstruct
|
|
558
|
+
|
|
559
|
+
|
|
560
|
+
def from_struct_dtype(dtype):
|
|
561
|
+
"""Convert a NumPy structured dtype to Numba Record type"""
|
|
562
|
+
if dtype.hasobject:
|
|
563
|
+
msg = "dtypes that contain object are not supported."
|
|
564
|
+
raise errors.NumbaNotImplementedError(msg)
|
|
565
|
+
|
|
566
|
+
fields = []
|
|
567
|
+
for name, info in dtype.fields.items():
|
|
568
|
+
# *info* may have 3 element
|
|
569
|
+
[elemdtype, offset] = info[:2]
|
|
570
|
+
title = info[2] if len(info) == 3 else None
|
|
571
|
+
|
|
572
|
+
ty = from_dtype(elemdtype)
|
|
573
|
+
infos = {
|
|
574
|
+
"type": ty,
|
|
575
|
+
"offset": offset,
|
|
576
|
+
"title": title,
|
|
577
|
+
}
|
|
578
|
+
fields.append((name, infos))
|
|
579
|
+
|
|
580
|
+
# Note: dtype.alignment is not consistent.
|
|
581
|
+
# It is different after passing into a recarray.
|
|
582
|
+
# recarray(N, dtype=mydtype).dtype.alignment != mydtype.alignment
|
|
583
|
+
size = dtype.itemsize
|
|
584
|
+
aligned = _is_aligned_struct(dtype)
|
|
585
|
+
|
|
586
|
+
return types.Record(fields, size, aligned)
|
|
587
|
+
|
|
588
|
+
|
|
589
|
+
def _get_bytes_buffer(ptr, nbytes):
|
|
590
|
+
"""
|
|
591
|
+
Get a ctypes array of *nbytes* starting at *ptr*.
|
|
592
|
+
"""
|
|
593
|
+
if isinstance(ptr, ctypes.c_void_p):
|
|
594
|
+
ptr = ptr.value
|
|
595
|
+
arrty = ctypes.c_byte * nbytes
|
|
596
|
+
return arrty.from_address(ptr)
|
|
597
|
+
|
|
598
|
+
|
|
599
|
+
def _get_array_from_ptr(ptr, nbytes, dtype):
|
|
600
|
+
return np.frombuffer(_get_bytes_buffer(ptr, nbytes), dtype)
|
|
601
|
+
|
|
602
|
+
|
|
603
|
+
def carray(ptr, shape, dtype=None):
|
|
604
|
+
"""
|
|
605
|
+
Return a Numpy array view over the data pointed to by *ptr* with the
|
|
606
|
+
given *shape*, in C order. If *dtype* is given, it is used as the
|
|
607
|
+
array's dtype, otherwise the array's dtype is inferred from *ptr*'s type.
|
|
608
|
+
"""
|
|
609
|
+
from numba.cuda.typing.ctypes_utils import from_ctypes
|
|
610
|
+
|
|
611
|
+
try:
|
|
612
|
+
# Use ctypes parameter protocol if available
|
|
613
|
+
ptr = ptr._as_parameter_
|
|
614
|
+
except AttributeError:
|
|
615
|
+
pass
|
|
616
|
+
|
|
617
|
+
# Normalize dtype, to accept e.g. "int64" or np.int64
|
|
618
|
+
if dtype is not None:
|
|
619
|
+
dtype = np.dtype(dtype)
|
|
620
|
+
|
|
621
|
+
if isinstance(ptr, ctypes.c_void_p):
|
|
622
|
+
if dtype is None:
|
|
623
|
+
raise TypeError("explicit dtype required for void* argument")
|
|
624
|
+
p = ptr
|
|
625
|
+
elif isinstance(ptr, ctypes._Pointer):
|
|
626
|
+
ptrty = from_ctypes(ptr.__class__)
|
|
627
|
+
assert isinstance(ptrty, types.CPointer)
|
|
628
|
+
ptr_dtype = as_dtype(ptrty.dtype)
|
|
629
|
+
if dtype is not None and dtype != ptr_dtype:
|
|
630
|
+
raise TypeError(
|
|
631
|
+
"mismatching dtype '%s' for pointer %s" % (dtype, ptr)
|
|
632
|
+
)
|
|
633
|
+
dtype = ptr_dtype
|
|
634
|
+
p = ctypes.cast(ptr, ctypes.c_void_p)
|
|
635
|
+
else:
|
|
636
|
+
raise TypeError("expected a ctypes pointer, got %r" % (ptr,))
|
|
637
|
+
|
|
638
|
+
nbytes = dtype.itemsize * np.prod(shape, dtype=np.intp)
|
|
639
|
+
return _get_array_from_ptr(p, nbytes, dtype).reshape(shape)
|
|
640
|
+
|
|
641
|
+
|
|
642
|
+
def farray(ptr, shape, dtype=None):
|
|
643
|
+
"""
|
|
644
|
+
Return a Numpy array view over the data pointed to by *ptr* with the
|
|
645
|
+
given *shape*, in Fortran order. If *dtype* is given, it is used as the
|
|
646
|
+
array's dtype, otherwise the array's dtype is inferred from *ptr*'s type.
|
|
647
|
+
"""
|
|
648
|
+
if not isinstance(shape, int):
|
|
649
|
+
shape = shape[::-1]
|
|
650
|
+
return carray(ptr, shape, dtype).T
|
|
651
|
+
|
|
652
|
+
|
|
653
|
+
def is_contiguous(dims, strides, itemsize):
|
|
654
|
+
"""Is the given shape, strides, and itemsize of C layout?
|
|
655
|
+
|
|
656
|
+
Note: The code is usable as a numba-compiled function
|
|
657
|
+
"""
|
|
658
|
+
nd = len(dims)
|
|
659
|
+
# Check and skip 1s or 0s in inner dims
|
|
660
|
+
innerax = nd - 1
|
|
661
|
+
while innerax > -1 and dims[innerax] <= 1:
|
|
662
|
+
innerax -= 1
|
|
663
|
+
|
|
664
|
+
# Early exit if all axis are 1s or 0s
|
|
665
|
+
if innerax < 0:
|
|
666
|
+
return True
|
|
667
|
+
|
|
668
|
+
# Check itemsize matches innermost stride
|
|
669
|
+
if itemsize != strides[innerax]:
|
|
670
|
+
return False
|
|
671
|
+
|
|
672
|
+
# Check and skip 1s or 0s in outer dims
|
|
673
|
+
outerax = 0
|
|
674
|
+
while outerax < innerax and dims[outerax] <= 1:
|
|
675
|
+
outerax += 1
|
|
676
|
+
|
|
677
|
+
# Check remaining strides to be contiguous
|
|
678
|
+
ax = innerax
|
|
679
|
+
while ax > outerax:
|
|
680
|
+
if strides[ax] * dims[ax] != strides[ax - 1]:
|
|
681
|
+
return False
|
|
682
|
+
ax -= 1
|
|
683
|
+
return True
|
|
684
|
+
|
|
685
|
+
|
|
686
|
+
def is_fortran(dims, strides, itemsize):
|
|
687
|
+
"""Is the given shape, strides, and itemsize of F layout?
|
|
688
|
+
|
|
689
|
+
Note: The code is usable as a numba-compiled function
|
|
690
|
+
"""
|
|
691
|
+
nd = len(dims)
|
|
692
|
+
# Check and skip 1s or 0s in inner dims
|
|
693
|
+
firstax = 0
|
|
694
|
+
while firstax < nd and dims[firstax] <= 1:
|
|
695
|
+
firstax += 1
|
|
696
|
+
|
|
697
|
+
# Early exit if all axis are 1s or 0s
|
|
698
|
+
if firstax >= nd:
|
|
699
|
+
return True
|
|
700
|
+
|
|
701
|
+
# Check itemsize matches innermost stride
|
|
702
|
+
if itemsize != strides[firstax]:
|
|
703
|
+
return False
|
|
704
|
+
|
|
705
|
+
# Check and skip 1s or 0s in outer dims
|
|
706
|
+
lastax = nd - 1
|
|
707
|
+
while lastax > firstax and dims[lastax] <= 1:
|
|
708
|
+
lastax -= 1
|
|
709
|
+
|
|
710
|
+
# Check remaining strides to be contiguous
|
|
711
|
+
ax = firstax
|
|
712
|
+
while ax < lastax:
|
|
713
|
+
if strides[ax] * dims[ax] != strides[ax + 1]:
|
|
714
|
+
return False
|
|
715
|
+
ax += 1
|
|
716
|
+
return True
|
|
717
|
+
|
|
718
|
+
|
|
719
|
+
def type_can_asarray(arr):
|
|
720
|
+
"""Returns True if the type of 'arr' is supported by the Numba `np.asarray`
|
|
721
|
+
implementation, False otherwise.
|
|
722
|
+
"""
|
|
723
|
+
|
|
724
|
+
ok = (
|
|
725
|
+
types.Array,
|
|
726
|
+
types.Sequence,
|
|
727
|
+
types.Tuple,
|
|
728
|
+
types.StringLiteral,
|
|
729
|
+
types.Number,
|
|
730
|
+
types.Boolean,
|
|
731
|
+
types.containers.ListType,
|
|
732
|
+
)
|
|
733
|
+
|
|
734
|
+
return isinstance(arr, ok)
|
|
735
|
+
|
|
736
|
+
|
|
737
|
+
def type_is_scalar(typ):
|
|
738
|
+
"""Returns True if the type of 'typ' is a scalar type, according to
|
|
739
|
+
NumPy rules. False otherwise.
|
|
740
|
+
https://numpy.org/doc/stable/reference/arrays.scalars.html#built-in-scalar-types
|
|
741
|
+
"""
|
|
742
|
+
|
|
743
|
+
ok = (
|
|
744
|
+
types.Boolean,
|
|
745
|
+
types.Number,
|
|
746
|
+
types.UnicodeType,
|
|
747
|
+
types.StringLiteral,
|
|
748
|
+
types.NPTimedelta,
|
|
749
|
+
types.NPDatetime,
|
|
750
|
+
)
|
|
751
|
+
return isinstance(typ, ok)
|
|
752
|
+
|
|
753
|
+
|
|
754
|
+
def check_is_integer(v, name):
|
|
755
|
+
"""Raises TypingError if the value is not an integer."""
|
|
756
|
+
if not isinstance(v, (int, types.Integer)):
|
|
757
|
+
raise TypingError("{} must be an integer".format(name))
|
|
758
|
+
|
|
759
|
+
|
|
760
|
+
def lt_floats(a, b):
|
|
761
|
+
# Adapted from NumPy commit 717c7acf which introduced the behavior of
|
|
762
|
+
# putting NaNs at the end.
|
|
763
|
+
# The code is later moved to numpy/core/src/npysort/npysort_common.h
|
|
764
|
+
# This info is gathered as of NumPy commit d8c09c50
|
|
765
|
+
return a < b or (np.isnan(b) and not np.isnan(a))
|
|
766
|
+
|
|
767
|
+
|
|
768
|
+
def lt_complex(a, b):
|
|
769
|
+
if np.isnan(a.real):
|
|
770
|
+
if np.isnan(b.real):
|
|
771
|
+
if np.isnan(a.imag):
|
|
772
|
+
return False
|
|
773
|
+
else:
|
|
774
|
+
if np.isnan(b.imag):
|
|
775
|
+
return True
|
|
776
|
+
else:
|
|
777
|
+
return a.imag < b.imag
|
|
778
|
+
else:
|
|
779
|
+
return False
|
|
780
|
+
|
|
781
|
+
else:
|
|
782
|
+
if np.isnan(b.real):
|
|
783
|
+
return True
|
|
784
|
+
else:
|
|
785
|
+
if np.isnan(a.imag):
|
|
786
|
+
if np.isnan(b.imag):
|
|
787
|
+
return a.real < b.real
|
|
788
|
+
else:
|
|
789
|
+
return False
|
|
790
|
+
else:
|
|
791
|
+
if np.isnan(b.imag):
|
|
792
|
+
return True
|
|
793
|
+
else:
|
|
794
|
+
if a.real < b.real:
|
|
795
|
+
return True
|
|
796
|
+
elif a.real == b.real:
|
|
797
|
+
return a.imag < b.imag
|
|
798
|
+
return False
|